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Abstract—Wireless networks are fundamentally limited by the A. The role of the geometry and the interference

intensity of the received signals and by their interference Since . ,
both of these quantities depend on the spatial location of #a Since Shannon’s work [4], for the second half of the 20th

nodes, mathematical techniques have been developed in trest  century the SNR has been the main quantity of interest
decade to provide communication-theoretic results accouimg for to communication engineers that determined the religbilit

the network’s geometrical configuration. Often, the locaton of and the maximum throughput that could be achieved in a
the nodes in the network can be modeled as random, following communication system. In a wireless system, the SNR can

for example a Poisson point process. In this case, different .
techniques based orstochastic geometry and the theory of random Y&y @mong different users by as much as ten to hundreds of

geometric graphs — including point process theory, percolation 0dBS due to differences in path loss, shadowing due to bgtdin

theory, and probabilistic combinatorics — have led to resuls on and obstructions, fading due to constructive or destractiv
the connectivity, the capacity, the outage probability, ad other wave interference. The first-order contributor to this SNR
fundamental limits of wireless networks. This tutorial article variation is the path loss. In a cellular system for example,

surveys some of these techniques, discusses their applicat . . .
to model wireless networks, and presents some of the main it is not uncommon for a user close to the base station to have

results that have appeared in the literature. It also servesas @ channel that is a million times (60 dB) stronger than the
an introduction to the field for the other papers in this specal one of a user located near the cell's edge. If the receivers ar

issue. randomly located in space, then the different SNRs due to the
Index Terms—Tutorial, wireless networks, stochastic geometry, different path losses between them and the base stationecan b
random geometric graphs, interference, percolation modeled as having apatial distribution.

In a wireless network with many concurrent transmissions,
the situation is even more complicated. In this case, theRSIN
I. INTRODUCTION becomes the relevant figure of merit for the systemot

. _ nly the received signal power is random due to the random
Emerging classes of large wireless systems such as ad EBQ;I

. . al distribution of the users, but also the interfeegpawer
and sensor networks and cellular networks with multihop- coy.

tensi h b th biect of int .t ~"Is governed by a number of stochastic processes including
erage extensions have been the subject ot intense mmam_tlga_the random spatial distribution of the nodes, shadowind, an

i o l%Qiing. The SINR for a receiver placed at the origiin the
theory are generally insufficient to analyze these new YP$3r 3-dimensional Euclidean space can be written as:
of networks for the following reasons: (i) The performance-

limiting metric is the signal-to-interference-plus-reisatio SINR —

(SINR) rather than the signal-to-noise-ratio (SNR). (iher W+1I’°

interference is a function of theetwork geometryn which . ) ) )

the path loss and the fading characteristics are depend@hereS, W, and/ are the desired signal, noise, and interfer-

upon. (iii) The amount of uncertainty present in large wigsl €NC€ POWErS, r_espectl_vely. The s_ummann_]fos taken over

networks far exceeds the one present in point-to-poinesyst the set of all interfering transmitter, P; is the transmit

it is impossible for each node to know or predict the locatiorPOWer, h; is a random variable that characterizes the cumu-

and channels of all but perhaps a few other nodes. lative effect of shadowing and fading, ads the path loss
Two main tools have recently proved most helpful in cifunction, assumed to depend only on the distajicg| from

cumventing the above difficulties: stochastic geometryajag e origin of the interferer situated at position in space.

random geometric graphs [2], [3]. Stochastic geometryadlo Often? is modeled as a power lawt||z;|) = ko|[z:[ =, orin

to study the average behavior over many spatial realizatidfvironments where absorption is dominant, as an expaienti

of a network whose nodes are placed according to sord (([lzil) = koexp(—vllz:]), see [5], [6]. In a large

probability distribution. Random geometric graphs captufyStem, the unknowns at, h;, andz;, and perhaps;, but it

the distance-dependence and randomness in the conr)ect?ﬁlthe locations of the interfering nodes that most influehee

of the nodes. This paper provides an introduction to theSANR levels, and hence, the performance of the network. The

mathematical tools and discusses some recent results ¢nat w o
In many practical situations such as cellular networks agaswonably

enab_led by them, with th_e objectivg of bging a ﬁrSt'han(ﬂense ad hoc networks, the noise is typically negligible &l can be used
tutorial for the researcher interested in the field. interchangeably with SINR without any appreciable loss afuaacy.

where [ = ZPihié(”IiH)a (1)
ieT



interference is a function of the underlying node distiitmut and in which all participating nodes — both transmitters and
(and mobility pattern for mobile networks) and the channeéceivers — are randomly located. In such networks, it is
access scheme. impossible even with unlimited overhead to control the S§NR
A key objective of this tutorial and special issue is to showf all users, due to the coupling of interference: if one user

that the SINR in (1) can be characterized using stochastaises its power, it causes an interference increase to all
techniques, and key related metrics such as outage pripabibther communicating pairs. In this case, characterizirgy th
coverage, connectivity, and capacity can therefore be tguaifstochastic) geometry of the network is of utmost imporéanc

fied. since it is the first-order determinant of the SINR.

The idea of modeling wireless networks using random

B. Historical background graphs dates back to Gilbert [32], whose paper marks the

starting point for continuum percolation theory. He coeséat!

fAItthO#gr;. there ha.:, beer(ljgrov(\;mg recenr: |trr1]terestt|ndthe Y3%andom network formed by connecting points of a Poisson
of slochastic geometry and random graph INeory 10 descrif,; process that are sufficiently close to each other. @Jsin

wireless networks, some of the underlying approaches go b is model, he proved the existence of a critical connection

100 years, or more. Wireless network performance is mos Nstance above which an infinite chain of connected nodes

Lﬂterf?repce-hmn.ed, ar;:i a Iarge numbe{ c:jf USers gosrt;ellum forms and below which, in contrast, any connected component
€ interference in vastly varying magnitudes, as desdriiye is bounded. His investigations were based on prior work en th

the mterlferenced_functu_)n stateg Itn (;)’ which |$Iz_10tdn?|sed discrete percolation model of Broadbent and Hammerslely [33
processn one dimension, a Shot NOISE Process 1S delined grq on the theory of branching processes [34]. Gilbertgiori

i nal model has undergone many generalizations, and comtinuu
I(z) = Z 9(z = Xi), (2)  percolation theory is now a rich mathematical field, see [2],
s [35]. Extensions most relevant to us consider graphs which

where{X;} is a stationary Poisson process Brandg(z) is account for interference-limited communication. In thase,
the impulse response of a linear system. In its two-dimeradio the graph connectivity depends on the SINR at different
generalization,z represents a point on the plane and theodes. These are studied in [36] and [37]. Another relevant
Poisson point process is d&?. Wheng(x) depends only on generalization is the random connection model [38], which
the Euclidean nornij|z|, it can be identified with the pathis a random graph that can account for random connections
loss function/(||z||), and I(x) is the aggregate interferencedue to shadow fading effects; as well as nearest neighbor
received at pointr in a wireless network, without fading. network models [39]. Finally, a coverage model for wireless
The shot noise process has been studied at least dating haetvorks based on percolation theory was introduced in. [40]
to Campbell in 1909 [7], who characterized its mean andl compendium of random graph results related to wireless
variance, followed by Schottky in 1918 [8]. In addition, Ric communications appears in [3]. Elements of random graphs
performed extensive investigations on the distributiod @f) have also proven to be useful to characterize the scaling
from 1940 through 1970 [9]. Power law shot noise — mostehavior of the capacity of wireless networks [41].
relevant here — was considered by Lowen and Teich in 1990
[10]. ) C. Paper overview and organization
Stochastic geometry has been used as a tool for charactenﬁ- . _ .
ing interference in wireless networks at least as early a819 n §_”' we prow_de an overview of the key mfa\thematlcal
[11], and was further advanced by Sousa and Silvester in Irf%)ls' |n<_:lud|ng point processes, raf?dom geomgtrlc g“m :
early 1990s [12]-[14]. At that time, two useful mathematicgercc’lat'on' Inglll, the |nterfere_qce_|s characterlzed,. and it is
texts were available to researchers: Stoyan et als sﬂhicha.Shown that the outage_probablllty Is a natural metric tostud
iolh & spatially randc_>m wireless network. We _th_en move to other
and Kingman's Poisson Processes [15]. In the late 199 ,rfo_rmance metrl_cs, such as the connectlylty of the_ neé¢wor
d its coverage iglV, and the data-carrying capacity and

llow and Hatzinakos [16] characterized the impact of randof!

channel effects — fading, shadowing, path loss, and combifi®a spectral efficiency of the network gv. We conclude

tions thereof — on the aggregate co-channel interferericidaawby providing some additional applications of these results

Baccelli et al. also began developing tools primarily baged including epidemic models,_wireless security, and t_rassinh

Poisson Voronoi tesselations and Delaunay triangulations protqcol d_e5|gn. The notation and symbols used in the paper

the optimization of hierarchical networks [17], [18] and ofi'® listed in Table I.

mobility management in cellular networks [19]. For a survey

on this line of research, see the forthcoming book chapter by Il. MATHEMATICAL PRELIMINARIES

Zuyev [20]. Stochastic geometry [1] is a rich branch of applied prob-
In the past ten years, stochastic geometry and associaabdity which allows the study of random phenomena on the

techniques have been applied and adapted to cellular systg@ane or in higher dimensions. It is intrinsically relatedthe

[21]-[24], ultrawideband [25], cognitive radio [26]-[28km- theory of point processes [42]. Initially its developmerdswy

tocells [29], [30], relay networks [31], and many other tgpestimulated by applications in biology, astronomy and niater

of wireless systems. However, perhaps the largest impact Isaiences. Nowadays, it is also used in image analysis and in

been in the area of ad hoc networks, which are fully distadut the context of communication networks.



Symbol Definition/explanation — The homogeneous PPP is stationary and simple. This
[k] the set{1,2, ..., k} may be considered as the simplest (and most natural)
7Z,N integers, positive integers .
R,RT _rea_l numbers,_positive real numbers pomt process.
1a(z) indicator function — The framework for non-homogeneous PPPs is also
u(x) = 103 () (unit step function) B
" numbe? oF Gimensions of the network well developed, although more technical than that of
#A cardinality of A the homogeneous case. They can be used to model
P(A) probability of eventA ot ; ; :
E(X) expectation of random variabla distributions of users which are not uniform across
Lx(s) =E(e™*X) | Laplace transform of random variahlé space.
”‘ : ‘” Ei?:ﬁjg:ﬁ eesure — There is also a comprehensive computational frame-
o origin in R¥ work for stationary point processes which are not
B a Borel subset oR or R? Poisson. This is Palm calculus (see below).
B(z;r) ball of radiusr centered at X i K X
ca 274/2)0(14d/2) « A point process can bisotropic or not. Isotropy holds if
(volume of thed-dim. unit ball) the law of the PP is invariant to rotation. The homoge-
o path loss exponent .. . . . .
Fx(x) = P(X < @) | distribution of random variablé (cdf) neous PPP is isotropic. If a PP is isotropic and stationary,
® = {fi CR? | point process P it is called motion-invariant
s ti t .
ity itical probabily, density for percolation « A PP can be marked or not; marks assign labels to the
ho (power) fading random variabl&(h) = 1) points of the process, and they are typically independent
T eR SIR or SINR threshold for successful communicatipn i :
e€ (0,1) target outage probability for transmission capacity of the PP_and id. Th_e StUdy of marked p0|nt processes
0:R— R (isotropic) large-scale path loss function may require the handling of Palm calculus.
W thermal noi . . .
erma’ oise 1) Poisson point processeset A be a locally finite mea-
sure on some metric spaée A point processe® is Poisson
TABLE | on E if
NOTATION AND SYMBOLS USED IN THE PAPER L
o For all disjoint subsetsAy,---, A, of E, the random

variables®(A4;) are independent;
o For all setsA of E, the random variable®(A) are
A. Point processes Poisson.

The most basic objects studied in stochastic geometry keyﬁproperty state_s that <_:ond|t|ona||y on the fa.‘Ct that
point processes. Visually, a point process can be depic EA) = n, thesen points are |ndeper_1dently (and unn‘or_rr_lly
as a random collection of points in space. More formally, 3" homogeneous PPP) locatedn Th|s leads to an depr.|C|t

representation of the Laplace functional®fIf £ = R?, this

point process (PP) is a measurable mappingrom some . ) i )
probability space to the space of point measures (a poh,ﬁplace functional is defined for general point processdy

measure is a measure which is locally finite and which takes £ ()2 | {e— Ja f(m)@(dw)} - F {e— Y xes f(x)} 7
only integer values) on some spaEeEach such measure can
be represented as a discrete sum of Dirac measurds on  wheref is a non-negative function dR?. In the Poisson case,

=3 ox.. Lo(f) = exp (— /R (1 - e—f@) A(dx)) )

This is the basis for a large number of formulas likey, those

on the Laplace transform of the shot noise (or interference)

seeslll. Other appealing features of PPPs are their invariance

to a large number of key operations. In particular,

o The superposition of two or more independent PPPs
(which is defined as the sum of the associated point
measures) is again a PPP; this can be extended to
denumerable sums under some conditions.

« A PP can be simple or not. It is simple if the multiplicity « The independent thinning of a PPP is again a PPP;
of a point is at most one (no two points are at the same this can be extended to the case of location-dependent

The random variable§X;}, which take their values i are
the points of®. Most often, the spacé is the Euclidean
spaceR? of dimensiond > 1. The intensity measure\ of
® is defined asA(B) = E®(B) for Borel B, where ®(B)
denotes the number of points inN B.

A few dichotomies concerning point processes on Euclidean
spaceR? are as follows:

location). thinning, where a point is retained or not depending on
« A PP can bestationaryor not. Stationarity holds if the its location.
law of the point process is invariant by translation. « The point process obtained by displacing paliitinde-

« A PP can be Poisson or not. A formal definition of the  pendently of everything else according to some Markov
Poisson point process (PPP) is given in the following sub-  kernel K'(X;,-) that defines the distribution of the dis-
section. A PPP offers a handy computational framework placed position of the poink; yields another PPP; this
for different network quantities of interest. result is often referred to as the displacement theorem.

— A PPP can be homogeneous or not. In the hom&s each case, the intensity of the resulting PPP can be @utain
geneous case, the density of the points is constantclosed form from that of the initial PPP and the involved
across space. transformationsd.g, the thinning probability or the kernd{).



If p(z,-) is the probability density pertaining to the Markovand
kernel applied to a PPP of intensikfz) on R¢, the displaced
points form a PPP of intensity var

> f(X)> =2 [ P ©

Xecd

/ —
Ny) = /Rd A@)p(z, y)da . These expressions can be used, for example, to calculate the
) ) ) ) ) mean and variance of the interference in a network or to
In particular, if A\(x) is constant\ and p(z,y) is a function gatermine the mean node degree.

! —
of y 7t 9”'3” thenX'(y) = A for _aII Y _ Important examples of stationary point processes that lead
A striking property of PPPs is Slivnyak's theorem Wh|cq0 nice computational results include

states that the law @b — ¢, conditional on the fact thab has ) ] ) .

a point atz is the same as the law & In mathematical terms, * POint processes with repulsioe,g, Matérn hard core

the reduced Palm probabilit#*' of a PPP is the distribution point processes or determinantal point processes;

of this Poisson point process itself. This is usually expedsas ~ * POint processes with attractioag, Neyman-Scott cluster
P*' = P, for all pointsz € . This means that the properties ~ Processes, permanental point processes [44] or Hawkes
seen from a point € R? are the same whether we condition ~ POINt processes [45].

on having a point: € ® or not — if the point atz is not For more on this, see [1] and [42].

considered. For example, we have for the mean number of

points within distance of x:

E®(Blwir) \ {a}) = E((I)(B(x’r) \ah) [we (I)) 1) The germ—grain modelThe most celebrated model of

= A(B(z;r)), stochastic geometry and the basic model of continuum per-
colation is the Boolean or germ-grain model. In the simplest
setting, the Boolean model is based on a Poisson point goces
?h the points of which{ X}, are also calleglerms and on an
inc?ependent sequence of i.i.d. compact dei5} called the
I%,rains Formally, the Boolean model is

B. Boolean models and random geometric graphs

where B(x;r) is the ball of radius- centered atr.

2) Stationary point processesThe theory of stationary
point processes is based on the concept of marks and on
Matthes definition of Palm probability [42], [43].

Roughly speaking, a mark of some point of a stationa
point process is a quantity that “follows this point” when =_ U(X' 4K
the collection of points is transported by a global trarstat ! !
operation. For instance, the local configuration of neighbo
of point X, which is defined as the collection of points in avhere X; + K; = {X; + vy, y € K;}.
ball of radiusR centered atX, is a mark of this point. IfR The Poisson set of germs and the independence of the
is infinity, this mark is the universal mark of, namely 'the grains make the Boolean model analytically tractable. It is
point process seen frooy’. often considered as the null hypothesis in stochastic gggme

The Palm probabilityP° of a stationary point process ismodeling.
the law of this universal mark, which can be shown to be the Among the key results on this model, let us quote (from
same for all points. It can be understood as the law of thetpojn)):
process given that it has a point at the origin. As defined here . . S L
P° is a probability on the space of point measures. o Coyerage. the simplest coverage question is the Q|str|—

Campbell’'s formula for stationary point processes, whgh i bution of the number of grans that mtersect a given

. - ' compact set, for instance a given location of the space.
a direct consequence of the last definition, states that when

. . ! This distribution is Poisson.
denoting by® — « the global translation of all points @f by L :
« \Wolume fraction: in the homogeneous case, what is the
the vectorz, then

fraction of a big ball which is covered by grains? This can
be derived using the analysis of coverage and an ergodic
> IX e - X)] :/ [z, ¢)AdzP?(dg), (4) theorem.
Xe® N R « Contact distribution: given that a location is not covered,
where A is the space of simple point sequences, for all What is the radius of the bigest ball (resp. length of the
positive functionsf(z, ¢) of z € R% and ¢ a point measure longest segment of orientatiéf) centered at this location
on R<. Here  is the intensity of, that is the mean number ~ that does not intersect any grain of the Boolean model?
of points per unit space. The last formula is the key todthese questions extend to many other models, either with non
for computing the mean values of sums on the points of Risson germs, or with Poisson germs but grains that are not
stationary point process. Applied to PPPs, they are péatigu i.i.d. An interesting application in the context of netwsris
simple. Let® be a stationary PPP of intensityon R%. Then considered in [46], where the grains are SINR cells, namely
for non-negativef, the region of the space around a transmitter where the SINR
with respect to this transmitter exceeds a given threslitdde
E (Z f(X)) =) f(z)dz (5) the interference is the field created by the other points ef th
Rd

3

E

Xed Poisson point process.



2) Gilbert's random disk graphThis is a model for wire-  For quantitative properties of Poisson—\Voronoi tesselest
less networks that is a special case of the Boolean modedean cell size, mean number of sides of the cell, etc.)
described above, and is due to Gilbert [32]. Assume that thad Poisson—-Delaunay graphs (mean degree, mean length of
compact sets described in the last subsection are all blallsaotypical edge, mean size of a typical triangle) sedy,
radiusr/2. We define the random disk graph of a Poisson poif#8]. In [17], [18], [49], Voronoi tessellation-based mdslef
® process of intensity with ranger, denoted as7, , as the cellular access network were considered to derive closad-f
graph with nodes the points df and with edges betweek expressions for the mean number of users in a cell, the mean
andY if the two grains touchi.e, if || X — Y| < r. This is length of connections, and the total power received at tise ba
the most basic random geometric graph and a central objecstation.
random graph theory. The following questions are of paldicu
interest within this setting:

« Does this random graph has an infinite component? Thi_J,”'

is of course equivalent t& having an infinite component. |, this section we apply some of the techniques introduced

This property is referred to aercolation A striking  apove to study the interference in large ad hoc networks and
result is that there is a deterministic critical valde< the outage probability of any given link.

r. < oo such that when < r., there is no such infinite
component with probability 1i.e., there is no percolation
for all realizations of®), whereas whem > r., there is A. Interference
an infinite component with probability 1i.¢., there is
percolation for all realizations o®). This is proven in

| NTERFERENCECHARACTERIZATION AND OUTAGE

We start with the general question: what can be said of the

§IV-C total interference power measured at a pairin the network,
« In case percolation occurs, what is the fraction of nod&/en by

included in the infinite component? In case of it does not I(z) & Z Lz =Y,

occurr, what is the typical size of a component? Yed,

The main tool for addressing these continuum percolati
guestions is a reduction to discrete bond or site percolati
For more on the matter, see [3], [35], [47].

Ahere ®, is a point process of transmitters (assumed to be
(l’nterferers) onR2?? @, is typically a subset of a larger point
processd since it constitutes the nodes selected by the MAC
. ) scheme to transmit concurrently. For example, if nodes in a
C. Voronoi tessellation homogeneous PPP of intensitytransmit independently and
By definition, a tessellation is a collection of open, pagavi randomly with probabilityp (slotted ALOHA), &, is a PPP
disjoint polyhedra (polygons in the casel®f) whose closures with intensity p. Due to Slivnyak’s result (segll-Al), I(x)
cover the space, and which is locally finite (i.e., the numbdpes not depend on the given location where interference
of polyhedra intersecting any given compact set is finite). is measured; in particular, it does not matter whetheis
Given a simple point measure (or point sequencen R? part of the underlying point proceds or not (as long as its
and a pointz € R?, we define thevoronoi cellC,(¢) of the contribution to7 is not considered if®; is conditioned on

point z € R? w.r.t. ¢ to be the set having a point atr).
. As mentioned irgl-B, researchers have followed an analogy
= R : |y — f —z}. (7 : ' o .
Cold) ={y € ly = 2ll < zieg,lmi;ﬁm ly = @ill} (7) to shot noise processés analyze the distributional properties

of I(z) [9], [16], [50]. This analogy can be used to derive the
Laplace transform of the interference as follows.
Let ® £ {R; = | X;||} be the distances of the points
of a d-dimensional uniform PPP of intensity from an
V= Z&Xi.,cxi (B)—X;) 5 arbitrary origino. Then ® is an inhomogeneous PPP with
i ' intensity function\(r) = ucqadrd=!, wherec; = |B(o,1)]
whose marks are the Voronoi cells shifted to the origin. is the volume of thel-dimensional unit ball. Considering the
The Delaunay triangulationgenerated by a simple pointinterference as a shot noise process (2), and also accguntin
measures is a graph with the set of vertices and edges for the fading terms, we can identify.£(r) = h,»~“ for i.i.d.
connecting eacly € ¢ to any of its Voronoi neighbors. fading h with the impulse response of the shot noise process.
The Delaunay triangulation of a Poisson point process is ¥¥¢ would then like to calculate the Laplace transform
object of central importance in communications. In a regula
periodic (say hexagonal or triangular) grid it is obviousito Li(s) 2E[e*| =E [H exp (—shRR‘“)

For a simple point proces® = Y, 6x, on R?, we define
the Voronoi tessellatioror mosaicgenerated byb to be the
marked point process

define the neighbors of a given vertex. However, for irregula
patterns of points like a realization of a PPP, which is often
used to model set of nodes in mobile ad hoc networks, tho§ the interference. This is a Laplace functional wjtfy) =
notion is much less evident. The Delaunay triangulatioersff s¢(r) = sh,r~®. The expectation is to be taken over both
some purely geometric definition of neighborhood in such andh, but since the fading is assumed independent of the
patterns. point process, the expectation ovecan be moved inside the

Re®



product, so we have from (3) (see also [61, Eqn. (3)]) distanceR

oo . TR*W _TR*I
Li(s) = exp{ - / Ep[l —e 5" ])\(r)dr} ps =P(S>T(W +1)) = exp (_ P ) E(e )
0 (©)
= exp ( — puegE[ROD(1 — 5)55) , (8) whereP is the transmit power. The first term only depends

on the noise (or SNR), while the second only depends on the
where§ £ d/a. Note that this expression is only valid forinterference (or SIR). Focusing on this interference teren w
0 < 1. So: notice that this is the Laplace transform of the interfeeenc
« Fora < d, we havel = oo a.s. This is a consequence ofvaluated at = T'R*. So, in ad-dim. interference-limited
the cumulated interference from the many far transmittepgtwork whose nodes are distributed as a uniform PPP of
whose signal powers do not decay fast enough to ke#fiensity A with ALOHA channel access with probability,
the interference power finite. For a finite network, thée success probability is given by (8), replacingy T'R":
interference would be finite. dr & 5
o Fora > d we havel < co a.s. butE(I) = co due to the Ps = &XP ( ~ Apea RN = )T ) (10)
singularity of the path loss law at the origin. Even if weHere we have used the fact that ALOHA channel access
consider only the nearest interfer&X) is infinite. If a performs independent thinning of the PPP, which results in
bounded path loss law is used, all moments exist. ~ a PPP of lower intensity. The interferers’ channels may be
In the important case of Rayleigh fading[s’] = T'(1 + §), subject to a different type of fading (or no fading), all that
s0, using the properties of the gamma function, we obtain theatters iSE[R°].

closed-form result The equivalence of Laplace transforms and success proba-
5 bilities has been pointed out in [56]-[58], and in [58] saler
Li(s) =exp ( — ucds‘g.i) . generalizations can be found.
sin(md)

So the interference hasstable distributionwith character- C. Throughput

istic exponenbd and d'SP?rS'OWCdE[hé]F(l —0). Sinced < 1, The transmission success probability in the previous subse
I does not have any f|n|t§ moments.- .. tion is derived assuming that the desired transmitter imgfiss
A closed-form expression for the interference distributio, hije the received listens. To optimize the network pararst
only exists ford = 1/2; this is the inverse Gaussian or L&vyg,ch, a5 the ALOHA transmit probabilify, the unconditioned
distribution, as has been established in [51]. success probabilities must be considered. In the case of
Using the distribution of the distances to theth nearest 5| oHA and half-duplex transceivers, thapatial throughput
neighbor [52], the distributions of the interference (with ;g p(1 — p)ps(p). Finding the optimump means finding the
fading) from then-th nearest neighbor are easily found. ThSptimum trade-off between spatial reuse (a largeresults

tail probabilities do not depend on the presence or type gf 4 higher density of concurrent transmissions) and sscces

fading and are given by probabilities (a largep results in higher interference and thus a
lower success probability). In [58], a related metric, $ipatial
density of successp, is optimized in function ofp. In some
cases, the optimal value, which is known in closed form, does
interference-canceling techniques are used and theenterée not depend on the intensity of the underlying point Process.
The same framework can also be used to find the optimum

from the.k ”eaTeSt interferers can be canpglled, we riepdo value for the SINR threshold that maximizes tharea spec-
in two-dimensional networks to have a finite second moment, o . . .
. _., tral efficiency A larger T' permits higher transmission rates
If the non-singular path loss modé{z) = (1 + ||z||)~®

is used, the tail probability of the interference reflects til (or spe<_:tra| efficiencies if norma_li_z_ed by the bandwi_d_th) bu
probability of the fading process: If the fading has an expégsults in lower success probabilities (see further disions

nential or power-law tail, so does the interference. Thikl$io n §V-B). Similarly, th_eprobab!l|st|c progressusually (.j.emed
S . as the product of distance times success probability can be
for general motion-invariant processes [53]. Other apgnea

: o . . L maximized by finding the optimum link distancB [59].
to the singularity issue are given in this issue [54], [55]. Choosing a I)f;rgeR r?way incfease the progress bu[c cg)mes

with the disadvantage of a lower success probability [60]. |
B. Outage [58], an expression for progress based on extremal shog nois

An outageof a wireless link is said to occur when a packe'tS derived, and in [61], the_ distribution aqd the mean valu,e
transmission fails. In many situations, it is justified taiate ©f the throughput of a typical user (as given by Shannon's
the outage event to the event tS#{R < T for some threshold formula) are given using Fourier transform techniques.

T that depends on the physical layer parameters such as rate
of transmission, modulation, and coding. The complemgntar )
probability is the success probabilipy £ P(SINR > T)). A. Introduction

In the case where the desired sighak subject to Rayleigh ~ Percolation theory was originally introduced to model the
fading, we obtain for the success probability over a link gforosity of materials. It has since then developed into @lliv

1
P(I, > z) ~ H()\cd)"a:_n‘;, T — 00.

This means thai(I?) exists forp < nd. For example, if

IV. PERCOLATION AND CONNECTIVITY



branch of probability. More recently, percolation modedsd
been used to model the connectivity of wireless multi-hop
networks.

The main property of percolation models is that they exhibit
aphase transitionn their connectivity behavior: depending on
some (continuous) parameters, the components of the model
are either all finite ub-critical case) or one giant component
forms (Super-criticalcase). In the context of networking, such
a transition affects the performance of the system greaﬂ?g. 1. A realization of the bond percolation model Bh (plain lines) and

. . S dual (dotted lines).
without a giant component, the network would be complete\y
fragmented and unusable. It is therefore of prime impoganc
to characterize the conditions under which the network js p < 1/3, this quantity tends to zero whem increases,

super-critical. In this section, we cover some basics of P&y inat (11) implied)(p) = 0. So we have established that
colation theory, starting with the simplest models and [)r09C > 1/3.

techniques, and then moving on to models that are morey) gyistence of an infinite cluster for sufficiently large

appropriate for wireless networks. _ .. p: Our proof relies on the classical Peierls argument [63].
Percolation theory deals mostly with models of infinite size~qsider the dual lattice &2, which consists of vertices that

We start with these classical models and briefly addres®fin.» ghitted by half a unit in both directions, as depicted in
networks. ’

O***@***O**O**Q
I I I |

( J *—© ( J

Figure 1. An edge is placed between two direct neighbors of
) ) . . the dual lattice if it does not intersect an edge of the direct
B. Discrete percolation: Bond percolation in infinite l&tis  |otice.

The bond percolation model is defined as follows: consider The key observation is that if a component is finite in the
the infinite square lattic&” and connect each pair of nearesgriginal lattice, it is necessarily surrounded by a cirénithe
neighbors independently with probabiliy Then define the dual lattice. To prove that a verteg.(, the origin) belongs to
component (oclustel) of the originC' as the set of elements ofan infinite cluster with positive probability, it is thus argh
7? that are connected to the origin by a sequence of adjacesishow that the probability that a circuit surrounds theyiori
edges. We define thgercolation probabilityas in the dual lattice is less than one. Let us estimate the numbe

o _ o(n) of possible circuits of lengtBn that surround the origin:
6(p) i=P(#C = 00). it is easy to see that it is bounded by
The central result of percolation theory is the following:
o(n) <(n—1). 320,
Theorem 1 (Broadbent and Hammersley [33])There
exists a numbef < p. < 1 such thatd(p) = 0 for p < p.
and 6(p) > 0 for p > p..

Therefore, the probability that there exists a circuit awhthe
origin with all edges closed upper bounded by

o0

In the particular case of bond percolation @#, the exact P(closed circuif < Z(l —p)*"o(n)
value ofp, is known to bel/2 [62]. Other specific cases and n=2
properties of)(p) can be found in [47]. To prove Theorem 1, 9(1 —p)?
we need first to observe thatp) is an increasing function. - 1—9(1—p)22

Although this is a very intuitive property, its proof is nat s .

trivial (see,e.g, [35, Ch. 2.2] for a general method). It is therON€ can verify that whep > 1 — 1/(2v3) ~ 0.71, the
enough to prove that there exists some probabjlity> 0 above sum converge_s_to a number smalle_r _than one. A_s a
such thatd(p;) = 0 and some probabilitp, < 1 such that consequence, the origin belongs to an infinite cluster with

(p2) > 0. The following two sections are devoted to findingOSitive probability. _ o
p1 andp,. Note that since the existence of an infinite cluster does not

1) Absence of percolation for small values;of We start depend on the state of a finite number of edges, we can use
from the observation that if the origin belongs to an infinit&olmogorov’s zero-one law to conclude that the probability
cluster, then for any integet, one can find in the lattice a thatsuch a cluster exists is either zero or one ¢sge[64]). If

self-avoiding path of length starting at the origin. Thus we it was zero, then the origin would belong to an infinite cluste
have also with probability zero. Therefore, whenew&p) > 0, an

) infinite cluster exists with probability one.
0(p) < P(3 a path of lengthm starting ato) Vn.

If all direct neighbors ofZ* were connected by an edge, the. Continuum percolation: The random geometric graph
numberk(n) of such path would be bounded from abovelby

37~1, Since edges are present with probabitifyeach of these
k paths exists with probability™. Using the union bound, we
find that

The basic random geometric graph or disk graph,, as
defined in§ll-B2, relies on two assumptions: First, the nodes’
location follows a two-dimensional Poisson point process.
Second, each node can communicate directly to any other
PP(3 a path of length starting ato) < 4p(3p)" . node within a radiug around it. The latter assumption comes



from the following model: assume that nodes emit with a

according to a deterministic decreasing functi#). Assume
also that receivers can successfully receive data if theasig
is at leasts times stronger than the ambient noise, which ha
powerW. Then the transmission radius is defined by

PAD) > gy, (12

Similarly to the discrete model, we denote B\, r) the
probability that a node located at the origin belongs to an
infinite cluster. Due to its simplicity, the grapH, , can be
rescaled while keeping its connectivity properties. Intjéfeall ~ Fig- 2.~ On the left hand side, the division of the plane intaiasgs. On

. .. . . he right hand side, each square is assigned to an edge ofdapeocolation
distances are divided by, the underlying PPP is transformeofnodel (bold lines).
into another Poisson process with intensity\. Thus, the
graphG,z, ./, has the same connectivity properties@g .
and we have d where grains are balls whose radius is now random. It turns

O(v*\,m/v) = O(\, 7). out that for a suitable radius distribution, a phase traorsit
As in the bond percolation model, we briefly explain a WaIS observed &.‘t some critical germ density. Denotingrbshe
- Xrandom) radius of a ball, one can show [35] that whenever the

to show that a phase transition occursGg ;..

; i i i 4
1) Absence of an infinite cluster for small valuesof dimension of the model is greater than one arit{ ") < oo,

Consider a node placed at the origin. We populate the gét therefxists a C”“?"’." value of below which the uniqn of th?
of the nodes connected tostep by step: at step zero, we Set‘tlalls = has only finite components and above which a giant
C = {o}. Then at each step, we addddall nodes that share Component forms.
an edge with an element @f. As each node has on average
Arr? edges, this process can be compared to a Galton-Wat&nOther models
process [34] where each individual gives birth\ter? children In this section, we briefly describe other percolation msdel
in average. The difference is that in our process, the numiskat are relevant to communication networks. In all of them,
of nodes added at each step might be smaller, as some ndtiedocation of the nodes is modeled by a Poisson point psoces
sharing edges with elements 6fmight be already irC. It is  of density A over R2. They differ only by the criterion used
known that if the average number of children per individudbr adding edges between nodes.
in a Galton-Watson process is smaller than one, the procesd) Nearest-neighbors networksn this model, each node
stops after a finite number of steps [34]. As our process groasnnects to itg nearest neighbors. This model is for example
more slowly, it certainly stops in this case too. Therefoee wsuitable for a dense wireless network where nodes use power
have that ifA < 1/(7r?), the cluster of the origin is finite a.s.control algorithm in order to be connected only to theiiirst
2) Existence of a giant cluster for larga: We use a neighbors.
mapping onto a bond percolation model: We divide the planeAn important property of this model is that the value of
into squares of size = r/21/2 as shown in Figure 2. Each\ does not affect the connectivity of the model (it is called
square corresponds to a potential edge of the lattice, whiglscale-freemodel). Therefore, its only relevant parameter is
is added if at least one point of the Poisson process fals One can show that there exists a critical valuekofor
into this square. Thus, each edge is present with probabilivhich a giant component forms, and below which only finite
p = 1 — exp(=\c?), independently of the other edges. Alusters are observed. In two dimensions, the critical evédu
a consequence, ik > log2/c?, the edge percolation modelconjectured to bé = 3 [39].
contains an infinite cluster a.s. 2) Random connection modeThis model is another gen-
Moreover, if two edges are adjacent, then by constructi@nalization of Gilbert's model. For each pair of nodes, we
two points of the Poisson process are located in squares thaitsider the distance between them. Then we add an edge
share at least at one corner. Therefore, the distance hetwketween them with probability(x), whereg is a function
them is less thar2y/2c = r, and they are connected infrom R to [0,1] such that[;” zg(z)dz < oco.
G- Accordingly, an infinite collection of connected edges This model takes some randomness of the wireless channel
corresponds to an infinite set of connected pointsGin,. into account. nodes connect to each other probabilisficall
We can thus conclude that ¥ > log2/c?, G, contains an depending on their distances. The probability of failedrzmn
infinite cluster a.s. tion can for example model a shadow fading effect. Gilbert's
The exact value of the critical densiky(r) or critical radius original model can be retrieved by settiggr) = u(r — z).
r<(A\) is unknown. ForA = 1, the boundsl.1979 < r. < A similar phase transition as in Gilbert's model can be
1.1988 were established with9.99% confidence in [65]. observed at some critical density of node38]. One relevant
3) Generalization to the Boolean modegilbert's random question is how this critical density changes with the shape
geometric graph is a particular case of the Boolean model (¢be connection functiow(z). The work in [66] has shown
§1I-B). Let us consider a Boolean model of arbitrary dimensiothat under some spreading transformationsgoithe critical

r 2 max{d :
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density cannot increase. The spread-out limiting case Isas a -
been worked out in [67], showing that in the case of very 0os |
long, unreliable connections, the critical density hasnaitli
corresponding to that of an independent branching process, oo}
i.e. the average degree of the corresponding random graph at
the percolation threshold tends to 1. Alternative proofthese
spreading results also appear in [68], [69].

3) Signal-to-interference ratio graph (STIRG) moddlhe

subcritical

connectivity criterion in (12) compares the received signa ooz | /

the ambient noise only. However, if several nodes are using /

the same channel, interference degrades the receivedssigna oot supercritical

In the so-called STIRG model [36], [37], the SNR threshold / ——

is replaced by an SINR threshold as in (9) so that the nodes "¢ i, s 5 s 10 2

X, X; € ® are connected by an edge if A

PAOX: — X51) >T ig. 3 lation threshold of the STIRG model: in this fe luated

I G T T — P ) = e e ) e s

wherel(X,) = Zxkeé\{xi} PU(||X: — X,|)). This condition occurs (supercritical region).
ensures that the two nodes have a sufficiently high SINR to

exchange data in both directions despite the interferehia#t o
the other nodes. The factar< 1 serves as a weight for the
interference term and models the gain of the spread spectr
scheme (if any).

As a consequence of the above theorem, sificer) is
ﬂever equal to one, there is always a non-vanishing fraction
Sfisconnected nodes in the network. However, if one lets th
. : . connectivity range increase with, the fraction of connected
This model differs from the others by the fact that if ha odes can be made to converge to one. If the connectivity

more degrees of freedom. Clearly, when= 0, the model . .
is equivalent to Gilbert's model, and it percolates abowe fo9e of the nodes is a functiofn) of the number of nodes,

- . ) ) the condition forasymptotic connectivityi.e. the condition
;;Lt;\zzlagggefuiecrt]iilnw ;?L;illnb;ergssg;%hr? iltnhg]se bceaesr? s?lfo quer which the probability that all nodes are connectedgen
in [36] that for large enough one can choose small enough {6'one when the: increases) is given by
so that the model percolates. This result has been strerggthe logn
in [37] to show that this is the case whenever> ). and r(n) = +c(n),
also for attenuation functions of unbounded support. Ireoth ) ) _
words, whenever the node density is super-critical (in &tlb wherec(n) is any function such thatm,, .. c(n) = oo. This
sense), the model can tolerate a certain amount of intexdere "€Sult can be deduced from [70] and has been published in its
before the giant component disappears. Figure 3 gives a—pic‘?Xp“C't formin [71]. A S|m|Iar. gon_dltlon on the rate _at wlitic
rial representation of this mathematical result obtaimedugh ? — 1 to observe full connectivity in a bond percolation model

computer simulation, illustrating the parameter domairexeh on ann xmn g.r|d has been _der“{e(_j in [72]. .
percolation occurs for a power attenuation functiéfs) of ~ Nearest-néighbor model:A similar result on asymptotic
bounded support connectivity has been derived for the nearest-neighbodeino

The rate at which the number of neighbdranust increase
with n is [73]:

E. Connectivity in finite networks

) < <0. .
In finite networks, there is of course no infinite cluster, 0.3043logn < k(n) < 0.5139 logn

and therefore no percolatiostricto sensu However, if one  |n summary, tools from percolation theory and random ge-

considers a sufficiently large network, one expects to eeselometric graphs have enabled analytical studies of the asnne

a similar phenomenon: if the density of nodes is large enpugfity properties of large ad hoc networks. While conneityiv

a component that contains a large fraction of the nodrsa fundamental prerequisite for network operation, itsdoe

should emerge. The following theorem follows from [70] anéot guarantee any network throughput or capacity. The study

confirms this intuition in the case of Gilbert's disk graph. of the capacity of wireless networks is the topic of the next
section.

Theorem 2 Consider the restriction of a Boolean model to a

square of sizg/n x \/n, whose connectivity graph is denoted V. CAPACITY AND SCALING LAWS

by Gx.-(n). Denote byCl (1, n) the event that there exists in

Gi,-(n) a component that contains at leagt vertices. Then

we have

The capacity of a communication system is the maximum
data-rate in bits per second that can be reliably trangferre
) from transmitter to receiver. In the strict informatioretiretic
lim P(Cy,.(n,n)) = { 1 !f n<0(Ar) sense, this is an unsurpassable upper bound that, in @actic
n—oo 0 it n>0(\r) can only be approached. In a single Tx-Rx link of unit
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bandwidth subject to AWGN, the capacity in bits per chann8iince there is no a priori reason to operate the network in
use (.e, bps/Hz) is given by the Shannon-Hartley formula: a multi-hop fashion and treat the interference tef(w) as
pure noise, the square root law of Gupta and Kumar can
10g, <1 + ﬁ) , (13) in principle be surpassed. One can, for example, envisage a
w network strategy in which groups of nodes help each other,
where, as before§ = P¢(r) and W are the received powerrather th_an interfere, by coherently summing their sigradls
and Gaussian thermal noise at the receiver, respectively, he receiver. _ -

The situation becomes more complex in an ad hoc networkP€rhaps the main contribution of Gupta and Kumar has
with n Tx-Rx pairs, where the capacity is much more difficulp®€n 0 show that such a simple geometric interference-
to define and compute. The most general (and natural) descRgS€d model can lead to meaningful insights on the capac-
tion is given by the so-calledapacity regionwhich is ann x n ity Il_mltat|ons of W|_reless networks ope_rated with current
matrix C' where thec;; entry corresponds to the capacity fronfulti-nop technologies. Furthermore, their paper shovned t
nodei to nodej, which is also dependent on the signals beingfochastic geometry tools such as random Voronoi tesiseitat
generated by the remaining— 1 transmitting nodes in the and random geometric graphs can be used to analyze the
network. These can either interfere with the communicati®f’formance of network protocols. .
betweeni and j, or be cooperative and aid communication GUPt& and Kumars work sparked an enormous interest

betweeni and j. Clearly, due to the many possible wayd" the field. On one side, under the same restrictive model,
of interaction, the capacity region of an ad hoc network gimpler strategies achieving the same square root law have

difficult to characterize. Even for very small values of P€€n proposed [41], [76]. The work in [41] is particularly

such asn = 3, the capacity region has yet to be determined€levantin the context. of this paper, as it showed a conmecti
Therefore, intermediate descriptive theories that fatirslof P&tween protocol design and percolation theory. In thaepap

the strict information-theoretic standard are neededpasted the flow of information through the network is compared to
out in more detail in [74]. the number of disjoint paths crossing the network from side

to side in an underlying percolation model. It is shown timat i
a network of area proportional to the number of nodeshe
A. Capacity scaling laws number of disjoint paths crossing the network area from side

One attempt to simplify the problem came in 2000 by Gupfg side in the underlyi_ng percolation moqel grows wigfn.
and Kumar [75]. Their approach was to introduce two maid€nce, roughly speakmg, the amount of information t_hat can
simplifications: on the one hand, they proposed to study tH8W &cross the network is only of the order gf, and since
case in which all the nodes in the network are required th"0des must share this flow, the/n bound follows. .
transmit at the same bit-rate. This implies that the whole On the other side, researchers were interested in discgveri

capacity region reduces to a single scalar quantity. On iyhether the square root law holds in a more genera_ll context.
other hand, they proposed to compute only sealing limit Hence, they started to seek bounds on the capacny scaling
i.e., the order-of growth of such a scalar quantity as the numggpt were mdepenldent on t::el r;etwork opderangln strategy.
of nodes in the network increases. In addition, Gupta add'S ™More hgehnera i\ppfroz?\c 3 to consi efra € success.
Kumar's scaling law was also derived under some assumptic%@mng with the work of Xie and Kumar [77lnformation-

on the physics of propagationd. channel gains that decayt eoretlc_sca.hng laws, mdependent of any strategy used for
as a power law of the distance between transmitters afjgnmunication, have been establ_lsh(_ad by many_authors_[78]—
receivers), and on some restrictions on the cooperatiategly [ﬁZ]' These arlske)) fro(;n the ;\pphcatlr:)_nhof”the mformz;;l)on-
employed by the nodeg«., multi-hop operation and pairwise 1€0retic cut-set bound [83, Ch. 15] which allows one to labun

coding and decoding at each hop). Their main result was tmf total information flow across any network cut, allowing

so-called square-root law, namely, mincreases the per-nodear itrary cooperation among the nodes. Among these works,
bit-rate decreases ag/n a short information-theoretic derivation of the squaret tew

Due to their restrictive model, the result of Gupta and KJ_ering on geometric elements of spatial point processes is
' iven in [80]. It is important to notice, that while essetijia

mar cannot be considered an unsurpassable bound in the sth¥

information-theoretic sense. It does not allow sophistida confirming the square root law in a more general context, all
network coding strategies but only point-to-point transsian the results above still depend on the assumptions made on the

ltiole hops. and it rel ific ph -gllectromagnetic propagation process.
across rp'e nops, and 1 refes on a speciiic physic Indeed, more striking results appear in [84], and [81].

ti del i hich the signal ived
propagaton mocel in whic © slgna’ power receive these papers show that a much higher per-node bit-rate than

distance||z| from the transmitter is given by(z) = ||=| . . o :
Under this model, at each hop the collective interference ci(el/\/ﬁ) catr_w be achl[ﬁvedhm yv|r|eless netv;/_orks by chan_gg;r:g
be approximated as Gaussian and its power added to the nd) %assump lons on the physical propagation process. these
authors introduce the presence of an additional source of

term W in (13). In this way, any point-to-point link in the d by adding fadi Und :
network from an arbitrary chosen origin to pointc R? can randomness by adding tading. nder some assumptl_ons on
the fading process and when the path loss exponeis
support a rate of . . .
sufficiently small, these authors describe node cooperatio
Phw£(|x||)) strategies based on space-time codes which can achieve an

log, (1 + W+ I(x) almost constant per-node bit rate: a great improvement com-
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pared to Gupta and Kumar's original bound! Hence, the There are some shortcomings of this metric, namely that it is
main message of the above papers is that there is a gairusoally a single-hop metric rather than end-to-end, presum
be expected when adopting more complex node cooperatmmmon SINR target and outage probability (conceptudiby li
strategies than simple multi-hop operation. the packet error rate), and is more the description of a given
A recent additional effort has been made in [85], whickechnology through its achieved SINR than of technology-
recognizes that the strong dependence of informationrtieo independent fundamental limits. Nevertheless, it doesucap
results on heuristic physical propagation models is someh&ey aspects of capacity — “good” communication techniques
undesirable for a theory that seeks the fundamental linfits ghould provide higher transmission capacity — and combined
communication. They showed that the square root law algdith a homogeneous Poisson distribution for the interfgrin
arises from physical limitations dictated by Maxwell's gigs nodes, yields superior analytical tractability to othetwark
of wave propagation, in conjunction to the informationthroughput metrics. We now provide the simplest baseline
theoretic cut-set bound. This result shows that the originaodel for transmission capacity. The key aspects of the inode
prediction of Gupta and Kumar is also due to a degreeare as follows, with generalizations noted.

of-freedom limitation that is independent of empiricallpat , Fixed transmit distanc&. Variable transmit distances can
loss models and stochastic fading models. In other words, pe ysed but reduce the tractability: in general a loss factor

stochastic fading assumptions such as in [84], and [81] are of E[R2]/(E[R])? is experienced if the transmit distance
open to debate, as they can lead to non-physical results. R is a random variable [90].

But does this lead to the conclusion that the sophisticated, single transmit and receive antennas. Multiple antennas
cooperative strategies described in [84] and [81] do nad lea  can obviously increase the transmission capacity [60],
to any improvement over multi-hop operation? The general [91]-[93].
answer is no. Recall that scaling results are only up to order, Homogeneous PPP for interferers, which implies an
and pre-constants can make a huge difference in practice. Al OHA-type transmission scheme. Generalizations are
Sophisticated cooperative communication schemes coutd ce  nontrivial, but one to clustered PPPs has been undertaken
tainly improve upon nearest-neighbor routing. The precise [94], and exclusion regions are considered in [95].
amount of this improvement, if any, remains unknown; it is , |nterference is treated as noise, although it can in princi-

only known that this improvement vanishesragrows [85]. ple be cancelled or suppressed by an appropriate receiver
to get higher capacity [96]—-[98].
B. Transmission capacity and area spectral efficiency The key to transmission capacity is outage probability,

Althouah scaling laws brovide sianificant insiaht on th which for the case of Rayleigh fading can be exactly derived.
lar e—sca%e erfor?nance gf ad hocg networks g finer Vi(;%etting this equal to the outage probability targand solving
g P ' 0) for A\ (see (14)), the transmission capacity in this simple

of throughput limits is needed to understand how differe ; ; ; .
. ) case is (two-dimensional networks, thermal noise negigcte
technologies and protocols affect the baseline performanc

of distributed wireless networks. Many, even most, commu- (1—¢€)ln(l —¢) € 5

nication design choices will have a significant effect on the Cole) = C(a)R2T?/ - C(a)R2T?/ +0(e), (19

achievable SINR and hence throughput, while not affecting

the scaling law. In this section, we show how stochastighere C(a) = 7'+2/¢/sin(27/a). This simple expression

geometry and, in particular, the techniques for charadtegi shows precisely how the number of supportable users in the

interference and outage §fll, can be used to determine thenetwork depends on outage probability (about linearly|dar

area spectral efficiency (ASE) in a specific ad hoc netwodutage), path loss exponemnt and target SIR" (noise can be

design; in other words, the number of bits per second per umtluded at the expense of more bulky expressions).

of bandwidth that can be transmitted in a given area. If there is no fading — just large-scale path loss — it is
The ASE is formalized by a metric termed ttransmission possible to get tight bounds but not an exact solution. In

capacity first proposed in [86], which is the maximum numbethis case, bounds on the transmission capacity are as &llow

of bits per second sent by all users in the network per umithere we have included the noise poweand transmit power

area, subject to a constraint on outage probability redativa p for SNR = p/n

SINR threshold. Formally, the transmission capacity isrobefi

as (a—1)e ( 1 2/a) 2
+ SNR +0(e”) < (e
c(N) £ (1 —¢) (14) ar  \ R?*T%/e (€) < ele)
€ - (o7
measured in transmissions/area, wheageis the maximum < . (7R2T2/a +SNR™% ) +0O(e?). (16)

density of transmissions supported such fREINR < 7] <

¢, for an SINR targefl”. Adding the per-user data rate (whichNote the similarity between (15) and (16): they are within
would be on the order dfog,(1 + T') bps/Hz) results in the a small constant of each other, all the parameters are of
area spectral efficiency. Transmission capacity is usedhes the exact same order. Arbitrary fading distributions can be
capacity metric in a few papers in this issue [87], [88], andccommodated at further loss of tractability [90], but agai

a more extensive tutorial on transmission capacity is alldl there is no change in the first-order effects of the system
online [89]. parameters.
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What is useful about the transmission capacity is thathich again may require stochastic geometry to charaeteriz
it allows candidate technologies and design choices to imea statistical sense for a typical node placement. In short
compared objectively, analytically, and fairly simply.rFex- stochastic geometry can be viewed as a supplement and tool
ample, one might ask how adding spread spectrum modar many approaches to determining network capacity.
lation (CDMA) to the system would change the number of When discussing the capacity in its information-theoretic
supportable users. The answer with the transmission dgpasense, that is as an upper bound to the best possible network
metric is fairly immediate. With asynchronous binary direc throughput, it is important to note that the capacity is naly
sequence spread spectrum (DSSS), the target SINR is effecbe achieved by a purely random choice of transmitters.
tively decreased t@7'/3M at the cost of a bandwidth penaltyRather, capacity-approaching techniques will almost Igure
of M?2. If frequency-hopping (FH) was used insteakl] require some degree of cooperation or at least coordination
independent channels are created with an effective imtarée® among the contending transmitters, which will degrade the
density of A\/M on each of them. With some straightforwardelevance of the 2-D Poisson distribution upon which most
manipulations it can be seen that the transmission capscitiesults in this tutorial are based. As again highlighted in
become the conclusions, particularly from the standpoint of under

2 standing network capacity, new stochastic geometric tools
CDS(E) — (%) col€), CFH(E) = Mec,(e) . (17) that go beyond a homogeneous PPP are urgently needed to

2 better characterize networks with cognition and intehige
The ratio - transmission scheduling. Some recent results in this titirec
C .
5= ey M2 (18) can be found in [94], [104].

implies that frequency-hopping is a superior form of spread VI. OTHER APPLICATIONS ROUTING, INFORMATION

spectrum in an ad hoc network, for example by a factor of PROPAGATION, POINT PROCESSES WITH-ADING, AND

VM when« = 4. In principle, any modulation technique, SECRECY

multiple access or even scheduling protocol can be analyzedvhile the connectivity and capacity have been the main

using the transmission capacity metric to predict relag@ms. applications of stochastic geometry and random geometric
graphs to wireless networks, there have recently been other

C. The road forward problems areas where these techniques have led to intgyesti

. . results. Some of them are briefly described in this section.
Scaling laws on transport capacity and exact results on

transmission capacity both provide important views inte th .

network capabilities, but both presently fall short of dding A. Routing

a complete metric for the achievable network throughput. While many of the analytical results discussed so far focus

Future research should attempt to bridge this gap, by imgiz On single-hop metrics (outage, single-hop throughput and

stochastic geometry to quantify end-to-end achievablesratProgress), recently progress has been made toward arglyzin

For example, each hop in the network can be consideredréyting protocols on a PPP using stochastic geometry tools

have some outage probability, and an aggregation of suéhevaluate the mean cost of the route and its fluctuations

stochastic links comprises an end-to-end connection in¢he [105]. A typical example is that of greedy forward routing

work, with some aggregate outage probability, achievahta d Where a transmitter sends a packet to the nearest node which

rate, and queueing delays at relay nodes. A recent examiglecloser to the packet's destination than the transmitter.

in this vein can be found in [99], where a delay-minimizinghe Poisson case, the geometry of the associated routes can

routing strategy for ad hoc networks is proposed. The aisaly§€ analyzed thanks to the locality of the definition of thetnex

is complicated by the spatial and temporal correlations th2op [105]. Another approach is taken in [106] where nearest-

exist in the interference due to the common randomnessffighbor routing in a sector pointed at the destination is

the nodes’ positions [100]. compared with routing schemes that use longer hops. In these
Another promising related approach is the increasing popapers, interference is not taken into account to deterthme

ularity of erasure channels and erasure networks to model fRasibility of a link. A first attempt to combine routing with

performance of links that are occasionally in outage [18%]. an SINR-based link model can be found in [107].

though this has never been done, one can envision combining

emerging results on the capacity of wireless erasure nksvoB. Epidemic models; first-passage percolation

with outage (erasure) probabilities computed with the help Random geometric graphs are useful to model the propa-
of stochastic geometry tools. Two important new techniquggtion of information (or disease, fire, or anything else) in
wireless networks include the deterministic capacity [l 0®l some broadcasting strategies and elements of first-passage
the degrees-of-freedom region [103]. These approachés bggrcolation.

require relative values for the channel gains of each link, \Wwe denote byG . the graph obtained by adding a node

) _ _ __at the origin in the standard random geometric graph,.
Asynchronous binary sequences kf +1 bits have a cross-correlation ’

variance ofz%, perfectly synchronized sequences haewhich is actually As elx.pla_ined in§ll-Al, adding this point is equivale.nt. to
not as desirable. conditioningG, . on the presence of a node at the origin.
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1) Broadcasting in multi-hop networksConsider the sce- 2) First-passage percolationFirst-passage percolation is a
nario where a message is to be broadcast in a static netwbranch of percolation theory that addresses the actuatieng
whose connectivity is represented by the gra@h,. Let of the shortest path in percolation models (seg, [111] for
us assume that the MAC layer prevents collisions perfectyn introduction). It is useful to compute the propagatioeesh
and that each nodes forwards the message when it recewkmessages in a multi-hop network.
it for the first time (flooding). Under this algorithm, the a) Asymptotic shapeConsider the graplyy .., and de-
message propagates to the entire component to which fime thehop distancealso calledchemical distancebetween
source belongs. Therefore, the probability that the messawo nodes as the number of hops on the shortest path between
reaches an infinite number of nodes is equal to the probabilihem (or infinity if no such path exists). L&, be the set of
that the source belongs to an infinite clusiéx, r). nodes that are at distanéefrom the origin. We expect that

a) Probabilistic broadcast (gossiping)The number of the shape ofS is relatively circular around the origin. The
transmission occurring in the above algorithm is exactiyatq following theorem confirms this intuition:
to the number of nodes who received the message. This
number is unnecessarily large, since each transmissichesa Theorem 3 (seeg.g., [112]) There is ax > 0 such that for
all the neighbors of the sender. Thus, each node receives @y 0 < ¢ < 1 almost surely
message from each neighbor while once would be enough.
A strategy to reduce the number of transmission is to let the Sk € Bloy (1 +e)ku)\B(os (1 — e)ku)
nodes forward the message only with a probabity 1. for all sufficiently largek.

The decision whether to forward or not can be made by the o ) _
nodes before the broadcast starts. Thus, in order to antigze D) Blinking model:First-passage percolation can also be
propagation of the message, one can thin the point proc&§€d to assess the speed of propagation of a message in a
and retain only the nodes who are willing to forward th@ynamic model. An example is given in [113], where nodes
message (called hereaftactive nodes). We obtain a thinned@ltérnate between active and sleep mode in a random and
PPP of intensity\ on which we can construct restricted grapiidependent fashion: At any instant, only a fractibre 1 of
Gpr.- Thus the message originating at the origin reaches K¢ nodes are active, so that the connectivity grapt¥ s, .
infinite number of nodes if the origin is active and belong8S the message is emitted by the source, it instantaneously
to an infinite cluster of the thinned graph. This happens wiffoPagates to all active nodes that are connected to theesour
probability 6, (A, ) := pf(pA,r), as the two conditions are If fA is below the critical density, the initial propagation is
independent. As a consequence, if the original gragh. is  &S- limited to a finite number of nodes. Then, the propagatio
super-critical, there is a critical value fprabove which the continues as further nodes switch to active mode. Firssqges
probabilityd, (X, ) of a successfubroadcasti(e., a broadcast Percolation allows to show that in this case, the asymptotic

where an infinite number of nodes are reached) is stricfj/ape the the area where the message has propagated after a
positive. time ¢ is still circular for larget despite the sub-criticality of

The next value of interest is the fraction of nodes reached [‘RF graph at each instant.

the message in case of a successful broadcast. Nodes reachghthe ALOHA. case, initial results on the propagathn speed
by the message include the active nodes that belong to iﬂénterfe_rence—hmlted ad _ho_c networks can be found in ||?-14
infinite cluster inG) » and the inactive nodes that are withi 115]. Itis shown that a similar shape theorem holds as in the
distancer from them. The fraction of nodes belonging to thénterference—free case (Th. 3).

latter category can be computed as follows: Consider aitotat

z of R%. If an active node were located at it would belong C. Point processes with fading

to the infinite cluster of7,, . with probability 6(pA, ). This The path loss over a wireless link is well modeled by the

means that the point is within a distance less thanfrom 4,0t of 4 distance component (often called large-scatle p

a node Of. the infinite cluster with that probability. _Thuse t_hloss) and a fading component (called small-scale fading or

total fraCt'on Of. nodes r?"}?"hed _by the message is precs@h’adowing). It is usually assumed that the distance part is

0(pA, r), which is a surprisingly simple result. deterministic while the fading part is modeled as a random

b) Other models: Probabilistic broadcasting has beefprocess. This distinction, however, does not apply to many

studied in [108], and an extension to a model with collisiongpes of wireless networks, where the distance itself igesib

can be found in [109]. to uncertainty. In this case it may be beneficial to consibler t
Another variation of the gossiping algorithm, where nodedistance and fading uncertainty jointlye., to define a PP that

forward the message only if their node degree is less tharinaorporates both.

certain threshold, can be addressed using the STIRG modélVe introduce a framework that offers such a geometrical

presented ir§IV-D3 by using the step functiod(z) = 1 — interpretation of fading and some new insight into its effec

u(xz —r) as an attenuation function. A sophisticated algorithmn the network.

to realize degree-dependent activation in a sensor neteark  Let {Y;}, i € N, be a stationary Poisson point proces&ih

be found in [110], where the authors show the existence ob&intensity 1, and define thgath loss point proceséefore

phase transition for the propagation of messages undar tHating) as® = {X; £ |Y;||*} for a path loss exponent.

algorithm. Let {h, h1,hs,...} be an iid stochastic process withdrawn
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2) Broadcast transport sum-distance and capacifjhe
broadcast transport sum-distande, i.e., the expected sum
x T | over the all the distanceXil/o‘ from the origin is defined as

N
X
Xx
XX XX

- Dy 2B ) XV (21)
i Xed

XX

N Using Campbell's theorem (5), it can be shown that the
broadcast transport sum-distance for Nakaganfading is

5§ 1 T(m+A)

-2+

W Dm = CdZ (ms)A ].—‘(m) ) (22)
) whereA = (d+1)/« and the (broadcastding gainD,,,/ D
sl x 1 is
' D _ LAM — E(h2). (23)
S o 2 s 6 8 Do m I'(m)

Fig. 4. A Poisson point process of intensity 1 inl& x 16 square. The So the fa@_"”g ga”Dm/DOO is the A-th momem ofh.

reachable nodes by the center node are indicated by asbdétdt a path gain ~ To obtain the (broadcast) transport capacity, we may mul-
threshold ofs = 0.1, a path loss exponent ef = 2, and Rayleigh fading tipIy D by the rate of transmissioR. Assuming at—capacity
(standard network). The circle indicates the range of ssfaktransmissionin _. l R =1 1 Wh A th duct
the non-fading case. Its radiuslig/s ~ 3.16, and there are about/s ~ 31 signaling, R = log,( + 5). en ma_X|m|Z|ng € pro L_JC
nodes inside. DR over R (or s), we find that an optimum rate only exists
if A <L IfA>1(ra< d+1), DR can be made
arbitrarily large by letting the rate go to zero — irrespeeti

from a distributionZ” £ F}, with unit mean _and leE = {& = of the transmit power! This follows fronR(s) = ©(s) and

X;/h;} be thepath loss process with fading (s) = O(s~2) ass — 0. So DR = O(s'~2) which
Assume that there is a transmitter at the origin, and |v rges ifA > 1

other nodes are receivers. So there is no interference, ande '

the network is purely noise-limited. Nodes can receive the

transmission if their path los§; is smaller thanl/s. These D. Secrecy

nodes are said to be connected to the origin. The processes

) " ” A Gffhere has been growing interest in information-theoretic
connected points are denoted dyand =, respectively. So

secrecy in wireless networks. To study the impact of the

d = (X, €e®: & < 1/s}; 2—=N [0,1/s). secrecy constraint on the connectivity of ad hoc networles, w

_ ) _ . introduce a new type of random geometric graph, the soealle

Fig.4 shows a PPP of intensity 1 in 1 x 16 square, gecrecy graphthat represents the network or communication

with the nodes marked that can be reached from the cenigh o including only links over which secure communication
assuming a path gain threshold of= 0.1. The disk shows g hossible. We assume that a transmitter can choose the rate

the maximum transmission distance in the non-fading CaSeyery close to the capacity of the channel to the intended

Since® and = are constructed from a uniform PPP USiNgeceiver, so that any eavesdropper further away than the

mapping and independent random scaling (fading), the Proweiver cannot intercept the message. This translatesaint
cessesp, ®, =, andZ are Poisson. We would like to find the

i “"“simple geometric constraint for secrecy which is reflected i
number of connected nodes and their expected sum-distal

X secrecy graph. Here we describe some of the properties of
E(3 ye X'/) which may also be also termed theadcast 0 secrecy graph.

transport sum-distance Let (i, — (@, ) be a disk g
- . . . r= (2, graph iR® (see§lV-C), where
1) Connectivity:Using the Nakagamir fading model, we 4 _ (X)) (C R is a PPP of intensity 1 representing the

haveA[1.16] ) . ) locations of the nodes, also referred to as the “good guys”.
« @ is Poisson with\(z) = A(z)(1 — F(sz)) (independent \ye can think of this graph as the unconstrained network graph
thinning). . _ Ca that includes all possible edges over the good guys could
« With Nakagamim fading, the numberV = ®(R™) of  communicate if there were no secrecy constraints.

connected nodes is Poisson with mean Take another PPR = {V;} c R? of intensity \ represent-

BN, — _Cd (6 +m) (19) ing the locations of the eavesdroppers or “bad guys”. These
m S5 I
(ms)® T'(m) are assumed to be known to the good guys.

wheres = d/a as before, and theonnectivity fading ~ Based onG, we define the following secrecy graphs:
gain, defined as the ratio of the expected numbers of The directed secrecy grapliz = (¢, E). Replace all edges

connected nodes with and without fading' is in & by two directional edges. Then remove all EdgeSXj
. for which ¥ (B(X;; || X; — X,])) > 0, i.e, there is at least
ENy _ 1 D0 +m) =E(h%). (20) one eavesdropper in the ball.

ENoo ~m T(m) From this directed graph, two undirected graphs are derived
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The basic secrecy graplty, . = (®, E), where the (undi- like the present one and workshops like SpaS#iWe also
rected) edge sek is hope that an increasing number of engineering graduate pro-
grams will offer formal classroom training in these methods

Many important areas for future study remain. In order
to better model cooperative wireless networks — including
techniques as basic as carrier sensing and as sophistasted
interference alignment and network coding — tractableltgsu
or approximations that go beyond the stationary Poisson

With 6(),r) being the probability that the component irflistribution for the node locations are highly desirablé bu
G, containing the origin (or any arbitrary fixed node) iPresently lacking. The capacity of wireless networks is one
infinite, we know from§IV-C that 6(0,r) > 0 for r > r., Of the most important open problems in information theory,
wherer. ~ 1.198 is the critical radius for percolation of the@nd stochastic geometry and random graphs appear destined

(unrestricted) disk graph. For radii larger than we define t0 play a key role in characterizing it, given the primacy
of network geometry in determining interference and hence

N — —_
E:{XlXJ : XZXJ EEandeXiEE}.
The enhanced secrecy grapi¥, . = (¢, £'), where

E/A{X-X"X'X' E X _'
= i T XX € OrXJXZEE}.

r>Te,

A(r) 2inf{\ : O(\,7) = 0},

(24) achievable rates. Present attempts at determining aditéeva

end-to-end rates using these tools are still at an earlyestag

as the critical density for percolation on the secrecy graph

Some of the properties of these secrecy graphs can be
analytically determined, such as the out-degree in dweati
grathﬂA,OO which turns out to be geometric with meap\.
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The node degree distribution for < oo can also be found 3]
analytically; it is a distribution that includes the Poissand
geometric distributions as special cases s ( it is Poisson ”
4

(standard disk graph), while for — oo it is geometric (this
is the case considered above). Depending on the values of g
and \, we can identify a power-limited and a secrecy-limited
operating regime. 6]
Further results and bounds on the percolation threshold for
the secrecy graph are given in [117]. It turns out that 0.15 [7]
already makes percolation impossible. Hence a small densit
of eavesdroppers can have a drastic impact on the conrgctivi g
properties of the network. "

VII. CONCLUDING REMARKS (10]

In this tutorial article we have argued that stochastic geom
etry and random graph theory are indispensable tools for !
analysis of wireless networks that allow analytical resol a
number of concrete and important problems. We have show#?l
how to apply these tools to model and quantify interference,
connectivity, outage probability, throughput, and capacff
wireless networks. We have also argued that there are maky!
other possible future applications of these techniquesweof
which are mentioned i§VI, and in the accompanying special [14]
issue, highly mobile wireless networks [118] and inforroati
propagation [119], [120] (also discussedsivl). [15]

Because the techniques presented in this paper have
emerged from the fields of applied probability, point preess
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