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ABSTRACT

The performance analysis of ad hoc networks requires the
characterization of the network’s self-interference. However,
thus far, the exact distribution of the interference has been
analytically tractable only for a path loss exponent of 4.
Further, conventional power law decay models for signal
propagation have a singularity at the origin that causes
all the moments of the network self-interference to diverge,
resulting in no useful insight into the statistics of the interfer-
ence. In this paper, we employ a 2D shot noise process with
a stochastic power law impulse response function together
with a bounded path loss to model the interference in
large wireless networks, where the nodes are distributed
according to a Poisson point process. We further show that
this interference problem and the problem of coverage in
cooperative sensor networks are duals of each other — they
can be solved using the same shot noise-based approach.

I. INTRODUCTION

Large, self-organizing wireless networks, variously re-
ferred to as ad hoc or sensor networks, have recently at-
tracted a lot of attention [1][2]. Such networks are typically
modeled as a randomly deployed set of nodes that compete
for common network resources, potentially interfering with
every other transmitter in the network. An accurate statistical
characterization of the interference is a prerequisite for the
performance analysis of such networks. The most commonly
adopted path loss model for signal propagation in literature
is one where the signal strength falls off as a decaying power
law of the distance of transmission. For this model, however,
when the nodes are distributed inR2 according to a Poisson
point process (PPP), the exact distribution of the interference
is analytically tractable only for a path loss exponent of
4 for the additive white Gaussian noise (AWGN) [4] and
Rayleigh fading channels [5]. Path loss exponents, however,
can assume values in a continuous range. In such cases, even
if the exact distribution of the interference is unavailable, the
first few moments can prove useful in obtaining performance
bounds. Unfortunately, the singularity at the origin for the
power law decay model causes all the moments of the
interference to diverge for all decay exponents [6], thereby
not providing any meaningful insight.

The objective of our paper is to propose the use of a
2D shot noise process with a stochastic impulse response

function to model the network self-interference over a wide
range of path loss exponents. The stochastic nature of the
process can be used to model random channel flucuta-
tions, variable transmission powers etc. Further, we apply a
bounded modification prevalent in literature to the decaying
power law in order to eliminate the singularity at the origin,
so that the signal propagation model becomes physically
meaningful for arbitrarily small distances as well. This
bounded shot noise model can be successfully applied to both
finite and infinite networks to derive performance measures.
To illustrate this concept, we use this shot noise model to
solve the dual problems of cooperative coverage and outage
in large wireless networks.

The first part of this paper models coverage in cooperative
sensor networks. Coverage is a fundamental issue in wireless
sensor networks [7][8] and is a measure of how well a
target point or region is covered by a given network of
sensors. References [9][10] introduce the notion ofinfor-
mation coveragewhich is based on the assumption that
distributed sensing among nodes is possible. In this paper,
we use the shot noise interference model to derive bounds
on the sensor node density required to cover a target region
when the sensing relies on wave propagation laws equal to
those which guide signal propagation in wireless ad hoc
networks. We, therefore, derive these bounds for 2 cases -
one where sensing occurs over a medium that introduces
additive noise and large scale path loss and the other where
the medium additionally introduces small scale fading as
well. This analysis also presents a limiting lower bound by
using a Gaussian approximation in the limit when infinite
processing power is available for node cooperation.

In the latter part of this paper, we consider the dual
to the coverage problem - the outage problem. Given an
outage constraint, we use the shot noise model to derive
the transmission capacity [11], i.e., the maximum allowed
intensity of simultaneously transmitting nodes in an ad hoc
network setting with peer-to-peer transmission. We present
this metric for a multihop cooperative transmission scheme
operating under athreshold link model[12]. The conclusion
follows.

II. RELATED WORK

Baccelli et al. [13][14] study the effect of interference
on connectivity in random ad hoc networks by constructing
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a signal to interference ratio graph. Reference [13] also
considers a bounded modification to the path loss attenuation
model but does not incorporate the modified function in
the shot noise model to study outage. References [15][16]
present cooperative communications models in a random ad
hoc network. However, [15] only investigates the diversity
gain for an additive noise channel and does not include
the effects of self-interference. Similarly, [16] focuses on a
power allocation strategy in a multihop network that does
not include the effects of self-interference. Reference [17]
talks about duality of connectivity and coverage, but again
does not incorporate interference. The information coverage
models used in this paper are derived from [9][10], which
present lower bounds on the node density for the AWGN
channel. Finally, the transmission capacity ideas used in this
paper are derived from [11].

III. SYSTEM MODEL

The system model is as follows:

• Nodes are distributed inR2 according to a homogeneous
Poisson point process (PPP)Π of densityλ.

• Nodes make independent decisions on whether to trans-
mit or listen, and each node is equipped with an omni-
directional antenna. In any given time slot, a node
transmits with probabilityα so that the set of all
transmitting nodes forms a PPPΠα of intensityλα.

• All transmissions are nearest neighbor transmissions.
Transmitters can all use either a constant transmission
power or choose to draw their powers independently
from the same known distribution.

• We present the performance results for an “average”
network realization, i.e., by averaging over all possible
network realizations.

• Each node generates information packets of fixed
length, and all transmissions are assumed to be syn-
chronized slot-wise (slotted ALOHA).

• The interference model assumes that each transmitting
node contributes to the interference seen at any re-
ceiving node. For transmission over a distancer, the
power law decay is given byr−η, whereη is the decay
exponent.

• The total interference seen at a typical receiver node
is I =

∑n
i=1 Ii, where the summation is over all

transmitting nodes andn → ∞ for infinite networks.
In order to keepE [I] finite, it is necessary (but not
sufficient) that the path loss exponentη > 2 (Maclaurin
and Cauchy criterion) [18].

• An Outage occurs when the signal-to-interference ra-
tio (SIR) γ is less than a certain thresholdΘ, i.e.,
O = P (γ < Θ). The background noise power,σ2

n, is
assumed to be much smaller than the network self-
interference and is ignored in the outage analysis. In
the Rayleigh fading case, noise and interference can be
treated independently [19], so the noise simply yields
an additional factor in the reception probability.

IV. SHOT NOISE BACKGROUND

Shot noise results when a memoryless linear filter is
excited by a train of impulses derived from a homogeneous
PPP with arrival rateµ [20]. The impulse response of the
filter, f(t), can assume different shapes like a triangle,
rectangle, decaying exponential, decaying power law etc.
More generally, the impulse shapes can be stochastic and
may be randomly chosen from a family of shapes,f(k, t),
with a random variablek. In this paper, we consider the
stochastic impulse response model. Specialization to the
deterministic case is trivial. The shot noise amplitude is given
by

I(t) =
∑

j

f (kj , t− tj) . (1)

The arrival times1 {tj} are Poisson with rateµ and {kj}
are iid random variables drawn from a common distribution
and independent of{tj}. All impulse functionsf(k, t) are
assumed to be causal and integrable over−∞ < t < ∞ so
that the series in (1) converges in distribution. As the driving
rateµ increases, under some weak conditions on the charac-
teristic time duration of the impulse response function, the
amplitude distribution of shot noise approaches a Gaussian
distribution [20][21]. This is true for many impulse response
functions. However, for a decaying power law, the amplitude
distribution does not tend to a Gaussian for any value ofµ
[6]. In this paper, we are interested only in the decaying
power law shot noise process to model the large scale path
loss in wireless networks.

The Laplace transform ofI(t), Φ(s) = E
[
e−sI(t)

]
, is

obtained as follows. Let thekj ’s be drawn from a discrete set
{K1,K2, · · ·} with probabilitiesp1, p2, · · ·. The shot noise
process can then be written as the sum of independent shot
noise processes, i.e.,I(t) = I1(t)+I2(t)+ · · ·, whereIi(t)
is the sum of deterministic impulse responses with a Poisson
arrival and a constant parameterKi, i.e.,

Ii(t) =
∑

j

f(Ki, t− tj)δ (kj −Ki) (2)

where δ (·) is the discrete unit impulse. Since theIi are
independent,

Φ(s) = E
[
e−s(I1(t)+I2(t)+···)

]
= Φ1(s)Φ2(s) · · · . (3)

For a deterministic impulse response, it is a well-known
result [22] that

Φi(s) = exp
{
−µpi

∫ ∞

−∞
(1− exp [−sf(Ki, t)]) dt

}
, (4)

where µpi is the arrival rate of impulse responses with
parameterKi. After evaluating everyΦi(s) using (4),Φ(s)

1Time is just a hypothetical variable motivated from the study of actual
noise phenomena. This is replaced with distance in the following section.
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is given by

Φ(s) = exp

{
−µ

∑
i

pi

∫ ∞

−∞
(1− exp [−sf(Ki, t)]) dt

}
= exp

{
−µ

∫ ∞

−∞
Ek (1− exp [−sf(k, t)]) dt

}
, (5)

whereEk [·] is expectation w.r.tk. Thoughk is assumed to
be drawn from a discrete distribution, the above expression
can be extended to continuous distributions using limiting
arguments so that (5) is true in general.

A decaying power law impulse response function is given
by f(k, t) = kt−η, whose Laplace transform, after simplifi-
cation using integration by parts, is given by [6]

Φ(s) = exp

{
−µ

∫ B

A

Ek
[
1− exp

(
−skt−η

)]
dt

}
= exp

{
µAEk

[
1− exp

(
−skA−η

)]
− µBEk

[
1− exp

(
−skB−η

)]
+ µEk

[
(sk)1/η Γ

(
1− 1/η, skA−η

)]
−µEk

[
(sk)1/η Γ

(
1− 1/η, skB−η

)]}
, (6)

where Γ(a, x) =
∫∞

x
ta−1e−tdt is the incomplete Gamma

function. For the special case whenA = 0 andB = ∞, (6)
reduces to

Φ(s) = exp
(
−µEk

[
k1/η

]
Γ (1− 1/η) s1/η

)
. (7)

This completes the description of the 1D shot noise process
which can equivalently be used to model interference powers
decaying with distance according to a power law where the
arrival times are replaced with the node locations. Extending
the Laplace transform in (6) to a 2D PPP is straightforward
and the derivation is given in Appendix A. Intuitively, this
derivation implies that if the ordered node distances of the
interferers from the origin are originallyr1, r2, ... in a plane,
thenr2i represent Poisson arrival times on a line with constant
arrival rateπλ. Equivalently, the PPP can be projected on
to ri resulting in a non-homogeneous process in which the
intensity of the transmitting nodes increases linearly asλαr
(follows from the Mapping Theorem [23]). Upon using this
projection in (6) and assuming a uniform angle distribution
for the node locations, we get back the expression derived
in the appendix to within a constant.

The following section adapts this 2D shot noise process to
model the interference in a random ad hoc network, which
is then used to derive coverage and outage bounds.

V. INTERFERENCE MODELING

The distribution of the point process inR2 is unaffected by
the addition of a transmitter node at the origin (by Slivnyak’s
Theorem [23]). Given this transmitter node, we consider

a receiver at unit distance from this transmitter2, shift the
origin to this receiver node, and develop the interference
model around this “typical” receiver node. This conditional
distribution is sometimes referred to as the Palm distribution
and since the network is homogeneous, the interference
measure at the origin is representative of the interference
seen by all other receiver nodes in the network.

The interference power seen by the receiver at the origin
can be likened to the amplitude of the shot noise process
described in Section IV. Letri be the distance of theith

interferer to the origin. The path loss model is the decaying
power law impulse response so thatf(ki, ri) = kir

−η
i . The

driving rate of the arrival process is modeled by the intensity
of the transmitting nodes, i.e.,µ = λα. The total interference
seen at the origin is given by

I =
∑
i∈Π

bif(ki, ri) =
∑

i∈Πα

kir
−η
i , (8)

where {bi} is iid Bernoulli with P (bi = 1) = 1 −
P (bi = 0) = α. For an AWGN channel,ki is a constant.
For a block Rayleigh fading channel,ki is drawn from an
exponential distribution with unit mean and remains constant
over one transmission slot. There is also the possibility
of the transmitters employing variable transmission powers,
in which caseki is drawn from the distribution for the
transmission power.

A. Decaying power law,A = 0,B = ∞
The Laplace transform for the decaying power law model

f(k, r) = kr−η, 0 ≤ r <∞, is obtained by evaluating (33)
in the limit A = 0 andB = ∞ to be

Φ(s) = exp
(
−πλαEk

[
k2/η

]
s2/ηΓ (1− 2/η)

)
. (9)

Owing to the singularity atr = 0, however, the mean
and variance of the interference obtained from this Laplace
transform diverge. Nevertheless, this form forΦ(s) allows
for some interesting observations. Notice that the Laplace
transform is of the formΦ(s) = exp

[
−(cs)2/η

]
, wherec is a

constant so that for all positive values ofλα, the interference
is a one-sided Ĺevy-stable (orα-stable) random variable
with asymmetry of dimensionD = 2/η [24]3. Similar to
a Gaussian distribution, a Lévy-stable distribution has the
property that the sum of two Ĺevy-stable random variables is
another Ĺevy-stable random variable, whose distribution is of
the same form as the individual random variables. Therefore,
even when the intensity of the interferers is infinite, i.e.,
λα → ∞, the form of the interference distribution remains
the same. The conditions for the central limit theorem are
violated as long as0 < D < 1, and the interference never
converges to a Gaussian distribution. Forη ≤ 2, D ≥ 1 and
the convergence criterion is satisfied. However, for infinite
networks (B = ∞), the Maclaurin and Cauchy criterion is
violated for these values ofη, thus, resulting in a Gaussian

2Even if the transmitter-receiver distance is not unity, all distances in the
network can be normalized by this distance so that the desired link always
has unit distance. This does not affect the homogeneity of the PPP.

3This functional form is valid only forη > 1.
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distribution with infinite mean which is of little practical
significance.

In addition to the lack of convergence to a Gaussian for
η > 2, whenA = 0, the singularity at the origin for the
decaying power law results in diverging moments for the
interference. This motivates the modified path loss model
presented in the following subsection.

B. Bounded power law

The decaying power law model is accurate if the transmit-
ter or interferer is not too close to the receiver, but the model
becomes physically meaningless for distances less than unity.
Clearly, the transmit power is a natural bound on the received
power since a wireless channel cannot amplify the signal. To
avoid this scenario, we use the following bounded power law
decay4

f(k, r) =
{

k, r < 1
kr−η, r ≥ 1. (10)

The validity of this model is verified empirically in [25]
for an indoor environment. This modification eliminates
the singularity atr = 0 present in the original power
law and, thus, provides a finite mean and variance for the
total interference. We derive these by modeling the total
interference caused by all the transmitters at the origin to
be the sum of two termsI1 and I2, whereI1 is the total
interference caused by all transmitters within a distance of
1 from the origin andI2 is is the total interference power
due to all transmitters at distances greater than 1. Since
the nodes are distributed according to a PPP,I1 and I2

are independent. The Laplace transform forI1 can easily
be obtained asΦ1(s) = exp

(
−πλαEk

[
1− e−sk

])
. The

corresponding function forI2 is obtained by substituting
A = 1 andB = ∞ in (33),

Φ2(s) = exp
{
πλα

[
Ek

(
1− e−sk

)
−

s2/ηEk

(
k2/η

)
Γ (1− 2/η) +

s2/ηEk

(
k2/ηΓ (1− 2/η, sk)

)]}
(11)

Let k be a unit mean exponential random variable (Rayleigh
fading). For a PPP, the mean and variance ofI1 are given by
µ1 = πλα andσ2

1 = 2πλα. The corresponding values forI2

are obtained asµ2 = − d
ds lnΦ2(s)|s=0 = 2πλα

η−2 and σ2
2 =

d2

ds2 lnΦ2(s)|s=0 = 2πλα
η−1 . SinceI1 andI2 are independent,

µI = µ1 + µ2 =
πλαη

η − 2

σ2
I = σ2

1 + σ2
2 =

2πλαη
η − 1

. (12)

Thus, the modified path loss model results in finite first and
second order moments which, together with other higher
order moments, can be used to analyze the convergence of
I to a Gaussian in distribution [23]. Further, as Section VII

4This model only accounts for singularities due to large scale path loss
and not those due to small scale fading

shows, outage performances for the modified path loss model
are given in terms ofΦ(s) = Φ1(s)Φ2(s).

The remainder of this paper uses this 2D shot noise model
based on the modified power law decay to address two seem-
ingly different problems in large wireless networks. The first
problem is the coverage analysis in a sensor network, where
we estimate the reliability with which an event occurring
in any given point in a plane is “covered” via distributed
sensing by a group of sensor nodes. The second problem
is outage analysis in an ad hoc network setting with peer-
to-peer transmission (e.g., Bluetooth). The following sections
illustrate how these two analyses present themselves as duals
of one another.

VI. COVERAGE ANALYSIS

Traditional coverage analysis assumes a physical coverage
model in which a point is said to be covered if it is within the
sensing radius of at least one sensor node [8][26]. In such a
model, each sensor makes an estimation of a target parameter
only by itself and does not cooperate with neighboring
sensors to make an improved estimate. References [9][10]
introduce the notion ofinformation coverage, which is based
on the assumption that distributed sensing among nodes is
possible. Such a distributed sensing can result in significant
reductions in the sensor node density requirements at the cost
of increased signal processing power.

Cooperative sensing uses estimation theory to combine
measurements from different sensors. So, rather than assum-
ing that a single node can sense with a certain distance-
dependent reliability, a point is said to be “information-
covered” if the sum of these signals “emitted” from a certain
point in the plane and received at a number of sensors
exceeds some threshold. Conversely, one could assume that
the sensor nodes emit a signal, and if the sum received by
a virtual receiver at the point under consideration exceeds a
threshold, then that point is covered. This, however, is exactly
the interference problem (assuming all nodes transmit). So if
the sensing reliability is set equal to the decay of the signal,
then a point is information-covered exactly if the interference
measured at that point exceeds some threshold when all
nodes transmit at a certain power. Having all the nodes
transmit is just a (virtual) assumption to help solve the dual
problem of information coverage, where the “power decay
law” of the interference problem corresponds to the “sensing
decay law” of the sensing problem. In particular, we focus
on networks where sensing relies on wave propagation laws
equal to those which guide signal propagation in wireless ad
hoc networks.

We present the coverage analysis over 2 different propa-
gation environments. In the first case the medium introduces
large scale path loss and additive noise to the emitted signal.
Additionally, in the latter case, the medium also fades the
signal amplitude in a random fashion. The choice of these
propagation models in the sequel simply correspond to the
AWGN and Rayleigh fading channel models in wireless
communications. Propagation models for acoustic or pressure
signals can be quite different; however, the results presented

4



here can be tailored to represent arbitrary propagation models
when the statistics of the propagation medium are available.

A. Additive noise medium with path loss

The notation used here is the same as in [9]. Let
r1, r2, · · · , rM denote the distances ofM location-aware
sensor nodes that cooperate in sensing a given parameterθ
(e.g., an acoustic signal). The noise-corrupted measurement
of this parameter,xm, at nodem is given by

xm = θr−η/2
m + nm, m = 1, 2, · · · ,M. (13)

The amplitude of the parameterθ decays with distance
according tor−η/2. Equation (13) can be written in matrix
form asX = Dθ+ N, whereX = [x1, x2, · · · , xM ]T , D =[
min

(
1, r−η/2

1

)
,min

(
1, r−η/2

2

)
, · · · ,min

(
1, r−η/2

M

)]T

and N = [n1, n2, · · · , nM ]T . The components of the noise
vector are assumed to be spatially uncorrelated and white
with an identical variance ofσ2

n so that the covariance

matrix is given byR = E
[
NNT

]
= σ2

nI, whereI is the
identity matrix. Since the sensor nodes are location-aware,
D is deterministic and, hence, the estimation algorithm has
to only deal with random additive noise.

Let θ̂M and θ̃M = θ̂M − θ denote the estimate and the
estimation error respectively. WhenM such measurements
are available, [9] proposes the use of the well-knownbest
unbiased linear estimator(BLUE) [27] to determineθ̂M .
According to BLUE,

θ̂M =
[
DT R−1D

]−1
DT R−1X,

θ̃M =
[
DT R−1D

]−1
DT R−1N. (14)

A point is said to be information-covered with a confi-
dence level ofε if P

[∣∣∣θ̃M

∣∣∣ ≤ A]
≥ ε, whereA represents the

maximum absolute value of the estimation error. Assuming
zero-mean, Gaussian noise components, we have

P
[∣∣∣θ̃M

∣∣∣ ≤ A]
= 1− 2Q

 A

σn

√(∑M
m=1 r

−η
m

)−1


= 1− 2Q

(
A

σn

√
I−1

)

= 1− 2Q
(√

I
)
, when A = σn. (15)

Here, Q(x) = 1√
2π

∫∞
x
e−x2/2dx. I represents the total

power received at theM sensor nodes due to the emission
at the target point being covered, or equivalently, the total
power received by a virtual receiver placed at the target point
if all M sensor nodes were to transmit with unit power. The
objective is to identify the minimum required node intensity
λmin such that1− 2Q

(√
I
)
≥ ε.

However, most sensor networks are deployed in an open
field (or a water body) and do not have a static configuration.
When a random network has time-varying realizations, it

is more meaningful to analyze the average coverage rather
than that for a particular realization.I becomes a random
variable, denoted byI, whose characteristic function can be
determined using the 2D shot noise model presented in the
previous section. Using this model, we obtain an upper bound
on the probability that a point is not covered on average as
follows. Let κ = Q−1

(
1−ε
2

)
. Then,

P
[
1− 2Q

(√
I
)
≤ ε

]
= P [I ≤ κ]

= P
[
e−tI ≥ e−tκ

]
≤ inf

0≤t<∞

E
[
e−tI]
e−tκ

= inf
0≤t<∞

Φ(t)
e−tκ

= δ, (16)

where Φ (t) is the Laplace transform of the interference
evaluated att. The inequality in the above derivation follows
from the Markov inequality.δ is referred to as the vacancy
probability in [10]. Since the total interference comes from
only M (virtual) transmitters, the total received power seen
at the target point is only due to nodes spread over a finite
disc. Therefore,Φ(t) is obtained from (33) by lettingk = 1
for the AWGN medium and settingA = 1, B =

√
M
λπ , such

that the mean number of nodes present in a disk of radius
B is M . We evaluateδ for a given λ by evaluating the
Laplace transform over 2 disjoint regions,[0, 1) and [1, B].
The following subsection extends this idea to propagation
over a medium that has small scale fading as well.

B. Additive noise medium with fading and path loss

In this subsection, we extend the coverage analysis to
the fading model. For the sake of illustration, we assume
a Rayleigh fading medium; however, extending the analysis
to other propagation models is straightforward. The mea-
surement model for the Rayleigh block fading medium has
the same form,X = Dθ + N. The only difference is that

D =
[
h1 min

(
1, r−η/2

1

)
, · · · , hM min

(
1, r−η/2

M

)]T

is no

longer deterministic sincehi ∼ CN (0, 1) , i = 1, 2, · · · ,M .
However, the BLUE algorithm requiresD to be determinis-
tic. Hence, we resort to theweighted least squares estimator
to estimateθ. The estimate and the estimation error are given
by

θ̂M =
[
DT WD

]−1
DT WX,

θ̃M =
[
DT WD

]−1
DT WN, (17)

whereDT represents the conjugate transpose ofD andW is
a weight matrix that is used to weigh past and future errors
differently [27]. Here, we chooseW = I and assumeD to
be statistically independent ofN.

DT D is a scalar and is given byI =
∑M

m=1 |hi|2 r−η
i .

The estimation error is composed of a weighted sum of the
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independent noise components given by,

θ̃M = I−1
M∑

m=1

hir
−η/2
i ni (18)

The variance of̃θM is simply given byσ2
M = σ2

n/I. Once
again, for a stochastic network, we are interested in average
coverage rather than that for one particular realization and,
hence, we modelI to be a random variableI. This is the
same model that was obtained for the AWGN case with
the only difference being thatI includes fading as well as
path loss. The remainder of the analysis is identical to the
one presented in the previous subsection. In evaluatingΦ(t),
however,k represents an exponential random variable with
unit mean.
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Fig. 1. Variation of the probability of a target point not being covered with
respect to the (a) sensor node density (b) number of cooperating sensors
for ε = 0.7. (DC = AWGN medium, FC = fading channel, GA = Gaussian
Approximation)

For both propagation models, we do not concern ourselves
with the exact cooperation scheme employed by the sensors.
One possible scenario is where all location-aware sensors

within a radius ofB from the target point communicate with
a base station, which then determines an estimate forθ. The
processing power available at the base station determinesM
and, hence,B. Thus, givenλ and M , the 2D shot noise
model can be used to determine an upper bound on the
probability that a given point in a plane is not information-
covered and, hence, the fraction of the total target area that is
not information-covered. The following subsection presents
the variation of this probability as a function of the sensor
node density,λ and the number of cooperating nodes,M .

C. Results

In this subsection, we present 2 different sets of curves.
Figure 1(a) plots the probability of a target point not being
covered,δ, as a function of the sensor node density. The
solid curves representδ vs. λ for the AWGN medium for
3 different decay exponents,η = 3, 4 and 5. These curves
illustrate that as the decay exponent increases, the node den-
sity that is required to achieve the sameδ also increases. This
is expected since the strength ofθ falls increasingly rapidly
with distance asη increases and farther nodes contribute less
to the estimation process. The dash-dot curves show the same
3 curves for the Rayleigh fading model. Finally, the black
dashed curve depicts the limiting case where all sensors in
the network5 (potentially infinite) cooperate in sensing an
event over an AWGN medium forη = 3. Here, the (virtual)
interference is modeled as a Gaussian random variable with
the mean and variance obtained by differentiating its Laplace
transform.

Figure 1(b) plotsδ as a function ofM , the mean num-
ber of sensor nodes whose measurements the base station
combines to make the final estimate, for a givenλ for both
the AWGN and fading models. Once again, these curves
illustrate that fading deteriorates the system performance and
that for higherη, increasing the number of cooperating nodes
provides diminishing returns, similar to the results presented
in [10].

The following section solves the dual of the coverage
problem using the 2D shot noise and the modified power
law decay models.

VII. OUTAGE ANALYSIS

Coverage analysis aims to determine the minimum node
density such that the “interference” observed at a target
point is above a threshold with a certain reliability. Outage
analysis, on the other hand, aims to achieve the opposite. The
objective is to determine the maximum allowed intensity of
transmitting nodes in the network such that the interference
observed by a receiver node is below a threshold with a cer-
tain reliability. This, in turn, guarantees a certain minimum
throughput when the nodes transmit to each other.

In the following analysis, we consider the threshold link
model introduced in [12] for communication overM hops.
We do not consider any power allocation schemes similar
to those described in [16], but assume the nodes to always

5The base station is assumed to have infinite processing power
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transmit with the same powerP . Transmission from nodea
to b occurs overM hops and the transmission is successful
only if the SINR at every hop exceeds some thresholdΘ, i.e.,
givenO = P [γ < Θ], the outage probability overM hops
is defined asOM = 1− (1−O)M . We present an analysis
that aims to satisfy a given outage constraintεM . Here,
we present a general framework to derive the transmission
capacity of a network along the lines of the outage analysis
in [11] and derive an exact expression for the transmission
capacity of a Rayleigh fading channel.

A. Transmission Capacity

Recent work by Weberet al. [11] introduces the notion
of transmission capacity as a performance measure for ran-
dom ad hoc networks with outage constraints. Transmission
capacity is defined asCε = (λα)max s (1− ε), wheres is
the constant spectral efficiency with which all transmitting
nodes communicate with their receivers andε is the outage
constraint such thatO < ε. Reference [28] derives upper
and lower bounds on the transmission capacity for the
AWGN channel for a givenε. Here, we evaluate the exact
transmission capacity of a multihop network for the fading
channel. Given an overall outage constraintεM over allM
hops, the per-link outage constraint isε = 1− (1− εM )1/M .

For the Rayleigh block fading channel,k is an exponential
random variable with unit mean so that,

O = EI [P (k < ΘI | I)]

= 1− EI [exp (−ΘI)]

= 1− Φ(Θ). (19)

Let Φ(Θ) = exp [−λαπΨ(Θ)]. For a givenε, the max-
imum allowed intensity of transmitting nodes is, therefore,
derived as

1− Φ(Θ) = ε

⇒ (λα)max =
log

(
1

1−ε

)
πΨ(Θ)

≈ ε

πΨ(Θ)
. (20)

For small ε, we use the approximation− log (1− ε) ≈
log (1 + ε) ≈ ε. For the Rayleigh fading channel, the
outage expression presents itself in simple fashion in an
analytical closed form. However, this is not so for an AWGN
channel or the more practical Ricean fading channel in which
nearby interferers, say within a radiusx, have a line-of-
sight component to the receiver at the origin whereas far
away nodes do not. For such a channel model,k would be a
squared Ricean random variable for nodes withinx and an
exponential random variable for interferers beyondx. In such
cases, it is useful to decompose the transmission capacity
analysis over 2 regions. In the sequel, we present such an
analysis and use it to rederive the transmission capacity for
the Rayleigh fading channel.

Consider the same setting as before, with the target
receiver located at the origin, unit distance away from its
transmitter. Letb(0, x) denote a ball of radiusx centered at
the origin. The outage event is decomposed as follows:

E1 : Outage only due to interferers in b(0, x)
E2 : Outage only due to interferers in b̄(0, x).(21)

EventsE1 andE2 are independent sinceΠα is a PPP. For a
Rayleigh fading channel, the probabilities of these 2 events
are given by

P [E1] = P

[
k∑

i∈Πα∩b(0,x) f (ki, ri)
< Θ

]
= ε1

P [E2] = P

[
k∑

i∈Πα∩b̄(0,x) f (ki, ri)
< Θ

]
= ε2, (22)

where we define constantsε1 and ε2 to be the outage
probabilities due to interferers in regionsb(0, x) and b̄(0, x)
respectively.

Let I1 and I2 be the interferences due to transmitting
nodes inb(0, x) and b̄(0, x) with Φ1(s, x) and Φ2(s, x) as
their Laplace transforms respectively. The probabilities of
the eventsE1 andE2 are given by1 − Φ1 (Θ, x) and 1 −
Φ2 (Θ, x) respectively. For ease of analysis, we write

Φ1 (Θ, x) = exp [−λαπΨ1 (Θ, x)] ,
Φ2 (Θ, x) = exp [−λαπΨ2 (Θ, x)] . (23)

The exact expressions forΨ1 (Θ, x) and Ψ2 (Θ, x) are
derived in Appendix B. Now, substituting back in the first
inequality in (22), we have

1− exp [−λαπΨ1 (Θ, x)] = ε1

⇒ (λα)max,1 ≈ ε1
πΨ1 (Θ, x)

. (24)

Similarly, the outage constraint for the interference from all
nodes inb̄(0, x) yields

1− exp [−λαπΨ2 (Θ, x)] = ε2

⇒ (λα)max,2 ≈ ε2
πΨ2 (Θ, x)

. (25)

Appendix B shows that while1/Ψ1 (Θ, x) is a decreasing
function of x, 1/Ψ2 (Θ, x) is an increasing function ofx.
Therefore, given(λα)max,1 and (λα)max,2 from (24) and
(25) respectively, the transmission capacity is given by

Cε = min
{

(λα)max,1 , (λα)max,2

}
s(1− ε). (26)

The transmission capacity is maximized by letting
(λα)max,1 = (λα)max,2, i.e.,

ε2 =
Ψ2 (Θ, x)
Ψ1 (Θ, x)

ε1. (27)

In order to solve forε1 and ε2 in terms of ε, we observe
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that the total interferenceI = I1 + I2, whereI1 andI2 are
independent random variables. Hence, we have

Φ(Θ) = Φ1(Θ, x)Φ2(Θ, x)

= (1− ε1) (1− ε2)

⇒ ε = ε1 + ε2 − ε1ε2. (28)

This proves that the overall outage event is given byE =
E1 ∪ E2 and that the transmission capacity obtained by
solving (27) and (28) is identical to the transmission capacity
in (20). The final result is independent of the choice of
x for the Rayleigh fading channel. Though we do not
present them here, these results can easily be extended to
direct sequence and frequency hopped CDMA similar to
the analysis presented in [28] to analyze the effect of the
spreading gain on the system performance.

For other channel models, the transmission capacity is in
general a function ofx, wherex is defined by the channel
model itself. We illustrate this dependence in the following
subsection. The decomposition approach is similar to the one
presented in [11], and since other channel models do not
simplify analytically as well as the Rayleigh fading channel,
this approach can be used to derive upper and lower bounds
on the transmission capacity. However, in doing so, we need
to define a third event

E3 : Outage due to interferers in b(0,∞) given that
Ē1 ∩ Ē2 occurs. (29)

The memoryless property of the exponential random variable
obviates the need to consider this event for the Rayleigh
fading channel as shown by (28) but for other channel
models, the outage event becomesE = E1 ∪ E2 ∪ E3. By
definition, the eventE3 is disjoint fromE1∪E2. The overall
outage probability is, therefore, given by

P [E] = P [E1] + P [E2]− P [E1] P [E2] + P [E3] . (30)

We can obtain bounds on the transmission capacity by
solving for ε1 andε2 as before. In the following subsection,
we present simulation results for the transmission capacity
as a function ofε andx.

B. Results

In this subsection, we present the transmission capacity
as a function ofε for the Rayleigh fading channel based
on the analytical expression in (20). In order to illustrate
the effect ofx on the transmission capacity, we also present
simulation curves for the transmission capacity when nodes
within a radius of x from the intended receiver at the
origin have a line-of-sight component in addition to the
Rayleigh faded component. The channel model for nodes
within x, therefore, corresponds to a Ricean fading channel
[29] whereas interferers outsidex witness a Rayleigh fading
channel.

Fig. 2(a) shows 3 different transmission capacity curves.
Thex = 0 case corresponds to the analytical Rayleigh fading
channel curve where no node has a line-of-sight component
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Fig. 2. (a) Variation of the transmission capacity with respect toε for
3 different values ofx for the Rician fading channel. (b) Variation of
1/Ψ1 (Θ, x) and1/Ψ2 (Θ, x) with x.

to the receiver. The remaining two curves correspond to the
cases where interferers withinx = 1 and x = 5 have a
line-of-sight component to the receiver respectively with a
Ricean K-factor of 10. The system parameters used in these
simulations areη = 3.4 and Θ = 10 dB. For both these
cases, the intended transmitter has a line-of-sight component
at the receiver which explains the surge in the transmission
capacity compared to the Rayleigh fading channel model.

VIII. CONCLUSION

In this paper, we have demonstrated the utility of the 2D
shot noise process to model the network self-interference
in finite as well as infinite networks and used it to perform
coverage and outage analyses in large, cooperative networks,
where the nodes are distributed inR2 according to a PPP.
Using a modified power law, we have succeeded in deriving
an interference model that has finite moments. We have then
used this model to derive a lower bound on sensor node
density requirement for coverage in a target region. Finally,
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we use this model to solve the dual problem by deriving an
upper bound on the density of transmitting nodes in order
to satisfy an outage constraint, thus, illustrating the tradeoff
between network coverage and throughput using a single
framework.

APPENDIX A

A 2D decaying power law shot noise process has the
following Laplace transform:

Φ(s) = exp [−µEk (ψ(s))] , (31)

where

ψ(s) =
∫ ∞

−∞

∫ ∞

−∞
1− exp

[
−sk

(
x2 + y2

)−η/2
]
dxdy (32)

ψ(s) is derived as follows,

ψ(s)
(a)
=

∫ B

A

1− exp
[
−skr−η

]
2πrdr

(b)
= π (sk)2/η

∫ skB−η

skA−η

(
1− e−t

)
d

(
t−2/η

)
= πB2

[
1− e−skB−η

]
− πA2

[
1− e−skA−η

]
+ π(sk)2/η

∫ skA−η

skB−η

t−2/ηe−tdt

= πB2
[
1− e−skB−η

]
− πA2

[
1− e−skA−η

]
+ π (sk)2/η Γ(1− 2/η, skB−η)
− π (sk)2/η Γ(1− 2/η, skA−η). (33)

(a) is obtained by switching to polar coordinates and gener-
alizing the limits of integration while(b) is obtained through
a change of variables and integration by parts.

APPENDIX B

We use the modified path loss model presented in Section
V-B to determineΦ1 (s, x) andΦ2 (s, x).
Case 1:x ≤ 1

Φ1 (s, x) = exp
[
−2πλα

∫ x

0

Ek

(
1− e−sk

)
rdr

]
Φ2 (s, x) = exp

[
−2πλαEk

{∫ 1

x

(
1− e−sk

)
rdr+∫ ∞

1

(
1− e−skr−η

)
rdr

}]
.(34)

We now evaluate these functions ats = Θ when k is an
exponential random variable with unit mean to obtain

Ψ1 (Θ, x) =
x2Θ

1 + Θ

Ψ2 (Θ, x) =
−x2Θ
1 + Θ

+ Θ2/ηΓ (1− 2/η) Γ (1 + 2/η)

−Θ2/ηEk

[
k2/ηΓ (1− 2/η,Θk)

]
.(35)

Case 2:x > 1

Φ1 (s, x) = exp
[
−2πλαEk

{∫ 1

0

(
1− e−sk

)
rdr+

∫ x

1

(
1− e−skr−η

)
rdr

}]
Φ2 (s, x) = exp

[
−2πλα

∫ ∞

x

Ek

(
1− e−skr−η

)
rdr

]
.(36)

Upon evaluating these functions atΘ, we get

Ψ1 (Θ, x) =
Θx2−η

1 + Θx−η
+ Θ2/ηEk

[
k2/ηΓ

(
1− 2/η,Θkx−η

)]
−Θ2/ηEk

[
k2/ηΓ (1− 2/η,Θk)

]
.

Ψ2 (Θ, x) =
−Θx2−η

1 + Θx−η
+ Θ2/ηΓ (1− 2/η) Γ (1 + 2/η)

−Θ2/ηEk

[
k2/ηΓ

(
1− 2/η,Θkx−η

)]
. (37)

Though it is not immediately clear by looking at (35) and
(37) how they vary withx, we use numerical integration
methods and plot their variations with respect tox. In par-
ticular, we are interested in how they affect the transmission
capacity. Fig. 2(b) shows that1/Ψ1 (Θ, x) is a monotonically
decreasing function ofx while 1/Ψ2 (Θ, x) is monotonically
increasing.
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