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Analyzing Non-Orthogonal Multiple Access
(NOMA) in Downlink Poisson Cellular Networks

Konpal Shaukat Ali∗, Hesham ElSawy∗, Anas Chaaban∗, Martin Haenggi†, and Mohamed-Slim Alouini∗

Abstract—Non-orthogonal multiple access (NOMA) is a spec-
trum reutilization technique that superposes messages in the
power domain allowing multiple users to be served in the same
time-frequency resource block. Successive interference cancella-
tion (SIC) techniques are used for decoding NOMA messages.
A network model is considered where Poisson distributed base
stations transmit to N NOMA users each. We present a signal-
to-interference-and-noise-ratio analysis for the coverage of the
typical user. Due to SIC, coverage implies the ability to decode
the messages of all weaker users in the SIC chain. An efficient al-
gorithm for finding a feasible resource allocation that maximizes
the cell sum rate Rtot subject to a minimum rate constraint T
on the individual UEs is provided for general N . We show the
existence of an optimum N that maximizes Rtot given a set of
network parameters. It is also shown that NOMA outperforms
orthogonal multiple access if the residual intracell interference
is below a certain level. The results highlight the importance
in choosing network parameters N and T to balance Rtot and
fairness.

I. INTRODUCTION

The available spectrum is a scarce resource, and many new

technologies to be incorporated into 5G focus on reusing the

spectrum more efficiently to improve data rates. Traditionally,

temporal, spectral, or spatial1 orthogonalization techniques,

referred to as orthogonal multiple access (OMA), are used

to avoid interference among users in a cell. They allow

only one UE per time-frequency resource block in a cell.

A promising candidate for more efficient spectrum reuse in

5G is non-orthogonal multiple access (NOMA), which allows

multiple users to share the same time-frequency resource

block. This is achieved by having messages multiplexed either

in the power domain or in the code domain. NOMA is

therefore a special case of superposition coding [1]. Decoding

techniques using successive interference cancellation (SIC)

[2] for multiple-access channels have been studied from an

information theoretic perspective for several decades [3], and

they were implemented on a software radio platform in [4].

The focus of our work is on NOMA where messages are

superposed in the power domain, i.e., by transmitting them at

different power levels. Hence, NOMA allows multiple users to

transmit/receive messages in the same time-frequency resource
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1Spatial separation of UEs with MIMO can be used with either OMA or
NOMA.

block by multiplexing them at different power levels. SIC

techniques are then used for decoding.
Promising results for NOMA as an efficient spectrum reuse

technique have been shown [5], [6]. In [7], [8] power allo-

cation (PA) schemes are investigated for universal fairness

by achieving identical rates for NOMA users. The idea of

cooperative NOMA is investigated [9], [10]. The works in

[5]–[10] consider NOMA in single cells and therefore do not

account for intercell interference which has a drastic negative

impact on NOMA performance as shown in [11]. Stochastic

geometry has succeeded in providing a unified mathematical

paradigm to model large cellular networks and characterize

their operation while accounting for intercell interference

[12]–[14]. Using stochastic geometry-based modeling, a large

uplink NOMA network is studied in [15], a large downlink

NOMA network in [16], and a qualitative study on NOMA in

large networks is carried out in [11]. However, [16] does not

take into account the SIC chain in the signal to interference

and noise ratio (SINR) analysis which overestimates coverage.
To the best of our knowledge, an analytical study of a large

multi-cell downlink NOMA system that takes into account

intercell interference and intracell interference, henceforth

called intraference, and the SIC chain for a general number of

UEs served by each BS does not exist. Hence, in this work,

we aim at analyzing the performance of such a large network

setup, based on stochastic geometry, with both perfect and

imperfect SIC capability. Resource allocation (RA) schemes

for maximizing rates with constraints are often for small

NOMA clusters such as the two-user case [17], [18], though

works such as [19] consider a general number of UEs in

a NOMA cluster. However, works like [17]–[19] assume a

single-cell setup and therefore do not account for intercell

interference. Accordingly, we propose intercell interference-

aware RA with the goal of maximizing the cell sum rate

defined as the sum of the rates of all the UEs in a NOMA

cluster of the cell, subject to a threshold minimum rate (TMR)

constraint of T on the individual UEs. OMA is used to

benchmark the gains attained by NOMA.
The contributions and findings of this paper can be summa-

rized as follows:

• We study a Poisson cellular network employing NOMA

in the downlink and account for intercell interference in

the RA, SINR analysis, and optimization.

• We introduce a model where NOMA UEs are distributed

uniformly in the largest disk centered at the BS that fits

inside the cell. This model is realistic and tractable.

• We present an SINR analysis that considers error propa-

gation in the SIC chain and the effects of imperfect SIC.
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• We formulate an optimization problem where the cell sum

rate is maximized subject to a TMR constraint. Since the

problem is non-convex, an efficient algorithm is proposed

to find a feasible but possibly suboptimum solution to the

problem.

• We show that there exists an optimum NOMA cluster

size for a given T and residual intraference (RI) factor

β that maximizes the cell sum rate. We also show that

for sufficiently small β, NOMA outperforms OMA. Our

results shed light on how to choose the cluster size and

T to balance the cell sum rate and user fairness. In

particular, when T is small, large cluster sizes improve

network performance at the expense of lower rates for

individual UEs.

Notation: Vectors are denoted using bold text, ‖x‖ denotes

the Euclidean norm of the vector x. LX(s) = E[e−sX ] denotes

the Laplace transform (LT) of the PDF of the random variable

X . The ordinary hypergeometric function is denoted by 2F1.

II. SYSTEM MODEL

A. NOMA System Model

We consider a downlink cellular network where BSs trans-

mit with a total power budget of P . The BSs use fixed

rate transmissions, which are vulnerable to outage, for the

transmission of each message leading to UE rates that are

lower than the transmission target rate. Each BS serves N
UEs in one time-frequency resource block by multiplexing

the signals for each UE with different power levels; here N is

called the cluster size. The BSs are distributed according to a

homogeneous Poisson point process (PPP) Φ with intensity λ.

Denote by ρ the distance between a BS and its nearest neigh-

bor. The N UEs are distributed uniformly and independently

in a disk centered at the serving BS with radius ρ/2, referred

to as the in-disk. The in-disk is the largest disk centered at

the serving BS that fits inside the Voronoi cell. UEs outside

of this disk are relatively far from their BS and thus are better

served in their own resource block (without sharing) or even

using CoMP if they are near the cell edge. These UEs will

not be discussed further in this work. To the network we add

an extra BS at the origin o, which, under expectation over

the PPP Φ, becomes the typical BS serving UEs in the typical

cell. In this work we study the performance of the typical cell.

A realization of the cell at o, its in-disk, and the surrounding

cells is shown in Fig. 1. Note that since Φ does not include

the BS at o, Φ is the set of the interfering BSs for the UEs in

the typical cell. The UEs of the typical cell are indexed with

respect to their ascending ordered distance from o; hence, the

ith closest UE is referred to as UEi, for 1 ≤ i ≤ N . Since the

order of the UEs is known at the BS, we use order statistics

for the PDF of Ri, the distance of UEi to its serving BS, given

ρ. Accordingly, in the typical cell,

fRi|ρ(r |ρ)=
(
N − 1

i− 1

)
8rN

ρ2

(
4r2

ρ2

)i−1(
1− 4r2

ρ2

)N−i

, 0≤ r ≤ ρ

2
,

where
(
c
d

)
= c!

d!(c−d)! . Note that this model guarantees that the

nearest interfering BS from UEi is farther than ρ−Ri.

BS
UE

ρ

Fig. 1: A realization of the network with N = 4. The UEs and
in-disk, marked by the dashed circle, for the cell at o are shown.

The power for the signal intended for UEi is denoted by Pi,

hence P =
∑

i Pi. Without loss of generality, we set P = 1. A

Rayleigh fading environment is assumed such that the fading

coefficients follow a unit mean exponential distribution. It is

also assumed that the channel gains are independent of one

another. A power law path loss model is considered where the

signal power decays at the rate r−η with distance r, where

η > 2 denotes the path loss exponent and δ = 2
η .

SIC is employed for decoding at the UEs. According to

the NOMA scheme, the PA and transmission target rate are

designed such that the ith strongest UE is able to decode the

messages intended for all those UEs that have weaker channels

than itself. SIC requires ordering UEs according to channel

strength, which includes the effect of both path loss (and there-

fore link distance Ri) and fading. The impact of the large-scale

path loss is more stable and dominant than the fading effect

which varies on a much shorter time scale. For small values of

N in particular, the path loss dominates the channel relative

to fading; considering the strength of a channel to be based on

the distance between a UE and its BS is therefore a reasonable

approximation [15], [20], [21]. The analysis based on the

actual instantaneous channel strength is complex and out of

the scope of this work. Similarly a more efficient ordering

scheme could include intercell interference in determining UE

strength. However, including interference and fading would

necessitate very high feedback overhead. Hence, we assume

in our setup the strength of the channel corresponds to the

proximity of a UE to the BS. To successfully decode its own

message, UEi must therefore be able to decode the messages

intended for UEs that lie farther from the BS than itself, i.e.,

UEi+1, . . . ,UEN . This is achieved by allocating higher powers

and/or lower target rates to the data streams of UEs farther than

UEi. Correspondingly, UEi is not able to decode any of the

streams sent to UEs that are closer to the BSs due to their

smaller powers and/or higher target rates. Assuming perfect

SIC, the intraference experienced at UEi, I
◦
i , is comprised of

the powers from the messages intended for UE1, . . . ,UEi−1.

Since in practice SIC is not perfect, our mathematical model

additionally considers a fraction 0 ≤ β ≤ 1 of RI from the

UEs farther than UEi in I◦i . When perfect SIC is assumed,

β = 0 while β = 1 corresponds to no SIC at all. Additionally,
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UEi also suffers from intercell interference, Iøi , arising from

the power received from all the other BSs in the network, and

noise power σ2. For the NOMA network 2N−1 parameters are

to be selected, namely N target rates and N−1 powers. In this

work although UE ordering is agnostic to intercell interference

and fading, our RA (choice of the 2N − 1 parameters) is not.

B. OMA System Model

We compare our NOMA model with a traditional OMA

network where only one UE is served by a BS in a single time-

frequency resource block. We focus on time division multiple

access (TDMA), i.e., the time resources are split between

the contending UEs. For a fair comparison with the NOMA

system, the BS serves N UEs at distances Ri which follow the

same distribution of the order statistics conditioned on ρ as in

the NOMA setup. Each TDMA message is transmitted using

full power P = 1 for a duration Ti. Without loss of generality,

a unit time duration is assumed for a NOMA transmission and

therefore
∑

i Ti = 1. Consequently, 2N − 1 parameters are to

be selected for the OMA network, namely N target rates and

N − 1 fractions of the time slot.

III. SINR ANALYSIS

A. NOMA Network

In the NOMA network, the SINR of the jth message at UEi

of the typical cell for i ≤ j ≤ N is

SINRi
j =

hiR
−η
i Pj

hiR
−η
i

⎛
⎝ j−1∑

m=1

Pm+ β

N∑
k=j+1

Pk

⎞
⎠

︸ ︷︷ ︸
I◦
i

+
∑
x∈Φ

gyi‖yi‖−η

︸ ︷︷ ︸
Iø
i

+σ2

,

where yi = x − ui, ui is the location of UEi, hi (gyi ) is the

fading coefficient from the serving BS (interfering BS) located

at o (x) to UEi. In order to decode its intended message, UEi

needs to decode the messages intended for all UEs farther from

the BS than itself. We use θj to denote the SINR threshold

corresponding to the target rate associated with the message

for UEj . Hence, coverage at UEi is defined as the event

Ci =

N⋂
j=i

{
SINRi

j>θj
}
=

N⋂
j=i

{
hi > Rη

i (I
ø
i +σ2)

θj

P̃j

}
, (1)

where

P̃j = Pj − θj

⎛
⎝ j−1∑

m=1

Pm + β

N∑
k=j+1

Pk

⎞
⎠ .

Hence, the impact of the intraference is that of a reduction

in the effective transmit power to P̃j ; without intraference, P̃j

in (1) would be replaced by Pj . This reduction and thus P̃j is

dependent on the target-rate of the message to be decoded.

We introduce the notion of NOMA necessary condition for

coverage, which is coverage when only intraference, arising

from NOMA UEs within a cell, is considered. By definition

we can write the signal-to-intraference ratio (S
◦
IR) of message

j at UEi as

S
◦
IRi

j =
hiR

−η
i Pj

hi

Rη
i

(
j−1∑
m=1

Pm+β
N∑

k=j+1

Pk

)=
Pj

j−1∑
m=1

Pm+β
N∑

k=j+1

Pk

. (2)

From (2), the S
◦
IR of message j is independent of the UE (i.e.,

UEi) it is being decoded at; hence, it can be rewritten as S
◦
IRj .

In order for the jth message to satisfy the NOMA necessary

condition for coverage, we require

S
◦
IRj > θj ⇔ P̃j > 0. (3)

If this condition is not satisfied, the jth message cannot

be decoded since S
◦
IRj can be viewed as an upper bound

on SINRi
j , j ≥ i. Consequently UEi will be in SINR-

outage as P̃j will not be positive. Note that for the particular

case of UE1 with perfect SIC (i.e., β = 0), there is no

intraference and S
◦
IR1 = ∞ implying UE1 always satisfies the

NOMA necessary condition for coverage when SIC is perfect;

equivalently, when β = 0, P̃1 = P1. Hence, failing to satisfy

the NOMA necessary condition for coverage guarantees SINR

outage for all UEs that need to decode that message simply

because the target rate is too high for the given PA. This shows

the importance of RA in terms of PA and target rate choice.

Upon taking the expectation over the BS PPP and UE

locations, the UEs in the cell with the BS at o become the

typical UEs, from UE1 to UEN .

Lemma 1: The LT of Iøi at the typical UEi conditioned on

Ri and ρ, where u = ρ−Ri, is approximated as

LIø
i |Ri,ρ(s) ≈ exp

(
− 2πλs

(η − 2)uη−2 2F1

(
1, 1−δ; 2−δ;

−s

uη

))
× 1

1 + sρ−η
(4)

η=4
= e

−πλ
√
s tan−1

(√
s

u2

)
1

1 + sρ−4
. (5)

Proof: We can rewrite Iøi as

Iøi =
∑
x∈Φ

‖x‖>ρ

gyi‖yi‖−η
+

∑
x∈Φ

‖x‖=ρ

gyi‖yi‖−η. (6)

The first term of the LT accounts for the first term in (6)

corresponding to the non-nearest interferers from o lying at a

distance at least u away from UEi. It is obtained from employ-

ing Slivnyak’s theorem, the probability generating functional

of the PPP, and MGF of gyi ∼ exp(1). However, this does

not include the BS at distance ρ from o; which is accounted

for by the second term in (6) using the MGF of gyi . Denote

by z the distance between this interferer and the typical UEi.

The exact expression is Ez

[
(1 + sz−η)

−1
]
. For simplicity we

approximate it using the approximate mean of this distance.

Since the average position of the typical UEi is o, E[z] ≈ ρ.

Note: The first term of the LT is pessimistic since the

interference guard zone in our model u is smaller than the
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actual one. For the second term, an exact evaluation shows

that the difference between E[z] and ρ is less than 3.2%.

Theorem 1: If P̃j > 0, the coverage probability of the typical

UEi is approximated as

P(Ci)≈
∞∫
0

x/2∫
0

e−rησ2MiLIø
i |Ri,ρ(r

ηMi)fRi|ρ(r|x)drfρ(x)dx, (7)

where Mi = max
i≤j≤N

θj
P̃j

, fρ(x) = 2πλxe−πλx2

, x ≥ 0, and the

LT of Iøi conditioned on Ri and ρ is approximated in (4).

Proof: Ci can be rewritten as hi > Rη
i (I

ø
i + σ2)Mi.

Hence,

P(Ci)
(a)
= Eρ

[
ERi

[
e−Rη

i σ
2MiE

[
e−(R

η
i Mi)Iø

i | Ri, ρ
]]]

,

where (a) follows from hi ∼ exp(1). The inner expectation is

the conditional LT of Iøi (given Ri and ρ). The PDF of ρ is

due to the BSs forming a PPP. From this we obtain (7).

For a given SINR threshold θi, corresponding to a target

(normalized) rate of log(1+ θi), the rate of the typical UEi is

Ri = P(Ci) log(1 + θi). (8)

The cell sum rate is Rtot =
N∑
i=1

Ri.

B. OMA Network

The SINR for UEi of the typical cell is

SINRi
OMA =

hiR
−η
i∑

x∈Φ

gyi‖x − ui‖−η

︸ ︷︷ ︸
Iø
i

+σ2
.

where ui is the location of UEi, hi (gyi ) is the fading coeffi-

cient from the serving BS (interfering BS) located at o (x) to

UEi. Coverage at UEi is defined as C̃i =
{
SINRi

OMA > θi
}

.

Lemma 2: In the OMA network, the coverage probability of

the typical UEi is approximated as

P(C̃i)≈
∞∫
0

x/2∫
0

e−θir
ησ2LIø

i |Ri,ρ(θir
η)fRi|ρ(r|x)drfρ(x)dx, (9)

where LIø
i |Ri,ρ(s) and fρ(x) are given in Lemma 1.

Proof: Using the exponential distribution of hi and the

LT of Iøi conditioned on Ri and ρ we obtain (9).

For a given SINR threshold θi and corresponding target

(normalized) rate log(1 + θi), the rate of the typical UEi is

Ri = Ti P(C̃i) log(1 + θi), (10)

where Ti is the fraction of the time slot allotted to UEi.

IV. NOMA OPTIMIZATION

A. Problem Formulation

The objective of NOMA is to provide coverage to multiple

UEs in the same time-frequency resource block. Naturally we

are interested in maximizing the cell sum rate to cater to the

ever growing demands. It is well known that the cell sum

rate is maximized by allocating all resources (power in the

NOMA network) to the best UE [22]. However, this comes at

the price of losing the essence of NOMA, which is to cater to

multiple UEs in this time-frequency resource block. Hence, we

constrain the objective of maximizing cell sum rate to ensure

multiple UEs are served. Specifically, the goal is to maximize

the cell sum rate given that the typical UEs are able to achieve

at least a TMR T . Formally this is stated as follows:

• Maximum cell sum rate Rtot subject to the TMR T :

max
(Pi,θi)i=1,...,N

Rtot

subject to

N∑
i=1

Pi = 1 and Ri ≥ T .

Because this problem is non-convex, an optimum solution

cannot be found using standard methods. However, from

the rate-region for static channels we know that a RA that

results in all UEs achieving the TMR T , while all of the

remaining power being allocated to the nearest UE, i.e., UE1,

to maximize its rate is the optimum solution for that problem.

An example of this for the two-user case is presented in [17].

The same objective holds for OMA networks. The con-

strained resource allocated to the UEs, however, is time for

TDMA instead of power for NOMA, i.e.,
∑

i Ti = 1. The

OMA UEs enjoy full power in their transmissions. Optimiza-

tion over target rate is done similarly to NOMA.

B. Efficient Algorithm

Since standard techniques cannot be employed for general

N , the optimum solution to the problem in Section IV-A can

only be found exhaustively by searching over all combinations

of power and target rate for each of the N NOMA UEs. This,

however, is an extremely tedious approach, particularly as N
increases. In this subsection we propose an efficient algorithm

based on intuition which, while not guaranteeing an optimum

solution, finds a feasible solution, i.e., a solution that satisfies

the constraints (but there is no guarantee that the cell sum rate

is close to the global maximum).

Since UE1 has a better channel on average than the other

UEs, given a certain power, it is able to achieve the largest

gains from this resource. It therefore makes sense to solve the

problem in Section IV-A by first ensuring that all non-nearest

UEs achieve TMR with the smallest powers possible. This will

leave the largest P1 for UE1. UE1 can then maximize the cell

sum rate by maximizing R1 with this power by finding the

appropriate target-rate.

We tackle this problem by decoupling the choice of power

and target rate; our algorithm finds the minimum possible
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power and corresponding smallest target rate2 that achieve T
for UE2 to UEN and allocates the remaining power to UE1.

We start with UEN and work backwards until UE2, as SIC

only requires a UE to decode the messages of UEs weaker

than itself. UE1 then optimizes its target rate (and therefore

θ1) with the remaining power to maximize its rate. It should

be noted that if a UE cannot attain T , the available power

is insufficient and the algorithm is unable to find a feasible

solution as the cluster size (N ) is too large to attain this TMR

for all UEs. This can be remedied by either decreasing T or

the number of NOMA UEs N . Formally, we state the working

of the algorithm as follows:

Algorithm 1 Efficient algorithm for RA of a feasible solution

Begin with UEN , i = N , P = [ ], θ = [ ]
while i > 0 do

if i > 1 then
if Ri ≥ T using 0 ≤ Pi ≤ 1−∑N

k=i+1 Pk then
Find minimum Pi and corresponding minimum θi
able to achieve Ri = T according to (7) and (8)

Update: P = [Pi; P ]; θ = [θi; θ]; i = i− 1
else

TMR cannot be met for all UEs; exit
end if

else
P1 = 1−∑N

k=2 Pk

if P1 > 0 then
Find θ1 to maximize R1 using (7) and (8)

if R1 ≥ T then
Update: i = i− 1

else
TMR cannot be met for all UEs; exit

end if
else

TMR cannot be met for all UEs; exit
end if

end if
end while

The same algorithm is employed for OMA, except that rates

are calculated using (9) and (10), and the contending resource

is T instead of P . Note that since our problem includes

intercell interference, our RA is intercell interference-aware.

V. RESULTS

We first show that the approximation in Theorem 1 is tight.

To this end, we simulate using BS intensity λ = 10 BSs/km2,

noise power σ2 = −90 dB and η = 4. The simulations

are repeated 10,000 times. The results are shown in Fig. 2

which considers a system with N = 3 and a fixed PA scheme

2For an i ∈ {1, . . . , N}, the function Ri(θi) is monotonically increasing
from zero and then monotonically decreasing to zero, with a unique maximum
at a finite θi > 0. This is because for small θi, P(Ci) is close to 1, hence Ri

increases linearly with log(1 + θi), while for large θi, P(Ci) goes to zero
more quickly than log(1+θi) grows. Hence, each Ri (except the maximum)
can be satisfied by two θi values. Unless TMR occurs at the optimum θi, we
select the smaller value since it increases the coverage probability for all UEs
that are to decode the ith message.
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Fig. 2: SINR Coverage vs. θ (identical target rate for all UEs) for
N = 3 employing a fixed PA P1 = 1/6, P2 = 1/3 and P3 =
1/2. Lines show the analysis and markers show the Monte Carlo
simulations.
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Fig. 3: Rtot vs. N for different TMR constraints using OMA and
NOMA with different β values. Black lines are for T = 0.3, while
blue lines are for T = 0.4. The curves end at the largest N that can
be supported given the TMR constraint and β.

where P1 = 1/6, P2 = 1/3 and P3 = 1/2. For clarity

of presentation we choose the same target rate for all three

UEs and plot coverage of each UE against the corresponding

SINR threshold. The figure verifies the accuracy of our SINR

analysis as the coverage expressions match the simulation

closely. As expected, increasing β decreases the coverage for

any UE except UEN since it does not have any RI.

RA for the remaining figures is done according to Algorithm

1. Fig. 3 is a plot of the cell sum rate against the number of

UEs in a NOMA cluster, N . We have included N = 1 in these

plots which has the same Rtot for all the curves since it only

has one UE in a resource block (∴ independent of β) which

maximizes its rate (∴ independent of T ). Given T and β, there

exists an optimum N that maximizes Rtot. When β is large

we observe that using NOMA may not necessarily be more

beneficial in terms of Rtot. Otherwise, for small N , increasing

N enhances Rtot because interference cancellation is efficient

in this regime, and more users are covered. Also, increasing N
decreases R1 on average which enhances R1 given a P1. This

in turn enhances Rtot which receives the largest contribution

from R1. However, increasing N beyond the optimum leaves
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Fig. 4: Rtot vs. β for different values of N and T . Curves represent
NOMA and horizontal lines (independent of β) represent OMA.

too little power for UE1 to boost R1 with. For a given T
and β, the resources are only sufficient to support a maximum

cluster size; after this N (discontinuation of the plots), not all

of the UEs are able to achieve T . Increasing T or β results in

a decrease in the maximum cluster size that can be supported.

NOMA outperforms OMA significantly if β is small and can

support the same number of UEs or more.

Fig. 4 plots the cell sum rate against β for different N and

T . Since OMA does not use SIC, the corresponding Rtot plots

are horizontal lines independent of β. The decrease of Rtot as

a function of β is steeper for larger N and T highlighting their

increased susceptibility to RI. The figure shows the existence

of a maximum β value until which a NOMA system with a

particular N and T is able to outperform the corresponding

OMA system.

From these results we observe that using larger N and

small T when β is low achieves higher Rtot than smaller N .

However, smaller N , which can support larger T , can improve

individual UE rate at the expense of Rtot.

VI. CONCLUSION

In this paper a large cellular network that employs NOMA

in the downlink is studied. Our SINR analysis considers

coverage at a UE as the event of being able to decode all

messages before the UE in the SIC chain. It also takes into

account RI from imperfections in SIC. We focus on the

non-convex problem of maximizing the cell sum rate Rtot

subject to a TMR constraint T . Since the optimum solution

for RA requires an exhaustive search, an efficient algorithm

for a general NOMA cluster size N that gives a feasible

solution for intercell interference-aware PA and choice of

target rate is proposed. We show the existence of an optimum

NOMA cluster size that maximizes Rtot given a T and RI

factor β. It is also shown that NOMA outperforms OMA

provided β is below a certain value that is a function of N
and T . The results highlight the importance and impact of

choosing network parameters such as N and T depending

on the network objective. In particular, using small T with

large N improves Rtot at the expense of lower individual

UE performance; however increasing T and reducing N will

improve individual UE performance at the expense of Rtot.

REFERENCES

[1] T. M. Cover and J. A. Thomas, “Elements of information theory,” NJ:
John Wiley, 2006.

[2] D. Tse and P. Viswanath, “Fundamentals of wireless communication,”
Cambridge University Press, 2004.

[3] P. Patel and J. Holtzman, “Analysis of a simple successive interference
cancellation scheme in a DS/CDMA system,” IEEE J. Selec. Areas
Commun., vol. 12, no. 5, pp. 796–807, Jun. 1994.

[4] S. Vanka, S. Srinivasa, Z. Gong, P. Vizi, K. Stamatiou, and M. Haenggi,
“Superposition coding strategies: Design and experimental evaluation,”
IEEE Trans. Wireless Commun., vol. 11, no. 7, pp. 2628–2639, Jul. 2012.

[5] Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, and
K. Higuchi, “Non-orthogonal multiple access (NOMA) for cellular
future radio access,” in Proc. of IEEE 77th Vehicular Technology
Conference (VTC Spring 2013), Jun. 2013, pp. 1–5.

[6] Z. Ding, Z. Yang, P. Fan, and H. V. Poor, “On the performance of
non-orthogonal multiple access in 5G systems with randomly deployed
users,” IEEE Signal Proc. Letters, vol. 21, no. 12, pp. 1501–1505, Dec.
2014.

[7] S. Timotheou and I. Krikidis, “Fairness for non-orthogonal multiple
access in 5G systems,” IEEE Signal Proc. Letters, vol. 22, no. 10, pp.
1647–1651, Oct. 2015.

[8] J. Choi, “Power allocation for max-sum rate and max-min rate propor-
tional fairness in NOMA,” IEEE Comm. Letters, vol. 20, no. 10, pp.
2055–2058, Oct. 2016.

[9] Z. Ding, M. Peng, and H. V. Poor, “Cooperative non-orthogonal multiple
access in 5G systems,” IEEE Comm. Letters, vol. 19, no. 8, pp. 1462–
1465, Aug. 2015.

[10] Y. Liu, Z. Ding, M. Elkashlan, and H. V. Poor, “Cooperative non-
orthogonal multiple access with simultaneous wireless information and
power transfer,” IEEE J. Select. Areas Commun., vol. 34, no. 4, pp.
938–953, Apr. 2016.

[11] K. S. Ali, H. Elsawy, A. Chaaban, and M. S. Alouini, “Non-orthogonal
multiple access for large-scale 5G networks: Interference aware design,”
IEEE Access, vol. 5, pp. 21 204–21 216, 2017.

[12] J. Andrews, F. Baccelli, and R. Ganti, “A tractable approach to coverage
and rate in cellular networks,” IEEE Trans. Commun., vol. 59, no. 11,
pp. 3122–3134, Nov. 2011.

[13] H. ElSawy, A. Sultan-Salem, M. S. Alouini, and M. Z. Win, “Modeling
and analysis of cellular networks using stochastic geometry: A tutorial,”
IEEE Commun. Surveys and Tutorials, vol. 19, no. 1, pp. 167–203, 2017.

[14] W. Lu and M. D. Renzo, “Stochastic geometry modeling
of cellular networks: Analysis, simulation and experimental
validation,” CoRR, vol. abs/1506.03857, 2015. [Online]. Available:
http://arxiv.org/abs/1506.03857

[15] H. Tabassum, E. Hossain, and M. J. Hossain, “Modeling and analysis of
uplink non-orthogonal multiple access (NOMA) in large-scale cellular
networks using Poisson cluster processes,” IEEE Trans. Commun.,
vol. 65, no. 8, pp. 3555–3570, Aug. 2017.

[16] Z. Zhang, H. Sun, R. Q. Hu, and Y. Qian, “Stochastic geometry based
performance study on 5G non-orthogonal multiple access scheme,” in
Proc. of IEEE Global Communications Conference (GLOBECOM16),
Dec. 2016, pp. 1–6.

[17] C. L. Wang, J. Y. Chen, and Y. J. Chen, “Power allocation for a downlink
non-orthogonal multiple access system,” IEEE Wireless Comm. Letters,
vol. 5, no. 5, pp. 532–535, Oct. 2016.

[18] Y. Sun, D. W. K. Ng, Z. Ding, and R. Schober, “Optimal joint power and
subcarrier allocation for full-duplex multicarrier non-orthogonal multiple
access systems,” IEEE Trans. Commun., vol. 65, no. 3, pp. 1077–1091,
Mar. 2017.

[19] J. Zhu, J. Wang, Y. Huang, S. He, X. You, and L. Yang, “On optimal
power allocation for downlink non-orthogonal multiple access systems,”
IEEE J. Selec. Areas Commun., vol. PP, no. 99, pp. 1–1, 2017.

[20] G. Geraci, M. Wildemeersch, and T. Q. S. Quek, “Energy efficiency
of distributed signal processing in wireless networks: A cross-layer
analysis,” IEEE Trans. Signal Proc., vol. 64, no. 4, pp. 1034–1047, Feb.
2016.

[21] M. Wildemeersch, T. Q. S. Quek, M. Kountouris, A. Rabbachin, and
C. H. Slump, “Successive interference cancellation in heterogeneous
networks,” IEEE Trans. Commun., vol. 62, no. 12, pp. 4440–4453, Dec
2014.

[22] J. Choi, “NOMA: principles and recent results,”
CoRR, vol. abs/1706.08805, 2017. [Online]. Available:
http://arxiv.org/abs/1706.08805


