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Abstract—Poisson line processes (PLPs) describe a street
system as a random collection of lines. Poisson point processes
(PPPs) model vehicle locations on each line or street as random
points. The characterization of vehicular networks as their
combination, i.e., the PLP-PPP model, is relevant and widely
used in the literature. However, the analytical expression for
even a simple performance metric such as the probability of
successful message reception in the PLP-PPP is quite complex
and provides little insights into the network behavior. Here, we
propose a transdimensional Poisson model—superposition of the
1D and 2D PPPs—as an alternative. It considers the vehicles
on the same line as the receiving vehicle as a 1D PPP and
the vehicles on the other streets as random points on the 2D
plane neglecting their street geometry. We show that the success
probability in the proposed transdimensional model is tractable
and provides a tight approximation to that of the PLP-PPP. Also,
it is asymptotically exact on both the upper and lower tails of
the success probability.

Index Terms—Poisson line process, Poisson point process,
vehicle-to-vehicle communication.

I. INTRODUCTION

Stochastic geometry [1] provides the mathematical tools

to characterize different street patterns and uncertainties in

the vehicle locations on the streets. A prominent 2D street

model is the Poisson line process (PLP) [2] which represents

the street system using a countable collection of lines. PLPs

allow modeling streets with different orientations, making

them relevant in characterizing regular and irregular street

patterns [3]. For example, a part of the Manhattan city can be

modeled by setting the orientations to {0, π/2}, i.e., the streets

are orthogonal to each other. The vehicle locations on each

street are generally modeled using Poisson point processes

(PPPs), which are known for their analytical tractability. We

refer to the street system formed by the PLP coupled with the

PPP for vehicle locations on each street as PLP-PPP.

A. Related Work

In [4] the authors analyze the probability of a vehicle

receiving a message successfully from another vehicle at a

fixed distance in the PLP-PPP setup. The analytical expression

for the success probability involves nested integrals with no

closed-form expression and thus is intractable. On the other

hand, vehicle locations cannot be simply modeled as random

points as in a 2D PPP [5]. The random locations of the points

in a 2D PPP defy the certainty of vehicles located on a line.

Hence there is a need for an intermediate model that provides

high tractability and good accuracy.

Another line of work involving the PLP-PPP focuses on

a vehicle successfully receiving a message from its nearest

neighbor, which can be either another vehicle or an infrastruc-

ture node such as a roadside unit or a cellular base station [6]–

[10]. The transmitting and receiving vehicles on each street

are modeled as independent 1D PPPs. The roadside units are

generally placed on the lines following a 1D PPP. The base

stations form an independent 2D PPP. Although the PPPs are

tractable, coupling them with PLPs leads to unwieldy results.

B. Contribution

In this work, we take the middle route between the PLP-

PPP and the PPP and introduce a model that provides a good

trade-off between accuracy and tractability. We propose a

transdimensional Poisson model which is a superposition of

a 1D PPP and a 2D PPP. It treats the vehicles on the same

street as the receiving vehicle as a 1D PPP and the remaining

vehicles on the plane as a 2D PPP. By superimposing a 1D

PPP and a 2D PPP, we account for the line or street passing

through the receiver, and, at the same time, we obviate the

need to incorporate the geometry of the remaining streets.

We compare the proposed transdimensional Poisson model

with the PLP-PPP setup considered in [4], where a vehicle

receives a message from another vehicle at a fixed distance. As

the intersections are critical in street systems, we additionally

focus on the success probability of vehicle at an intersection.

We show that the success probability in the transdimensional

Poisson model provides a tractable and tight lower bound to

that of the PLP-PPP.

II. VEHICULAR NETWORK MODELING

A. Streets and Vehicle Locations

Throughout the paper, we will use the definition, models,

and notations presented in this section unless otherwise stated.

Definition 1. A street system S is a random closed subset of

R
2 that contains no singletons or isolated points satisfying

|S|2 = 0, and for some τ > 0,

E|S ∩ B|1 = τ |B|2 for Borel sets B ⊂ R
2, (1)

where | · |d is the Lebesgue measure in d dimensions. τ is the

mean total street length per unit area.



|S|2 = 0 implies that S is the union of 1D subsets and (1)

is the condition for stationarity (translation invariance). Let

S(t, ϕt) = {(x, y) ∈ R
2 : x cosϕt + y sinϕt = t} (2)

denote a line (i.e., an infinitely long street) in R
2. |t| is the

distance of the perpendicular from the origin (0, 0) to the line,

and ϕt ∈ [0, π] is the angle the perpendicular makes with the

positive x−axis. A line-based street system S is a countable

collection of lines defined by (2).

The locations of the transmitting vehicles on each street

independently form a point process of intensity λ. A trans-

mitter is active with probability p. Then the intensity of

active transmitters on each street is λp. Each active transmitter

transmits to its dedicated receiver on the same street at a

distance R, forming a bipolar network [1]. We can also

interpret the bipolar communication as broadcast mode of

communication. If a vehicle can communicate to another

vehicle at distance R, other vehicles within distance R are

also highly likely to receive the message.

B. Types of Users and Success Probability

Our metric of interest is the success probability, the prob-

ability that the transmitter-receiver link can satisfy a certain

target data rate. It is evaluated at the typical user. We condition

a user (receiver) to be at the origin. On averaging over the

point process, the user becomes the typical user. Note that

the user can be conditioned to be at any location as the street

system S is stationary. As vehicles are located on the streets,

having a user at the origin implies that at least one street

passes through the origin.

We consider two kinds of users: 1) The typical general

user, where the origin is not an intersection. 2) The typical

intersection user, where the origin is an intersection of two

lines or streets. The term ‘typical user’ refers to both the kinds

of users unless otherwise specified. We refer to the line(s)

passing through the typical user as the typical street(s).

The success probability of the typical user is defined as

ps = P(SIR > θ), (3)

where SIR is the signal-to-interference ratio and θ
parametrizes the target rate. The SIR for the typical user at

the origin with its transmitter at x is given by

SIR =
hx‖x‖−α

∑

z∈V hz‖z‖−α
, (4)

where ‖x‖ = R, V denotes the point process of active

transmitters on S, and I =
∑

z∈V hz‖z‖−α is the total

interference power at the origin. The channel power gain h is

exponentially distributed with mean 1 (Rayleigh fading), and

α is the path-loss exponent.

C. Preliminaries

Here, we list a few results for the PPP [1], which we will

need in the rest of the paper. Let Φd denote a homogeneous

d-dimensional PPP of intensity λd. Φd is stationary, and

Figure 1: A snapshot of the PLP-PPP bipolar network. µ = λ = 0.1,
and R = 0.25. Lines represent the streets. ‘◦’ and ‘∗’ represent the
transmitters and receivers, respectively. (t, ϕt) are the parameters of
a line/street defined by (2).

isotropic (rotation invariant). Let cd denote the volume of a

unit d−dimensional ball. c1 = 2, and c2 = π.

Lemma 1. The superposition of n d−dimensional PPPs with

intensities νi, 1 ≤ i ≤ n, is a d−dimensional PPP with

intensity
∑n

i=1 νi.

Lemma 2. The pair correlation function gΦd(r) is identical

to 1.

The pair correlation function is a second-order statis-

tic quantifying the dependence between the points. For an

isotropic process, it can be expressed as a function of a scalar

parameter and is related to the probability of finding two

points in Φd separated by a distance r. gΦd(r) = 1 denotes

a lack of correlation, which follows from the independence

among the points in the PPP.

Lemma 3. The success probability ps of the typical user in

Φd is given by

pΦd

s = exp(−cdλdR
dθδ

′

Γ(1 + δ′)Γ(1 − δ′)), (5)

where δ′ = d/α.

Lemma 4. The nearest-neighbor distance distribution in Φd

is given by

FΦd

R (r) = 1− exp(−cdλdr
d). (6)

Next, we analyze the success probability of the typical user

in the PLP-based reference model.

III. PLP-BASED VEHICULAR NETWORK

Let S =
⋃

t∈P S(t, ϕt). When P is a 1D PPP of intensity

µ and ϕt is i.i.d. on [0, π], S forms a Poisson line process.

The vehicles on each street independently form a 1D PPP of

intensity λ. We refer to this network model as PLP-PPP. Fig. 1

depicts a realization of the PLP-PPP.



A. Properties

By Definition 1 and the homogeneity of the 1D PPP on the

streets, the PLP-PPP is stationary. As ϕt is i.i.d. on [0, π], the

PLP-PPP is also isotropic. Below we list a few preliminaries

for the PLP-PPP [2].

Lemma 5. The mean total street length per unit area is τ =
πµ. Then the 2D intensity of vehicles in the PLP-PPP is λπµ.

Lemma 6. The pair correlation function for the PLP-PPP is

gPLP−PPP(r) = 1 +
1

λµπ2r
, r > 0. (7)

The pair correlation function gPLP−PPP(r) ≥ 1 reflects the

concentration of points on the lines. We observe from (7) that

gPLP−PPP(r) → ∞ as r → 0. This implies that even for a

small disk centered at a point, there exists at least one line—

the line on which the point lies—of intensity λ intersecting

the disk. At large distances, the correlation between the points

vanishes. Hence gPLP−PPP(r) → 1 as r → ∞.

Lemma 7. The nearest-neighbor distance distribution in the

PLP-PPP is FPLP−PPP
R (r) = 1− P(R > r), where

P(R > r) = exp

(

− 2λmr − 2πµ

r
∫

0

(1− e−2λ
√
r2−u2

)du

)

,

(8)

with m = 1 for the typical general user and 2 for the typical

intersection user.

Proof: The case of m = 1 is derived in [7]. The term

exp(−2λmr) in (8) with m = 1 is the probability of not

finding a neighbor to the general user within a distance r
on the typical street. The remainder in (8) is the contribution

from the other streets, which is the same for both the general

and intersection users as the distribution of the other streets

does not vary with the type of the user. As two streets pass

through the intersection and they are independent 1D PPPs,

the probability that there is no neighbor on the typical streets

within distance r of the typical intersection user is exp(−4λr),
i.e., m = 2.

B. Success Probability

The success probability of the typical general user is derived

in [4]. Here we give a slightly more general result that applies

to the typical intersection user as well.

Lemma 8. The success probability of the typical user in the

PLP-PPP is given by

pPLP−PPP
s = exp(−2mλpRθδ/2Γ(1 + δ/2)Γ(1− δ/2))

× exp

(

− 2πµ

∞
∫

0

(1− LI(θR
α | t)) dt

)

, (9)

where

LI(θR
α | t) = exp

(

− λpRθδ/2
∞
∫

v0

1
(

1 + v1/δ
)√

v − v0
dv

)

,

(a)

(b)

Figure 2: Comparison of success probabilities of the (a) typical
general user and (b) typical intersection user in the PLP-PPP to that
of the typical user in 1D PPP, and 2D PPP. µ = 1/π, λ = 1,
p = 0.3, R = 0.25, and α = 4. The equation numbers are given in
the parentheses in the legends.

v0 = t2

R2θδ , δ = 2/α, m = 1 for the typical general user and

m = 2 for the typical intersection user.

Proof: Comparing (9) with (5), we observe that the first

term in the product expression (9) with m = 1 is the success

probability of the typical user in a 1D PPP of intensity λp. The

second term in (9) is the contribution from all but the typical

streets. It remains the same for the typical intersection user

as the distribution of the other streets with respect to both the

users is the same. Similar to the proof of Lemma 7, to find the

reduction in the success probability of the typical intersection

user due to the typical streets, we exploit the independence

between the 1D PPPs on them. It follows that the reduction

in the success probability due to the two typical streets is just

the square of that due to a single street, i.e., m = 2 for the

typical intersection user as shown in (9).

The success probability of the typical user in the PLP-

PPP (9) does not have a closed-form expression. To gain

insights into the network behavior, we next focus on the

asymptotic regimes of θ.



C. Asymptotic Analysis

Theorem 1. The PLP-PPP behaves like a 1D PPP as θ → 0,

i.e.,

1− pPLP−PPP
s (θ) ∼ 2mλpRθδ/2Γ(1 + δ/2)Γ(1− δ/2),

where δ = 2/α, m = 1 for the typical general user and

2 for the typical intersection user. In general, the success

probability of the typical user in the PLP-PPP is upper

bounded by that of the 1D PPP.

Proof: See Appendix A.

Theorem 2. The PLP-PPP behaves like a 2D PPP as θ → ∞,

i.e.,

pPLP−PPP
s (θ) ∼ exp(−πλ2R

2θδΓ(1 + δ)Γ(1 − δ)), (10)

where λ2 = λpπµ, and δ = 2/α.

Proof: See Appendix B.

Fig. 2 shows the success probabilities of the typical user

in the PLP-PPP, 1D PPP, and 2D PPP. The intensity of active

transmitters in the 1D PPP is λp and that of the equivalent

2D PPP is λpπµ (see Lemma 5). As two streets pass through

the typical intersection user, the probability that the nearest

interferer is closer, and the mean number of interferers within

a certain distance r are higher than for the typical general

user, resulting in lower success probability.

We observe from Fig. 2 that the success probability of

the typical user is upper bounded by the minimum of the

success probabilities of the typical user in the 1D and 2D

PPPs. Furthermore, the success probability of the typical user

in the PLP-PPP tends to that of the 1D and 2D PPPs in the

asymptotic regimes as stated in Theorems 1 and 2. This raises

the question of whether a simpler, purely PPP-based model

exists that provides great tractability and good accuracy. The

answer is affirmative, as shown in the next section.

IV. A TRANSDIMENSIONAL POISSON MODEL

The first term in the success probability of the typical user

in the PLP-PPP (9) denotes the contribution from the typical

streets. It is independent of ϕt, i.e., the orientations of the

typical streets are irrelevant. Then, by Lemma 1, m streets of

intensity λ passing through the typical user is equivalent to a

single street of intensity mλ. We propose a transdimensional

Poisson model that considers the vehicles on the street(s)

passing through the typical user at the origin as a 1D PPP of

intensity λ1 = mλ, and the remaining vehicles on the plane

as a 2D PPP neglecting the geometry of the other streets. The

formal definition follows.

Definition 2. Let Φ1 = {(t1, 0), (t2, 0), . . . } where {tk}, k ∈
N, is a 1D PPP of intensity mλ and Φ2 denote a 2D PPP

of intensity λ2. The transdimensional Poisson point process

(TPPP) is the superposition of Φ1 and Φ2, i.e., T , Φ1∪Φ2.

By Lemma 5, λ2 = λπµ. Fig. 3 depicts a realization of

the TPPP. The TPPP is non-stationary and thus pTPPP
s and

FTPPP
R (r) are location dependent.

Figure 3: A TPPP-based realization of the vehicular network. mλ =
λ2 = 0.1, and R = 0.25. The 1D PPP is highlighted by the line. ‘◦’
and ‘∗’ represent the transmitters and receivers, respectively.

Lemma 9. The success probability of the typical user at the

origin in the TPPP is

pTPPP
s = exp(−2mλpRθδ/2Γ(1 + δ/2)Γ(1− δ/2))

× exp(−λpµπ2R2θδΓ(1 + δ)Γ(1− δ)), (11)

where δ = 2/α.

Proof: As Φ1 and Φ2 are independent, the success

probability of the typical user at the origin in the TPPP is

the product of the success probabilities of the typical user in

Φ1 and Φ2 given by (5).

Theorem 3. The nearest-neighbor distance in the PLP-PPP

is stochastically dominated by that of the typical user at the

origin in the TPPP.

Proof: Using e−x ≥ 1 − x, we can upper bound the

nearest-neighbor distance distribution given in (8) as

FPLP−PPP
R (r) ≤ 1− exp

(

− 2λmr − 4πµλ

r
∫

0

√

r2 − u2du

)

= 1− exp(−2λmr − λµπ2r2),

(a)
= FΦ1∪Φ2

R (r)
(b)≡ FTPPP

R (r), (12)

where (a) follows from the nearest-neighbor distance distri-

butions of the 1D and 2D PPPs given in (6) with λ1 = mλ
and λ2 = λπµ, and (b) follows from Definition 2.

Conjecture 1. The distance to the nth nearest-neighbor in

the PLP-PPP is stochastically dominated by that of for the

typical user at the origin in the TPPP for all n ∈ N.

An important consequence of Conjecture 1 is that the

success probability of the typical user at the origin in the

PLP-PPP is lower bounded by that of the TPPP. Here, we

give a heuristic argument for Conjecture 1. The 2D density of

the vehicles in the TPPP is the same as that of the PLP-PPP.

Then the comparison of the distances rn can be based only

on the vehicle placement with respect to the typical user.



Figure 4: Comparison of normalized mean squared distances to the
nth nearest neighbor from the typical general user at the origin in
the PLP-PPP and the TPPP. λ = µ = 1/π, and p = 1.

Fig. 4 compares the simulated values of E[r2n]/n in the PLP-

PPP and the TPPP. We observe that the mean squared distance

from the typical general user to the nth nearest neighbor is

higher for the PLP-PPP than the TPPP. The case of n = 1
follows from Theorem 3. We presume that this observation can

be extended to higher values of n. Since the TPPP includes

points at random independent locations compared to the PLP-

PPP with points only concentrated on the lines, the probability

that the nth nearest neighbor is at a distance rn is higher for

the TPPP. It follows that the average distance to the nth nearest

interferer from the origin is higher for the PLP-PPP, which in

turn, leads to a higher success probability than for the TPPP.

Fig. 5 compares the success probabilities of the typical

general user in the PLP-PPP and the TPPP for different

network parameters. We observe that the outage probability

of the typical user in the TPPP is a tight approximation of

that of the PLP-PPP. The TPPP better approximates the PLP-

PPP for small θ than just a 1D PPP. As θ → 0, for SIR > θ,

there should not be any interferers in a small disk b(o, r)
of some radius r centered at the origin. From Lemma 6,

we learn that the pair correlation function for the PLP-PPP

diverges as r → 0, which indicates there definitely exists at

least one line with vehicles of intensity λ intersecting b(o, r).
For infinitesimally small θ, only the typical street intersects

b(o, r). However, for non-vanishing values of θ, there may

be more than one line intersecting b(o, r), and the 1D PPP

is not sufficient to capture the effect of the streets other than

the typical street intersecting b(o, r). Given that the PLP-PPP

behaves like a 2D PPP as θ → ∞ with the street geometry

becoming irrelevant, it immediately follows that the TPPP also

behaves like a 2D PPP as θ → ∞.

Fig. 6 plots the difference in the success probabilities in the

PLP-PPP and the TPPP for different combinations of λp and

R2θδ . The parameters are combined in the manner they appear

in the results (9) and (11). If R = 0.25, and δ = 0.5 or α = 4,

then θ ∈ (−∞, 50] dB. The maximum difference between

the success probabilities of the PLP-PPP and the TPPP is in

the order of -14 dB. Therefore, the success probability of the

Figure 5: Comparison of outage probabilities of the typical general
user in the PLP-PPP and the TPPP. µ = 1/π, λ = 1, p = 0.3,
R = 0.25, and α = 4. The equation numbers corresponding to the
success probability ps are given in the parentheses in the legend.

Figure 6: Difference between the success probabilities of the typical
general user in the PLP-PPP and the TPPP. µ = 1/π, and m = 1.

TPPP is a tight lower bound to that of the PLP-PPP. Note that

the inferences obtained from the Figs. 4-6 also apply to the

typical intersection user.

V. CONCLUSIONS

We introduced a simple and tractable approach to analyze

the probability of successful message reception in a vehicular

network whose streets follow a PLP, and vehicles on each

street form a 1D PPP. We showed that the success probabil-

ity in the proposed transdimensional Poisson model tightly

approximates that of the PLP-PPP-based vehicular network.

The key takeaway is that it is not essential to account for the

geometry of every single street as in the PLP, i.e., it suffices

to consider the vehicles on the same street as the receiver as

a 1D PPP and those on the different streets as a 2D PPP.

APPENDIX

A. Proof of Theorem 1

We note that the first term in the product (9) with m = 1 is

the success probability of the typical user in the 1D PPP given



by (5). For the typical intersection user, m = 2. Consequently,

as 0 ≤ ps ≤ 1, the success probability of the typical user in

the PLP-PPP is upper bounded by that of the 1D PPP.

As θ → 0, the first term in (9) can be approximated using

Taylor’s series as 1 − 2mλpRθδ/2Γ(1 + δ/2)Γ(1 − δ/2).
Applying Taylor’s series to the second term in (9), we get

exp

(

− 2πµ

∫ ∞

0

(1− LI(θR
α | t))dt

)

≈ 1− 2πµλpRθδ/2
∫ ∞

0

∫ ∞

t2

R2θδ

1
(

1 + v1/δ
)

√

v − t2

b2θδ

dv dt

= 1− o(θδ/2),

since t2

b2θδ → ∞ as θ → 0. Then we can express ps as

ps ∼ 1− 2mλpRθδ/2Γ(1 + δ/2)Γ(1− δ/2), θ → 0. (13)

Similarly, we can approximate (5) as

1− ps ∼ cdλdR
dθδ

′

Γ(1 + δ′)Γ(1 − δ′), θ → 0. (14)

Setting δ/2 = δ′ = 1/α i.e., d = 1 (c1 = 2), λp = λ1, and

m = 1 in (13), we obtain (14), which refers to a 1D PPP or a

single street. For the typical intersection user, m = 2 as two

streets pass through the origin.

B. Proof of Theorem 2

Let Gu denote an orthogonal grid with the locations of the

lines u ∈ Z, i.e., u is the x-intercept or y-intercept of the

line. The vehicles on each line form a 1D PPP. One way

of obtaining such a model is to start with a 2D PPP Φ2

and quantize one of the coordinates of the points with equal

probability [11, Def. 2]. Similarly, we can generate the PLP-

PPP from a 2D PPP.

In the PLP-PPP, the locations of the streets are characterized

by t, which follows a 1D PPP P of intensity µ. This implies

that the distances between the points in P are exponentially

distributed. With each t, there is an associated orientation ϕt

i.i.d. on [0, π]. Then, by rotating the lines in the orthogonal

grid with exponential spacing Ge, we can obtain the PLP-PPP.

However, direct mapping from Φ2 to Ge would result in an

inhomogeneous distribution of points on the streets.

Let M : Φ2 → Vu → V define the mapping from a 2D PPP

to the PLP-PPP, where Vu and V denote the locations of the

transmitters in Gu and the PLP-PPP, respectively. We order the

streets based on their perpendicular distances to the origin. By

Φ2 → Vu, the points on Φ2 are translated to Gu through the

quantization process described above. The mapping Vu → V
involves two steps: 1) The points on the ith street on the grid

Gu are translated to the ith street on the grid Ge. 2) Each line

is rotated independently such that ϕt is i.i.d. on [0, π].
From (3) and (4), the success probability is given by

pPLP−PPP
s = P

(

hx > Rα
∑

z∈V
hz‖θ−1/αz‖−α

)

. (15)

Using the mapping function M, we can express (15) as

pPLP−PPP
s = P

(

hx > Rα
∑

z∈Φ2

hz‖θ−1/αM(z)‖−α

)

. (16)

The success probability of the typical user in Φ2 is

ps
Φ2 = P

(

hx > bα
∑

z∈Φ2

hz‖θ−1/αz‖−α

)

. (17)

The mapping Φ2 → Vu displaces each point by at most 1/2 as

u ∈ Z. Since the exponential distribution has a finite variance

and the PLP is isotropic, the mapping Vu → V translates the

points in Vu only by a finite distance. Then, by the Cauchy-

Schwarz inequality, |‖z‖ − ‖M(z)‖| ≤ ‖z − M(z)‖ < ∞.

Multiplying by θ−1/α, we obtain

|‖θ−1/αz‖ − ‖θ−1/αM(z)‖| → 0 as θ → ∞. (18)

Applying (18) to (16) and (17), we infer that the interference

experienced by the typical general/intersection user in the

PLP-PPP tends to that of in a 2D PPP as θ → ∞. Note that

the type of user does not matter since the mapping does not

affect the points of Φ2 as θ → ∞, i.e., there is no difference

between a general user and an intersection user. Hence the

success probability in the PLP-PPP tends to that in Φ2.

Setting d = 2 (c2 = π), δ′ = δ = 2/α, and λ2 = λpπµ
(see Lemma 5) in (5), we obtain (10).
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