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Spatial Analysis of Opportunistic Downlink

Relaying in a Two-Hop Cellular System
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Abstract

We consider a two-hop cellular system in which the mobileasodelp the base station by relaying
information to the dead spots. While two-hop cellular scherhave been analyzed previously, the
distribution of the node locations has not been expliciligen into account. In this paper, we model
the node locations of the base stations and the mobile statis a point process on the plane and then
analyze the performance of two different two-hop schemethéndownlink. In one scheme the node
nearest to the destination that has decoded information fhe base station in the first hop is used as
the relay. In the second scheme the node with the best chémile¢ relay that received information
in the first hop acts as a relay. In both these schemes we dbgisuccess probability of the two hop
scheme, accounting for the interference from all otheiscélle use tools from stochastic geometry and
point process theory to analyze the two hop schemes. Besidagsults obtained a main contribution
of the paper is to introduce a mathematical framework that lwa used to analyze arbitrary relaying
schemes. Some of the main contributions of this paper araribbtical techniques introduced for the

inclusion of the spatial locations of the nodes into the reathtical analysis.

Index Terms

Interference, cellular, two-hop, diversity, outage.

I. INTRODUCTION

Cellular systems are the most widely deployed wireless systand provide reliable com-

munication services to billions around the world. They ¢sinsf base stations that serve a
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geographical area called cell. In most of the present @llaystems, the base station (BS)
communicates directly with the mobile users (MS) in its .CEHis single-hop architecture makes
it is difficult for the BSs to communicate with MSs at the celubdary because of the distance
and the inter-cell interference. So a base station will hawecrease its power to maintain the rate
of transmission. The dead spots problem can be counteredibg more base stations, thereby
increasing the spatial reuse. But increasing the number & Isgations can be prohibitively
expensive or even impossible. The problem can be addressexlaffectively by moving away
from the paradigm of single-hop communication and perngtthe base station to communicate
with mobile stations at the boundary by using the other meatiate MSs in its cell in a sequence
of hops. Although such multi-hopping requires some sigaificchanges in the present cellular
system architecture, it may help to effectively combat tleadispots problem, and hence the
cellular multi-hopping problem is worthy to investigatd,[12]. In this paper, we analyze the
benefits of two-hop cellular communication by comparing gesformance with a traditional
single-hop cellular system. A two-hop system,

« may provide significant benefits over single-hop commurooat

« does not have the implementation complexity of larger nunolbdops (in terms of routing

and scheduling).

When a BS transmits, multiple MSs will be able to receive therimiation, and hence these
mobile nodes can help the BS transmit information to the addjee Since more than one MS
can act as a relay, it is not clear how to choose a subset df tieésys in a distributed fashion
S0 as to reduce the interference and increase the propaigiltacket delivery. In this paper, we
analyze simple relay selection schemes and compare théarpance with direct transmission.
We account for the inter-cell interference and the spatiaicture of the transmitting nodes in
the analysis.

We use methods from stochastic geometry and point processytito model and study the

two-hop cellular system. In particular we provide techmigjbased on probability generating

November 15, 2009 DRAFT



functional of a point process to analyze the outage proiviaisil and we provide asymptotic
results for the outage at higfNR and low BS density. The techniques presented in this paper
can be extended to analyze more complicated relay selesitiiemes, power control mechanisms
and other multi-hop techniques. The major emphasis of tperpia in the methodology and the
techniques of the analysis rather than the specifics of themamication system. For example
we concentrate only on two specific relay selection methdtti®a@gh many more methods have

been proposed in the literature.

A. Previous work

The problem of two-hop extensions of cellular system haslstaedied extensively, and a
provision for a multi-hop technique has been included inAR@ SM standard [1], [2]. In [3], a
MS is selected to help the BS depending on the large-scalel@sgton the BS-relay link and
the relay-destination link. [4] considers a similar problebut the MSs that can act as relays
are assumed to be located on a circle around the BS, and thersygiovide various power
allocation schemes and verify their performance by sinmriat The present problem is also
very similar to the problem of opportunistic relay seleotitn [5], [6] a detailed analysis of a
opportunistic two-hop relaying scheme obtaining full dsity order using distributed space-time
codes has been provided. But a distributed space-time codé@ee very tight coordination and
precise signaling among the relays, which increases thénead and complexity in the system.
An alternative approach is to choose thest relay, and in opportunistic relaying (OR) [7] a relay
is chosen so as to maximize the minimum signal-to-nois® I&MNR) of the source-relay and
the relay-destination links. In selection cooperation (§81)[9] the relay with maximum relay-
destinatiorSNR is chosen and has been shown that SC and OR provide a sinviéasitly order.

In [5], [7]-[9], distributed relay selection schemes aralgmed and asymptotes of the outage are
provided for highSNR. The asymptotes provided are functions of the means of gacbefficients
between the source, relays and the destination. Averabeggtresults with respect to the spatial

distribution of the nodes is difficult and hence we use anr@ditve approach. In our approach
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we model the node locations in a statistical manner and jparate this information in the
analysis from the start rather than averaging over the adatations at the end. Our emphasis
is on low-overhead schemes that can readily be implemented.

The paper is organized as follows: In Section Il the systendehe introduced, assumptions
stated and the metrics used in the paper defined. In Seclidghelloutage probability in the
direct connection between the BS and its destination is eriin Sections IV and V the outage
probability of the two-hop schemes employing differentayekelection schemes are analyzed.
The asymptotic gain of using the two-hop schemes over thezidaonnection is also studied in

these sections. In Section VI simulation results are pexvidnd compared to the theory.

Il. SYSTEM MODEL

We assume that the BSs (cell towers) are arranged on a sqttize & density),.

P, = {\/I—)\_b, T € Zz}.
The analysis in this paper generalizes in a straightforwaadner to any deterministic arrange-
ment of BS. We assume that, MSs are available to assist a BSe ®,. More precisely, the
locations of the mobile stations that assist the base statimrm a Poisson point process [10]
(PPP)®, of density \.(y) = n(y — ). For example choosing(y) = 1,([-1/2,1/2]*) and
A, = 1 would lead to a square coverage area for each base statioms®#k,(A) to denote
the indicator function of sefl. See Figure 1. Observe that it is not necessary for a MS to be
associated to its nearest B, some MSs may be outside the Voronoi cell of their BS. We

further make the following assumptions:

1) The average number of MS that each BS serves is finde,

N= [ nx)dzr < .

R2
This assumption implies that, cannot be homogeneous [10], [11].

2) The locations of the mobile users associated with diffebase stations are independent.
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Since the number of MSs in each cell is Poisson with m@an- E[n,], each cell is empty
with probability exp(—/N'). We shall use. to denote the probability that a cell is not emptg,,

u =1—exp(—N). Independent Rayleigh fading is assumed between any pamdgsand also
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Fig. 1. lllustration of the cellular system with, = 1 andn(y) = 50 - 1,([—0.25,0.25]%). So on a average there ate.5
MSs per cell. The bold dots represent the BSs and the smaller dots theTkSahite spaces between the cells may consist of
other cells which transmit at a different frequency. We may model #ise evhere the neighboring cells use the same frequency

by choosingn(y) = 1,([-0.5,0.5]?).

across time, and the power fading coefficient between a noaled nodey is denoted byh,,.
Henceh,, is an exponential random variable with unit mean. The pasis-imodel is denoted
by ¢(x) : R?*\ {0} — R*™ and is a continuous, positive, non-increasing functior||:of that
satisfies

/ l(x)dx < 0o, Ve>0, (1)
R2\ B(0,€)

where B(a, ) denotes a disc of radiuscentered around. ¢(z) is usually taken to be a power

law in one of the forms:
1) Singular path-loss modellz|| .

2) Non-singular path-loss moddll + ||z||*)~! or min{1, ||z|~*}.
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The integrability condition (1) requires > 2 in all the above models. Assuming simple linear
receivers and treating interference as noise, the commatioicbetween: andy is successful if

pmhmyg(x - y)
02+ 2 eo Phayl(z — y)

We also assumeé > 1 which implies at most one transmitter can connect to a receilered

SINR(z,y, ) =

> 0. )

is the set of interfering transmitters, is the transmission power used by a transmitter located at
z ando? is the the additive white Gaussian noise power at the recaiMe make the following
assumptions:
1) In the two-hop schemes that will be analyzed, BSs transnthe even time slots and the
MSs transmit in the odd time slots, synchronized acrossedi$.c
2) Each base station has an additional mobile station, tdestination at »(x) with ||r(z) —
z|| = R, to which the BS wants to transmit information. This additibnode just receives
and never transmits.
3) All the BSs transmit with equal powe?r.
Notation:
« Define

1(z — y | ®) = 1(SINR(z,y, D) > 0).

1(x — y | @) is the indicator random variable that is equal to one if adnaitter atx is
able to connect to a receivgrwhen the interfering set i$.

« Define
d(x)={yed,: Lz —y]|d\{2z})}.

d(x) is the set of MSs in the cell of BS to which the BSz is able to connect in the first

hop (even time slots).
Metric: Let P, denote the probability that a BS can connect to its destinaticectly in the

first hop. Since all BSs are identical
Pi=El(o — r(0) | Py \ {0}). (3)
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where o denotes the origin0,0). A BS can connect to multiple MSs in its cell, and these
connected MS are the potential transmitters in the secopd Inothe relay selection methods
studied in the next section, a subset of these potentiabrmiters R, C &(z) are selected
for eachx € @, to transmit in the next hop. Let the probability that a relan connect to
its intended destination (determined by the source to whidonnects in the first hop) in the
second hop b&,, i.e,

P,=1-E ] 1-1(x—r(0) | ¥\ {x}), 4)

XERO

whereV = (J, 4, . is the set of all transmitters in the second hop. Here we aenaisg no
cooperative communication between nodes which have the s&afiormation, and hence relays
belonging to the same cluster also interfere with each athéne second hop. Singg> 1, at
most one transmitter can connect to a receiver and thus

Pr=E) 1(x—r(0) | ¥\ {x}), ()

xER,

and the probability of success for the two-hop scheme is
Ps=1—(1—-Py)(1—P,).

The BS can potentially transmit in the second hop instead ofguthe MS as intermediate
relays. This retransmission scheme will be used as the ledseence, and the performance of
the relay selection schemes will be compared with this mstrassion scheme. The gain in using

the two-hop scheme over the retransmission scheme can bactdrized as

O (1=Py? 1-Py
G(SNR,)\b)—@_Pd)(l_PT)—1_PT, (6)
where
SNR = Pg(f)
g

is the received SNR for the direct transmission. To compheedirect transmission with the

relay selection scheme, power is allocated across thetedleglays in the second hop so that
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the total power is equal t&. Another pertinent metric to capture the performance ofitgvork
is the diversity gain, defined as

log(1 — Py)

d(A) =— 1 _——.
() SNR oo log(SNR)
From the definition of the diversity and the gain, the follogirelation follows:

. log(G(SNR, A
da(Ay) — da(Xe) = SNlll?rLloo <108(§(SNR) b))7

whered, is the diversity gain for the single-hop retransmissionese, andl, is the diversity
gain of the two-hop scheme. From the definitionRafit can be observed that the information
received in the two time slots is decoded independently.

In the next sections, we will analyze the success probghilitand the diversity order of the
relay selection schemes. It is easy to observe that the pitipa,. of any relay selection scheme
does not tend to one by increasing B¥R because of the interference caused by transmissions
in other cells. So to evaluate the asymptotic performandbetystem, we scale the BS density
as

N =SNR?, 35 >0. (7)

As will be evident in the next section, if the signal-to-iriegence ratio is defined as

(R)

SIR = ,
EXE(I’]]\{O} €<X - T(O)>

(8)

the scaling in (7) translates to

SIR = O(SNR?).

So the system is interference-limited whén< 2/a and noise-limited otherwise. Hence the
scaling in (7) helps us evaluate the performance of the syte varying 5. In practice this
scaling can be achieved by frequency planning and decgg#sinspatial resuse factor. We now

begin with the analysis of the direct transmission scheme.
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[Il. FIRST HOP: BASE STATION TRANSMITS
A. Direct Connection

When the BSs transmit, the inter-cell interference, fading thre noise may cause the trans-

mission to fail. The probability of direct connection is giv by

Ps = o) | 24\ {o}) (9)

El(o —
( hey((R) y 9>
z+ > yedp\{o} Nur)l(y — (0))

B ep( PaR)) 11 T+ 1 eg r(0))

ye®s\{o}

— e (g ) Ao (10)

where

1

Ay = ] . .
yerio LT W )

The following lemma is required to analyze the asymptoticthe success probability.

Lemma 1: When/(z) = ||x||~ or £(z) = 1/(1 + ||=||*),
1—-A(x) 0C(a)

}:ino )\2‘/2 o f(l’) ’
where
Cla = EO/20)[6(0/2,1/4) — €(0/2,3/4)] a1

Qa—2
£(s,b) = D h oz sk +b)7* is the generalized Riemann zeta function.
Proof: We consider the case dfz) = ||z||~“; the other case follows similarly. From the
definition of A(z) it follows that
exp (= 00x)" Y fy-u) < A@< (1400 Yy - )

yedp\{o} yedy\{o}
We have

Yooy = Y E(\/L)\_b—x>

y€®y\{o} y€Z2\{o}
= A > Uy —av/N)
y€Z2\{o}
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10

Dividing both sides byA*/? and taking the limit, the result follows from the definitiof the
Epstein zeta function [12]. [ |
We have('(3) =~ 9.03362 and C(4) ~ 6.02681. From the derivation of the above lemma we
observe thaSIR ~ SNR**/2¢(R)C(«)~! where the definition ofIR is provided in (8). Using
the above lemma, the asymptotic expansioPgfor A, = SNR™”, 3 £ 0, at highSNR is

1 —6OSNR™ af > 2

Pi~q 1-0(1+C(a)l(R)"")SNR™ apf =2 (12)
1 —60C(a)l(R)"'SNR /2 0<af <2,

and the diversity gain of the direct transmission is

d4(SNR™) = min {1, 67&} :

So for the direct transmissioni < 2/« corresponds to the interference-limited regime and
8 > 2/a corresponds to the noise-limited regime. From Figure 2 wie tioat the asymptotes
in (12) are close to the true— P, even at moderat8NR. In the scaling law provided, observe

that the distance of the receiver from the BS is fixed.

B. Properties of the potential relay sets ci)(x).

In this subsection, the properties of the node set that thetBBeaorigin is able to connect
to are analyzed. When the BSs transmit, the interference se&ndoMSs is independent. So
the set of MSs to which the BS at the origin can connect to is dagandent thinning ob,.
Henceci>(o) is also a PPP and since the thinning depends on the positienegsulting process

is inhomogeneous. Hence the intensitydgb) is
6(z) = n(z)ELl(o — x | @, \ {o}).
Following a procedure similar to the derivation of (10), théensity is given by

5(2) = () exp (‘g&%%) Aa). (13)
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Error probability versus SNR for direct transmission

10 @)= 85— = B rn I n P
10 'h
10 7k
©
&
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- —g— B=0.\, =1 (Monte Carlo)
—»— 3=0.25 (Monte Carlo)
- % - 3=0.25 Asymptote.
_,|| —6—B=0.5 (Monte Carlo)
101 -e- B=0.5 Asymptote
—6—(3=0.75 (Monte Carlo)
- © - [3=0.75 Asymptote
T T T L | \
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SNR dB

Fig. 2. Outage probabilitg — P, versusSNR for A, = SNR~# with different 3. The system parameters ate= 4, § = 1.5,
r(0) = (0.5,0.5) and£(z) = (1+ ||=||*)~*. The dashed lines are the asymptotes derived in (12). Observe taeedifé in the

slopes of the error curve fo8 < 0.5 and > 0.5.

The average number of MSs which the BS is able to connect to is

EY 1lo—z|®\{o}) = /R §(x)dx, (14)

IECDO
which follows from the Campbell-Mecke theorem [10]. The aggr distance over which the BS

at the origin can connect is
E> vea, 7]1(0 — x| @)
EZ;@DO 1(o — x| D)
Jee llzll0(z)da
fRQ d(z)dx

In the second hop, a subset of the MSs which were able to eedefermation in the first-

L (15)

(16)

hop transmit. In the next sections we analyze the followwg strategies to select a subset

R, C ®(z) to transmit in the second hop (odd time slots):
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« The MS closest to the destination and that has receivednaon in the first hop transmits
in the second hop. This strategy requires nodes to know taspective locations.

. The MS with the best channel (fading and path-loss) to théirggsn that has received
information in the first hop transmits. This strategy regsithe relays to have channel state

information.

IV. METHOD 1: NEARESTRELAY TO THE DESTINATION TRANSMITS

In this relay selection method, the nodec ®(a),a € ®,, closest tor(a) is selected to
transmit in the second hop. To do this each node should kreoawh location, and each packet
should have location information about its destinationt &dfair comparison with the direct
transmission scheme, we assume that the selected relaynitarwith powerSNRs?/¢(R). The

probability of success in this relay selection method is
P, = P (hw,r(o)f(r) > 0(c% + [)) ,
where! is the inter cell interference a{o), andr is the distance from the relay in the sifo)
that is nearest te(o). More precisely
) oo lle = (o)l [B(0)] > 0
00, |®(0)| = 0.
®(0) can be empty because of the following two reasons:
1) The cell has no MS to begin with. The probability of this paping is1 — L.
2) The BS was not able to connect to any MS in the first time slot.

For a fair comparison with direct transmission, we conditam the cell at the origin having at

least one MS to begin with,e,, n, > 0. So

P. | (n, >0)=P,u".
Let F,(r,SNR, \,) denote the CDF of the first contact distributiondfo) from (o). It is given
by

Fy(rSNR, ) — 1—exp (_ /B (5(:6)d:1:>. (17)

(r(0),r)
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Observe thatF,(r, SNR, )\;) is a defective distributioni.e., F(co, SNR, \;) < 1. Let

0

fo(r,SNR, Ap) = ~a

F,(r,SNR; \y)

denote the PDF of the first contact distribution. Hence

oo [ () (o (e )i

T (Ab7r)

wherel is the interference af(o) caused by transmitters in other cells. Even thofigh(r, SNR, \,)dr <
1 the above average is correct since the integrand is zerc=ato where the remaining mass

of the first contact distribution lies. We now evaludtg\,, r). Let f,(z),a # 0, x € R?, denote

the PDF of the nearest neighbor «fz) in the setd(a) relative toa, conditioned on the event
|®(a)| > 0. We then have

L) = ] /RQE

a€Z?\{o}

fa(®) - ] dz
1+ 59 f(r +x —1(0))1(|®(a)] > 0)

Taking the average with respect b(a)| yields

e L@@ >0) |,
anQ\{o}/RQE L@l > 0+ 77 E(r+m ())]d
- Ja(z)(1 —exp(— [ 0(y)
a€Z?\{o} 1+Z(T)£(ﬁ+x_r( ))

fo(z) depends on the geometry of each célly), r(a), and is easy to calculate once these
quantities are known. We now calculate the asymptoticB,0fnd the asymptotic gain.
Asymptotic gain: In this part we scale the BS density &s= SNR™. It is easy to observe that

the average number of MS in each cell that are potential selay, [ J(x)dz, scales as

OL(R) [ n(x) 0C(a) [ n(x)
/(5($)dx~/n($)dx—SN—R/mdx— SR / ) dz. (18)

It can also be verified that

sup | F,(r, SNR, SNR™?) — F,(r, 00, 0)| — 0
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asSNR — oo, which impliesF,(r, SNR, SNR™?) converges uniformly td=,(r, oo, 0). Hence we

can interchange the derivative and the limit in the asynnptanalysis. We have

fo(r, SNR, SNR™7) = exp (—/ o(x )dx) 0 / 6(z)dz.
B(r(o),r) or (r(0),r)
From (18) and the fact thatkp(—x) ~ 1 — x for small z it follows that,

exp (= (r) (Z/(r) = %Gio()  af>2
exp (— (1) (2£(r) ~ soelhg(r)) af <2

R (0 PN SR 10 PO
g(r) or /B(r(o),r) E(I)d /B(r(o),r) g(f)d arf( )

fo(r,SNR, SNR™?) ~

where

and

The following limit follows similar to the asymptotic analg of P,

- 1 —Ty(SNR7# ) ~ 0C(a)u
SNR—oo  SNR™P2 ((r)

)

whereC'(«) is given by (11). By some basic algebraic manipulations tlyenagotic expansion

of the error probability with respect t8NR with )\, = SNR*[’,ﬁ >0, is

1=Py | (n,>0) ~ ﬁﬁfﬁf‘ﬂfo P {g laf (ydr - af=2 (19)
SNRQB/Q I exp ( {g +pl(r) L f(r)dr aB < 2.
These asymptotes are plotted in Flgure 3. From (19) the asym@ain is
—1 ( [o© -190 -1
SNI%{IEOOG(SNR SNR%) ~ pl(R) (fooo exp ( {g o }dr) B af > 2
wl(R)™1 (fo exp ( {g )+ pl(r) 2 5 f(r }dr) aff < 2.
Remarks:

« We observe that the gain is higher in the interference-$ichitegime than the noise-limited
regime. This is because in this relay selection method, sointke cells may not be able
to transmit because they do not contain any MS, which happéhsprobability 1 — 4

« Since the gain does not scale wiiNR, the diversity of this scheme is also equal to
min{1, Sa/2}. See Figure 3 for the error plot obtained by Monte Carlo sitiuta and the

above asymptotes obtained theoretically.
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1—Pr [ (n0 > 0) versus SNR for 8=1.5, a=4, L=1

(o]

r

|
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1-P | (n_>0)

H-3- 3=0 (Monte Carlo)
[ | —8— =0.25 (Monte Carlo)

_4' - B - (3=0.25 Asymptote

10 H —o—p=05 ]
| —— B=0.75 (Monte Carlo) N
| = P-p=0.75 Asymptote A
T I L ! R l
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Fig. 3. Outage probability — P, | (n, > 0) versusSNR for X, = SNR~? for different 3. The system parameters ate= 4,

0 = 1.5, r(0) = (0.5,0.5), £(z) = (1+||z||*)~" andn(y) = 51,([-0.5,0.5]%). The dashed lines are the asymptotes derived in
(19). The dashed lines are the asymptotes derived in (19) and amexapately equal tal0.351SNR~%® (interference-limited)
and1.387SNR™! (noise-limited).

V. METHOD 2: RELAY WITH BEST CHANNEL TO THE DESTINATION

TRANSMITS(SELECTION COOPERATION).

In this selection procedure, the fading between a poterglaly and the destination is also
included in the criterion for the relay selection. The rekdth the best channel to the destination
is selected. This method of relay selection is called seleatooperation. In the second hop,
each relay of the sef(o) can send a channel estimation packet to the destination in an
orthogonal fashion, and the destination can choose thg wata the best channel. Alternatively,
if channel reciprocity is assumed, the relays can estinteechannel between themselves and

the destination when receiving the NACK and use this infoiomato elect the best relay in a
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distributed fashion.
As in the previous section we shall find the success prolaloitinditioned on the cell at the

origin being non-emptyi.e, P, | n, > 0. As indicated earlier
P, | (n,>0)=pu"'P,.

Hence we shall first calculate the unconditional probabifit and then multiply it withy=?.

The relay that is selected is mathematically described by

arg max, ¢, {har(o)((z — r(0))}.
The exact analysis of this relay selection in the presendatefference is difficult and hence
our aim in this section is to obtain the scaling behaviouG¢SNR, SNR™/2). Let k denote the
cardinality of the seﬁ>(o). Since the connectivity in the first hop is independent acresys,

k is a Poisson random variable with mean

E[k] = [ o(z)dx.

R2

To make the comparison with the direct transmission easessume that each node transmits

with power P = SNRo?/¢(R). The probability of error is

1-P, =P (P max {hz(o)l(x —7(0))} < O(1 + Uz)) ’

zed(0)

where! is the interference at(o) caused by concurrent transmissions in other cells. Comdtiiip

on the point setb(0) we have

1-P, |d0) = P (p max (e = r(0))} < 07 + o) | cﬁ(o))

z€d(o

Since ®(o0) is a PPP with intensity functiof(z), conditioning on there being points in the

o(x)

set, each node in the set is independently distributed wetisitly x(z) = T 00" Removing
the conditioning on the locations df(o), we obtain
. (o2 + 1) g
1-P o) =k)=E|1-— —_— 2
L I e e (20)
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Using binomial expansion,

1P, | (|B(0)| = k) =E

m=0

i (o)LL (pit—rp) m(m)dx]m].

Hencel — P, | (|®(0)| = k) is equal to

§<—1>m<§) AQmu<x17...,xm>exp< 6025 gb—m >bﬁ” Vo ..y,
where
v(zy,...,&tnm) = E ﬁeXp <_€(xb£—97"(0))>]
= Efexp (—10o(z}"))]

= K exp <_09(x;n) Z hy(a)r(o)e(y(a) - T(O))l(’(i)(a” > 0))]

a€Z?

wherey(a) denotes the location of the selected relay in the cedl ahd o(z7") = >, ¢(z), —

r(0))~!. Let g,(z) denote the PDF of, — x where

T = arg maxxeé(a){hm(a)aﬁ —r(a))}.

go(x) is difficult to calculate and is the reason of resorting tonagtotics. Sinceh, ), () Is

exponential it follows that

V(xl,...,xm)_Hl_/ 9a(y)(1 — exp(— [ () dy.
R

gt 2 1+9_1 ( ) 1€(y+ﬁ —T(O))_l

Hence the unconditional probability of error is

o [1 s <_ /R 6(x)d$> gak(f%iﬂl

Asymptotic gain: The above expansion is too unwieldy to yield any asymptoiiés shall use

(20) to obtain the gain in the highNR and low-interference regime. Removing the conditioning

in (20) we have
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The above result follows from the generating function of as&an random variable. Hence

the required conditional probability is

o 00, = i (1B [ o (275D Y s,

An upper bound follows from Jensen’s inequality:

P 0> 0) < (1w |- [ Eexy (‘%) sor])

Similarly a lower bound can be obtained by using the inetpalip(—x) > 1 — « for the inner

exp,

P.|(no>0) > p! (1 — exp (— /R2 5(x)dx) E exp (/R2 %5@)@)) :

To evaluate the upper and lower bounds we observe that wéhak to findE[exp(—s/)]. By

a procedure similar to the derivation ofz, . .. ,xm):
)(1— d(z)d
Elexp(— H 1— / — exp(— [ 6(z) x)l dy.
o re L+ sy + 7 —7(0)”

Recall thatd(x) is equal to

0 ((R) 1
(@) exp (‘SN—RM) Il o

yeZ?\{o}
We now find the asymptotic lower and upper bound wher= SNR™? for large SNR. We first

observe that

§(z) ~ n(z) (1 — %SNRl - %C(a)SNR‘WQ) :

It is also easy to obtain that

Elexp(—sI)] ~ 1 — usC(a).

After basic algebraic manipulation, it is established thath the upper and the lower bounds

exhibit the same scaling which is

1 —SNR™! <T“) R) [ [m—m) + @(x)] n(x)dx af > 2

P. | (n,>0)~
1-— SNR aff/2 < ) Oé fR2 [m + mi| T](IE)CL’L' Oéﬁ < 2.

(21)
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Hence the gain is

lim G(SNR,SNR™?) = - [flR? [ o(z— ro) + ﬁ] 77(37)d$}1 af > 2

SNR—o00 © -1 1 -1
Eg |:fR2 |:€(a: r(0)) @(_ac)] n(x)dx} af <2
Hence the diversity of this scheme is

dy(SNR™?) = min{l,%ﬁ}.

In the above analysis we assumed that the cell is non-emputyhance obtained a maximum

(22)

+

diversity of 1.

1—Pr | (nO > 0) versus SNR for 6=1.5, a=4, L=1 using the best relay selection

10 -8 -3=0 (Monte Carlo)
—8— 3=0.25 (Monte Carlo)
. - B - 3=0.25 Asymptote
10 °F —6—B=0.5 (Monte Carlo)
—6— B=0.5 Asymptote
—p— =0.75 (Monte Carlo)
—~ -2
S 107 Rt - B-p=0.75 Asymptote
Y
< >
-
&L o107k 3
107} g
1 >
0 10 20 30 40 50 60 70

SNR dB

Fig. 4. Outage probabilitg — P, | (n, > 0) versusSNR for A, = SNR™? and various3. The system parameters ate= 4,
0 =15, z=(0.5,0.5), £(z) = (1 + ||z||*) ! andn(y) = 51,([-0.5,0.5)%). The dashed lines are the asymptotes derived in

(21) and are approximately equal @a812SNR™"-*(interference limited) and.108SNR™* (noise limited).

VI. SIMULATION RESULTS AND OBSERVATIONS

In this section the gain of the proposed methods over diransinission is obtained by Monte-

Carlo simulations. For the purpose of simulation we truntaeBS lattice to\b_l/Q{—Q, —-1,0,1,2}2,
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Gain (monte carlo) versus SNR for 6=1.5, a=4, L=1
1.1 T T T T

1.05F

B-o/a--a-o0-8--a |-8-p=0
—»—[(3=0.25

—6—p=0.5

o

©

@
T

Gain G(SNR,SNR™)
o
0 o
[} [(e}
T

0.8

I I I I I I
10 20 30 40 50 60 70
SNR dB

Fig. 5. G(SNR,SNR~?) versusSNR for various 3. Relay closest to the destination is selected.

and # = 1.5 is used as the decoding threshold. The cells are modeled umsesgand the

destination of each BS is located at a random vertex of thersqii&ie spatial density used is

n(y) = /\mly([_L/zv L/2]2)'

If not specified we use,,, =5 andL = 1.

()<++> In Figures 3 and 4 the error probability of the schemeploying nearest relay to the
destination and the best relay are plotted. We observe lieaaisymptotes obtained from theory
match perfectly with the simulation results. As predictgdtleory, the diversity obtained is
whenaf > 2 and is equal tex5/2 otherwise. From Figure 5 and 6, it can be seen that the gain
reaches a constant wh&NR — co. We observe that the best-relay selection scheme performs
the best as expected. In Figure 8, we observe that the asfifongéon increases exponentially
with )\, because of thél — u)/u factor in the expression for the asymptotic gain. Setting
X\, = SNR™ reduces the spatial reuse factor as $INR increases. The effective throughput
density of the network is equal tB,log(1 + #)SNR™ and the maximum of this throughput

density is the transmission capacity [13]. In Figure 9, wet P, | n, > 0)log(1 + #)SNR™”
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Fig. 6. G(SNR,SNR~?) versusSNR for various3. Relay with the best channel to the destination is selected.

Asymptotic Gain

Gain G(SNR,SNRP)

15 : : : : : ‘
10+ :
5 -B-p=0 7
—%—(=0.25
——pB=0.5
——p=0.75
O L L
0 10 20 30 40 50 60
SNR dB

Gain (monte carlo) versus SNR for 6=1.5, a=4, L=1

70

Gain versus )\m, r](y):)\rn 1y([—L/2 L/2]2), 0=1.5 for the nearest relay selection

5

4.5

4

3.5

w

N

15

0.5
0

—8— Interference limited L=1

—»— Noise limited L=1

—O— Interference limited L=2

—P— Noise limited L=2

Mobile Intensity )\m

15

21

Fig. 7. Asymptotic gain versus,, where\,, is the intensity in(y) = A1, ([—L/2, L/2]%), £(x) = |||~ § = 1.5 and

2= (-L/2,L)2).
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Gain versus )\m, r](y)=)\m 1y([—L/2 L/2]2), 06=1.5 for the best relay selection

10°

—8— Interference limited L=1

—»*— Noise limited L=1

Asymptotic Gain

Fig. 8. Asymptotic gain versus,, where\,, is the intensity in(y) = A1, ([—L/2, L/2]%), £(z) = ||z||~%, = 1.5 and
z=(-L/2,L/2).

versusSNR for various 5. We observe that for eacBNR there is ag that maximizes the
throughput density, and that &8lR — oo, the maximizingg tends to0, which is intuitive. The
figure indicates that a throughput density~ef0.1bps/m? is achieved at IowSNR, and that it

increases witlbNR.

VIl. CONCLUSIONS

In this paper we have analyzed the outage in a two-hop celiylsiem under consideration
of all the node location statistics. Outage results wereigenl for two relay selection schemes,
namely nearest-relay selection and best-relay seledfienobserved that the diversity obtained
is min{1, «3/2} wherec is the path-loss exponent, when the density of the basemssasicale
as\, = SNR™” (alternativelySIR = @(SNR“M)). From this result we can infer that the system
is noise-limited (even for higlbNR) when a3 > 2 and interference-limited otherwise. The
asymptotic outage gain of the two-hop system over direcistrassion takes only two values as

a function of 3 depending on the relay selection scheme. The gain in sefeatrelay with the
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(P, In, >0)log,(1+6)SNR P versus SNR

N
o
zZ
L
[«>)
+
)
N
j=2)
2
=
N
[}
=
~
e
—8—B=0.25
——p=0.5
——p=0.75
10’4 L L L L
0 10 20 30 40 50
SNR dB

Fig. 9. (P2 | no > 0)log,(1 + 0)SNR™” versusSNR for various3. The best relay selection scheme is used.

best channel over a direct transmission increases expalhentith the density of theavailable

relays. The gain also increases with increasing sourcendésn distance. From simulations
we conclude that the gain in selecting the best relay outwgete overhead in estimating the
fading coefficients between the relays and the destinasaompared to the near-relay selection

method. The techniques introduced in this paper can be @tkefor the spatial analysis of other

relay selection schemes.
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