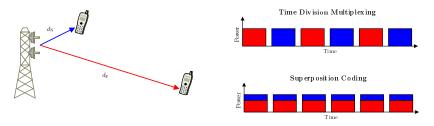
Superposition Coding Strategies: Design and Performance Evaluation

These slides summarize two papers:

- Part 1 (A two-user superposition-coded system prototype): (Vanka12a) S. Vanka, S. Srinivasa, Z. Gong, P. Vizi, K. Statmatiou, and M. Haenggi, "Superposition Coding Strategies: Design and Experimental Evaluation", IEEE Trans. Wireless. Comm., 2012. Accepted.
- Part 2 (Coding gain from practical superposition codes): (Vanka12b) S. Vanka, S. Srinivasa, and M. Haenggi, "A Practical Approach to Strengthen Vulnerable Downlinks using Superposition Coding", in ICC 2012.

1 A Two-User SC System Prototype


2 The Coding Gains from Practical Superposition Codes

▲□▶▲□▶▲□▶▲□▶ = ● のへで

A Two-User SC System Prototype [Vanka12a]

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

What is Superposition Coding?

- BS sends information to *two* users N (near) and F (far) ↔ Communicating over a Broadcast Channel (BC)
- BS has full CSI: Gaussian BC [Cover06]¹
- BS has no CSI: Fading BC [Zhang09]²
- Capacity achieved by Superposition Coding (SC) and Successive Decoding (SD)

¹ T. Cover, and J. A. Thomas, Elements of Information Theory, 2nd ed., John Wiley & Sons, Inc., 2006.

²W. Zhang, S. Kotagiri, J. N. Laneman, On Downlink Transmission Without Transmit Channel State Information and With Outage Constraints," IEEE Trans. IT, Sept. 2009.

The Team: Sundaram Vanka, Sunil Srinivasa, Peter Vizi, Zhenhua Gong, Kostas Stamatiou

Contributions

- Superposition coding techniques that work for small to medium-sized packets (100 – 500 bytes).
- 2 Designed the complete SC physical layer
- Developed the reference Matlab model and provided extensive assistance in C code integration, testing and debugging
- Proposed practical approaches to leverage the coding gain from superposition-based multiuser channel codes
- Designed efficient experiments that measure performance gains from SC

SC with Finite Blocklength Channel Codes

- IT result existential, not constructive
- Need to understand how SC works with well-known codes
- Identify key practical issues that arise in its implementation

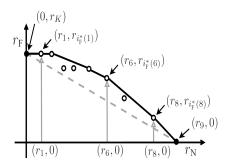
Definition (Code Library)

A collection of $M < \infty$ encoder-decoder function pairs with spectral efficiencies (aka "rates") $r_1 < r_2 \cdots < r_M$

Definition: Packet Error Rate (PER)

The probability of codeword decoding error

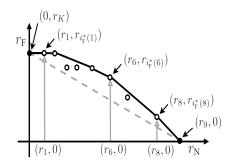
Definition (ϵ -Feasible on a Link)


A code with rate *r* is ϵ -feasible on a link if the PER of a codeword encoded at *r* is no greater than ϵ

Achievable Rates with a Code Library

- Need (γ_n, γ_f) to specify BC
- Set γ_n s.t. $r_n = r_M$ is feasible
- Set γ_f s.t. r_f = r_K < r_M is feasible

 $\max_{\substack{\{r_1,...,r_M\}}} r_f$ s.t. (r_f, r_k) is jointly ϵ -feasible


Transmission scheme decides joint feasibility!

イロト 不得 トイヨト イヨト

-

- Convexify solution set $\{(r_k, r_i^*(k)) : k \in [M]\}$ to get the rate-region boundary
- Solution requires finding desired Tx power split for SC
- α_k : N's share for rate r_k
- $\bar{\alpha}_k \triangleq 1 \alpha_k$: F's share for rate $r_i^*(k)$

ヘロト 人間 ト 人 ヨト 人 ヨトー

- Pairs powerful binary codes with well-known modulation techniques [Caire98]³
- Combines the advantages of signal space coding with well-known binary codes
- Flexible and easy to implement
- Coding technique in DSL, Wi-Fi, WiMAX...

In our library:

- Modulations: BPSK, QPSK, 16-QAM
- Channel codes:
 - Standard const. length 7 rate-1/2 convolutional code with generator matrix [133,171]
 - Rates 2/3, 3/4, 5/6 punctured versions of mother code

³G.Caire, G. Taricco and E.Biglieri, "Bit-Interleaved Coded Modulation", IEEE Trans. IT, May 1998 = 🕨 K 🗄 🖉 🔗 🔍 (>

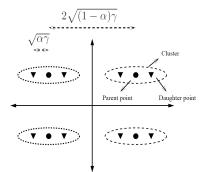
SC-BICM Rate Region in the High Reliability Regime

Can approximate PER as a function of SNR: PER at N:

- Pick $\gamma_n \gg \gamma_f$ so N can almost certainly decode F's packet
- If F's signal is *perfectly cancelled* at N, N decodes its packet from the matched filter outputs

$$Y_{\mathsf{n}}(m) = \alpha X_{\mathsf{n}}(m) + W_{\mathsf{n}}(m), \ m \in [L]$$

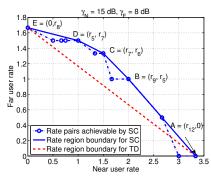
■ For this p2p case [Caire98]⁴


$$\mathsf{PER}_{\mathsf{n}} \lessapprox \mathit{\mathsf{NWQ}}\left(\mathit{D}_{\mathsf{n}}\sqrt{\dfrac{\mathit{C}_{\mathsf{n}}\gamma_{\mathsf{n}}}{2}}
ight), \quad \gamma_{\mathsf{n}}
ightarrow \infty.$$

 N: payload size, W: # free distance error events D_n : constellation min. distance, C_n : free distance of N's conv. code

F decodes its packet from

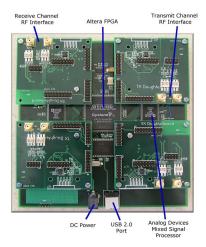
 $Y_{\rm f}(m) = \bar{\alpha} X_{\rm f}(m) + \alpha X_{\rm n}(m) + W_{\rm n}(m), \ m \in [L]$


- Discrete interference
 ⇒ Symbol Clusters
- ML demodulation for F's symbols: Find the nearest cluster
- Expression similar to N, but "Constellation Min.
 Distance" = Closest cluster separation

イロト イポト イヨト イヨト

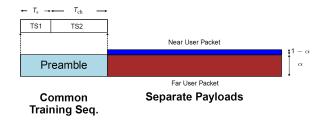
Rate Region for "Practical" PERs

- Problem: Bound on PER_f too loose at practical PERs ($\lesssim 0.1$), esp. for small intercluster separations
- Numerically find the rate region



$$\gamma_{\mathsf{n}}=$$
 18 dB, $\gamma_{\mathsf{f}}=$ 8 dB, $\epsilon=$ 0.1

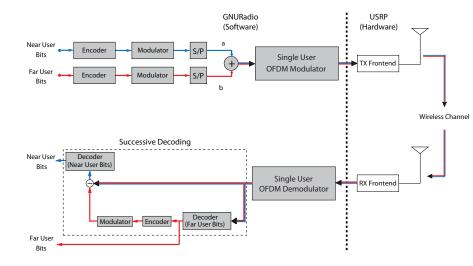
Point	α	(r_n, r_f)	
A	1	(3.33,0)	
В	0.21	(2,1)	
С	0.13	(1.5,1.33)	
D	0.06	(1,1.5)	
E	0	(1.67,0)	


▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへで

Towards an SC-BICM Prototype on a USRP Platform

- Flexible
 - Multi-Protocol
 - Multi-Band
- Board has FPGA, DAC/ADC, RF Frontends
- USB 2.0 Interface with Linux PC
- Software-based DSP on GNURadio
 - Open Source
 - In-built USRP drivers

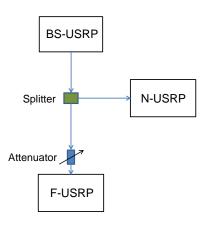
▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()



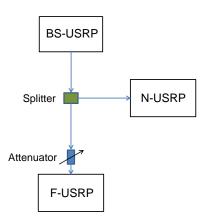
TS1: Packet acquisition, timing and frequency sync. Duration $T_{\rm s} = 48 \mu s$

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

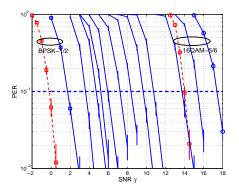
TS2: Channel estimation. Duration $T_{ch} = 34 \mu s$


Top-level Block Diagram

Emulating a Gaussian BC


Step 1: Only BS -> N active

- Increase BS power P, measure PER for highest rate
- Find P_n = Smallest P s.t. highest rate is feasible
- Note down largest backoff β_k from P_n for rate r_k to be feasible $k \in [M]$
- β_k = initial guess for α_k
- Special case: PER curves (PER for all P, r_k)



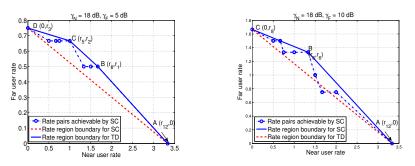
Step 2: Only BS \rightarrow F active

- Fix target rate r_K for F
- With BS power = P_n, choose largest attenuation a_f s.t. r_K is feasible
- Power control granularity 0.5 dB, attenuator granularity 1 dB

- $\blacksquare SNR = \frac{Preamble power}{Noise power}$
- Digitally measured for fixed amplifier gain setting
- Worst-case implementation loss ≈3.5 dB (16-QAM, rate-5/6 10% PER)

The Rate Region Experiment

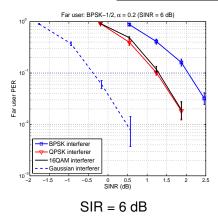
Initialize $r_{prev} = r_K$ For k = 1, ..., M: Step 1: $\alpha_k = \beta_k$; $r_f(k) = r_{prev}$ Step 2: Measure PER for $r_k, r_f(k)$ Step 3:


- N not feasible: Increase *α_k*, go to 2)
- N but not F: r_f(k) = Next lowest library rate, go to 2)
- Both N & F: k^{th} solution found. $r_{\text{prev}} = r_{\text{f}}(k)$

ション 小田 マイビット ビー シックション

The Choice of F

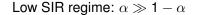
 $P_n = -43 \text{ dBm}, a_f = 9 \text{ dB}.$ F's single user rate: BPSK-3/4 $P_n = -43 \text{ dBm}, a_f = 5 \text{ dB}.$ F's single user rate: QPSK-5/6

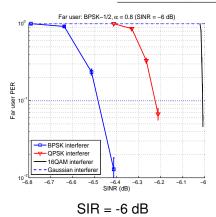


F is "too close" : Not enough disparity. "Too far": no codes to support rate Sweet spot appears to be between QPSK-5/6 and BPSK-3/4

・ロト・日本・ モー・ モー・ シック

Interference from N's Symbols at F

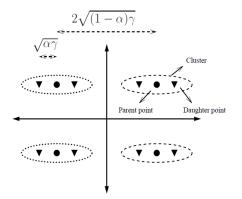




- Fix F's rate (in this case to BPSK-1/2)
- Compare equal-power Gaussian, BPSK, QPSK and 16-QAM interferers
- BPSK > QPSK/16QAM > Gaussian

・ロト ・ 四ト ・ ヨト ・ ヨト … ヨ

Interference from N's Symbols at F

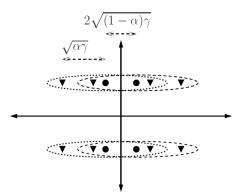


Now Gaussian > 16QAM > QPSK > BPSK

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Situation reversed!

High SIR regime

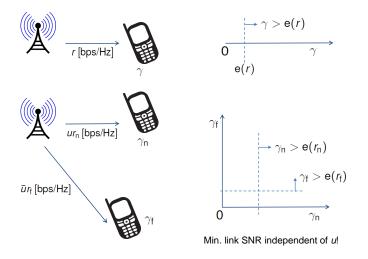


- Small \(\alpha\): min. distance determined by cluster separation
- For a given interference power BPSK perturbs all parent points to the max. extent
- Denser interferer constellations place fewer points on the edges

イロト 不得 トイヨト イヨト

-

Low SIR regime

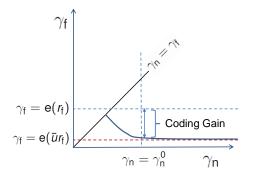

- Large α: min. distance determined by cluster density
- For a given interference power BPSK causes the least dense clusters!
- Denser interferer constellations make the problem worse

Conclusion: Must be careful in using the Gaussian approximation in SC systems

The Coding Gain from Practical Superposition Codes [Vanka12b]

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 - のへで

Orthogonal Coding on the BC

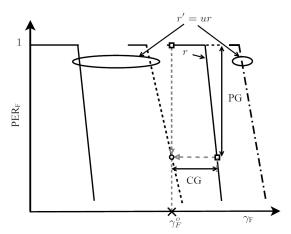

▲□▶▲圖▶▲≣▶▲≣▶ = 差 - 釣A@

SC as a Superior Multiuser Channel Code

Constraining $(ur_n, \bar{u}r_f)$ to be feasible with SC

$$\gamma_{\rm f}^*(\gamma_{\rm n}; ur_{\rm n}, ur_{\rm f}) = \frac{\gamma_{\rm n} {\rm e}(\bar{u}r_{\rm f})}{\gamma_{\rm n} - {\rm e}(ur_{\rm n})(1 + {\rm e}(\bar{u}r_{\rm f}))}.$$

- Packets encoded exactly at (urn, ūrf)
- For each u, require $\alpha > e(ur_n)/\gamma_n$ with SC
- Coding gain increases with γ_n \Leftrightarrow pair F with high-SNR N!



・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

э

Performance Gain in the Finite Blocklength Regime

- Non-zero decoding error probability or Packet Error Rate (PER)
- At PER = ϵ , typical packet req. $\frac{1}{1-\epsilon}$ to reach F
- Easy to measure the Reliability Gain RG = ^{1-ϵ_{SC}}/_{1-ϵ_{TD}}

SC with Finite Blocklength Channel Codes

- IT result existential, not constructive
- Need to understand how SC works with well-known codes
- Identify key practical issues that arise in its implementation

Definition (Code library)

A collection of $M < \infty$ encoder-decoder function pairs with spectral efficiencies (aka "rates") $r_1 < r_2 \cdots < r_M$

Definition: Packet Error Rate (PER)

The probability of codeword decoding error

Definition (ϵ -feasible on a link)

A code with rate *r* is ϵ -feasible on a link if the PER of a codeword encoded at *r* is no greater than ϵ

Important special case: N close to BS, F at cell-edge.

• $r_n = r_M$, $\bar{u}r_f$ is small (can set to r_1)

Set
$$ur_M = r_k$$
, so that
 $u_k = r_k/r_M, r_f = r_1/\bar{u}_k, k \in \{1, ..., M\}$

If library has codes $r_a < r_f < r_b$, time-share between r_a and r_b

Compare SC using (r_k, r_1) with TD using $(r_M, r_1/u_k)$, for k = 1, ..., M.

ション 小田 マイビット ビー シックション

Setting up the BC

P : BS power, α : N's share

$$\begin{array}{ll} \gamma_{\mathsf{n}} & \propto \alpha \boldsymbol{\mathcal{P}} & \triangleq \boldsymbol{\mathcal{P}}_{\mathsf{n}} \\ \gamma_{\mathsf{f}} & \propto \bar{\alpha} \boldsymbol{\mathcal{P}} & \triangleq \boldsymbol{\mathcal{P}}_{\mathsf{f}} \end{array}$$

Rate *r* is reliable \leftrightarrow PER ≤ 0.1 For k = 1, ..., M: SC Step: **Step 1:** Set $P_n = 0 \& \uparrow P_f$ s.t. r_1 is reliable **Step 2:** $\uparrow P_n$ s.t. r_k is reliable **Step 3:** Keeping P_n/P_f constant $\uparrow P_f$ s.t. r_1 is reliable **TD Step:** Find PER_f at BS power $P_{\rm n} + P_{\rm f}$ and rate r_1/u_k

Experimental Results

- $\bar{u}r_{\rm f} = 0.5$ [bps/Hz], SC always uses BPSK-1/2
- 16QAM-5/6 always feasible at N with full power
- SC adjusts N's power and code to provide the same rate as TD

SC			TD		
$\gamma_{\rm f}$ (dB)	SIR (dB)	PER	ū	TD peak rate	PER
8.8	1	7%	0.1	Infeasible	N/A
7.4	1.95	6%	0.2	2.5	100%
5.5	5	3%	0.4	1.25	75%
4.3	5	5%	0.45	1.11	38%
2.7	6	6%	0.8	0.63	37%
2.6	7.5	5%	0.85	0.59	29%

- Experimentally demonstrated a practical approach to exploit superposition codes
- Specific decoding strategies such as demod-and-decode can render the Gaussian approximation for inter-user interference inaccurate
- Signal superposition opens up new possibilities for link-layer scheduling policies [Vizi11]⁵

⁵P. Vizi *et al.*, "Scheduling using Superposition Coding: Design and Software Radio Implementation", IEEE Radio and Wireless Week, Jan. 2011.