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Abstract— We derive outage expressions and throughput
bounds for wireless networks subject to different sources of non-
determinism. The degree of uncertainty is characterized by the
location of the network in the uncertainty cube whose three axes
represent the three main sources of uncertainty in interference-
limited networks: the node distribution, the channel gains, and
the channel access. The range for the coordinates is [0,1], where
0 indicates complete determinism, and 1 a maximum degree of
randomness (nodes distributed in a Poisson point process, fading
with fading figure 1, and ALOHA channel access, respectively).

I. INTRODUCTION

A. Background

In many large wireless networks, the achievable perfor-
mance is limited by the inter-node interference. While the
scaling behavior of the network throughput or transport capac-
ity is a well-studied area [1]–[6], relatively few quantitative
results on outage and throughput are available. We extend
the results in [7]–[10] to general stochastic networks with up
to three dimensions of uncertainty: node placement, channel
characteristics, and channel access.

B. The uncertainty cube

The level of uncertainty of a network is determined by
its position in the uncertainty cube. The three coordinates
(l, c, t), 0 6 l, c, t 6 1, denote the degree of uncertainty in the
node placement, the channels, and the channel access scheme,
respectively. Values of 1 indicate complete uncertainty (and
independence), as specified in Table I.

Location l = 0 Deterministic node placement
of nodes l = 1 Poisson point process
Channel c = 0 Entirely deterministic
(fading figure) c = 1 Rayleigh (block) fading
Channel t = 0 TDMA
access t = 1 slotted ALOHA

TABLE I

SPECIFICATION OF THE UNCERTAINTY CUBE.

Note that the value of the c-coordinate corresponds to the
fading figure (amount of fading). A network with (l, c, t) =
(1, 1, 1), for example, has its nodes distributed according to
a Poisson point process, all channels are Rayleigh (block)

fading, and the channel access scheme is slotted ALOHA.
Note that any point in the unit cube corresponds to a mean-
ingful network—the three axes are independent. To completely
characterize the network, the number of nodes or the intensity
of the Poisson point process, the transmit probabilities (slotted
ALOHA), rates and power levels, and the deterministic part of
the channel (path loss exponent) need to be given. Our objec-
tive is to characterize outage and throughput for the interesting
corners of this uncertainty cube. It can be expected that the
corners bound the performance of networks whose uncertainty
lies inside the cube, and that performance is monotonically
decreasing along the l- and t-axes. This is generally not the
case along the channel axis, since fading may improve the
throughput (even without opportunistic transmission).

We focus on the interference-limited case, so we do not
consider noise1. It is assumed that all nodes transmit at the
same power level that can be set to 1 since only relative powers
matter. The performance results are also independent of the
absolute scale of the network, since only relative distances
matter.

C. Models, notation, and definitions

Channel model. For the large-scale path loss (deterministic
channel component), we assume the standard power law where
the received power decays with dα for a path loss exponent
α. If all channels are Rayleigh, this is sometimes referred to
as a “Rayleigh/Rayleigh” model. If either only the desired
transmitter or the interferers are subject to fading, we speak
of partial fading.

Network model. We consider a single link of distance 1, with
a (desired) transmitter and receiver in a large network with
n other nodes as potential interferers. For infinite networks,
n → ∞. A network with l = 1, where the interferers are
distributed according to a Poisson point process, is denoted
as Poisson random network. The distances to the interferers
are denoted by ri. The signal power (deterministic channel)
or average signal power (fading channel) at the receiver is 1
(irrespective of α).

1In the Rayleigh fading case, the outage expressions factorize into a
noise part and an interference part, see (4). So, the noise term is simply
a multiplicative factor to ps.



Transmit probability p. In slotted ALOHA, every node
transmits independently with probability p in each timeslot.
Hence for Poisson random networks the set of transmitting
nodes in each timeslot form a Poisson point process of
intensity p. Practical values of p are small, i.e., p / 1/3 due
to interference and throughput considerations. This permits
certain approximations that would not hold for p ≈ 1. The
mean number of interferers is np, and the interference from
node i is Ii = BiSir

−α
i , where Bi is iid Bernoulli with

parameter p and Si is iid exponential with mean 1.
Success probability ps. A transmission is successful if the

channel is not in an outage, i.e., if the (instantaneous) SIR
γ = S0/I exceeds a certain threshold Θ: ps = P[γ > Θ],
where I =

∑n
i=1 Ii. This is the reception probability given

that the desired transmit-receiver pair transmits and listens,
respectively. It is usually assumed that Θ > 1. Note that
the transmission rate is assumed to be fixed, and no CSI is
assumed anywhere in the network.

(Local) throughput g. The average local throughput, denoted
simply as throughput, is defined to be the success probability
multiplied by the probability that the transmit-receiver pair
actually transmits and listens (the unconditioned reception
probability). This is the throughput achievable with a simple
ARQ scheme (with error-free feedback) [11]. For the ALOHA
scheme g := p(1 − p)ps, whereas for a TDMA line network
where nodes transmit in every m-th timeslot, g := ps/m. Note
that in networks with multiple dimensions of uncertainty, the
throughput is averaged over all network realizations.

Spatial efficiency σ. As will be derived, the success prob-
ability for slotted ALOHA can be expressed or approximated
as ps = e−p/σ . The parameter σ determines the degree of
spatial reuse in a network, see Table II.

Effective distances ξi. The effective distance ξi of a node to
the receiver is defined as ξi := rα

i /Θ.

II. RELATED WORK

A. (1, 0, 1): Infinite non-fading random networks with α = 4
and slotted ALOHA

This case is studied in [7]. The characteristic function of
the interference is determined to be2

E[ejωI ] = exp
(

−πpΓ(1− 2/α)e−jπ/αω2/α
)

(1)

and, for α = 4,

= exp
(

−π
√

π/2(1 − j)p
√

ω
)

. (2)

It is easily seen that in this case, even though the path loss
exponent is relatively large, E[I ] = ∞, which is due to the
path loss model and the fact that interferers may be arbitrarily
close to the transmitter.

2Note that their notation is adapted to ours. Also, a small mistake in [7,
Eqn. (18)] is corrected here.

B. (0, 1, 1): Regular fading networks with α = 2 and slotted
ALOHA

In [9], the authors derive the distribution of the interference
power for one- and two-dimensional Rayleigh fading networks
with slotted ALOHA and α = 2. Closed-form expressions are
derived for regular line networks with ri = i. The Laplace
transform of the interference is [9, Eqn. (8)]

LI(s) =
sinh

(

π
√

s(1 − p)
)

√
1 − p sinh

(

π
√

s
) . (3)

For p = 1, the mean interference is simply
∑∞

i=1 i−2 =
ζ(2) = π2/6, and the variance is ζ(4) = π4/90, where ζ is
the Riemann zeta function.

C. (1, 1, 1): Random fading networks with slotted ALOHA

In [10], the success probability ps = P[S > Θ(N + I)] of a
transmission over unit distance in a two-dimensional random
network with Rayleigh fading and slotted ALOHA and a noise
process N is expressed as

ps =

∫ ∞

0

e−sΘdP[N + I 6 s] = LI(Θ) · LN (Θ) . (4)

So, remarkably, the success probability for Rayleigh fading
can be expressed as the product of the Laplace transforms of
the noise N and interference I .3 Ignoring the noise term, (4)
evaluates to [10, Eqn. (6)]

ps = e−pΘ2/αC(α) (5)

with C(α) = (2πΓ(2/α)Γ(1−2/α))/α. For example, C(3) =
4π2/3

√
3 ≈ 7.6 and C(4) = π2/2 ≈ 4.9. limα→2 C(α) = ∞,

so ps → 0 as α → 2 for any Θ. The spatial efficiency is
σ = 1/(Θ2/αC(α)).

III. NETWORKS WITH RANDOM NODE DISTRIBUTION

A. (1, 0, 1): Non-fading random networks with α = 4 and
slotted ALOHA

From [7, Eqn. (21)], γ = 1/I has the cdf

Fγ(Θ) = P[1/I < Θ] = erf

(

π3/2p
√

Θ

2

)

, (6)

which is the outage probability for non-fading channels for a
transmitter-receiver distance 1.

Note that since ps = 1−Fγ(Θ) is given by the error function
rather than an exponential, the spatial efficiency is not defined.
However, with the fairly sharp approximation 1 − erf x ≈
e−3x/

√
π, we obtain σ ≈ 2/(3π

√
Θ).

B. (1, 1, 1): Partially fading random networks with slotted
ALOHA

If only the desired link is subject to fading and α = 4, we
can exploit (2), replacing jω by −Θ, to get

ps = LI(Θ) = e−p
√

Θπ3/2

. (7)

3This elegant equivalence of the Laplace transform evaluated at the SIR
threshold and the success probability was also pointed out in [8].



Uncertainty Spatial efficiency σ Eqn. Remark

(1, 1, 1) α
2πΘ2/αΓ(2/α)Γ(1−2/α)

(5) From [10], for general α
2

π2
√

Θ
(5) For α = 4

1
π3/2

√
Θ

(7) For α = 4 and non-fading interferers

(1, 0, 1) ≈ 2
3π

√
Θ

(6) For α = 4 (approx. of error function)

(0, 1, 1) (
∑n

i=1 1/(1 + ξi))
−1 (9) General deterministic node placement, n nodes.

2
π
√

Θcoth(π
√

Θ)−1
≈ 2

π
√

Θ−1
(12) One-sided infinite regular line network with α = 2

2
πΘ1/4/

√
2−1

(15) One-sided infinite regular line network with α = 4

(
∑n

i=1 1/ξi)
−1 (16) General deteterministic node placement, non-fading interferers

1/(Θζ(α)) (16) Same, infinite number of nodes.

(0, 1, 0) ps ' e−ζ(α)Θ/mα

(19) m-phase TDMA in infinite one-sided regular line networks.

TABLE II

SPATIAL EFFICIENCY FOR DIFFERENT TYPES OF SLOTTED ALOHA NETWORKS. FOR (1, 1, 1) NETWORKS, ps = e
−p/σ IS EXACT, FOR THE OTHER ONES,

IT IS AN APPROXIMATION. FOR COMPARISON, THE TDMA CASE IS ADDED.

IV. NETWORKS WITH DETERMINISTIC NODE PLACEMENT

In this section, we assume that n interferers are placed at
fixed relative distances ri from the intended receiver.

A. (0, 1, 1) Fading networks with slotted ALOHA

In this case, ps = P[S > ΘI ] for I =
∑n

i=1 Sir
−α
i and Si

iid exponential with mean 1. For general ri and α, we obtain
from ps = E[e−ΘI ] = LI (Θ) (see also [12]):

ps =
n
∏

i=1

(

1 − p

1 + rα
i /Θ

)

=
n
∏

i=1

(

1 − p

1 + ξi

)

(8)

where ξi = rα
i /Θ is the effective distance.

Since we are mostly interested in the behavior for small p
(and ξi � 1 for most i, i.e., most interferers are far for non-
negligible success probabilities), we approximate log ps as a
sum of terms log(1 − p/(1 + ξ)) / −p/(1 + ξ), such that ps

can be expressed as ps / e−p/σ for

σ =
1

∑n
i=1

1
1+ξi

. (9)

So, the approximation shows that ps has the same exponential
form as for random networks, and the spatial efficiency is
given by the “parallel connection” (or 1/n times the harmonic
mean) of 1 + ξi.

B. (0, 1, 1): Infinite regular line networks with fading and
slotted ALOHA

In one-sided regular networks, ri = i.
Special case 1: α = 2. This Laplace transform is given

in (3), so we simply have to substitute s with Θ. To find an
exponential approximation, we note that exp(−π

√
Θ) � 1,

hence

ps /
exp(π

√
Θ
√

1 − p)
√

1 − p exp(π
√

Θ)
, (10)

and employing the linear approximations
√

1 − p ≈ 1 − p/2
and log

√
1 − p ≈ −p/2 yields

log ps ≈ −pπ
√

Θ/2 + p/2 = −p
(π

√
Θ

2
− 1

2

)

. (11)

Note that we can derive the same expression by starting
with the sum (9). For α = 2, it has the closed-form

σ =
2

π
√

Θ coth(π
√

Θ) − 1
/

2

π
√

Θ − 1
. (12)

Special case 2: α = 4.

Proposition 1 For one-sided infinite regular line networks
(ri = i, i ∈ N) with slotted ALOHA and α = 4,

ps =
cosh2

(

y(1 − p)1/4
)

− cos2
(

y(1 − p)1/4
)

√
1 − p (cosh2 y − cos2 y)

(13)

with y := πΘ1/4/
√

2.

Proof: First, rewrite (8) as

ps =

∏n
i=1(1 + (1 − p)Θ/i4)
∏n

i=1(1 + Θ/i4)
. (14)

The factorization of both numerator and denominator accord-
ing to (1 − z4/i4) = (1 − z2/i2)(1 + z2/i2) permits the use
of Euler’s product formula sin(πz) ≡ πz

∏∞

i=1(1 − z2/i2)
with z =

√±j((1 − p)Θ)1/4 (numerator) and z =
√±jΘ1/4

(denominator). The two resulting expressions are complex
conjugates, and | sin(

√
jx)|2 = cosh2(x/

√
2) − cos2(x/

√
2).
�

For small p, the cosh terms dominate the cos terms, and with
cosh2(x) ≈ e2x/4, 1 − (1 − p)1/4 ≈ p/4, and (1 − p)−1/2 ≈
ep/2 we obtain

ps ≈ e
−p
(√

2

4
πΘ1/4−1/2

)

. (15)

So, for α = 4, σ = 2/(πΘ1/4/
√

2 − 1).



C. (0, 1, 1): Partially fading regular networks

If only the desired link is subject to fading, the success
probability is given by

ps = e−pΘ
∑n

i=1
r−α

i , (16)

thus σ = (
∑n

i=1 1/ξi)
−1. Compared with (9), 1+ξ is replaced

by ξ. So, σ is the “parallel connection” of all the ξi, and it
is trivially upperbounded by mini{ξi}. For n → ∞, ps =
e−pΘζ(α), and σ = 1/(Θζ(α)).

D. (0, 1, 0): Regular line networks with fading and TDMA

If in a TDMA scheme, only every m-th node transmits, the
relative distances of the interferers are increased by a factor of
m. Since (mr)α/Θ = rα/(Θm−α), having every m-th node
transmit is equivalent to reducing the threshold Θ by a factor
mα and setting p = 1.

Proposition 2 The success probability for one-sided infinite
regular line networks with Rayleigh fading and m-phase
TDMA is: For α = 2:

ps =
y

sinh y
, where y :=

π
√

Θ

m
, (17)

and for α = 4:

ps =
2y2

cosh2 y − cos2 y
, where y :=

πΘ1/4

√
2m

. (18)

Proof: Apply L’Hôpital’s rule for p = 1 in (3) and (13)
(for α = 2, 4, respectively) and replace Θ by Θm−α. �

The following proposition establishes sharp bounds for arbi-
trary α.

Proposition 3 The success probability for one-sided infinite
regular line networks, Rayleigh fading, and m-phase TDMA
is bounded by

e−ζ(α)Θ/mα

/ ps /
1

1 + ζ(α) Θ
mα

. (19)

A tighter upper bound is

ps /
1

1 + ζ(α) Θ
mα + (ζ(α) − 1) Θ2

m2α

. (20)

Proof: Upper bound: We only need to proof the tighter
bound. Let q := Θ/mα. The expansion of the product (8),
p−1

s =
∏∞

i=1 1 + q/iα , ordered according to powers of q, has
only positive terms and starts with 1 + qζ(α) + q2(ζ(α) −
1). There are more terms with q2, but their coefficients are
relatively small, so the bound is tight. The lower bound follows
immediately from

log ps = log

∞
∏

i=1

1

1 + Θ/(mi)α
' −

∞
∑

i=1

Θ/(mi)α . (21)

�

Note that all bounds approach ps as Θ/mα decreases. They
are loosest for m = α = 2 and relatively large Θ. Even in
this impractical case (for α = 2, m should be chosen much
larger for acceptable transmit efficiencies), the tighter upper

bound and the lower bound are not off by more than 0.03.
Interestingly, for α = 2, 4, the upper bound (19) corresponds
exactly to the expressions obtained when the denominators in
(17) and (18) are replaced by their Taylor expansions of order
2α. Higher-order Taylor expansions, however, deviate from the
tighter bound (20).

V. THROUGHPUT

A. (l, c, 1): Networks with slotted ALOHA

For networks with slotted ALOHA, the throughput is given
by g(p) = p(1 − p)ps. With g ≈ p(1 − p)e−p/σ, maximizing
log(g) yields the quadratic equation p2

opt−popt(1+2σ)+σ =
0. So, popt is given by

popt ≈ σ +
1

2

(

1 −
√

1 + 4σ2
)

. (22)

The transmit efficiency η, defined as the success proba-
bility given that a transmission attempt has been made, i.e.,
η := g/p = (1 − p)e−p/σ is monotonically increasing from
limσ→0 η = e−1 ≈ 37% to limσ→∞ η = 1/2. The upper
bound is achieved if the interference goes to zero, in which
case p = 1/2 and g = 1/4.

B. (0, 1, 0): Two-sided regular line networks with TDMA

Here we consider a two-sided infinite regular line network
with m-phase TDMA. To maximize the throughput g :=
ps/m, we use the bounds (19) for ps. Since the network is now
two-sided, the expressions need to be squared. Let m̃opt ∈ R

and m̂opt ∈ N be estimates for the true mopt ∈ N. We find
(

Θζ(α)(2α − 1)
)1/α

< m̃opt <
(

Θζ(α)2α)
)1/α

, (23)

where the lower and upper bounds stem from maximizing the
upper and lower bounds in (19), respectively. The factor 2
in 2α indicates that the network is two-sided. Rounding an
average value to the nearest integer yields a good estimate for
mopt:

m̂opt = d
(

Θζ(α)(2α − 1/2)
)1/αc (24)

Fig. 1 shows the bounds (23), m̂opt, and the true mopt (found
numerically) for α = 2 as a function of Θ. For most values
of Θ, m̂opt = mopt. The resulting difference in the maximum
achievable throughput gmax is negligibly small. Using the real
estimate m̃opt, we can obtain bounds on the average success
probability p̄s (averaged over Θ) by inserting (23) into (19):

(

1 − 1

2α

)2

/ p̄s / e−1/α . (25)

In Fig. 2, the actual ps(Θ) is shown with the bounds on p̄s

for α = 2. Since mopt is increasing with Θ, the relative error
m̃opt/mopt → 0, so p̄s = limΘ→∞ ps(Θ) will lie between the
bounds (25).

Note that in the case of TDMA, the transmit efficiency η
is identical to ps. So, compared with throughput-optimized
slotted ALOHA, where 1/2 is an upper bound on η, irrespec-
tive of α, the efficiency is at least 1/2 for TDMA, and it is
increasing with α. These are the two extremes; the efficiency
of other MAC schemes falls in between.
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Fig. 1. Optimum TDMA parameter m as a function of Θ [dB] for α = 2.
The dashed lines show the bounds (23), the circles indicate the true optimum
mopt, the crosses the estimate m̂opt in (24).
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Fig. 2. ps for the optimum m as a function of Θ [dB] for α = 2. The
dashed lines show the approximations (25), the solid line the actual value
obtained numerically.

VI. CONCLUDING REMARKS

We have analyzed four corners of the uncertainty cube (see
Table I). The case (0, 0, 1) seems less interesting, and (0, 0, 0)
is totally deterministic so ps = 1 can always be achieved if
the TDMA scheme is properly chosen. On the other hand,
TDMA for Poisson random networks is difficult to specify
(and implement), so the (1, c, 0) case is not discussed either.

For the other three slotted ALOHA corners, the success
probability can be expressed as ps = e−p/σ, where the spatial
efficiency σ is approximately proportional to 1/Θ2/α for two-
dimensional networks. σ has different interpretations: (1) For
σ = 0, no simultaneous transmissions are possible (no spatial
reuse), whereas for σ → ∞, there are no collisions at all. (2)
In a Poisson random network, the success probability equals

the probability that a disk of radius r = 1/
√

πσ around the
receiver is free from interferers. (3) σ determines how fast ps

decays as p increases from 0: ∂ps/∂p|p=0 = −1/σ.
Closed-form expressions and approximations for the achiev-

able throughput for slotted ALOHA and deterministic m-phase
TDMA are given. Not surprisingly, the TDMA scheme has a
substantially better throughput performance. While the energy
consumption is comparable if both schemes are optimized for
throughput (popt ≈ 1/mopt), the efficiency of the random
access scheme is substantially lower.

The success probability ps = e−p/σ as a function of Θ can
be interpreted as the complementary cumulative distribution
of the SIR, which permits a complete characterization of the
SIR and/or interference. This shows that the interference is far
from Gaussian.

Many extensions are possible, such as the inclusion of
power control and access schemes and node distributions
whose uncertainty lies inside the uncertainty cube. Relating
Θ to the rate of transmission permits the analysis of schemes
with rate control.
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