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Abstract—Modeling cellular base stations (BSs) as a homoge-
neous Poisson point process (PPP), this paper provides exact
expressions, in terms of a finite integral, for the coverage
probability with inter-cell interference coordination (ICIC) and
intra-cell diversity (ICD). Despite the fact that both ICIC and
ICD can significantly improve the coverage probability, they
improve coverage in drastically different ways in the high-
reliability regime, where the user outage probability goes to zero.
In particular, we show that ICD can provide order gain while
ICIC only offers linear gain. This finding contrasts the recent
result showing the absence of diversity gain in retransmission in
ad hoc networks.

I. INTRODUCTION

Inter-cell interference coordination (ICIC) and intra-cell

diversity (ICD) can significantly improve the network cov-

erage and thus play important roles in contemporary cellular

systems. However, existing stochastic geometry-based cellular

network analyses [1] largely ignore the effects of ICIC and

ICD, resulting in overly pessimistic coverage estimates. To

remedy this situation, this paper analyzes the benefits of ICIC

and ICD under idealized assumptions.

Consider the case where a user is always served by the

strongest (with shadowing but without fading) base station

(BS). For ICD, we consider the case where each user is

assigned M resource blocks (RBs) with independent fading

and always decodes the packet from the RB with the best

instantaneous signal-to-interference ratio (SIR) (selection com-

bining). For ICIC, we assume under K-BS cooperation, the

RBs that the user is assigned are silenced at the next K − 1
strongest BSs. These abstractions hide the algorithmic details

of complex ICIC [2], [3] and ICD [4]–[6] schemes, but allow

an analytical coverage characterization based on the Poisson

point process (PPP) cellular network model.

We show that while the coverage probability can be im-

proved by both the ICIC and ICD, in the high-reliability

regime, ICIC can only linearly affect the coverage probability

but ICD can offer order gain. This finding is in sharp contrast

with the recent discovery that retransmission does not result

in diversity gain in ad hoc networks [7].

II. SYSTEM MODEL AND METRICS

A. System Model

Considering the typical user at the origin o, we use a

homogeneous Poisson point process (PPP) Φ ⊂ R
2 with

intensity λ to model the locations of BSs on the plane. To
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Fig. 1: A realization of the cellular network modeled by a homo-
geneous PPP Φ with K-BS (K = 5) coordination with lognormal
shadowing. The typical user is denoted by ◦, the BSs by ×, the
serving BS by ♦ and the coordinated non-serving BS by �.

each element x of the ground process Φ, we add independent

marks Sx ∈ R
+ and hm

x ∈ R
+: Sx denotes the shadowing

effect from BS x to o; hm
x denotes the (Rayleigh) fading effect

on the link from x to o at the m-th RB, where m ∈ [M ]1

and M ∈ N. The combined (marked) PPP is written as

Φ̂ = {(xi, Sxi
, (hm

xi
)Mm=1)}. In particular, under power law

path loss, the received power at the typical user o at the m-th

RB from a BS at x ∈ Φ is

Px = Sxh
m
x ‖x‖−α, (1)

where α is the path loss exponent. In this paper, we focus on

Rayleigh fading, i.e., hx is exponentially distributed with unit

mean but allow the shadowing distribution to be arbitrary with

finite δ-th moment, i.e., E[Sδ
x] < ∞, where δ = 2/α.

Fig. 1 shows a realization of a PPP-modeled cellular net-

work under K-BS coordination with lognormal shadowing.

Due to shadowing, the K strongest BSs under coordination

are not necessarily the K nearest BSs.

The BS locations and the shadowing Sx are constant over

RBs, Sx is iid across space (i.e., over x), and the small-scale

fading random variables hm
x are iid across both space and RBs

(i.e., over both x and m).

1We use [n] to denote the set {1, 2, · · · , n}.



The user is assumed to be associated with the strongest

(without fading) BS and is called covered (without ICIC) at

the m-th RB iff

SIRm =
Sx0

hm
x0
‖x0‖

−α

∑

y∈Φ\{x0}
Syhm

y ‖y‖−α
> θ, (2)

where x0 = argmaxx∈Φ Sx‖x‖
−α and SIRm is the signal-to-

interference ratio (SIR) at the m-th RB.

Definition 1 (The path loss process with shadowing

(PLPS)). The path loss process with shadowing (PLPS) Ξ
is the point process on R

+ mapped from Φ̂, where Ξ = {ξi =
‖x‖α

Sx
, x ∈ Φ} and the indices i ∈ N are introduced such that

ξk < ξj for all k < j.

The PLPS captures both the node distribution and the

shadowing effect; consequently, it also determines the BS

association. Further, we have the following lemma which

directly follows from the mapping theorem [8].

Lemma 1. The PLPS Ξ is a one-dimensional PPP with

intensity measure Λ((0, r]) = λπrδE[Sδ], where δ = 2/α,

S
d
= Sx and

d
= means equality in distribution.

B. The Coverage Probability and Effective Load

Similar to the construction of Φ̂, We construct a marked

PLPS Ξ̂ = {(ξi, (h
m
ξi
)Mm=1, χξi)}, where we put two marks on

each element of the PLPS Ξ: hm
ξ = hm

x , m ∈ [M ], are the iid

fading random variables directly mapped from x ∈ Φ; χξ ∈
{0, 1} indicates whether a BS represented by ξ is transmitting

at the RB(s) assigned to the typical user2. In the case where

no ambiguity is introduced, we will use hm
i as a short of hm

ξi
and χi as a short of χξi .

The value of χi is determined by the ICIC scheduling policy.

Given χi, the coverage condition at the m-th RB under K-BS

coordination can be written in terms of the marked PLPS as

SIRK,m =
hm
1 ξ−1

1
∑∞

i=2 χihm
i ξ−1

i

> θ. (3)

Under K-BS coordination, the K − 1 strongest non-serving

BSs of the typical user do not transmit at the RBs to which

the user is assigned and thus we have χi = 0, ∀i ∈ [K]\{1}.3

For i > K, the exact value of χi is hard to model since the BSs

can either transmit to its own users in the RB(s) assigned to the

typical user or reserve these RB(s) for users in nearby cells,

and the muted BSs can effectively “coordinate” with multiple

serving BSs at the same time. Therefore, the resulting density

of the active BSs outside the K coordinating BSs is a complex

function of the user distribution, (joint) scheduling algorithms

and shadowing distribution.

In order to maintain tractability, we assume χi, i > K are

iid Bernoulli random variables with (transmitting) probability

1/κ, κ ∈ R
+. Such modeling is justified by the random

2It is assumed that the RBs are grouped into chunks of size M , i.e., each
BS either transmits at all the M RBs or does not transmit at any of these
RBs.

3By default χ1 = 1.

deployment of the users and the shadowing effect [9]. Here,

κ ∈ [1,K] is called the effective load of ICIC. κ = K implies

all the coordinating BS clusters do not overlap while κ = 1
represents the scenario where all the users assigned to the

same RB(s) in the network share the same K − 1 muted BSs.

The actual value of κ lies between these two extremes and is

determined by the scheduling procedure which this paper does

not explicitly study. However, we assume that κ is known.

Let SK,m , {SIRK,m > θ} be the event of coverage at the

m-th RB. We consider the coverage probability with inter-cell

interference coordination (ICIC) and intra-cell diversity (ICD)

formally defined as follows.

Definition 2. The coverage probability with K-BS coordina-

tion and M -RB selection combining is

P
c
K,M = P

∪c
K,M , P(∪M

m=1SK,m).

Here, the superscript c denotes coverage and ∪ stresses that

P
∪c
K,M is the probability of being covered in at least one of

the M RBs. (If there is no possibility of confusion, we will

use P
∪c
K,M and P

c
K,M interchangeably.)

C. Diversity Gain and the High-Reliability Regime

Diversity is a classic metric that measures the reliability of

wireless communication schemes under fading. The standard

definition of the diversity is based on the high SNR analysis

where the interference is ignored [4]. The following definition

extends this notion to the case with interference.

Definition 3 (Diversity (order) gain in interference-limited

networks). The diversity (order) gain, or simply diversity, of

interference-limited networks is

d , lim
θ→0

logP(SIR < θ)

log θ
.

Def. 3 is consistent with the diversity gain defined in

[7], where the authors showed, quite surprisingly, that in

(interference-limited) ad hoc networks retransmission does not

result in diversity gain. Interference correlation is the main

contributor to the diversity loss [10]. In the rest of the paper,

we will complement this finding by investigating how much

diversity ICIC and ICD introduce in cellular networks, taking

into account that interference is correlated.

III. INTERCELL INTERFERENCE COORDINATION (ICIC)

We first focus on the effect of ICIC on coverage probability.

Since no ICD is considered, we will omit the superscript m
on the fading random variable hm

ξ , ξ ∈ Ξ, for simplicity.

A. Integral Form of Coverage Probability

Lemma 2. For Ξ̂ = {(ξi, hi, χi)}, let Xk = ξ1/ξk and Yk =
ξ−1
k /Ĩk, where Ĩk ,

∑∞
i=k+1 χihiξ

−1
i . For all k ∈ N, the

two random variables Xk and Yk are independent. Further,

P (Xk > x) = (1− xδ)k−1
1[0,1](x), for k ≥ 2.

Proof (sketch): First, if k = 1, the independence is

obvious, since, in this case, Xk ≡ 1 (with a degenerate

distribution) while Yk has some non-degenerate distribution.



For k ≥ 2, the proof is supported by the (somewhat surpris-

ing) observation that Xk is independent from ξk. Formally, for

all x ∈ [0, 1] and y ∈ R
+, the joint ccdf of ξ1/ξk and ξk/Ĩk

can be expressed as P(Xk > x, Yk > y)

(a)
= Eξk

[

P

(

ξ1
ξk

> x

)

P

(

ξ−1
k

Ĩk
> y

)

| ξk

]

(b)
= P

(

ξ1
ξk

> x

)

Eξk

[

P

(

ξ−1
k

Ĩk
> y

)

| ξk

]

= P (Xk > x)P (Yk > y) ,

where (a) is due to the fact that {ξi, i < k} and {ξi, i > k}
are conditionally independent given ξk by the Poisson property

and {hi}, {χi} are iid and independent from Ξ. (b) holds since,

thanks to the Poisson property, conditioned on ξk, it can be

shown that ξ1/ξk follows the same distribution as that of the

minimum of k − 1 iid random variables with cdf xδ
1[0,1](x).

Since the resulting conditional distribution of ξ1/ξk does not

depend on ξk, this distribution is also the marginal distribution

of ξ1/ξk as is stated in the lemma.

Lemma 3. The Laplace transform of ξk Ĩk is Lξk Ĩk
(s) =

(Cκ(s, 1))
−k

, where Cκ(s,m) = κ−1
κ + 1

κ 2F1(m,−δ; 1 −
δ;−s) and 2F1(a, b; c; z) is the Gauss hypergeometric func-

tion.

The proof of Lemma 3 can be found in [11, Lemma 5].

Theorem 1 (K-BS coordination). The coverage probability

for a typical user under K-BS coordination (K > 1) is

P
c
K,1 = (K − 1)

∫ 1

0

(1− xδ)K−2δxδ−1

(Cκ(θx, 1))
K

dx, (4)

where Cκ(s,m) = κ−1
κ + 1

κ 2F1(m,−δ; 1− δ;−s).

Proof: The coverage probability can be written in terms

of the PLPS as

P
c
K,1 = P(h1ξ

−1
1 > θĨK) = P

(

h1ξ
−1
K

ĨK
> θ

ξ1
ξK

)

, (5)

where h1 is exponentially distributed with mean 1, and thus

P(
h1ξ

−1

K

ĨK
> x) = LξK ĨK

(s)|s=x. Since h1ξ
−1
K /ĨK and ξ1/ξK

are statistically independent (Lemma 2), we can calculate the

coverage probability by

P
c
K,1 =

∫ 1

0

LξK ĨK
(θx)dFξ1/ξK (x), (6)

where LξK ĨK
(·) is given by Lemma 3 and Fξ1/ξK (x) = 1 −

(1 − xδ)K−1 is the cdf of ξ1/ξK given by Lemma 2. The

theorem is thus proved by change of variables.

B. ICIC in the High-Reliability Regime

Proposition 1. Let Po
K,1 = 1−P

c
K,1 be the outage probability

of the typical user for K ∈ N. Then,

P
o
K,1 ∼ aKθ, as θ → 0, (7)

where aK = 1
κ

K!
(1+δ−1)K−1

δ
1−δ and (x)n =

∏n−1
i=0 (x + i) is

the (Pochhammer) rising factorial.
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Fig. 2: The asymptotic coverage probability coefficient aK from
Prop. 1 as a function of the path loss exponent α under K-cell
coordination (for K = 1, 2, 3, 4, 5, upper to lower). Here, κ = K.

The proof of Prop. 1 can be found in [11, App. A]. Prop. 1

shows that for pure ICIC schemes, the number of coordinating

BSs only linearly affects the outage probability in the high-

reliability regime. Hence there is no diversity gain resulting

from ICIC, regardless of the effective load κ.

In Fig. 2, we plot the coefficient aK for K = 1, 2, 3, 4, 5
as a function of the path loss exponent α assuming κ = K
in all the cases. The difference (in ratio) between aK for

different K indicates the usefulness of ICIC. This figure shows

that ICIC is more useful when the path loss exponent α is

large. This is consistent with intuition, since the smaller the

path loss exponent, the more the interference depends on the

far interferers and thus the less useful the local interference

coordination. For other κ values, e.g., κ ≡ 1, the same trend

is observed.

IV. INTRA-CELL DIVERSITY (ICD)

This section focuses on the case of ICD (only). Since it is

a special case of the more general results discussed in Sec. V,

we defer most of the proofs and only focus on discussing the

implications of the result.

A. Coverage under ICD

Theorem 2. The joint success probability of transmission over

M RBs (without ICIC) is

P
∩c
1,M = P(

M
⋂

m=1

S1,m) =
1

C1(θ,M)
,

where C1(θ,m) = 2F1(m,−δ; 1− δ;−θ) (as in Thm. 1).

Due to the inclusion and exclusion principle, we have the

coverage probability with selection combining over M RBs:

Corollary 1 (M -RB selection combining). The coverage

probability over M RBs without BS-coordination is

P
∪c
1,M =

M
∑

m=1

(−1)m+1

(

M

m

)

P
∩c
1,m,
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Fig. 3: The coverage probability with selection combining over M

RBs without ICIC for M = 1, 2, 3, 4, 5. Here, α = 4.

where P
∩c
1,m is given by Thm. 2.

Fig. 3 compares the coverage probability under M -RB

selection combining, P∪c
1,M for M = 1, · · · , 5. As expected,

the more RBs assigned to the users, the higher the coverage

probability and the marginal gain in coverage probability due

to ICD diminishes with M .

B. ICD in the High-Reliability Regime

Proposition 2. Let P∩o
1,M = 1−P

∪c
1,M be the outage probability

of a typical user under M -RB selection combining. We have

P
∩o
1,M ∼ aMθM , as θ → 0,

where aM = D
M
x (1F1(−δ; 1− δ;x))

−1
∣

∣

∣

x=0
, 1F1(a; b; z) is

the confluent hypergeometric function of the first kind, and

D
n
x = ∂n

∂xn , n ∈ N, is the partial differential operator.

The proof of Prop. 2 can be found in [11, App. B].

Prop. 2 clearly shows that a diversity gain can be obtained

by selection combining, in stark contrast with the results

presented in [7], where the authors show that there is no such

gain in retransmission. The reason of this difference lies in the

different association assumptions. [7] considers the case where

the desired transmitter is at a fixed distance to the receiver

which is independent from the locations of the interferers.

However, this paper assumes that the user is associated with

the strongest BS (on average). In other words, the signal

strength from the desired transmitter and the interference are

correlated. Prop. 2 together with [7] demonstrate that this

correlation is critical in terms of the time/frequency diversity.

Fig. 4 compares the asymptotic approximation, i.e., aMθM ,

with the exact expression provided in Cor. 1. A reasonably

close match can be found when θ < −10dB. Thus, despite the

fact that main purpose of Prop. 2 was to indicate the qualitative

behavior of ICD, the analytical tractability of aM also provides

useful approximations in applications with small coding rate,

e.g., spread spectrum/ultra-wide band communication, node

discovery, etc.
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Fig. 4: Asymptotic behavior (and approximation) of the outage
probability P

∩o
1,M with M -RB joint transmission for M = 1, 2, 3, 4, 5

(upper to lower). Here, α = 4.

V. COMBINED ICIC AND ICD

A. Coverage with both ICIC and ICD

In order to derive the coverage probability in the case with

both ICIC and ICD, we first generalize Lemma 3 beyond

Rayleigh fading. For a generic fading random variable H
and PLPS Ξ = {ξi}, let ĨHk be the interference from the

BSs weaker (without fading) than the k-th strongest BS, i.e.,

ĨHk =
∑

i>k χiHiξ
−1
i , where Hi

d
= H, ∀i ∈ N, are iid and

χi, i > k are iid. Then, we have the following lemma whose

proof is analogous to that of Lemma 3 and is thus omitted.

Lemma 4. For m ∈ N, if H is a gamma random variable with

pdf fH(x) = 1
Γ(m)x

m−1e−x, Lξk ĨH
k
(s) = (Cκ(s,m))

−k
.

Theorem 3. For all M ∈ N and K ∈ N \ {1}, the joint

coverage probability over M -RBs with K-cell coordination is

P
∩c
K,M = P(

M
⋂

m=1

SK,m) = (K − 1)

∫ 1

0

(1− xδ)K−2δxδ−1

(Cκ(θx,M))
K

dx.

Proof: Let hm
i be the fading coefficient from the i-

th strongest (on average) BS at RB m for m ∈ [M ]. By

definition, we have

P
∩c
K,M = EΞP

(

hm
1 ξ−1

1 > θ
∑

i>K
χih

m
i ξ−1

i , ∀m ∈ [M ]
)

= EΞ

M
∏

m=1

P(hm
1 > θξ1

∑

i>K
χih

m
i ξ−1

i )

= EΞE

M
∏

m=1

exp(−θξ1
∑

i>K
χih

m
i ξ−1

i ), (8)

= EΞE exp(−θξ1
∑

i>K
χiHiξ

−1
i ),

where the inner expectation in (8) is taken over hm
i for

m ∈ [M ] and i ∈ N, and Hi ,
∑M

m=1 h
m
i are iid gamma

distributed with pdf 1
Γ(M)x

M−1e−x due to the independence

(across m and i) and (exponential) distribution of hm
i .
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Fig. 5: The outage probability P
∩o
K,M under K-BS coordination over

M RBs for K = 1, 2, 3, 4, 5 and M = 1, 2. Here, κ ≡ 1.

Further, writing ξ1 as ξ1
ξK

ξK and letting ΞK = {ξi : ξi ∈
Ξ, i > K}, we obtain the following expression by taking

advantage of the statistical independence shown in Lemma 2:

P
∩c
K,M = E ξ1

ξK

Lξk ĨH
K

(

θ
ξ1
ξK

)

,

where LξK ĨH
K
(·) is gvien in Lemma 4. The proof is completed

by applying the distribution of ξ1/ξK given in Lemma 2.

Similar to Cor. 1, the following corollary follows directly

from the inclusion and exclusion principle.

Corollary 2 (K-BS coordination and M -RB selection

combining). The coverage probability over M RBs with K
BS-coordination is

P
∪c
K,M =

M
∑

m=1

(−1)m+1

(

M

m

)

P
∩c
K,m, (9)

where P
∩c
K,m is given by Thm. 3.

B. The High-Reliability Regime

Proposition 3. Let P
∩o
K,M = 1 − P

∪c
K,M be the outage

probability of a typical user under M -RB selection combining

and K-BS coordination. We have

P
∩o
K,M ∼ aκ(K,M)θM , as θ → 0,

where aκ(K,M) > 0 , ∀K,M ∈ N.

Prop. 3 combines Props. 1 and 2. Its proof is analogous to

that of Prop. 2 and is thus omitted from the paper. It shows, as

expected, the diversity gain for a ICIC-ICD combined scheme

only comes from ICD.

In Fig. 5, we plot the outage probability for different

numbers of coordinated cell K = 1, 2, 3, 4, 5 and RBs for

selection combining M = 1, 2, assuming κ ≡ 1, and observe

the consistency with Prop. 3.

VI. CONCLUSIONS

This paper analyzes the cellular network coverage using

a PPP-based model, incorporating inter-cell interference co-

ordination (ICIC) and intra-cell diversity (ICD). We show

that while ICIC reduces the interference by muting nearby

interferers, the number of coordinated BSs only affects the

outage probability by the coefficient and does not change the

fact that Po
K,1 = Θ(θ) as θ → 0. In contrast, ICD affects the

outage probability by both the coefficient and the exponent,

resulting in diversity order gain in the network coverage. This

result contrasts the recent discovery that retransmission does

not provide diversity in ad hoc networks [10].

We emphasize that although ICIC and ICD are funda-

mentally different strategies, they both improve the network

coverage by introducing extra load in the network: ICIC at

the nearby BSs and ICD at the serving BS. By ergodicity,

it is easy to show that with K-BS coordination and M -RB

selection combining, the mean load at each BS is κM times

the load in the case without ICIC and ICD, where κ ∈ [1,K]
is the effective load of ICIC and depends on the scheduling

implementation. Thus, the result of this paper suggests that

ICD is a more effective approach to provide coverage in the

high-reliability regime. However, in order to achieve better

throughput, carefully choosing ICIC-ICD combined schemes

is necessary but beyond the scope of this paper.
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