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Abstract—Widespread RF spectrum monitoring could enable
data-driven modeling of spectrum usage, enhance spectral utiliza-
tion, and help automate policy enforcement. Previous works in
wireless sensor networks offer design insights for RF sensors, but
they assume emitters that radiate omnidirectionally. This paper
develops a new framework for directional sensors and emitters,
which are increasingly common with the growth of millimeter
wave technologies. We focus on two-dimensional random sensor
deployments modeled as Poisson point processes. Specifically, we
determine the probability that a sensor network detects a single
emitter for a channel model including path loss, fading, and the
directivity of emitters and sensors with random orientations and
locations. Our results suggest that with a path loss exponent
of 4, quartering the emitter half-power beamwidth doubles the
required average sensor density. We also conclude that omni-
directional sensors optimize detection probability. For multiple
emitters, we develop a lower bound on the probability of multi-
emitter detection and find the average number of undetected
emitters. Finally, assuming higher sensor quality results in higher
sensor cost, we consider a fixed-budget deployment and observe
that decreasing the individual sensor cost by a decade and
therefore increasing the quantity of sensors reduces the missed
detection probability by about a decade.

Index Terms—Directive antennas, radio spectrum manage-
ment, cooperative spectrum sensing

I. INTRODUCTION

A. Background

EVEN though the demand of wireless traffic increases,
the supply of RF spectrum remains fixed. As a result,

usable spectrum has become a scarce resource of increasing
value [1], [2]. Solutions are to increase the amount of usable
spectrum and/or to use the current spectrum more efficiently.
Efforts to expand the usable spectrum are underway with
commercial millimeter-wave (mm-wave) technology (see [3]
and references therein). Here we focus on more efficient uti-
lization of the widely-used sub-6 GHz spectrum, but strategies
for efficiency apply beyond 6 GHz. Regulatory institutions
currently rely on theoretical models of limited accuracy and
unverified claims by licensees to determine spectrum usage
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(a) Sensor deployment surrounding emitters

(b) Two-dimensional view

Fig. 1. Illustration of widespread spectrum monitoring system. (a) Randomly
deployed sensors measure RF transmissions across a wide spectrum over a
wide geographical area. Emitters with various operating frequencies, locations,
and antennas can be detected. (b) Two-dimensional view of system highlight-
ing the varying antenna patterns and resulting coverage. Sensor locations and
gain patterns are denoted with a blue ‘o’ and solid line, respectively. Emitter
locations and gain patterns are denoted with a red square and dotted line,
respectively.

and efficiency. The result is underutilized spectrum in some
bands [1], [4].

Spectrum monitoring (SM) takes measurements of the spec-
trum across frequency, time, and space, as illustrated in Fig. 1.
If widespread, SM could provide the “ground truth” of spec-
trum usage and thereby “close the feedback loop” for spectrum
management [5]. In particular, SM could provide a wealth of
data for data-driven modeling of RF environments [6], which
could overcome the limited accuracy of current theoretical
models. SM could also provide a data-driven approach to
find unoccupied spectrum and inform a spectrum management
mechanism (e.g., a spectrum access system (SAS) [7]–[9] with
an environmental sensing capability (ESC) [10]) to access it.
Additionally, SM could help automate spectrum enforcement
[11], which could significantly strengthen and expedite spec-
trum policy.

Elements of SM have been pursued in a variety of forms
over the past decade, including cognitive radios [12], [13],
radio environment maps [14], dedicated sensor networks [15],
and crowdsourcing [6], [16]–[20]. However, each has experi-
enced economic and/or regulatory roadblocks. From previous
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(a) Missed detection. (b) Detection.

Fig. 2. Example of an omnidirectional sensor (white ‘o’) attempting to detect
a directional emitter (red square). In (a) the sensor fails despite the emitter
residing in the sensor’s coverage region because the emission is directed away
from the sensor. In (b) the sensor succeeds since the emitter radiates toward
the sensor.

works, we observe that the prospects of spectrum sharing have
improved from TV white space in the 700 MHz band to the
Citizens Broadband Radio Service (CBRS) in the 3.5 GHz
band. With established standards for sensor data formats
[21], coexistence [22], and interoperability [23], we anticipate
that opportunities will continue to extend to other frequency
bands with time. Moreover, we see from previous works that
the widespread deployment of enough spectrum sensors is a
crucial problem for SM to be beneficial.

The literature on wireless sensor networks (WSN) has
considered the problem of deploying enough sensors to detect
emitters, and SM designs can leverage these results. However,
several important issues in RF have not been considered in the
context of WSN, including directivity of RF emitters, which
are common in RF due to significant signal attenuation over
large distances and/or at high frequencies [24, Ch. 2]. Unfor-
tunately, previous works on WSN assume the emitters radiate
omnidirectionally. To the extent that directionality has been
considered, the focus has only been on directional sensors,
such as optical, ultrasound, and infrared sensors (e.g., [25] and
sources therein). Directional transmission also appears on the
sensor side in the context of WSN communication [26]–[28]
and secure sensor localization [29].

As illustrated in Fig. 2, if the emitters are directional, an
emitter could reside in the typically-assumed omnidirectional
coverage region of a sensor yet remain undetected because the
emitter’s signal is directed away from the sensor. This problem
affects multiple studies [30], [31]. For example, directional
emitters undermine the well-known Boolean model [32]. The
same problem exists in other design approaches, such as for
coverage enhancement algorithms [30], [33]. Consequently, a
need exists for a framework that considers directional emitters
along with directional sensors.

B. Contributions

This paper considers scenarios in which the deployment
is achieved via crowdsourcing (e.g., re-using cell phones as
sensors in a commercial context) or simply dropping sensors
out of a plane (in a defense context), and are well-modeled by
a random deployment of sensors. Demand on sensor resources
needs to be low, and while backhaul is assumed to be in
place for the sensors, a low required backhaul is desirable

to prevent disruption to the user in the commercial context
(e.g., WiFi and LTE) and to satisfy tactical constraints in
defense contexts. Consequently, we focus on the application of
power detection of emitters to reduce device processing, power
consumption, and backhaul traffic. In particular, the sensors
return a time-averaged power measurement for a certain center
frequency (with some bandwidth). Despite the simplicity of
power detection, the information is nonetheless useful for
applications such as identifying unused spectrum or bad actors
within a region. Other scenarios and applications are of interest
but are outside the scope of this paper.

In this paper, we create a general framework to model
directional (and omnidirectional) sensors and emitters within
a sensor network for SM. The framework supports three
dimensions, but this paper focuses on the two-dimensional
case. This work addresses the problem of designing a SM
system with the aim of power detection in the presence of
directional emitters. We focus on the effects of sensor and
emitter locations and orientations. For the case when the
sensors form a Poisson point process (PPP), we provide a
fundamental and general analytic result on the probability
that an emitter is detected. The result incorporates all sources
of randomness, including channel fading, shadowing, and/or
randomly-oriented directional antennas. We also analytically
lower bound this probability for multiple emitters of a given
number, and we find a closed-form expression for the expected
number of undetected emitters within a finite region. We use
these analyses to conclude four main points. First, we find an
expression to quantify the increase in deployment density of
sensors with increasing emitter directivity. Our results suggest
that with a path loss exponent of 4 and all other things
equal, quartering the emitter half-power beamwidth doubles
the average number of sensors needed for detection. Second,
we analytically determine optimal sensor characteristics; in
particular, we find omnidirectional sensors optimize the prob-
ability of detection, regardless of emitter directivity. Third, we
analyze the detection probability’s sensitivity to frequency and
develop a deployment strategy for multiple frequency bands.
Finally, under the constraint of a fixed-budget deployment, we
illustrate that sensor quantity improves the system probability
of detection more than sensor quality. In particular, from a
survey of current software-defined radios, for a given total
cost, we observe that decreasing the individual sensor cost
by a factor of 10 reduces the system probability of missed
detection by about a factor of 10.

C. Related Works

Previous works have taken a similar approach as this paper
to model sensor networks. The works in [34]–[37] also model
sensors deployments as PPPs with simple path loss channel
models for omnidirectional sensors and emitters. The focus of
[34] is to find the necessary sensor density based on a Cramér-
Rao bound on emitter localization error, whereas our work
uses detection probability as the metric. Source detection is
similarly the focus of [35]–[37], though with slight variations
such as time-constraints for sensor communication [35], the
use of estimated likelihood ratios for detection [36], and the
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effects of sensor clustering [37]. Our work differs by using
power detection based on a more complex channel model that
includes fading and directional (sensor and emitter) antennas
with random orientations.

Directional senors with random orientations and locations
modeled by a PPP have been considered in [38]. While our
work has a similar theme in the model, [38] finds the critical
density for sensor coverage and network connectivity per-
colation for video sensors (with presumed omnidirectionally
visual targets). In contrast, we focus on the RF domain with
directional emitters and find the required sensor density for a
given detection probability rather than percolation.

D. Outline

The remainder of this paper is organized as follows. Sec. II
introduces a general framework to model an RF sensor net-
work with directional emitters and sensors and formulates
the problems of interest in two dimensions. Sec. III provides
the probability of single emitter detection along with several
applications. Sec. IV presents results for multiple emitters,
including a lower-bound on the probability of multi-emitter
detection and the expected number of undetected emitters.
Finally, Sec. V provides closing remarks and future directions.

II. SYSTEM MODEL

We now present a general framework to model RF sensor
networks and the target emitters, which extends to any number
of dimensions d, though the obvious cases of interest are
d = 2 and 3 dimensions. We focus on cases in which the
sensor deployment is well modeled as uniformly random. As
illustrated in Fig. 1, we need to describe system parameters of
sensor and emitter locations, directionality, and capabilities.

To describe directional sensors, we follow a convention
similar to that in [25], though tailored to RF applications. In
summary, we characterize a directional sensor deployed in a
d-dimensional space with the following pieces of information,
which we describe in more detail later:
• the sensor location, denoted xs ∈ Rd,
• the sensor orientation, denoted by an orthonormal rotation

matrix Rs ∈ Rd×d,
• the sensor antenna gain pattern, denoted by the positive

function gs,
• the sensor sensitivity, described by the minimum de-

tectable signal (MDS) power τs > 0.
Similarly, we characterize a directional emitter in a d-
dimensional space with
• the emitter location, denoted xe ∈ Rd,
• the emitter orientation, denoted by an orthonormal rota-

tion matrix Re ∈ Rd×d,
• the emitter antenna gain pattern, denoted by the positive

function ge,
• the emitter transmit power, denoted pe ≥ 0.
The superscripts s and e denote the value for a sensor or

emitter, respectively. If there are ns sensors and ne emitters,
we use the subscripts j ∈ {1, . . . , ns} and i ∈ {1, . . . , ne}
to denote the index of the sensor and emitter, respectively. In

TABLE I
NOTATION

Variable,
(emitter i,
sensor j)

Description Variable
(emitter i,
sensor j)

Description

d dimension t target location
x, xe

i , xs
j location p self-location

R, Re
i , Rs

j orientation φ azimuth variable
g, gei , gsj gain function o location of origin
p, pei , psj ,
psij

(Tx/Rx) power w(n) random noise
samples

τ , τsj sensitivity
(MDS)

K number of noise
samples

n, ne, ns number (of
emitters/sensors)

Z random noise
power

d, ds
j measured data R finite region

Φ, Φs PPP of locations E , Ei detection event
λ, λe, λs deployment

density
D all emitters

detected event
ψ, ψe

i , ψs
j azimuth

orientation
N # of sensors with

psij ≥ τs
α path loss

exponent
Mx mark (random

variable) at x
h, hij fading coefficient δ 2/α
κ path loss model

constant
θ arbitrary

threshold
f frequency F̄ CCDF
r0 reference

distance
bx Bernoulli random

variable at x
c speed of light Γ(x) gamma function
Ψ, Ψe

i , Ψs
j azimuth HPBW N0 noise floor

Θ, Θe
i , Θs

j elevation HPBW ν noise figure
η, ηe, ηs angle fraction SNRout application SNR
PD detection rate B bandwidth
PF false alarm rate T temperature
C received power

ratio
kB Boltzmann

constant
ω power-to-

sensitivity ratio
nu number missed

emitters

Fig. 3. A high-level block diagram of all the system components and
parameters.

other words, we fully describe the jth sensor with the 4-tuple
(xsj , R

s
j , g

s
j , τ

s
j ), and we describe the ith emitter with the 4-

tuple (xei , R
e
i , g

e
i , p

e
i ). A summary of the notation used in this

paper is in Table I.
We now briefly describe the system architecture. A diagram

of ns sensors and ne emitters is given in Fig. 3. Generally, we
collect all sensor data in a centralized database for processing.
Each sensor can determine its location xsj via a mechanism,
such as GPS, WiFi, or LTE positioning. Similarly, each sensor
can determine its orientation Rsj via a compass or accelerom-
eter. The sensor gain gsj and sensitivity τsj are inherent to
the device and can be recorded in the sensor software before
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deployment. The data sent over the backhaul to the database
includes the sensor characteristics (xsj , R

s
j , g

s
j , τ

s
j ) and the

collected data, dsj , for j ∈ {1, . . . , ns}. The sensor data can
be used toward several ends, such as estimating the number of
emitters, the emitter locations, the emitter orientations, and/or
the emitter transmission powers [39]. However, estimating
emitter parameters is outside the scope of this paper.

A. Random Deployment

In our scenario of interest, the sensor deployment is well
modeled as random in location and orientation. This model
is reasonable because we have no prior knowledge of sensor
locations nor their orientations. Emitters are arbitrarily located
with random orientations, as well.

1) Locations: We describe location with a vector x ∈ Rd
representing Cartesian coordinates. In general, the locations
of a random deployment of sensors are well modeled by a
PPP, denoted Φs, with location-dependent density λs(x) [32].
Mathematically, Φs = (xsj)j∈N. From a d = 2 dimensional
perspective, the deployment is well modeled as uniformly
random, which implies a homogeneous density, λs(x) ≡ λs.
If d > 2, the deployment may no longer be uniformly random
in all dimensions, but a PPP with an inhomogeneous density
λs(x) can be used. Note if we condition on the number of
locations in a finite region of interest, the locations are iid
uniform in the region, forming a binomial point process (BPP).

For the case of a single emitter, the detection probability
does not depend on the emitter’s location since the PPP is
stationary [32, Sec. 2.6]. For convenience, we state that the
emitter is at the origin.

2) Orientations: Describing the orientation of an antenna
can be achieved in several ways. We define the orientation
of the sensor antenna via a rotation from a given default
orientation. In particular, we define the rotation with an
orthogonal rotation matrix R, which is a product of Givens
rotations.1 Generally, we set the convention that the main lobe
of the antenna gain pattern lies along an axis of the coordinate
system.

For the two-dimensional case, the rotation matrix is

R =

[
cosψ − sinψ
sinψ cosψ

]
, (1)

where ψ indicates the direction of the main lobe. In the sce-
nario of a random deployment, the orientations of the sensors
and emitters are iid uniformly distributed, which means Rsj
and Rei are iid uniform rotations. Note that uniformly random
rotations translates into ψsj and ψei being iid uniform on
[0, 2π).

B. Sensor and Emitter Capabilities

For simplicity, we consider the case in which the sensors
are deployed with the same antennas that share a common
gain pattern (gsj (·) ≡ gs(·) ∀ j). Similarly, all emitters share

1A Givens rotation only occurs within one plane. Consequently, to achieve
rotation in more than two dimensions, multiple Givens rotations in different
planes must occur. Consistent with matrix multiplication, the order of these
rotations matters.

the same gain pattern ge(·), which is known. This scenario is
reasonable because emitters operating in the same frequency
range likely have similar antennas, and we would prepare the
sensors in an identical fashion with antennas that operate in
the same frequency range as the emitters. Usually, publicly
available regulations limit the transmission power of emitters,
and often emitters transmit at the legal maximum to obtain the
highest SNR possible, so we can say that all emitter powers
are equal and known (pei ≡ pe ∀ i). Similarly, it is reasonable
to say that the sensors are constructed to be approximately the
same, so all sensors have the same sensitivity (τsj ≡ τs ∀ j).

Finally, we consider scenarios in which there are discernible
differences among the emitter signals and power levels across
time, frequency, spreading codes, and/or high-level protocols.
For example, a spectrogram of multiple stationary emitters
following the LTE standard could illustrate varying power
levels across time and frequency due to different separation
distances from the emitters to the sensor. A distribution of
the different power levels from the spectrogram could reveal
distinct patterns, each of which would identify a particular
emitter. Certain signaling structures could be exploited as well,
e.g., primary and secondary synchronization signals (PSS and
SSS) in LTE or clear channel assessment (CCA) in WiFi.
Furthermore, a wide body of machine learning techniques can
be applied to distinguish emitters based on modulation scheme
[40], MAC protocol [41], and communication technology [12].
In particular, clustering of selected features can distinguish
spatially separated emitters, even with the same system char-
acteristics [42], [43]. As a result, the sensors should be able to
separate the individual emitter signals through low-level signal
processing and calculate distinct power measurements for each
emitter. In particular, for this paper we are interested in the
sensor calculations of psij , the time-averaged received power
from the ith emitter measured at the jth sensor. In practice,
the sensors provide estimates p̂sij along with an estimate of
the noise floor N̂0, which could differ from the exact psij and
N0. We address this issue in a later section.

1) Sensor Sensitivity: The sensor sensitivity is determined
by several factors [44]. First, let τs denote the power of the
minimum detectable signal by the sensor. Let the equivalent
noise figure (ν) of the entire RF chain in the receiver be given
by

ν =
SNRin

SNRout
=

Sin/Nin

Sout/Nout
. (2)

Rearranging the terms to solve for the signal power into the
device yields

Sin = ν(Sout/Nout)Nin. (3)

Based on our application, the sensor will have a required
minimum SNRout to perform its task properly. The noise
figure is inherent to the device, and the input noise is assumed
to be thermal noise given by Nin = kBTB, where B is the
bandwidth of the system, T is the temperature (in Kelvin) of
the system, and kB is the Boltzmann constant [45]. If the noise
figure ν and minimum SNRout for the receiver are known,
Sin in (3) gives the power of the minimum detectable signal
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(a) (b) (c)

Fig. 4. An example illustrating the direction of departure. From (a) to (b), we translate the system by −p so that the position of the antenna is at the origin.
From (b) to (c), we rotate by R−1 to align the main beam with the x-axis (the default orientation). This enables the evaluation of the gain function in a
standardized way. In the opposite direction, we rotate the system by the orientation of the antenna R from (c) to (b) and then translate the system by the
position of the antenna p from (b) to (a).

(MDS) [44]. For convenience, we denote the MDS as τs and
(linearly) express it as

τs , ν(SNRout)kBBT. (4)

Remark 1. The power of the emitter signal arriving at the
sensor antenna must be larger than the threshold τs in order
for the sensor to distinguish the emitter signal from noise.

2) Antenna Gain Pattern: The gain of an antenna describes
the degree to which the antenna converts input power into
radio waves or vice versa [45]. To evaluate the antenna gain
value, we require the position of the antenna (p ∈ Rd), the
location of the target (t ∈ Rd), the rotation of the antenna
from a conventional orientation (R ∈ Rd×d), and the operating
frequency (f ) as inputs to the gain function: g (p, R, t, f). A
plot of the gain as a function of direction displays the antenna’s
radiation pattern. Antennas are said to possess directionality2 if
the antenna gain g(·) is a non-uniform function of the direction
of departure or arrival. In other words, as one moves around
the antenna, the antenna gain changes. As illustrated in Fig. 4,
the normalized direction of departure is

R−1 t− p

‖t− p‖
. (5)

We also note that the antenna gain is a function of frequency.
Generally, an antenna is designed to operate at a particular
frequency, and operation outside of that band is degraded by
poor gains or high reflection coefficients [45]. Consider as a
simple example, a half-wave dipole antenna. If we double the
operating frequency, the antenna becomes a full wave dipole
antenna, which has a different pattern than a half-wave dipole.

For the two-dimensional case, the analysis of the inputs
(p, R, t) reduces to the azimuth angle of departure, which we
find as φ = arctan

(
[0 1]R−1(t−p)
[1 0]R−1(t−p)

)
, where care needs to be

taken that the proper quadrant is selected for a unique solution
(see atan2 in many software packages). See Fig. 5 for an
example of a two-dimensional directional antenna radiation

2The directionality of the antenna gain is usually accomplished through
specialized antennas, such as a horned antenna, or through a phased array of
multiple antennas.

pattern. Note how the gain is large in one particular direction
(at φ = 0) and diminishes in other directions.

We simplify the gain patterns of the sensors and emitters
in the following way. Let Ψ denote the half power beamwidth
(HPBW) of a directional antenna. The HPBW is defined as
the angular range between the points at which the gain has
decreased 3 dB from the peak gain [45]. Also note that the
HPBW is a function of the operating frequency, Ψ(f), whose
form is specific to the antenna. We simplify the gain to be
constant within the HPBW and zero elsewhere. See Fig. 5 for
an example of our simplification, which captures the essence of
directional antennas. The simplified gain is always less than or
equal to the true gain. Consequently, detection requires more
restrictive circumstances under this simplification, which we
address later in Sec. IV.

The HPBW and maximum gain of an antenna are physically
related [45]. In general, as the HPBW narrows, the maximum
gain increases. Consequently, the non-zero constant gain in our
simplification is a function of the antenna beamwidth, both in
azimuth and elevation. In this paper, we consider the scenario
in which the sensors and emitters are approximately coplanar,
which is well-modeled by our two-dimensional framework.
Consequently, we treat elevation as constant and only vary
the azimuth beamwidth Ψ. To be thorough, we include the
elevation beamwidth Θ to show the relationship to gain,
though Θ is effectively a constant. Without loss of generality,
we assume antenna efficiencies of 1 so that antenna directivity
equals gain. Our simplification is

g(p, R, t, f) ={
1
2

4π
Ψ(f)Θ(f) , arctan

(
[0 1]R−1(t−p)
[1 0]R−1(t−p)

)
∈
[
−Ψ(f)

2 , Ψ(f)
2

]
0, else,

(6)

where arctan is the four-quadrant inverse tangent. The expres-
sion 4π/Ψ(f)Θ(f) is an approximation of the antenna’s direc-
tivity that becomes more accurate with narrower beamwidths
[45]. The factor of 1/2 comes from using the 3 dB point as
the constant value.
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(a) Antenna gain pattern (dB) (b) Antenna gain pattern (absolute)

True

Simplified

(c) Absolute antenna gain vs. φ

Fig. 5. An example antenna gain pattern (solid blue) from MATLAB’s toolbox compared to our simplified radiation pattern (dotted red). The patterns are
shown in dB in (a) and absolute values in (b). A Cartesian view of the absolute gain is in (c).

C. RF Channel

The channel is the medium over which the emitters transmit
and the sensors receive radio waves. In wireless communica-
tions, the channel model incorporates aspects of the environ-
ment such as large-scale shadowing and small-scale fading,
which determine how the radio wave changes from the emitter
antenna to the sensor antenna. From the system perspective, we
can incorporate the emitter and sensor gains into the channel.

For ease and wide applicability, we use the approximation
given by the simplified path loss model in [24, Eq. 2.28].
Let us briefly define some notation. Let psij be the power
received by sensor j from emitter i. Let ‖xei − xsj‖ denote
the Euclidean distance between the ith emitter and jth sensor.
Let α ≥ 2 be the path loss exponent determining the rate of
power attenuation. Let hij be the fading coefficient for the
channel between the ith emitter and jth sensor. hij could be
the product of a small-scale fading and a shadowing random
variable. This paper focuses on iid hij . We have

psij =

hijg
s
j (x

s
j , R

s
j ,x

e
i , f)gei (x

e
i , R

e
i ,x

s
j , f)κ(f) ‖xei − xsj‖−α pei ,

(7)

where κ(f) incorporates other aspects of signal attenuation
and antenna characteristics. A common form of κ(f) =
(c/4πfr0)2rα0 , where r0 is a reference distance [24], [46]. If
hij ≡ 1 and α = 2, this choice of κ(f) results in Friis equation
for free space. Other choices of κ(f) and α can result in the
two-ray model, the Hata model, and the COST extension to
the Hata model [24]. Without loss of generality, we set the
frequency f constant throughout the derivations to simplify
notation.

Finally, we note that the power at the input of the receiver
of the jth sensor within a given bandwidth is given by

psj ,
ne∑
i=1

psij +N0, (8)

where N0 = νkBTB accounts for thermal noise and the
receiver noise figure. For a single emitter, psj is simply (7) with
N0 added. Without a priori knowledge of ne, interpretations
on psj alone can be complicated if ne > 1. Consequently, for
the case of multiple emitters, we consider scenarios in which

the sensors have the capabilities to separate emitter signals
and powers via low-level signal processing. As Sec. II-B
mentioned, several previous works have implemented such
signal processing and can provide estimates p̂sij . To maintain
generality, this paper does not specify a particular method
by which sensors distinguish among multiple emitters, but
we assume the capability in order to analyze the effects of
multiple emitters on system design in Sec. IV. For simplicity
of exposition, we consider scenarios in which the estimate
can effectively be given by the already-approximated path loss
model in (7).

We also note that the receiver chain of the sensor will
introduce additional noise, which is accounted for by the noise
figure ν of the sensor. As a result, we use the sensor MDS τs

from (4) when evaluating whether the sensor can distinguish
any emitter signal from noise. We consider scenarios in which
sufficient time-averaging occurs such that the estimated noise
floor is effectively the value of the true noise floor and τs

can be treated as a constant threshold for detection. We note
here that while finite-duration sampling inherently results in
variation in the measured noise power, the variance becomes
negligible with a reasonably high number of samples. Specifi-
cally, let the discrete-time samples of thermal noise, w(n), be
iid zero-mean Gaussian random variables with variance N0.
The measured noise power is given by Z = 1

K

∑K−1
n=0 |w(n)|2,

and Z has a gamma distribution with mean N0 and variance
2N0/K. For large K, the variance becomes negligible, and
the measured power is effectively given by N0.

D. Problem Statement

With the model, we can now mathematically define detec-
tion and state our problem.

Definition 1 (Detection by Sensor). Detection occurs if a
sensor distinguishes an emitter signal from noise. From the
definition of τs in (4), the jth sensor detects the ith emitter if
and only if

psij ≥ τs. (9)

Here we note that the sensors employ a fixed threshold
for detection, which arises from the limiting scenario in
which sufficient time-averaging occurs such that the sensor
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measurement of the noise floor is effectively the true noise
floor, N0. In terms of the probability of detection and false
alarm, we want to find PD for the sensors operating at
PF = 0. The threshold τs can be adjusted (via arbitrary
SNRout) to be greater than N0 such that PF → 0 for an
individual sensor as K grows. Nonetheless, if PF > 0, the
fusion of sensor data via an OR function at the network
level would cause the network false alarm rate to approach
1 as the number of sensors grows. Consequently, a more
sophisticated fusion method of sensor data (e.g., fusion of soft
decisions, sensor reputation, measurement confidence, and/or
verification by nearby sensors) would be required for very
large deployments. This problem is outside the scope of this
paper but has been considered thoroughly in other works
(e.g., [47], [48] and sources therein). Additionally, different
algorithms could be used for detection at the sensor level
(e.g., variable thresholds) to lower PF for a given PD. With
such algorithms, increasing the sensor density could also lower
PF for a given PD. Thus, the results of this paper can be
viewed as lower bounds on sensor density. Detailed analyses
to incorporate such algorithms and the trade-offs between PD
and PF are beyond the scope of this paper.

For a random deployment of sensors, we want to know
the required sensor density to successfully detect unknown
directional emitters. To this end, we begin with the relation-
ship between the deployment density of sensors λs and the
probability that at least one sensor detects a single emitter.
Let us mathematically define detection by a sensor network.

Definition 2 (Detection by Sensor Network). The sensor
network detects an emitter if at least one sensor detects the
emitter. We express the event that the sensor network detects
the ith emitter as

Ei ,
⋃
j

{psij ≥ τs}. (10)

Remark 2. For the case of a single emitter, we assume the
emitter to be at the origin o. Since the sensor locations form
a stationary PPP, there is no loss of generality. The notation
for sensor network detection simplifies to E . If emitters form
an arbitrary stationary point process independent of Φs, the
emitter at o is the typical emitter.

Starting with the case of a single emitter, we want to find the
relationship Pr (E) = f(λs) for a function f . If f is invertible,
we can find λs = f−1(Pr (E)) for a given confidence. For
multiple emitters, we can apply the same strategy with the
event D ,

⋂
i

Ei by finding the relationship between λs and

Pr (D).

III. RESULTS FOR SINGLE EMITTER

A. General Result
Proposition 1. Let Φ be a stationary PPP of intensity λ
and (Mx)x∈Φ a family of iid non-negative random variables
(marks), independent of Φ, with finite moment E[M

2/α
x ]. For

θ > 0, the random variable

N ,
∑
x∈Φ

1
[
Mx‖x‖−α > θ

]
(11)

is Poisson with mean

E [N ] = λπθ−δE[M δ], (12)

where M is distributed like all Mx and δ = 2/α. In particular,

Pr (N > 0) = 1− exp(−E [N ])

= 1− exp(−λπθ−δE[M δ]). (13)

Proof: Let F̄M denote the complementary cumulative distri-
bution function of M . N is the cardinality of the point process
Φ′ = {x ∈ Φ: Mx > θ‖x‖α}. Since the Mx are iid, Φ′

is an independently thinned version of Φ and thus itself a
PPP [32, Thm. 2.36]. The thinning probability of a point at
x is EM [1[Mx > θ‖x‖α]] = F̄M (θ‖x‖α). Hence, Φ′ has the
density function λ′(x) = λF̄M (θ‖x‖α). The mean number of
points in Φ′ follows as

E [N ] =

∫
x∈R2

λ′(x) dx

= λ

∫
x∈R2

F̄M (θ‖x‖α) dx

= 2πλ

∫ ∞
0

F̄M (θrα)r dr

= λπθ−δ
∫ ∞

0

δuδ−1F̄M (u) du

= λπθ−δE[Mδ]. (14)

The fourth line is obtained by the substitution u = θrα.
Since E

[
M δ
]

is finite, E [N ] is finite, and thus N is Poisson
distributed. �

Remark 3. If E [M ] 6= 1, we can set M ′x = Mx/E [M ] and
adjust θ to θ/E [M ], thereby normalizing E [M ] to 1 without
loss of generality. If E [M ] = 1, then E[M δ] < 1. There-
fore, randomness (e.g., fading, shadowing, and/or directional
orientation) never helps detection.

We present the following applications of the proposition to
our problem statement. Let N denote the number of sensors
whose received power matches or exceeds τs. Therefore, E =
{N > 0}. Mx is a random variable which incorporates fading
and the directionality of the randomly oriented emitter and
sensor. Finally, let θ be an arbitrary received-power threshold
whose form depends on the scenario. We assume the emitter at
the origin o transmits at power pe. Without loss of generality,
we assume κ = 1 below (pe can be replaced by κpe).

B. Applications

1) Baseline: Isotropic Emitter and Sensors, No Fading:
For isotropic transmission and reception without fading, θ =
τs/pe, Mx ≡ 1, and the gains are unity. Thus,

Pr (E) = 1− exp(−λsπ(pe/τs)δ). (15)

2) Directional Emitter, No Fading: Here the emitter trans-
mits directionally, in an angle fraction ηe = Ψe/(2π), which
results in an independent thinning of the PPP by ηe and a
power gain (ηeΘe)−1. Hence,

Pr (E) = 1− exp(−λsηeπ(pe/(ηeΘeτs))δ). (16)
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3) Directional Sensors, No Fading: In this case, the marks
model the random orientation of the sensors. Due to the 0-1
nature of the gain function, either a sensor is oriented toward
the emitter and receives the signal, or a sensor is directed away
from the emitter and cannot detect the emitter. This behavior
is captured with a Bernoulli random variable whose mean is
the fraction of emitter-detecting orientations. Consequently,
the marks are Bernoulli with mean ηs = Ψs/(2π). Hence,
E[Mδ] = ηs. The power gain is (ηsΘs)−1, and we obtain

Pr (E) = 1− exp(−λsηsπ(pe/(ηsΘsτs))δ). (17)

Hence, directionality at the transmitter and directionality at the
receiver have the same effect on the detection probability.

4) Directional Emitter and Sensors, No Fading: Combining
the two previous results, we obtain

Pr (E) = 1− exp(−λsηeηsπ(pe/(ηeηsΘeΘsτs))δ). (18)

5) Omnidirectional Emitter with Fading: With iid fading,
the marks represent the fading coefficients, and we observe
from (13) that the effect of fading is equivalent to an adjust-
ment in the density of the PPP, by a factor corresponding to
the δ-th moment of the fading random variables.

For Rayleigh fading, where the Mx are exponential with
mean 1, we have E[M δ] = Γ(1+δ), where the gamma function
Γ(z) ,

∫∞
0
tz−1e−t dt. Substituting E[M δ] = Γ(1 + δ) into

(13) provides

Pr (E) = 1− exp(−λsπΓ(1 + δ)(pe/(Θeτs))δ). (19)

Since Γ(1 + δ) < 1 for α > 2, Rayleigh fading has a negative
effect on the detection probability.

Alternatively, the effect of fading can be viewed as a scaling
of the transmit power by (E[M δ])1/δ . Interestingly, in the case
of Rayleigh fading, this power “gain” Γ(1 + δ)1/δ is tightly
lower bounded by 1/2 + δ/2. If the power is increased by
2/(1 + δ) = 2α/(α + 2), the effect of Rayleigh fading is
compensated (slightly overcompensated, actually).

If (small-scale) fading and shadowing are both present, then
Mx can be taken to be the product of both random variables.

6) Directional Emitter and Sensors with Fading: Here the
marks represent the combined effect of directional reception
and fading. Denoting the Bernoulli random variables for
directionality by bx and the fading coefficients by hx, we have
Mx = bxhx and E[Mδ] = ηsE[hδ]. As before, directional
transmission is taken into account by thinning the PPP by ηe.
We obtain

Pr (E) = 1− exp(−λsηeηsπE[hδ](pe/(ηeηsΘeΘsτs))δ).
(20)

This is the most general form for Pr (E) from which the
previous equations can be derived by proper substitution.
Also note that all results depend on the ratio of the chan-
nel parameters C , κpe/(ΘeΘs). Further, only the ratio
ω , C/τs matters. Therefore, (20) could be concisely written
as Pr (E) = 1− exp(−λsηeηsπE[hδ](ω/(ηeηs))δ).

7) Other Point Processes: Here we consider point pro-
cesses that are more or less regular than the PPP. The PPP
exhibits complete spatial randomness [32, Sec 3.1]. In con-
trast, point processes such as soft-core and hard-core processes
exhibit repulsion between points, with the limit being a lattice.
In the other direction, cluster point processes exhibit attraction
between points. The PPP is the mid-point on this general
spatial regularity scale with no interaction among its points.

If the sensor locations form a cluster point process, we can
use the result for the PPP as an upper bound on the detection
probability. Intuitively, clustering increases the amount of
overlap among the sensor coverage regions. For a given density
of sensors, as clustering increases, the performance degrades.
On the other hand, as we decrease the amount of clustering,
say for a Neyman-Scott process whose clusters are translated
to points of a PPP [32, Def. 3.4], the point process will
approach a PPP.

For crowdsourced sensors, only a subset can be expected
to participate in sensing. Even if the sensor locations are
clustered, an independent thinning of the process will be close
to a PPP in some scenarios [49, Sec. 3.3]. Therefore, it is still
reasonable to use the PPP model for crowdsourcing.

If there is a possibility of designing the distribution of the
sensor locations, more regular point processes perform better
than the PPP. Let us again consider the baseline case of an
isotropic emitter and isotropic sensors with no fading. The
distribution that would achieve the highest detection probabil-
ity for a given λs is the triangular lattice point process [50]. In
particular, let the sensors have sensing radius ρ = (pe/τs)1/α.
If the lattice spacing is a, then λs = 2/(a2

√
3). If a ≥ 2ρ,

then the detection probability is at most λsπ(pe/τs)δ , and if
a ≤ ρ

√
3, then the detection probability can reach 1 [50].

The triangular lattice does indeed perform better than
a PPP of sensor locations. For a PPP, Pr (E) = 1 −
exp(−λsπ(pe/τs)δ). Both 1 and λsπ(pe/τs)δ for a triangular
lattice match or exceed the PPP’s value because x ≥ 1− e−x

for x ≥ 0.
While the triangular lattice could be a target distribution,

in practice variance from the lattice would exist. In particular,
a reasonable point process model could be a perturbed lattice
with each location having a two-dimensional Gaussian shift
from the triangular lattice [32, Def. 2.16]. However, a closed-
form expression for Pr (E) for a perturbed lattice is elusive.
Nonetheless, since the triangular lattice achieves the best
possible Pr (E) for a given λs [50], its performance can be
treated as a bound for such deployment distributions. Further,
the perturbed lattice quickly approaches a PPP if it is likely
that a point is displaced by more than twice the mean nearest-
neighbor distance [51, Sec. II.C].

8) Unknown Emitter Gain: The assumption that the emit-
ter’s gain function is known may not always hold. With
Prop. 1, only the statistics of the emitter pattern need to be
known. In this case, we treat ge as random with distribution
fg . Here the marks represent the combined effect of the fading
(hx), directional reception (bx), and unknown emitter gain
(ge). In particular, Mx = bxhxg

e, and E[Mδ] = E[(bhge)δ]. If
fg is independent of fading and sensor orientations, E[Mδ] =
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ηsE[hδ]E[(ge)δ]. The result is

Pr (E) = 1− exp(−λsηsπE[hδ]E[(ge)δ](pe/(ηsΘsτs))δ).
(21)

From Remark 3, this additional randomness decreases the
detection probability. For multiple emitters, an additional
assumption that the gei are iid would be needed for the results
to hold in Sec. IV.

C. Observations

Let us observe the behavior of (20). Note that if the path
loss exponent α = 2, which corresponds to free space, the
azimuth beamwidths Ψs and Ψe do not affect Pr (E). This
rather surprising result states that if the environment is free
space, the choice of (azimuth) directivity does not matter.
Intuitively, when beamwidth decreases, the antenna gain and
thereby the transmission range increase. However, if α = 2,
the extension of the range is such that the area of the average
coverage sector remains constant.

Let us also observe the influence of the parameters on
Pr (E). The probability is most sensitive to the sensor density
λs. The only exception is in the case of free space (α = 2) for
which the sensor density is equally influential as the ratio of
system parameters ω. As the path loss exponent α increases,
Pr (E) becomes more sensitive to azimuth beamwidth Ψ. On
the other hand, as α decreases, Pr (E) becomes more sensitive
to the variable ω.

Ultimately, we want to know the density of sensors to
deploy in order to be confident that we detect the emitter
present. Equation (20) provides us with a metric for system
design trade-offs. If we set a desired Pr (E) = β, we rearrange
(20) to obtain

λs =
ln
(

1
1−β

)
ηeηsπE[hδ](ω/(ηeηs))δ

. (22)

We see from (22) that the required sensor density λs ∝(
1

Ψe

)1−δ
. In other words, as the emitter becomes more direc-

tional (i.e., as Ψe → 0), the sensor density needs to increase,
specifically by a factor of

(
1

Ψe

)1−δ
. Hence, the directivity of

the emitter(s) has a significant influence on the design and
deployment of the spectrum monitoring system. In particular,
we see that with α = 4 and all other things equal, quartering
the emitter HPBW doubles the average number of sensors

needed for detection: λs ∝
(

1
Ψe/4

)1/2

= 2
(

1
Ψe

)1/2
.

In practice, the deployment of sensors is limited by cost,
and deploying more sensors increases the total cost. For a
set probability, we can decrease the sensor density in (22)
by maximizing the sensor beamwidth Ψs to 2π. We can also
decrease λs by decreasing the sensor elevation beamwidth Θs,
but we are slightly constrained. Ideally, we would let Θs →
0, but such antennas do not physically exist, and if Θs →
0, the sensors would need to be exactly coplanar, which is
impractical. Ultimately, this analysis suggests that the sensors
should be designed with omnidirectional antennas with Ψs =
2π.

Next, we consider the sensor MDS τs. For a given Pr (E),
lowering τs can allow a decrease in λs. However, lowering

Fig. 6. The probability of emitter detection by the sensor network as a function
of sensor density (λs) and emitter HPBW (Ψe), given by (20). We use the
parameters in Table II.

τs generally increases the cost of each sensor. Usually the
RF environment is not free-space (α = 2), so Pr (E) is less
sensitive to the sensor MDS τs than the sensor density λs.
Therefore, for a fixed budget, we improve Pr (E) by letting
τs be higher for a lower cost sensor and then increasing λs. In
other words, we lower the cost of the sensor in order to deploy
more of them. The larger density of sensors improves Pr (E)
more than the degradation from a higher MDS. We present an
example in a later section.

We plot (20) in Fig. 6 for Rayleigh fading and the example
parameters listed in Table II. For the sensor sensitivity, we
experimentally measured a RadioHound sensor to find a
minimum detectable signal of around -110 dBm [20]. For
representative emitters, we consider a dipole (omnidirectional),
a traditional cell tower sector antenna (Ψe = 2π/3 rad),
a narrower sector antenna (Ψe = 2π/9 rad), and a mm-
wave antenna (Ψe = π/18 rad). Fig. 6 shows that a higher
sensor density is needed to maintain a constant Pr (E) for
increasing emitter directivity. The red triangle indicates the
approach to calculate the sensor deployment density to achieve
Pr (E) = 0.9 under the assumption that the emitter is omni-
directional. For the same Pr (E), this paper also accounts for
the emitter HPBW and calculates the sensor density indicated
by the solid black line. For instance, if the system is designed
for an omnidirectional emitter but the emitter uses a mm-wave
antenna, the sensor density would need to more than triple, or
Pr (E) would decrease to about 0.5.

D. Frequency Sensitivity and Multiple Frequency Bands

We return to the fact that Ψ, Θ, and κ in the previous
expressions are frequency-dependent. In practice, we have to
design the sensor network to operate at a given frequency
and design the antennas to have appropriate beamwidths.
Once the sensors are deployed and the geometry of their
antennas is fixed, the performance of the network is sensitive
to emitter frequency. For the case of no fading, our study of



IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING 10

TABLE II
PARAMETERS FOR SIMULATIONS

Parameter Value
Sensor azimuth beamwidth, Ψs 2π rad
Sensor elevation beamwidth, Θs π/2 rad
Sensor MDS, τs -110 dBm
Emitter elevation beamwidth, Θe π/2 rad
Emitter transmission power, pe 0 dBm
Frequency, f 1 GHz
Path loss exponent, α 3
Fading, h Rayleigh, h ∼ exp(1)

the sensitivity indicates that the values of (20) and (22) are not
significantly affected if the change in frequency relative to the
original operating frequency (∆f/f) is small. In particular,
let Ē denote the complement of E . If we perturb the designed
operating frequency from f to f + ∆f , and |∆f/f | � 1/2,
then

Pr
(
Ē
)
|f+∆f ≈ (Pr

(
Ē
)
|f )ξ, (23)

where ξ = 1 − 2(1 − δ)∆f/f [52, Ch. 4]. From our
previous example for omnidirectional sensors and emitters
with λs = 50/km2, the relative change of Pr (E) is less than
1% if −0.13 < ∆f/f < 0.10. In other words, at a carrier
frequency of 1 GHz, the frequency can range from 870 MHz
to 1100 MHz with less than a 1% change in Pr (E). Further
details and analysis are available in [52].

For a relative change in frequency ∆f/f , we could maintain
approximately the same performance with a relative change in
sensor density ∆λs/λs:

∆λs/λs = (1− ξ)/ξ. (24)

If ∆f/f < 0, then ∆λs/λs < 0. Intuitively, the coverage
of the sensors increases with decreasing operating frequency,
thereby requiring fewer sensors. Therefore, to design a de-
ployment for the frequency range f1 to f2, we should deploy
the λs required for f2. The performance for the remainder of
the band will be equivalent to or better than that of f2, or a
subset of sensors could be used for the lower bands such that
the desired detection probability is achieved.

E. Fixed-Budget Example

We return to the observation made in a previous section
that the sensor MDS τs does not influence the probability of
detection Pr (E) as strongly as sensor density λs if α > 2. For
a fixed monetary budget, one could lower the sensor cost by
increasing the sensor MDS and thereby deploy more sensors
to increase the probability of detection.

Our motivation is a low SWaP-C (size, weight, power, and
cost) RF sensor that costs on the order of a dollar [20]. The
ideal is to have the sensor incorporated into widely deployed
technologies, such as cell phones, tablets, WiFi access points,
smart appliances, etc. Such devices have a dedicated power
supply or are regularly recharged by users. The incentive to
pay the slight overhead to include the sensor in devices is
spectrum as a service [53]. In other words, the collected data
will enable better spectrum management and usage, thereby
improving user experience. In militarized contexts, the sensors

TABLE III
SOFTWARE DEFINED RADIOS

Radio Cost Noise Figure Label
RadioHound $ 20 10 dB A
Ettus USRP B205mini $ 910 8 dB B
NI USRP 2900 $ 1,031 7 dB C
Ettus USRP N310 $ 10,000 6.8 dB D
NI USRP 2945 $ 11,503 5 dB E
Airspy Mini $ 100 3.5 dB F
Airspy R2 $ 250 3.5 dB G
AD9364 RFIC $ 400 2.5 dB H

are inexpensive enough to be disposable. The military would
not try to retrieve or maintain them. Hence, we can disregard
the cost of maintenance and battery replacement here.

We consider the cost and MDS of several current repre-
sentative software defined radios (SDRs) in Table III from
Ettus Research, National Instruments, and Airspy, along with
the RadioHound sensor from [20]. Several SDRs share the
same MDS, so we select the lowest priced one and omit the
rest. The reason is that the higher-priced SDRs for a given
MDS have other benefits not considered by our model, such
as a larger dynamic range. We determine the MDS of each
SDR via (4) with an SNRout of 1 and standard temperature
of 290 K. For each SDR, we assume the worst-case noise
figure for a frequency of 1 GHz given in its specifications.
We use a bandwidth of 2.56 MHz for all systems, limited by
the sampling rate of the RadioHound sensor [20].

We plot (4) in Fig. 7a for the SDRs in Table III. We observe
two clusters of SDRs, each with the trend of decreasing MDS
with increasing cost. The clusters result due to other factors
in the SDRs that affect price, such as sampling rate, filtering
capabilities, dynamic range, etc.

Next, we consider a deployment with a limited budget of
$1000 per km2. Based on this budget and the price of the
SDR sensor, we can calculate the sensor density λs. Using
the parameters in Table II for omnidirectional sensors and
emitters, we plot Pr (E) in (20) as a function of the sensor
cost in Fig. 7b. We have normalized the SDR cost by other
factors, including the number of receiver chains, number of
RF ports, resolution of the ADC, sampling bandwidth, and
frequency range. For all cases, we observe the same trend but
with different slopes (m). Decreasing sensor cost increases
Pr (E). In comparison with Fig. 7a, we see that sensors of
similar cost have a very similar Pr (E) despite the significant
difference in MDS. In other words, we see that for a fixed
budget, the sensor cost is a large factor in the metric Pr (E),
whereas the MDS is not as influential. In particular, we
fit an approximately linear relationship in Fig. 7b for which
decreasing the individual sensor cost by a factor of 10 roughly
increases the probability of detection by about a factor of 10.
We then observe diminishing returns on Pr (E) as the sensor
cost becomes very low.

Overall, this example supports decreasing sensor quality to
decrease cost and thereby increase the sensor quantity. Other
experiments are consistent with this theoretical result [6], [17],
[53].
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(a)

(b)

Fig. 7. An example illustrating the trade-off between the sensor MDS and
Pr (E) for a fixed budget of $1000 per km2. The plot in (a) shows the MDS
from (4) versus sensor cost for the representative RF sensors in Table III.
For these sensors, (b) shows Pr (E) from (20) as a function of sensor cost
normalized by various hardware characteristics. The fitted curves have slopes
given by m. The Table II parameters and omnidirectional antennas are used.

IV. RESULTS FOR MULTIPLE EMITTERS

A. Lower Bound on Pr (D)

For ne emitters arbitrarily located in a finite region R, we
want the probability that each emitter is detected by at least
one sensor. Mathematically, we are interested in the event

D ,
ne⋂
i=1

Ei. (25)

However, the events Ei are dependent. As a simple example,
consider two omnidirectional emitters. If the second emitter
is near the first, E1 occurring would affect the detection

probability for the second emitter. Unfortunately, the general
dependence is complicated and has eluded analysis.

Instead, we derive a lower bound on Pr
(
D | ne

)
with

DeMorgan’s Law and the union bound:

1− Pr
(
D | ne

)
= Pr

(
Dc | ne

)
= Pr

 ne⋃
i=1

Eci | ne


≤
ne∑
i=1

Pr (Eci ) . (26)

We rearrange the terms and find Pr
(
Eci
)

from (20) for a single
emitter:

Pr
(
D | ne

)
≥ 1−

ne∑
i=1

Pr (Eci )

= 1− ne exp(−λsηeηsπE[hδ](ω/(ηeηs))δ). (27)

If the emitter locations are modeled as an arbitrary stationary
point process with density λe, Pr (D) is found by taking the
expectation with respect to ne with E [ne] = λe |R|.

As an example, we use the parameters in Table II. Here
we set the sensor density to λs = 100 sensors/km2 and
vary the number of emitters ne. We plot the bound of
Pr
(
D | ne

)
in (27) as a function of the number of emitters

in Fig. 8. We also plot the exact Pr
(
D | ne

)
via simula-

tion. We highlight the following observations. Given that the
emitters have the same parameters, we see from (27) that
the lower bound on Pr

(
D | ne

)
is linear in ne with slope

exp(−λsηeηsπE[hδ](ω/(ηeηs))δ). The plot again demon-
strates the benefit of omnidirectional sensors. In particular,
we see that the lower bound for omnidirectional emitters and
sensors is close to the upper bound of 1. Consequently, the
true Pr

(
D | ne

)
is close to 1 for omnidirectional sensors and

emitters in this example. We also note for desirable, high
values of Pr

(
D | ne

)
, the lower bound is fairly tight.

From (27), we can find an upper bound on the sensor density
required for a given confidence of detection. In other words,
if we select a desired Pr

(
D | ne

)
= a, we find

λs ≤
ln
(
ne

1−a

)
ηeηsπE[hδ](ω/(ηeηs))δ

. (28)

We observe (28) is logarithmic in ne, suggesting that a
slight increase in the sensor density is needed to detect more
emitters. In other words, a significant effort is needed to detect
one emitter, but the extra cost to detect several is marginal.

We also note that the lower bound in (27) is consistent
with the approximations of our model. The simplified gain
model in (6) results in power gains and angle-of-views smaller
than the true ones. Mathematically, let P̃r (E) denote the exact
probability, and let Pr (E) denote our model approximation
of P̃r (E). We know P̃r (E) ≥ Pr (E). Therefore, P̃r (Ec) =

1− P̃r (E) ≤ 1−Pr (E) = Pr (Ec). Consequently, in (27), we
have Pr

(
D | ne

)
≥ 1 −

∑ne

i=1 P̃r
(
Eci
)
≥ 1 −

∑ne

i=1 Pr
(
Eci
)
,

which is consistent.
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Exact

Lower bound

Fig. 8. The lower bound on the probability that the sensor network detects
each of ne emitters, given by (27). We use the parameters in Table II with
a sensor density λs = 100 sensors/km2. A directional sensor (or emitter)
has an azimuth beamwidth of π/9 radians. An omnidirectional sensor (or
emitter) has a beamwidth of 2π radians. The elevation beamwidth is set to
π/2 radians for all cases. The exact Pr

(
D | ne

)
is found via simulation.

B. Expected Number of Undetected Emitters

If Pr (D) is low, the metric Pr (D) does not itself reveal
how many emitters are not detected. Perhaps it is tolerable
for the sensor network to detect all but one emitter. It can be
difficult to interpret the situation solely with Pr (D). Here we
propose another metric that may lend more insight. For ne

emitters arbitrarily located in a finite region R, we consider
the number of undetected emitters, 0 ≤ nu ≤ ne. We can
express E [nu] analytically and use the result to design the
system to drive E [nu]→ 0.

We express nu =
∑ne

i=1 1
[
Eci
]
, where 1 [·] is the indi-

cator function. Conditioned on the number of emitters in
the region, we find E

[
nu | ne

]
= E

[∑ne

i=1 1
[
Eci
]
| ne

]
=∑ne

i=1 Pr
(
Eci
)

= ne Pr (Ec) . Therefore,

E
[
nu | ne

]
= ne exp(−λsηeηsπE[hδ](ω/(ηeηs))δ). (29)

If the emitter locations are modeled as an arbitrary stationary
point process with density λe, then E [nu] is found by taking
the expectation with respect to ne with E [ne] = λe |R|.

This expression is consistent with the following intuitive
cases. As λs → ∞ and/or ω → ∞, we have E [nu] → 0.
Additionally, as λs → 0, ηe → 0, ηs → 0, and/or ω → 0,
we have E [nu] → E [ne]. The result reinforces our previous
conclusions. To minimize E [nu], we desire omnidirectional
sensors (Ψs = 2π) with low MDS τs and high density λs.

As an application, E [nu] could inform the required sensor
density for scenarios in which it is tolerable to miss some
number of emitters. Without loss of generality, we consider

Fig. 9. A plot of (30) for ne = 1, 2, 3, and 4. We use the parameters in
Table II with omnidirectional sensors and emitters.

E
[
nu | ne

]
= µ and solve for λs. For convenience, let Ω ,

ηeηsπE[hδ](ω/(ηeηs))δ . Solving for λs provides

λs =
1

Ω
ln

(
ne

µ

)
=

1

Ω log10(e)

[
log10(ne)− log10 (µ)

]
. (30)

For system design, if it is tolerable to miss an average of
E
[
nu | ne

]
= µ, the corresponding sensor density could be

found. As an example, Fig. 9 plots (30) for omnidirectional
sensors and emitters with the parameters in Table II. We see
that tolerating a larger average number of undetected emitters
lowers the required sensor density. In Fig. 9, we see that
increasing µ by an order of magnitude decreases the sensor
density by about 35 sensors/km2. Generally, this trade-off is
given by (Ω log10(e))−1 per decade of µ.

V. CONCLUSION AND FUTURE WORK

Since the occurrence of directional emitters is inevitable
in practice, we must account for directional emitters in the
design of a spectrum monitoring system. Previous works on
sensor networks offer insight into this design under the as-
sumption of omnidirectional emitters but have not considered
directional emitters. We presented a generalized framework to
model a system of directional sensors and emitters, which can
specialize to the omnidirectional case. With the framework,
we found the probability that at least one sensor detects
a single emitter in (20) and lower bound this probability
for multiple emitters in (27). We also found the expected
number of undetected emitters in (29). The analysis shows that
omnidirectional sensors optimize these metrics. Furthermore,
for a given probability of detection, the required sensor density
has the relationship λs ∝

(
1

Ψe

)1−δ
, which means we need

more sensors for emitters with higher directivity. One caveat
for these conclusions is the case of free space propagation
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(α = 2) for which azimuth directionality does not have
an effect. Finally, the sensitivity of Pr (E) to frequency is
analyzed in (23), and a strategy for multi-band deployment
is developed from analysis of (24).

Additionally, the results help to design a sensor network
to detect directional emitters by making explicit the trade-off
between the sensor capabilities and deployment density. In
particular, we show that for a fixed budget, one benefits from
increasing the MDS (thereby lowering the cost of the sensor)
in order to deploy a greater number of sensors. The increase
in sensor quantity improves the probability of detection more
than a lower MDS. In other words, sensor quantity is more
important than sensor quality.

Future work should analyze the tightness of the bound in
(27). Also, this work can be extended to the problem of
localizing emitters, perhaps through the problem of unique
sensor coverage [54] or through the problem of multiple
coverage. Moreover, the framework in Sec. II extends to three
dimensional sensor networks, and we can reconsider the prob-
lems in this paper in the more realistic three-dimensional case.
Finally, the system model can be extended to a heterogeneous
sensor network with individual sensor densities for each type
of sensor.
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