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Abstract—This paper develops a tractable modeling and
analysis framework for finite cellular wireless networks using
stochastic geometry. Defining finite homogeneous Poisson point
processes to model the number and locations of access points
in a confined region, we study the coverage probability for an
arbitrarily-located reference user that is served by the closest
access point. The distance distribution and the Laplace transform
(LT) of the interference are derived. We also derive a closed-
form lower bound on the LT of the interference. Our analyses
reveal that a higher path loss exponent improves the coverage
probability and that there is a location where the coverage
probability is maximized.

I. INTRODUCTION

Finite wireless networks are composed of a number of

nodes randomly distributed inside a region with finite size.

This spatial setup is a useful model for millimeter wave

communications, indoor, and ad hoc networks as candidate

technologies for emerging 5G wireless networks [1]. This

setup is also appropriate in applications where there is a range

limit for backhaul links, e.g., cloud radio access networks [2].

Also, the ever-increasing randomness in the locations of nodes

in a wireless network has led to a growing interest in the use

of stochastic geometry and Poisson point processes (PPPs) for

accurate and tractable spatial modeling and analysis [3].

The stochastic geometry-based modeling and analysis of

finite wireless networks is more challenging and requires dif-

ferent approaches than wireless networks over infinite regions

that are often modeled by the infinite homogeneous PPP

(HPPP) [4, Def. 2.8]. The main challenge is that a finite point

process is not statistically similar at different locations, and

consequently, the performance is location-dependent. Using

the binomial point process (BPP) [4, Def. 2.11], finite wireless

networks have been well studied, e.g., [5]-[8]. In the BPP

model, a fixed number of nodes are distributed independently

and uniformly inside a finite region. Considering a disk, [5]

has developed a comprehensive framework for performance

characterizations of an arbitrarily-located reference user under

different selection strategies. Disk-shaped networks of un-

manned aerial vehicles are analyzed in [6]. There are also

studies that present performance characterizations of a fixed

link inside an arbitrarily-shaped finite region [7]-[8].

In this paper, we develop a tractable model for finite cellular

wireless networks, where a reference user is served by the

closest access point. We define a finite homogeneous Poisson

point process (FHPPP) to model access points in a finite

region and then derive an exact expression for the coverage

probability. As a key step for the coverage probability analysis,

we characterize the Laplace transform (LT) of the interference

and the distribution of the distance from the reference user to

its serving access point. We also derive a tight closed-form

lower bound on the LT of the interference that requires much

less numerical computations.

Our work is different from the state-of-the-art literature on

finite networks, e.g., [5]-[8], since different from the BPP,

which models a fixed number of nodes in a region, we consider

a point process that is suitable for finite regions with a random

number of nodes and allow for arbitrary user locations.

The rest of the paper is organized as follows. Section

II describes the system model. Secion III characterizes the

serving distance distribution. Section IV presents the analytical

result for the coverage probability, and derives the LT of

the interference. Section V derives the lower bound on the

coverage probability. Section VI presents the numerical results.

Finally, Section VII concludes the paper.

II. SYSTEM MODEL

In this section, we present a mathematical model of the

system. We begin with the spatial distribution of the nodes.

Then, we describe the channel model and define the signal-

to-interference-and-noise ratio (SINR).

A. Spatial Model

Let us define an FHPPP as follows.

Definition 1: We define the FHPPP as Φ = P ∩ A, where

P is an HPPP of intensity λ and A ⊂ R
2.

We consider a finite cellular network as shown in Fig. 1,

where the locations of active access points are modeled as an

FHPPP. For simplicity and in harmony with, e.g., [5]-[6], we

let A = b(xo, D), where b(xo, D) represents a disk centered

at xo with radius D. However, our theoretical results can be

extended to an arbitrarily-shaped region A.

Users can be located anywhere in R
2. With no loss of

generality, we conduct the analysis at a reference user located

at the origin o. We further define d = ‖xo‖, which denotes

the distance from the reference user to the center of A. 1

1The locations of the reference user and the center of A can be anywhere
in R

2. The origin o and xo are relatively determined in a coordinate system.
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Fig. 1: An illustration of finite cellular wireless networks.

B. Channel Model and SINR

We assume distance-dependent power-law path loss and

Rayleigh fading. Thus, the received power at the reference

user from an access point located at y is hy‖y‖−α, where the

transmit power is set to 1 with no loss of generality and α > 2
is the path loss exponent. The sequence {hy} consists of i.i.d.

exponential random variables with mean 1.

The SINR of the reference user can be expressed as

SINRc =
hxc

‖xc‖−α

σ2 + Ic

, (1)

where xc is the location of the serving access point, Ic =∑
y∈Φ\{xc} hy‖y‖−α denotes the interference, and σ2 is the

noise power. For notational simplicity, we define the serving

distance as Rc = ‖xc‖.

III. SERVING DISTANCE DISTRIBUTION

In this section, we derive the distribution of the distance

from the reference user to its serving access point. This dis-

tance distribution will be used later in the coverage probability

analysis.

Let us first define ϕ0 = sin−1
(
D
d

)
, ϕ1(r) =

cos−1
(

r2+d2−D2

2dr

)
, R1(θ) = d cos (θ) +

√
D2 − d2sin2 (θ)

and R̂1(θ) = d cos (θ) −
√
D2 − d2sin2 (θ), and present a

lemma on the intersection area of two circles.

Lemma 1: Consider two circles with radii D and rc with

centers separated by distance d. The area of their intersection

is given by [9, Eq. (12.76)]

Bd(rc) = D2cos−1

(
D2 + d2 − r2c

2dD

)
+ r2cϕ1(rc)−

1

2

√[
(rc + d)

2 −D2
] [

D2 − (rc − d)
2
]
. (2)

The distance from the reference user to its closest access

point Rc is larger than rc if and only if at least one access point

Fig. 2: An illustration of the intersection in the case d ≤ D for
Subplot (a): D−d ≤ Rc < D+d and Subplot (b): 0 ≤ Rc < D−d,
and in the case d > D for Subplot (c): d−D ≤ Rc < d+D.

exists inside A and there is no access point located within

b(o, rc) ∩ A. Letting Crc
denote the intersection, we have

P (Rc > rc) =
P(n(Φ ∩ Crc

) = 0 and n(Φ) > 0)

P(n(Φ) > 0)

(a)
=

P(n(Φ ∩ Crc
) = 0)P(n(Φ \ Crc

) > 0)

P(n(Φ) > 0)

(b)
=

exp (−λ |Crc
|) (1− exp(−λ(πD2 − |Crc

|)))
1− exp(−λπD2)

=
exp (−λ |Crc

|)− exp(−λπD2)

1− exp(−λπD2)
, (3)

where |Crc
| denotes the area of Crc

. Also, (a) is due to the

fact that the numbers of points of a PPP in disjoint regions

are independent, and (b) is because Rc ≤ D + d.

According to Fig. 2, there are two different cases for |Crc
|

as follows.

Case 1: If d ≤ D, then

|Crc
| =

⎧⎨
⎩

πrc
2 0 ≤ rc < D − d,

Bd(rc) D − d ≤ rc < D + d,
πD2 rc ≥ D + d,

(4)

where Bd(rc) is given in (2).

Case 2: If d > D, then

|Crc
| =

⎧⎨
⎩

0 0 ≤ rc < d−D,
Bd(rc) d−D ≤ rc < D + d,
πD2 rc ≥ D + d.

(5)

IV. COVERAGE PROBABILITY

In this section, we derive the coverage probability of

the reference user. As a key step in the coverage proba-

bility analysis, we obtain the LT of the interference (The-

orem 1). For notational simplicity, we define F(s, x) =
x2

2F1

(
1, 2

α ; 1 +
2
α ;− 1

sx
α
)

where 2F1(a, b; c; t) denotes the

Gauss hypergeometric function [10].

Theorem 1: Conditioned on Rc, the LT of the interference

is

Ld
Ic
(s|Rc) = exp

(
πλF(s,Rc)− λ

∫ π

0

F(s,R1(θ))dθ

)
, (6)

if d ≤ D and 0 ≤ Rc < D − d, and

Ld
Ic
(s|Rc) =

exp

(
ϕ1(Rc)λF(s,Rc)− λ

∫ ϕ1(Rc)

0

F(s,R1(θ))dθ

)
, (7)
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if d ≤ D and D − d ≤ Rc < D + d or d >
D and

√
d2 −D2 ≤ Rc < d+D, and

Ld
Ic
(s|Rc) =

exp

(
ϕ1(Rc)λF(s,Rc)− λ

∫ ϕ1(Rc)

0

F(s,R1(θ))dθ

)
×

exp

(
−λ

∫ ϕ0

ϕ1(Rc)

{
F(s,R1(θ))−F(s, R̂1(θ))

}
dθ

)
, (8)

if d > D and d − D ≤ Rc <
√
d2 −D2. Also, ϕ0, ϕ1, R1

and R̂1 are defined in Section III.

Proof: See Appendix A.

Using the conditional LT of the interference derived in Theo-

rem 1, we can express the coverage probability of the reference

user as

P c
C(β) = P(n(Φ) > 0)P(SINRc > β | n(Φ) > 0), (9)

where β is the minimum required SINR for coverage. Note

that the coverage probability is zero when there is no access

point. Then, from (1) and averaging over the serving distance

Rc, we have

P c
C(β) = (1− exp(−λπD2))×∫ ∞

0

P

(
hxc

rc
−α

σ2 + Ic

> β

)
fd
Rc

(rc) drc, (10)

where fd
Rc

is the PDF of Rc obtained from (3). The condi-

tional coverage probability given a serving distance rc can be

expressed as

P

(
hxc

rc
−α

σ2 + Ic

> β

)
= P

(
hxc

> βrc
α
(
σ2 + Ic

))
(a)
= E

{
exp

(−βrc
α
(
σ2 + Ic

))}
= exp

(−βσ2rc
α
)Ld

Ic
(βrc

α|rc) , (11)

where (a) follows from hxc
∼ exp(1). Finally, according

to Section III and with Ld
Ic

given in (6)-(8), the coverage

probability is obtained as

P c
C(β) =∫ D−d

0

2πλrc exp(−λπrc
2) exp

(−βσ2rc
α
)Ld

Ic
(βrc

α|rc) drc

+

∫ D+d

D−d

λ
∂Bd(rc)

∂rc

exp(−λBd(rc)) exp
(−βσ2rc

α
)×

Ld
Ic
(βrc

α|rc) drc, (12)

if d ≤ D, and

P c
C(β) =

∫ D+d

d−D

λ
∂Bd(rc)

∂rc

exp(−λBd(rc))×

exp
(−βσ2rc

α
)Ld

Ic
(βrc

α|rc) drc, (13)

if d > D. In the special case of infinite cellular networks, i.e.,

D → ∞, the coverage probability (13) simplifies to the result

in [11, Thm. 2].

(a) d ≤ D (b) d > D

Fig. 3: Outer bounds of A in the two cases d ≤ D and d > D.

V. LOWER BOUND ON COVERAGE PROBABILITY

Since the result derived for the LT of the interference in

Theorem 1 requires intensive numerical computations, we

derive a tight lower bound on the LT of the interference that

is much easier to numerically evaluate. Then, inserting the

bound in (12)-(13), a lower bound on coverage probability can

be also provided. The tightness of the bound will be verified

with numerical results (Fig. 6).

To obtain the lower bound, we outer bound the region A
by a region that permits a closed-form bound on the LT of the

interference. Note that using a larger region leads to an upper

bound on the interference, and therefore a lower bound on its

LT.

The outer region for the cases with d ≤ D and d > D
is shown in Fig. 3. Locating the center of the sectors at the

reference user in case d ≤ D, two covering half-circles with

radii d +D and
√
D2 − d2 are considered. Also, in the case

d > D, we consider the sector with radii d + D and d − D
and the front angle 2ϕ0 entangled between the two tangent

lines. However, in the case d > D, we can achieve a tighter

bound by the following regions for A\b(o, Rc), which is the

region including interfering access points. In the case Rc >√
d2 −D2, the sector with the front angle equal to twice the

intersection angle, i.e., 2ϕ1(Rc), and radii Rc and D + d is

considered. In the case Rc <
√
d2 −D2, we consider two

sectors with the front angle 2ϕ0 and radii Rc and R1(ϕ1(Rc))
and with the front angle 2ϕ1(Rc) and radii R1(ϕ1(Rc)) and

D + d.

In the following corollary, we present the lower bound on

the LT of the interference.

Corollary 1: Conditioned on Rc, the LT of the interference

is lower bounded by

Ld
Icb

(s|Rc) = exp

(
πλ

{
F(s,Rc)

−1

2
F(s, d+D)− 1

2
F(s,

√
D2 − d2)

})
, (14)

if d ≤ D and 0 < Rc ≤
√
D2 − d2, and

Ld
Icb

(s|Rc) = exp
(π
2
λ
{
F(s,Rc)−F(s, d+D)

})
, (15)

if d ≤ D and
√
D2 − d2 ≤ Rc < D + d, and

Ld
Icb

(s|Rc) = exp
(
λ
{
ϕ0F(s,Rc) + (ϕ1(Rc)− ϕ0)×

F(s,R1(ϕ1(Rc)))− ϕ1(Rc)F(s, d+D)
})

, (16)
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Fig. 4: Coverage probability as a function of the SINR threshold β.

if d > D and d−D ≤ Rc <
√
d2 −D2, and

Ld
Icb

(s|Rc) =

exp
(
λϕ1(Rc)

{
F(s,Rc)−F(s, d+D)

})
, (17)

if d > D and
√
d2 −D2 ≤ Rc < D + d.

Proof: The proof follows the same approach as in Ap-

pendix A, except that the disk is replaced with the regions

given in Fig. 3.

VI. NUMERICAL RESULTS

We consider a scenario of finite cellular wireless networks

where the access points are distributed according to an FHPPP

with intensity λ = 0.01 m−2 in a disk with radius D = 15 m

and evaluate the coverage probability result derived in Section

IV. We further define the normalized distance δ = d
D . In the

following, we investigate the impact of the path loss exponent

and the distance of the user from the center of the disk on the

coverage probability. We also study the tightness of the bound

derived in Section V.

Effect of path loss exponent: The coverage probability as a

function of the minimum required SINR β is plotted in Fig.

4 for δ = 2
3 and 4

3 and α = 3 and 4. It is observed that the

coverage probability is improved when the path loss exponent

is larger. That is because the power of both the desired and

the interfering signals decrease as α increases, which can lead

to an increase in the SINR.

Effect of user distance from the center: The coverage

probability as a function of the normalized distance δ is studied

in Fig. 5 for α = 4 and β = −5 and 0 dB. It is observed that,

depending on β, there is an optimal value for the distance

of the user, about 0.8D, in terms of the coverage probability.

This is due to the fact that the SINR has a tradeoff since the

power of both the desired and the interfering signals decrease

as the distance of the user to the center of the disk increases.

Tightness of the bound: The tightness of the bound on

coverage probability derived in Section V is evaluated in Fig.

6 for α = 4 and δ = 2
3 and 4

3 . As observed, the bound

tightly approximates the performance in a broad range of SINR

thresholds β and for different positions of the user inside and

outside the disk.
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Fig. 5: Coverage probability as a function of normalized distance δ
with α = 4.
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VII. CONCLUSION

In this paper, using stochastic geometry, we developed a

tractable framework for the modeling and analysis of cellular

wireless networks whose access points are located inside a

finite region. We derived an exact expression for the coverage

probability. We also proposed a tight closed-form expression

bounding the coverage probability. Our analysis revealed that

a higher path loss exponent improves the coverage probability.

In addition, although an increase in the distance of the user

to the center of finite region typically degrades the coverage

probability, there exists a location where the coverage proba-

bility is maximized.
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APPENDIX A

PROOF OF THEOREM 1

Conditioned on the serving distance Rc, the LT of the

interference is obtained as

Ld
Ic
(s|Rc)

= E

{
exp

(
−s

∑
y∈Φ\{xc}

hy‖y‖−α

)
| n(Φ) > 0

}

= E

{ ∏
y∈Φ\{xc}

exp
(
−shy‖y‖−α

)
| n(Φ) > 0

}

(a)
= E

{ ∏
y∈Φ\{xc}

1

1 + s‖y‖−α | n(Φ) > 0

}

(b)
= exp

(
−λ

∫
A\b(o,Rc)

(
1− 1

1 + s‖y‖−α

)
dy

)
, (18)

where (a) is found by hy ∼ exp(1) and (b) follows from the

PGFL of the PPP [4, Thm. 4.9] and the fact that interfering

nodes are farther away than Rc. There are two types for d < D
(Case 1) and two types for d > D (Case 2) to convert the result

in (18) from Cartesian to polar coordinates. Each type denotes

a special form of A\b(o, Rc) that can be represented by polar

coordinates uniquely.

Case 1:
Type 1: If A ∩ b(o, Rc) = b(o, Rc) as given in Fig. 2(b),

i.e., 0 ≤ Rc < D − d, then

Ld
Ic
(s|Rc) = exp

(
−λ

2π∫
0

R1(θ)∫
0

(
1− 1

1 + sx−α

)
xdxdθ

+λ

2π∫
0

Rc∫
0

(
1− 1

1 + sx−α

)
xdxdθ

)
. (19)

We can simplify (19) as

Ld
Ic
(s|Rc) = exp

(
2πλ

∫ Rc

0

x

1 + xα

s

dx

−λ

∫ 2π

0

∫ R1(θ)

0

x

1 + xα

s

dxdθ

)
(c)
= exp

(
πλF(s,Rc)− λ

∫ π

0

F(s,R1(θ))dθ

)
, (20)

where (c) follows from replacing xα with u and calculating

the corresponding integral based on the formula [10, (3.194.1)]

which uses the Gauss hypergeometric function.

Type 2: If A ∩ b(o, Rc) �= b(o, Rc) as given in Fig. 2(a),

i.e., D − d ≤ Rc < D + d, then

Ld
Ic
(s|Rc)

= exp

(
−λ

∫ ϕ1(Rc)

−ϕ1(Rc)

∫ R1(θ)

Rc

(
1− 1

1 + sx−α

)
xdxdθ

)

= exp

(
−λ

∫ ϕ1(Rc)

0

{
F(s,R1(θ))−F(s,Rc)

}
dθ

)
. (21)

Case 2: As observed from Fig. 2(c) for the case d > D,

we have two different types of the LT of the interference

depending on whether or not the lower boundary of A within

the two tangent lines crossing the origin is included in the

boundary of A\b(o, Rc).
Type 1: Since the intersection angle ϕ1(r) at r =

√
d2 −D2

is equal to the angle of the tangent lines ϕ0, if d−D < Rc <√
d2 −D2, then

Ld
Ic
(s|Rc) =

exp

(
−λ

{∫ −ϕ1(Rc)

−ϕ0

∫ R1(θ)

R̂1(θ)

(
1− 1

1 + sx−α

)
xdxdθ

+

∫ ϕ1(Rc)

−ϕ1(Rc)

∫ R1(θ)

Rc

(
1− 1

1 + sx−α

)
xdxdθ

+

∫ ϕ0

ϕ1(Rc)

∫ R1(θ)

R̂1(θ)

(
1− 1

1 + sx−α

)
xdxdθ

})

= exp

(
−λ

ϕ0∫
ϕ1(Rc)

{
F(s,R1(θ))−F(s, R̂1(θ))

}
dθ

−λ

ϕ1(Rc)∫
0

{
F(s,R1(θ))−F(s,Rc)

}
dθ

)
. (22)

Type 2: If
√
d2 −D2 < Rc < d+D, then

Ld
Ic
(s|Rc)

= exp

(
−λ

∫ ϕ1(Rc)

−ϕ1(Rc)

∫ R1(θ)

Rc

(
1− 1

1 + sx−α

)
xdxdθ

)

= exp

(
−λ

∫ ϕ1(Rc)

0

{
F(s,R1(θ))−F(s,Rc)

}
dθ

)
. (23)
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