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Abstract—The uncertainty in the locations of vehicles on streets
induced by vehicles passing and queueing make the spatial
modeling of vehicles a difficult task. To analyze the performance
of vehicle-to-vehicle (V2V) communication for vehicular ad hoc
networks (VANETs), accurate spatial modeling is of great im-
portance. In this paper, we concentrate on spatial point process
modeling for random vehicle locations in large and small cities,
performing empirical experiments with real location data of
mobile taxi trajectories recorded by the global positioning system
(GPS) in Beijing city of China and Porto city of Portugal. We
find that the empirical probability mass functions (PMFs) of the
number of taxis in test sets in different regions of Beijing or in
Porto all follow a negative binomial (NB) distribution. Based on
the above, we show that the Log Gaussian Cox Process (LGCP)
model, whose empirical PMF nicely fits the NB distribution,
accurately characterizes diverse spatial point patterns of random
vehicle location in both large and small cities. This is verified by
the minimum contrast method. The LGCP model can be applied
to analyze performance metrics (i.e., connectivity, coverage, and
capacity) and optimize the practical deployments of VANETs.

I. INTRODUCTION

A. Motivation

Spatial stochastic models have become increasingly popular

in telecommunication networks in recent years. By taking the

geometric structure of network architectures into considera-

tion, stochastic geometry models offer a more relevant view to

location-dependent network characteristics than conventional

hexagon network models. Similarly, the dynamics of the

vehicles in vehicular ad hoc networks (VANETs) create rapid

changes of network topology, leading to inevitable uncertainty

in the spatial pattern of the vehicle density on a road. To de-

scribe the vehicular patterns and characterize the performance

of vehicle-to-vehicle (V2V) communication, spatial stochastic

models are crucial.

B. Related Work

A road system is first added to wireless communication

systems in [1] for strategic planning and economic analysis,

and the Poisson line process is proposed to model the road

position, and the Poisson point process (PPP) is used to model

traffic on the road. Reference [2] models the telecommunica-

tion networks including the road system as random geometric

graphs, on the edges of which the locations of the network

nodes are modeled as linear Poisson processes. Reference [3]

observes that the vehicles that enter the highway through one

of the traffic entry points form a Poisson process and studies

the impact of vehicle mobility on the connectivity of VANETs.

Connectivity is also analyzed in [4] and [5], where the same

model for vehicles entering the highway is used and, in

addition, it is assumed that the speed of the vehicles is constant

or normally distributed. In [6] and [7], the vehicle locations

are assumed to form a Poisson point process in one dimension,

and the authors perform an analytical evaluation of broadcast

protocols. In [8], the random locations of the vehicles in

a street are modeled as a one-dimensional stationary Cox

process with Fox’s H-distributed random intensity. In [19],

graph-based optimal revenue packet scheduling in Vehicle-to-

Infrastructure communication is discussed.

Besides the above theoretical studies, empirical research

based on real data recently has focused on spatial point process

modeling and analysis of real road systems or random vehicle

location or traffic. For example, [9] fits Poisson line tessel-

lations, Poisson-Voronoi tessellations, and Poisson-Delaunay

tessellations to real data of the road system in Paris for the

purpose of cost analysis and strategic planning of telecom-

munication networks. The authors in [10] further utilize the

random tessellations to model the road systems in fixed-access

networks, and random points are added to the tessellation

edges to represent network components. Reference [11] uses a

nonhomogeneous Poisson process model for vehicles at traffic

signals, and shows that the introduction of traffic signals does

not affect the Poisson property of the stochastic model when

the vehicles are with deterministic velocity profile, which is

validated against empirical data in London city.

In [12], the authors develop different spatial point process

models for base station in cellular networks based on the

empirical data. In [13], by analyzing real data of traffic counts

in highway from the Bureau of Transport Statistics, New South

Wales, the vehicles are modeled as a PPP, and numerical

evaluation also indicates the proposed model is more accurate

than existing one-dimensional models under sparse vehicle

traffic densities. It is verified that the two-dimensional PPP

assumption is only accurate for low vehicle density in [14]. In

[15], experimental results for single-vehicle data of the Dutch



freeway A9 and the German freeway A5 display that when the

distances between cars are correlated due to traffic congestion,

the vehicles do not follow a Poisson distribution.

Based on the above, the previous research work has not pro-

duced a widely accepted spatial model that well characterizes

the random vehicle locations, although the two-dimensional

model is closer to reality. In urban VANET scenarios, it is

of great importance to account for random vehicle locations

in V2V communication. The dynamics of vehicle passing and

queueing as well as high mobility create inevitable uncertainty

in the spatial pattern of the vehicles on the road. Therefore,

spatial point process modeling of random vehicle locations

based on real data analysis and mining is still a crucial problem

to be addressed.

C. Contribution and Paper Organization

In this paper, we concentrate on spatial point process

modeling and analysis of random vehicle locations in large

and small cities—Beijing city of China with a large-scale and

regular road system, and Porto city of Portugal with a small

and irregular road system. We perform empirical experiments

with the global positioning system (GPS) traces of taxis in

Beijing and Porto. The data of Beijing records realtime GPS

location information for 12509 taxis over a month, and the data

of Porto consists of realtime GPS location information for 442

taxis over a year. Our goal is to identify a planar point process

to accurately model random vehicle locations using tools from

stochastic geometry.

We firstly analyze the empirical probability mass functions

(PMFs) of point counts of the point pattern generated by the

vehicles. We find that the empirical PMFs of the number of

taxis in test sets in different regions of Beijing or in Porto all

follow a negative binomial (NB) distribution. On the basis of

the above, the conclusion is obtained that the LGCP model

whose empirical PMF nicely fits the NB distribution can

characterize diverse spatial point pattern of random vehicle

location very well, which is verified by the minimum contrast

method and Monte Carlo test. The general LGCP model can

be applied to analyze performance metrics (i.e., connectivity,

coverage and capacity) and optimize the practical deployment

for VANET.

The rest of the paper is organized as follows. Section II

presents spatial point models and characteristics. Section III is

devoted to the analysis of the empirical PMFs of the counting

measure of the vehicle point process. We fit several spatial

point process models to real vehicle location data by the

minimum contrast method in Section IV. Finally, concluding

remarks are given in Section V.

II. SPATIAL POINT PROCESS MODELS AND

CHARACTERISTICS

A. Spatial Point Process Models

There are several kinds of spatial point processes to describe

a collection of points in two dimensions, such as PPPs,

cluster processes, hard-core processes, Cox processes, and

Gibbs processes [16, Ch. 3]. Each of them have different

characteristics—PPPs exhibit complete spatial randomness due

to their independence property; Cox processes and cluster

processes are overdispersed relative to PPPs, i.e., they are

more irregular; hard-core processes have a minimum distance

between points and thus are more regular than the PPPs; Gibbs

processes may be overdispersed or underdispersed. Vehicles

are often clustered due to traffic congestion and intersections,

so Thomas cluster processes, Matérn cluster processes, and

LGCPs are promising candidates modeling the vehicle pattern.

B. Spatial Point Process Characteristics

There are five classical statistics called G, F , J , K and L
functions to describe the inter-point “dependence” and “clus-

tering” [16, Ch. 3]. The G function is the nearest-neighbor

distance distribution. The F function, also called the empty

space function, is the cumulative distribution function of the

distance from a fixed location to the nearest point of the spatial

point process. The J function is defined as J(r) ,
1−G(r)
1−F (r) ,

which is a measure of how close a process is to a PPP.

Ripley’s K function is defined that λK(r) is the expected

number of additional random points within a distance r of the

typical point of the point process, where λ is the intensity of

the process. The L-function is a transformation of Ripley’s

K function, defined as L(r) ,
√

K(r)
π

.

III. PMF ANALYSIS OF REAL LOCATION DATA

A. Spatial Point Specifications

A single realization of a spatial point process is called a

deterministic point pattern [16]. We treat the taxi locations

as a realization of a point process and aim at finding the

point process that has the highest likelihood of reproducing a

realization containing the taxi locations of Beijing and Porto.

1) Beijing: The data set of Beijing comprises GPS in-

formation of 12509 taxis for a month (from 2012/11/01 to

2012/11/27). It contains 785.4 million entries, each one com-

prised of the taxi location and metadata information associated

with each taxi, as shown in Table I. The frequency of recording

position information varies from one to six times per minute.

Beijing city is the capital of China with a population of 21

million on an area of 16,000 km2; its road system is large,

and relatively regular. The intensity of the taxis in Beijing is

not constant and varies with the location due to the impact

of the road systems. Fig. 1 gives a realization of the point

process comprised of 6927 vehicles in Beijing at 08:30 am on

Nov. 2, 2012. From Fig. 1, a stationary point process appears

unsuitable to accurately model the entire data set. Hence we

partition the city into 9 regions in which the point pattern is

relatively homogeneous. By doing so, we can fit a stationary

point process model to each region. The points in Region 2

and Region 5 are densely distributed, the points in Region 9

exhibits strong clustering, and the patterns in the other regions

are relatively sparse.



TABLE I
FORMAT FOR BEIJING DATA SET

taxi ID status time longitude latitude velocity

470341 0 20121102084536 116.5713 39.8063 39.8

TABLE II
FORMAT FOR PORTO DATA SET

trip ID taxi ID timestamp polyline

T16 20000440 1408037740 [-8.618,41.136],[-8.618,41.135]· · ·

116.26 116.38 116.49 116.54
longitude

39.82

39.88

39.99

40.04

la
ti
tu
d
e

region1

region2

region3

region4

region5

region6

region7

region8

region9

Fig. 1. The taxi distribution at 8:30 am on 2012/11/02 in 9 regions of Beijing
(116.26E-116.54E, 39.82N-40.04N). The green dashed line are sampling
window in which test set centers are constrained. The points outside the
sampling window are shown in gray.

2) Porto: The data set of Porto includes GPS information

of 442 taxis during a complete year (from 2013/07/01 to

2014/06/30). There are 1.7 million entries, of which each one

represents a complete taxi trajectory, as shown in Table II.

The complete taxi trajectory is a sequence of GPS positions

measured every 15 seconds.

Porto is a small port city in Portugal with a population of

0.26 million on an area of 41 km2; its road system is small and

irregular. The spatial point pattern generated by taxi data of

Porto is more homogeneous. A single realization is depicted in

Fig. 2, which consists of 1245 taxi locations at 9:00 am over

a month (2013/07/01 to 2013/07/31). Different from Beijing,

we choose the union of 31 daily snapshots taken at 9:00 am

because the number of points at 9:00 am on a single day is

too small (less than 50) to be statistically significant.

B. Empirical PMFs with Different Sampling Methods

In a spatial model, the countable random collection of the

vehicles on the Euclidean space R
2 is regarded as a point

process Φ = {x1, x2, · · · }, where xi denotes a vehicle location

in the point process. The counting measure Φ(B) , #{Φ∩B}
is a random variable that denotes the number of vehicles in

a Borel set B ⊂ R
2 [16]. Similarly, we use the deterministic

counterpart ϕ(B) , #{ϕ∩B} to denote the counting measure

of a point pattern ϕ.

To calculate the empirical PMFs of the point counts ϕ(B),
the first step is to sample and count the number of points

generated by the taxi data. The basic principle of sampling

and counting is to choose many test sets Bi so that they cover

-8.65 -8.58
longitude

41.145

41.17

la
ti
tu
d
e

Fig. 2. The taxi distribution at 9:00 am (2013/07/01-2013/07/31) in Porto
(8.65W-8.58W, 41.145N-41.17N). The green dashed line are sampling window
in which test set centers are constrained. The points outside the sampling
window are shown in gray.

Fig. 3. The cross rectangle in the Palm sampling method. The ratio of arm
length to arm width in the left subfigure is 1, and that in the right subfigure
is 4. Note that the center part is excluded.

an entire region in a uniform manner, and count the number

of points falling in Bi.

We consider four shapes—circle, square, rectangle, and

cross rectangle—for sampling. The cross rectangle is the union

of a horizontally and a vertically oriented rectangle where the

center square is excluded, as illustrated in Fig. 3. As shown

in Table III, the area of the test sets is fixed to 0.25 km2

to maintain consistency. To eliminate boundary effects, we

use a sampling window that is smaller than the region. The

gap between the sampling window boundary and the region

boundary is set as 1000 m for Beijing or 500 m for Porto, so

that the test sets do not exceed the region. The four sampling

methods are:

1) Lattice Sampling: A sampling method in which the

center of B follows a square-lattice distribution.

2) Uniform Random Sampling: A sampling method where

the center of B follows a uniform PPP.

3) Reduced Palm Sampling: A sampling method in which

B is centered at the location of the taxis.

4) Reduced 2-Palm Sampling: A sampling method where

the center of B is at the midpoint of two taxi locations. The

distance between any two taxis vary from 400 m to 800 m.

The sampling method is shown in Fig. 4.

Fig. 5 shows the empirical PMFs and the corresponding

cumulative distribution functions (CDFs) of the point counts

with lattice sampling and uniform-random sampling methods

in Region 1. Fig. 6 shows the results of reduced Palm sampling

methods based on four shapes and reduced 2-Palm sampling

method in Region 1. The Palm sampling and 2-Palm sampling

are used to observe the impact of the street. Note that ‘Palm-

Xrectangle1’ refers to Palm-sampling method for the cross-

rectangle case in which the ratio of arm length to arm width

is 1, while the ratio is 4 in ‘Palm-Xrectangle4’ as shown in



connection between  two

points(400m<dis<800m)

rectangle sampling 

unit (2000m*125m) 

Fig. 4. The 2-Palm sampling methods. ‘dis’ in the legend refers to the distance
between two points.

Fig. 3. For Palm sampling, the cross rectangular shape of test

set is to covers the street that the taxi lie on, given that most of

the streets in Beijing are north-south or east-west. For 2-Palm

sampling, the rectangular shape is the optimal choice because

this way the test set covers the street that the two taxis lie on.

The empirical PMF curves in Fig. 5 are monotonically

decreasing, while the empirical PMF curves in Fig. 6 first

increase then decrease with increasing point number. This

indicates that lattice sampling and uniform random sampling

are definitely different from Palm and 2-Palm sampling and

that different shapes have little impact on the empirical PMF

calculation. Observing both results, we find that the empirical

PMF of the point number less than 3 in Palm and 2-Palm

sampling is smaller than that in lattice sampling and uniform

random sampling because the former is constrained to sample

in the vicinity of taxis. The same conclusion can be drawn for

the other 8 regions. Moreover, random sampling and uniform

random sampling are similar, and the shapes of the test sets

barely affect the PMFs. Hence the following experiments only

adopt the lattice sampling method.

TABLE III
SAMPLING METHODS

Sampling
method

Shape of
test set

Size of test set
Area of

test set (km2)

Lattice
sampling

circle radius=281m 0.25
square 500m×500m 0.25

Uniform random
sampling

circle radius=281m 0.25
square 500m×500m 0.25

Palm sampling

circle radius=281m 0.25
square 500m×500m 0.25
cross

ectangle
250m×250m×4 0.25
500m×125m×4 0.25

2-Palm sampling rectangle 2000m×125m 0.25

C. Statistics on the Basis of the PMFs

On the basis of the empirical PMFs, we evaluate three

statistics—empirical mean, variance, and intensity. We use

ϕ to denote the point pattern generated by taxi data. The

empirical mean in Region i is given by

M =

K
∑

k=1

ϕi(Bk)

K
, (1)

where ϕi is the data set of Region i, K is the number of test

sets B ⊂ R
2, and Bk denotes the kth test set.
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Fig. 5. The empirical PMFs and corresponding CDFs of point number in test
set in Region 1 of Beijing with lattice and uniform random sampling methods.
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Fig. 6. The empirical PMFs and corresponding CDFs of point number in test
set in Region 1 of Beijing with reduced Palm and 2-Palm sampling methods.

The variance is derived using the empirical mean as

σ2 =
K
∑

k=1

[ϕi(Bk)]
2

K
−M2. (2)

The intensity is the expected number of points in a test set

B, and is given by

λ =
M

|B|
= 4M/km2. (3)

The results shown in Table IV verify that the taxi points do

not follow a Poisson distribution whose mean and variance are

the same. NB models are suitable for discrete data like count

TABLE IV
MEAN, VARIANCE AND INTENSITY IN REGION 1 OF BEIJING

Sampling
method

Shape of
test set

Mean Variance
Intensity

(/km2)

Lattice
sampling

circle 3.22 13.48 12.89
square 3.24 13.55 12.97

Uniform random
sampling

circle 3.31 13.72 13.24
square 3.32 13.99 13.26

Palm sampling

circle 6.93 28.3 27.73
square 6.74 27.82 26.96
cross

rectangle
5.81 18.76 23.25
7.46 26.77 29.85

2-Palm sampling rectangle 9.21 52.25 36.83
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Fig. 7. Empirical PMFs of point number in test set in Regions 1, 2, 3, 8 of
Beijing with lattice-circle sampling, and fitted PMFs of NB variables.

data when the variance is larger than the mean. The PMF of

a NB random variable N is

P (N = k) =

(

k + r + 1
k

)

pk(1− p)r, (4)

where r > 0 and 0 < p < 1 are parameters of the distribution.

Here, we attempt to fit the discrete empirical PMF data to the

PMF of the NB distribution.

We use the maximum likelihood method to estimate the

parameters r and p of the NB distribution. The experimental

results show that the empirical PMFs in Regions 1 and 4 are

very close, coinciding with that in Regions 2 and 5 and that

in Regions 3, 6 and 7. Thus, only the empirical PMF data in

Regions 1, 2, 3 and 8 with three different methods are provided

in Fig. 7, Fig. 8, and Fig. 9 as typical representatives. Judging

from the results, it is observed that the empirical PMFs in

all the regions can fit NB distributions with specific r and

p parameters well. The fitted NB distributions in Region 2

and Region 1 that belong to dense regions are both close

under different sampling methods. Similarly, the fitted NB

distributions in Region 3 and Region 8 that belong to sparse

regions are approximate under lattice sampling method, but

there exists significant discrepancy in the parameters for Palm

and 2-Palm sampling methods due to the distinctive sparsity

in regions. Fig. 10 shows the empirical PMF data in Porto,

which can also fit NB distributions very well.

Remark: The empirical PMFs of the number of points in

test set in different regions of Beijing and in Porto follow a

NB distribution, reflecting self-similarity in dense regions or

in sparse regions and in large-scale and regular road systems

or in small and irregular road systems.

IV. FITTING METHOD AND PATTERN MODELING

In this section, we develop a point process model Φ, whose

statistics match those of the taxi data.

First, the three candidate point process models—the Thomas

cluster Process, the Matérn cluster process, and the LGCP—

are described in this section. A general cluster Poisson process
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Fig. 8. Empirical PMFs of point number in test set in Regions 1, 2, 3, 8 of
Beijing with Palm-Xrectangle4 sampling, and fitted PMFs of NB variables.
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Fig. 9. Empirical PMFs of point number in test set in Region 1, 2, 3, 8 of
Beijing with 2-Palm-rectangle sampling, and fitted PMFs of NB variables.
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Fig. 10. Empirical PMFs of point number in test set of Porto with lattice-circle
and 2-Palm-rectangle sampling, and fitted PMFs of NB variables.

is generated by taking a parent point process and daughter

point processes for each parent, and translating the daughter

processes to the position of their parent. The cluster process

is then the union of all the daughter points. The Thomas

cluster Process and the Matérn cluster process are defined as

[16, Ch. 3]

1) Thomas Process: A doubly Poisson cluster process,

where the intensity function of a cluster is given by

λ0(x) =
c

2πδ2
exp(−

‖x‖2

2δ2
), (5)



i.e., the daughter points are normally scattered with variance

δ2 around each parent point, and the mean number of daughter

point is c.
2) Matérn Cluster Process: A doubly Poisson cluster pro-

cess, where the intensity of the cluster can be expressed as

λ0(x) =
c

πr2
1b(o,r)(x), (6)

where 1(.) is the indicator function. i.e., the daughter points

are uniformly scattered on the ball of radius r centered at each

parent point, and the mean number of daughter points is c.
A general Cox process is a doubly stochastic Poisson

process where the intensity measure itself is random. The

intensity measure is a realization of a non-negative locally

finite random measure [16, Ch. 3]. The LGCP is a specific

type of Cox process.

3) Log Gaussian Cox Process: A Cox process where the

logarithm of the intensity function is a Gaussian process [18].

Specifically, the random intensity function of a LGCP is given

as Λ(s) = exp{Y (s)} where Y = {Y (s) : s ∈ R
2} is a

real-valued Gaussian process. Y (s) ∼ N (µ,C) means the

random function Y is distributed as a Gaussian process with

mean function µ and covariance function C. The exponential

covariance can be parametrized in the form

C(r) = β exp
(

−
r

α

)

. (7)

Based on the results we found in Section III-C, we fit

the Thomas model, the Matérn cluster model, and the LGCP

model to the given point set, using the minimum contrast

method [17]. It fits the model by matching the data’s summary

statistic to its theoretical value. The K function describes the

correlation between points which makes it a suitable summary

statistic for fitting. In some cases, the K function of a point

process is known exactly, as an analytic expression in terms

of the model parameters. These cases include the Thomas and

Matérn cluster processes, and the LGCP.

For the ease of notation, the parameters of any point process

model are collectively referred to as θ. For example, in the

case of LGCP, θ refers to (α, µ, β). We determine the values

of the parameters of a point process which give the closest

match between the theoretical expected value of the summary

statistic Kθ(r) and the observed value of the summary statistic

evaluated from the data, denoted by K̂(r). The best match is

determined by minimizing the discrepancy D between two

functions, which is defined as

D(θ) =

∫ b

a

∣

∣

∣
K̂(r)q −Kθ(r)

q
∣

∣

∣

p

dr, (8)

where 0 ≤ a < b, and p, q > 0 are exponents. We employ a

generic fitting algorithm for the method of minimum contrast,

since the theoretical K function of the three models can be

computed exactly from the model parameters.

Fig. 11 and Fig. 12 compare the K function of the observed

point patterns in Region 3 of Beijing, and Porto, to the

K function of the fitted models, and depict the gap between the
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Fig. 11. Left axis:K function of the observed point pattern in Region 3 of
Beijing and three fitted models. Right axis: the difference between the K

function of the observed point pattern and the other curves of three models.
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Fig. 12. Left axis:K function of the observed point pattern in Porto and
three fitted models. Right axis: the difference between the K function of the
observed point pattern and the other curves of three models.

K function of the observed point pattern and the fitted models.

The gap between the K(r) curve of the observed point pattern

and the curve of the LGCP model with the NB distributed

PMF is the least, making it a good fit for the model. The same

conclusion can also be derived in the other regions of Beijing.

The LGCP model is uniquely determined by parameters θ =
(α, µ, β). The values of the parameters of fitted LGCP model

for Region 3 of Beijing and Porto are (177.20,−13.30, 2.62),
and (105.56, 10.57, 2.22), respectively.

We deduce that the LGCP is an accurate model for the

spatial point patterns of vehicle locations. Additionally, we

perform Monte Carlo test to determine the goodness-of-fit

between the empirical and fitted models. In the Monte Carlo

test, we regard the LGCP model as the null hypothesis, and

the fitted LGCP model as alternative hypothesis. To determine

whether the spatial point patterns of random vehicle location

follow LGCP, we compare the K functions of the observed

data and the fitted LGCP. Naturally, it is not possible to

obtain exactly matching K function curve of LGCP because

of random variability. Thus, we simulate realizations from

the null hypothesis and compute the K function for each

realization. The K function curves of the realizations form

an envelope for a large number of simulations. The Monte

Carlo test rejects the null hypothesis, if the K function of
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Fig. 13. Monte Carlo test on K function of taxis in Region 3 of Beijing, and
the envelope of 39 realizations of the LGCP model. The red dashed line is the
average value of the K function of 39 realizations of the fitted LGCP model.
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Fig. 14. Monte Carlo test on K function of taxis of Porto, and the envelope
of 39 realizations of the LGCP model. The red dashed line is the average
value of the K function of 39 realizations of the fitted LGCP model.

the original spatial point pattern lies outside the envelope. As

shown in Figs. 13 and 14, the observed curve stays inside

the envelope of the LGCP fitted to the original point pattern,

ascertaining that the original point pattern can be characterized

by LGCP. Therefore, the LGCP model whose empirical point

count PMF nicely fits a NB distribution can be used to model

the random vehicle locations.

V. CONCLUSION

We adopted various sampling methods to study the distribu-

tion of vehicles in Beijing, with large-scale and regular road

systems, and Porto, with small-scale and irregular road system.

We showed that the number of vehicles in both the cities follow

a NB distribution through probability mass function analysis.

To find a suitable point process for the vehicular network,

we fitted the Thomas process, Matérn cluster process, and the

LGCP with the PMF following a certain NB distribution to

the given point set using the minimum contrast method. It is

shown that the LGCP model whose empirical PMF nicely fits

the NB distribution can generally characterize the spatial point

pattern of random vehicle locations in both large and small

cities. We also use a Monte Carlo test on the point count in

test sets and classical statistics as the criteria for goodness-

of-fit, which proves that the LGCP model performs better in

fitting than other models. We can use the LGCP model to

analyze performance metrics (i.e., connectivity, coverage, and

capacity) and optimize practical deployment for VANET.

ACKNOWLEDGMENT

The work was supported by National Nature Science Foun-

dation of China Project (Grant No. 61471058), Key National

Science Foundation of China (61461136002, 61631005), Hong

Kong, Macao and Taiwan Science and Technology Coop-

eration Projects (2016YFE0122900) and the 111 Project of

China (B16006). The partial support of the U.S. National

Science Foundation through grant CCF 1525904 is gratefully

acknowledged. We also thank Jeya Pradha for her comments

on earlier drafts of the manuscript.

REFERENCES

[1] F. Baccelli, M. Klein, M. Lebourges, et al., “Stochastic geometry and
architecture of communication networks,” Telecommun. Syst., vol. 7,
no.1-3, pp. 209-227, Jun. 1997.

[2] F. Voss, C. Gloaguen, F. Fleischer, et al., “Distributional properties of
Euclidean distances in wireless networks involving road systems,” IEEE

J. Sel. Areas in Commun., vol. 27, no. 7, pp. 1047-1055, Sep. 2009.
[3] M. Khabazian and M. K. M. Ali, “A performance modeling of connec-

tivity in vehicular ad hoc networks,” IEEE Trans. Veh. Technol., vol. 57,
no. 4, pp. 2440-2450, Jul. 2008.

[4] V. K. Muhammed Ajeer, P. C. Neelakantan, and A. V. Babu, “Network
connectivity of one-dimensional vehicular ad hoc network,” in 2011 Int.

Conf. Commun. Signal Processing, Calicut, India, 2011, pp. 241-245.
[5] S. Yousefi, E. Altman, R. El-Azouzi, et al., “Analytical model for

connectivity in Vehicular Ad Hoc Networks,” IEEE Trans. Veh. Technol.,
vol. 57, no. 6, pp. 3341-3356, Nov. 2008.

[6] S. Busanelli, G. Ferrari, and R. Gruppini, “Performance analysis of
broadcast protocols in VANETs with Poisson vehicle distribution,” in
11th Int. Conf. ITS Telecommun., St. Petersburg, Russia, 2011, pp. 133-
138.

[7] A. Busson, “Analysis and simulation of a message dissemination algo-
rithm for VANET,” Int. J. Commun. Syst., vol. 24, no. 9, pp. 1212-1229,
Jan. 2011.

[8] Y. Jeong, J. W. Chong, H. Shin, et al., “Intervehicle communication:
Cox-Fox modeling,” IEEE J. Sel. Areas in Commun., vol. 31, no. 9, pp.
418-433, Sep. 2013.

[9] C. Gloaguen, F. Fleischer, H.Schmidt, et al., “Fitting of stochastic
telecommunication network models, via distance measures and Monte-
Carlo tests,” Telecommun. Syst., vol. 31, is. 4, pp. 353-377, Apr. 2006.

[10] C. Gloaguen, F. Voss, and V. Schmidt, “Parametric distance distributions
for fixed access network analysis and planning,” in Proc. 21st Int.

Teletraffic Congress, Paris, France, 2009, pp. 1-8.
[11] I. W. H. Ho, K. K. Leung, and J. W. Polak, “Stochastic model

and connectivity dynamics for VANETs in signalized road systems,”
IEEE/ACM Trans. Networking, vol. 19, no. 1, pp. 195-208, Feb. 2011.

[12] A. Guo and M. Haenggi, ”Spatial stochastic models and metrics for the
structure of base stations in cellular networks,” IEEE Trans. Wireless

Commun., vol. 12, no. 11, pp. 5800-5812, Nov. 2013.
[13] P. Golmohammadi, P. Mokhtarian, F. Safaei, et al., “An analytical model

of network connectivity in vehicular ad hoc networks using spatial point
processes,” in Proc. of IEEE Int. Symposium on a World of Wireless,

Mobile and Multimedia Networks 2014, Sydney, New Sales Wales,
Australia, 2014, pp. 1-6.

[14] F. L. Mannering, S. S. Washburn, and W. P. Kilareski. Principles of

highway engineering and traffic analysis, 4th Edition. Wiley, 2008.
[15] A. Y. and Abul-Magd, “Modeling highway-traffic headway distributions

using superstatistics,” Phys. Rev. E, vol. 76, is. 5, pp. 057101.1-057101.4,
Nov. 2007.

[16] M. Haenggi, Stochastic geometry for wireless networks. Cambridge
University Press, 2012.

[17] Diggle, Peter J., and R. J.Gratton, “Monte Carlo methods of inference
for implicit statistical models,” J. Royal Statist. Soc., vol. series B 46,
pp. 193-212, 1984.

[18] J. Møller, A. R. Syversveen, and R. P. Waagepetersen, “Log Gaussian
Cox processes”. Scand. J. Statist., vol. 25, No.3, pp. 451-482, Sep. 1998.

[19] Yanyan Lu, Qimei Cui, Yanzhao Hou, Zhenguo Gao, Yuhao Zhang,
“Graph-based optimal revenue packet scheduling in Vehicle-to-
Infrastructure communication”, in ICC Workshops, Paris, France, 2017,
pp. 583-588.


