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Abstract—The current cellular networks have evolved to be
more randomly, irregularly, and heterogeneously deployed to
meet the exponential growth of mobile data traffic and the
demand for seamless coverage, making the signal-to-interference
ratio (SIR) distribution more challenging to analyze. Therefore,
in this paper we propose two simple approximative approaches to
the SIR distribution of general heterogeneous cellular networks
(HCNs) based on the ASAPPP method which stands for “ap-
proximate SIR analysis based on the Poisson point process” and
the MISR (mean interference-to-signal ratio)-based gain for each
individual tier of the HCNs. Specifically, we first establish a per-
tier ASAPPP approximation to general HCNs and then present
an effective gain ASAPPP method as a further simplification
when the path loss exponents are the same for all the tiers, that is,
we give an explicit expression for the effective gain Geff of general
HCNs such that the SIR distribution is obtained by scaling the
SIR threshold θ to θ/Geff . The asymptotic behavior for the tail
of the SIR distribution is also given. Furthermore, to highlight
the simplicity and effectiveness of the approximative approaches,
we derive the exact distribution of the SIR in the two-tier HCNs
modeled by β-Ginibre and Poisson point processes and compare
it with the approximate results. The results demonstrate that the
proposed approaches give a simple yet excellent approximation
for the SIR distribution.

Index Terms—Heterogeneous cellular networks, stochastic ge-
ometry, Poisson point process, signal-to-interference ratio, cover-
age probability.

I. INTRODUCTION

A. Motivation

Heterogeneous cellular networks (HCNs) are widely re-
garded as a solution to address the challenge of the explosive
mobile data traffic growth and to provide universal seamless
coverage through deploying macro-, pico-, and femto-base
stations (BSs) [2]. As one of the most important and general
metrics, it is important to analyze the signal-to-interference
ratio (SIR) distribution in the interference-limited HCNs to
further obtain performance metrics such as outage, capacity,
and throughput. The current theoretic analysis of the SIR dis-
tribution mostly focuses on the model based on homogeneous
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independent Poisson point processes (PPPs), introduced in [3].
However, the locations of the BSs in real deployments are
spatially correlated, i.e, they exhibit some degree of repulsion
or attraction. As shown in [4, 5], non-Poisson point processes
such as the perturbed lattice, the β-Ginibre point process, etc.,
can capture the spatial characteristics of the real deployments
better than the PPP. For such non-Poisson networks, the
analysis of the SIR is significantly more difficult than that
of Poisson networks and can be obtained merely by large-
scale complicated simulations or at best be expressed using
combinations of infinite sums and integrals. Although one
can investigate any desired scenario to any desired depth of
detail through simulations, this would require the simulation
of every possible scenario of interest separately, including all
possible choices of the deployment parameters. Even worse,
as the number of the combinations of different deployment
parameters rises exponentially with the undergoing transfor-
mation from the single-tier macrocellular network to the multi-
tier HCN, an exhaustive simulation study of every possible
scenario of interest will be extremely time-consuming and
expensive, if not completely unfeasible. As as result, with only
a limited number of scenarios investigated, the insight obtained
is restricted, making it difficult to draw inferences for other
cases. Hence it is necessary to explore efficient techniques
that provide good approximations of the SIR distribution for
general HCN models.

B. Related Work

The homogeneous independent PPP (HIP1) model usually
yields highly tractable results for HCNs [3, 6–8] but does not
capture the spatial dependence between base stations (BSs).
However, for non-Poisson deployments, exact results of the
SIR distribution are hard to derive or, even though they could
be derived, the resulting expressions are very complex to com-
pute [9–11]. As a result, it is almost impossible to figure out
how the network performance is affected by the parameters,
such as the density, transmit power, etc. In [12], the authors
provide the Padé approximation for the coverage probability
of a cellular network model where the BSs form a β-Ginibre
point process (β-GPP), but the results show that the Padé
approximation becomes very inaccurate as the SIR threshold
increases. In addition, since the Maclaurin coefficient compu-
tation in the approximation involves multiple-level and infinite

1A model whose tiers are independent Poisson point processes is called
HIP model. Its SIR distribution is equivalent to that of the single-tier PPP
model when the power path loss law with Rayleigh fading and strongest-BS
association are adopted [6].
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integrals, sums and products, the numerical computation of
the coverage probability is still complex and time-consuming.
Moreover, the Padé approximation can be expected to be even
more complex when applied in the heterogeneous scenarios.

Fortunately, as shown in [6, 13–15], the coverage probability
Pc(θ) , P (SIR > θ) for general single-tier networks can be
tightly approximated by merely scaling the threshold θ to θ/G,
i.e., Pc(θ) ≈ PPPP

c (θ/G), where PPPP
c (θ) is the coverage

probability of Poisson networks and G can be quantified using
the mean interference-to-signal ratio (MISR) and is thus called
MISR-based gain. We show that the MISR-based method can
be applied to general HCNs that are modeled by arbitrary (but
stationary and independent) point processes.

C. Contributions

The main objective of this paper is to present two simple
approximative approaches that yield highly tractable results
for the SIR distribution in general HCNs. Both are extensions
of the ASAPPP-based approximation [16], which stands for
“approximate SIR analysis based on the PPP”, to general
HCNs using the MISR-based gain for each individual tier. In
the first approach, we use the ASAPPP method to approximate
the coverage probabilities of the typical user served by the
BS in each tier and then sum the probabilities to obtain the
complete coverage probability, thus we call it per-tier ASAPPP
method. The per-tier ASAPPP method provides an asymptotic
lower bound for the coverage probability. The second approach
is applicable when the path loss exponents are the same for
all tiers. It constitutes a further simplification of the per-
tier ASAPPP method by giving an explicit expression of
the effective gain of HCNs. The SIR distribution can then
be directly obtained by scaling the SIR threshold with the
effective gain, thus we call it effective gain ASAPPP method.
Besides, we employ the ASAPPP method to approximately
characterize the tail of the SIR distribution of general HCNs.

Moreover, to highlight the simplicity and effectiveness of
the approximative approaches, we compare the exact dis-
tribution of the SIR in the two-tier HCNs modeled by β-
Ginibre and Poisson point processes with the approximative
approaches. Our results demonstrate that both methods are
excellent approximations to the SIR distribution in general
HCNs with simple expressions.

II. SYSTEM MODEL

We consider a coverage-oriented heterogeneous cellular
network (HCN) model comprising K types of nodes, i.e., a K-
tier heterogeneous cellular network, consisting of independent
and stationary point processes Φk, k = 1, 2, . . . ,K, which
are the locations of the BSs in the k-th tier, and Gk is the
corresponding MISR-based gain. Let µk, λk, and αk be the
transmit power, node density, and path loss exponent of the
k-th tier, respectively. We assume that each user is associated
with the BS that offers the strongest average received power.
Due to the stationarity of all Φk, we consider the typical
user located at the origin. We assume a power path loss law
`(x) = |x|−αk associated with node x, where k is the tier
x belongs to, and independent Rayleigh fading hx with unit

mean, E(hx) = 1. Thus, the received SIR of the typical user
is expressed as

SIR ,
S

I
=

µx0`(x0)hx0∑
x∈

⋃
k∈[K]

Φk\{x0}
µx`(x)hx

, (1)

where [K] , {1, 2, . . . ,K}, x0 denotes the location of the
serving BS of the typical user and µx denotes the transmit
power of node x: if x ∈ Φk, µx = µk. Then, the coverage
probability is obtained as the total probability of the disjoint
events that the typical user accesses a BS from tier k, given
by

Pc(θ) = P(SIR > θ)

=
∑
k∈[K]

P(SIR > θ, x0 ∈ Φk), (2)

where θ is the SIR threshold.
We list the main symbols and parameters used in the paper

in Table I.

III. THE ASAPPP APPROACH

A. The ASAPPP Approach for Single-tier Networks

Under the SIR threshold model for reception, the coverage
probability Pc(θ) is equivalent to the complementary cumu-
lative distribution (ccdf) F̄SIR(θ) of the SIR, i.e., Pc(θ) ≡
F̄SIR(θ). If the BSs form a homogeneous PPP or HIP model
with Rayleigh fading, the coverage expression is tractable
exactly [6]. For the second-simplest model (β-Ginibre point
process) with Rayleigh fading, the coverage probability can be
expressed using a combination of infinite sums and integrals
[5]. In all other cases it may be impossible to find exact expres-
sions. Hence there is a critical need for good approximation
techniques. It has recently been shown in [6, 13–16] that the
SIR ccdfs for single-tier networks modeled by different point
processes are approximately just horizontally shifted versions
of each other (in dB). Due to its tractability, the Poisson
network provides a baseline to obtain the coverage probability
curves of other models, and the horizontal gap (SIR gain) at
the target probability p is defined as

Gp(p) ,
F̄−1

SIR(p)

F̄−1
SIRppp

(p)
, p ∈ (0, 1), (3)

where F̄−1
SIR is the inverse of the SIR ccdf. The gap is often

defined as a function of θ, expressed as

G(θ) , Gp

(
PPPP

c (θ)
)

=
F̄−1

SIR(PPPP
c (θ))

θ
. (4)

The asymptotic gain G (whenever the limit exists) is defined
as

G , lim
p→1

Gp(p) = lim
θ→0

G(θ), (5)

which can be quantified using the mean interference-to-signal
ratio (MISR) and thus is called MISR-based gain. For a
network with base stations located at Φ with serving BS x0,
the MISR at the typical user is defined as [6]

MISR , E
{

I

Eh(S)

}
= E

{∑
x∈Φ\{x0} µx`(x)

µx0
`(x0)

}
. (6)
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TABLE I. SYMBOLS AND DESCRIPTION

Symbol Description
Φk , λk , µk The point process of the BSs in tier k and its density and transmit power

ΦPPP
k The Poisson point process approximate for Φk

`(x), hx The path loss attenuation and Rayleigh fading from the BS located at x to the user located at the origin
αk The path loss exponent of tier k

MISR The mean interference-to-signal ratio
EFIR The expected fading-to-interference ratio

Gk , Gk∞ The asymptotic gains at θ = 0 (MISR-based gain) and at ∞ (EFIR-based gain) for tier k
Ĝ, Geff The per-tier overall gain and effective gain for HCNs with the SIR threshold at 0
Ĝ∞, Geff

∞ The per-tier overall gain and effective gain for HCNs with the SIR threshold at ∞
NP(Φ) The nearest point in Φ to the origin
F̄SIR(θ) The complementary cumulative distribution of SIR

β The parameter for β-Ginibre point process to adjust the regularity

Eh(S) = µx0
`(x0) is the signal power averaged over the

fading. Hence the MISR is independent of the fading model.
The MISR for Poisson networks is MISRPPP = 2/(α − 2),
which also holds for the HIP model with an arbitrary number
of tiers, densities and transmit powers [6]. In general, the SIR
distribution satisfies FSIR(θ) ∼ MISR θ as θ → 0 in the
Rayleigh fading scenario2. Therefore, using (6), the asymptotic
gain G defined in (5) can be expressed as

G =
MISRPPP

MISR
. (7)

As illustrated in [14, 15], the MISR-based gain provides
a good approximation for the entire SIR distribution, i.e.,
we have G(θ) ≈ G. Consequently, the SIR distribution of
non-Poisson networks can be accurately approximated by that
of a Poisson network through scaling the threshold θ with
the MISR-based gain G, i.e., Pc(θ) ≈ PPPP

c (θ/G), and the
approximation is asymptotically exact as θ → 0. That is
why this approach of approximating SIR distribution is called
ASAPPP method [16], which stands for “approximate SIR
analysis based on the PPP” and can also be read as “as a
PPP”, indicating that the network is first treated as if it forms
a PPP and then a shift is applied to the SIR distribution.

B. The ASAPPP Approach for Heterogeneous Networks

Since the cellular networks are currently undergoing a
major transformation to be heterogeneously deployed, the
dynamic nature and complexity of heterogeneous networks
due to different types and combinations of point processes,
densities, and transmit powers, make it even harder to get
analytical expressions of the SIR distribution except for the
HIP model. Thus, we investigate how to extend the ASAPPP
method to general HCNs using the MISR-based gains of the
individual tiers constituting the HCNs. The coverage proba-
bility is expressed as the total probability of several disjoint
events, i.e., the coverage event is partitioned according to the
user being served by a certain tier. When a user accesses
a BS from a non-Poisson tier, this tier is treated as a PPP
with the corresponding threshold θ shifted to θ/G in the
SIR distribution. Meanwhile, the interference from the other
tiers is assumed to be approximated by that from another
Poisson network, which is another instance of “as a PPP”.

2The MISR-based gain for general fading models is investigated in [6, 15].

Approximating a repulsive point process3 with a PPP yields
an interference power that stochastically dominates the actual
interference power [17]. Consequently, the resulting coverage
probability is a lower bound to the exact coverage probability,
which turns out to be tight from our numerical results. Based
on the above method, an overall effective SIR gain is further
given to directly obtain the SIR distribution of HCNs by
scaling the SIR threshold of Poisson networks.

The main difficulty in the generalization from single-tier
to multi-tier networks is the interference characterization. In
the single-tier case, having x0 as the serving BS eliminates
one interferer from the BS process Φ and also implies that
the remaining interfering BSs are further away. In HCNs, the
interference from all BS belonging to the non-serving tier
needs to be considered, while still taking into account that
none of them is stronger (on average) than the serving one.
Moreover, the power levels in each tier and, more importantly,
the path loss models in each tier may be different.

IV. K-TIER HETEROGENEOUS CELLULAR NETWORKS

A. Main Result
We first focus on general K-tier HCNs and then specialize

to the case when the path loss exponents are the same. Let
δ , 2/α and T (α, θ) , 1 + θδ

∫∞
θ−δ

1
1+tα/2

dt, which can be
expressed in terms of the Gaussian hypergeometric function
2F1 as [18]

T (α, θ) = 2F1(1,−δ, 1− δ,−θ), (8)

and the coverage probability of the networks modeled by a
homogeneous PPP is given as PPPP

c (θ) = 1/T (α, θ) [19].
The same expression is valid for general HIP models [7].
The following theorem gives an accurate approximation and
asymptotic bound on the coverage probability of general
HCNs.

Theorem 1. Let δi , 2/αi and

P̂c(θ) ,
∑
k∈[K]

∫ ∞
0

exp

(
− rT (αk, θ/Gk)

−
∑
i∈[K]!

πλi(
µi
µk

)δi

(πλk)αk/αi
r
αk
αi T (αi, θ)

)
dr. (9)

3A point process whose pair correlation function is at most 1.
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For K-tier HCNs where the typical user is served by the
BS with the strongest average received power, the coverage
probability Pc(θ) is approximated by

Pc(θ) ≈ P̂c(θ). (10)

Moreover,

Pc(θ) & P̂c(θ), (11)

where ’&’ stands for an asymptotic lower bound, i.e., ∃t > 0
s.t. Pc(θ) > P̂c(θ) ∀θ < t.

Proof: We first define the nearest-point operator

NP(Φ) , arg min{x ∈ Φ: |x|} (12)

and the reduced point process

Φ! , Φ \ {NP(Φ)}. (13)

When a user is served by a BS in the k-th tier, we have
x0 = NP(Φk). Letting `k(x) = `(x) if x ∈ Φk, and
Ai,k = {µi`i(y) ≤ µk`k(x0)}, we have

P(SIR > θ, x0 ∈ Φk)

= E

exp

−θ
∑
x∈Φ!

k

µk`k(x)hx+
∑

i∈[K]!

∑
y∈Φi

µi`i(y)hy

µk`k(x0)

1x0∈Φk


= E

∏
i∈[K]!

∏
y∈Φi

(
1+

θµi`i(y)

µk`k(x0)

)−1

1Ai,k
∏
x∈Φ!

k

(
1+

θ`k(x)

`k(x0)

)−1


(a)∼ E

∏
i∈[K]!

∏
y∈Φi

(
1+

θµi`i(y)

µk`k(x0)

)−1

1Ai,k
∏

x∈Φ!PPP
k

(
1+

θ`k(x)

Gk`k(x0)

)−1


(b)

& E

∏
i∈[K]!

∏
y∈ΦPPP

i

(
1+

θµi`i(y)

µk`k(x0)

)−1

1Ai,k
∏

x∈Φ!PPP
k

(
1+

θ`k(x)

Gk`k(x0)

)−1


(c)
=

∫ ∞
0

fk(r)exp

(
−2πλk

∫ ∞
r

tdt

1+Gkt
αk

θrαk

−
∑
i∈[K]!

πλi

(
rαkδi

(
µi
µk

)δi
+

∫ ∞
r
αk
αi (

µi
µk

)
1
αi

2tdt

1+ µktαi
θµir

αk

)dr

=

∫ ∞
0

2πλkrexp

(
− πλkr2T (αk, θ/Gk)

−
∑
i∈[K]!

πλir
αkδi

(
µi
µk

)δi
T (αi, θ)

)
dr

=

∫ ∞
0

exp
(
−rT (αk, θ/Gk)−

∑
i∈[K]!

ρi,kr
αk
αi T (αi, θ)

)
dr, (14)

where ρi,k =
πλi(

µi
µk

)δi

(πλk)αk/αi
, [K]! = [K] \ {k}, and fk(r) =

2λkπre
−λkπr2 is the distribution of |NP(ΦPPP

k )| [20]. Step
(a) uses the asymptotically exact ASAPPP approximation
of Φk by shifting θ to θ/Gk and replacing Φk by a PPP
denoted by ΦPPP

k . In step (b) the interference from Φi is
upper bounded by that of a PPP denoted by ΦPPP

i with the
same density as Φi, which provides a lower bound for the

coverage probability4. Since ASAPPP is asymptotically exact
and accurate for a large range of θ, the approximation in step
(a) is asymptotically exact and step (b) gives an asymptotic
lower bound and provides an approximation for the coverage
probability. The probability generating functional (PGFL) of
the PPP [21] is used in step (c).

The final result follows by summing over [K].
If the path loss exponents are all equal, we have the

following simplification.

Corollary 1. When α1 = α2 = . . . = αk = α,

P̂c(θ) =
∑
k∈[K]

1

T (α, θ/Gk)+
∑

i∈[K]!

λi
λk

( µiµk )δT (α, θ)
. (15)

In this method, we calculate the probabilities of the disjoint
events that the user is served by BSs from different tiers and
then approximate each one using ASAPPP with the MISR-
based gain of individual tier, thus we call it per-tier ASAPPP
method. When the per-tier ASAPPP method is applied to K-
tier HIP networks, (15) reduces to P̂c(θ) = 1/T (α, θ), which
is the exact result for K-tier HIP networks as mentioned above.
When λiµδi , i ∈ [K], are the same for all tiers, lim

K→∞
P̂c(θ) =

1/T (α, θ), no matter what the Gk are.
In the following, we take K = 2 as an example, i.e., we

consider two-tier HCNs comprising the macro-BSs (MBSs)
and the pico-BSs (PBSs) and then divide this class of models
into two types, where for the first one, one tier is a non-
Poisson network and the other is a Poisson network; while for
the second one, both tiers are non-Poisson networks.

B. Non-Poisson/PPP Deployment

In this subsection, we consider two kinds of non-Poisson
point processes, namely, the β-GPP and the lattice model.

1) Special Case: β-GPP/PPP: The locations of the MBSs
Φ1 are modeled by a β-GPP, and the locations of the PBSs
Φ2 are modeled by a PPP. Through simulations and visual
inspection, we find that the MISR-based gain of the β-GPP is
quite exactly G ≈ 1 + β/2, irrespective of α, as can be seen
in Figure 1. Therefore, the coverage probability of the user
served by a β-GPP network is approximately the same as that
of a user served by a Poisson network and scaling the SIR
threshold θ to θ/(1 + β/2), which is verified in Figure 2.

Figure 3 and 4 show the coverage probability of the hetero-
geneous networks with different α and β when λ1 = λ2 =
10−5 and µ1 = µ2 = 1. It is apparent that the approxi-
mation is excellent over a wide range of θ, which validates
the effectiveness of the proposed per-tier ASAPPP method.
The tiny gap between each simulation and its corresponding
approximation can be attributed to the approximation of the
interference from the non-Poisson tier by that of a PPP, which
yields the asymptotic lower bound.

4Clustered tiers can also be included with a change in the inequality in
step (b). If the tiers constituting the HCNs are all clustered or Poisson, the
inequality becomes ’.’, and if the HCNs are a combination of clustered and
repulsive point processes, the inequality becomes ’≈’.
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Fig. 1. The MISR-based gain of the β-GPP for different α. Fig. 2. The ASAPPP-based approximation of β-GPP networks for
different α and β.

2) Special Case: Square lattice/PPP: The locations of
the MBSs Φ1 are modeled by a randomly translated square
lattice, and the locations of the PBSs Φ2 are modeled by
a PPP. From [6], the MISR of the square lattice is quite
exactly half of that of the PPP, irrespective of the path loss
exponent, i.e., Gsquare ≈ 2, and the ASAPPP approximation
for the single-tier square lattice networks is tight for coverage
probabilities over a wide range of θ. Figure 5 shows the
coverage probability with different α when λ1 = λ2 = 10−5

and µ1 = µ2 = 1, which further corroborates the effectiveness
of the per-tier ASAPPP method. Comparing Figs. 4 and 5,
we can see that the gap between the simulation and its
corresponding approximation is bigger than in the β-GPP/PPP
case. For instance, when θ=−10dB, the relative errors in Fig.
4 between the approximate and the simulation results are 1.7%,
1.0%, 1.0%, and 1.5% for α = 4, 3.5, 3 and 2.5, respectively
while the ones in Fig. 5 are 2.6%, 1.6%, 1.6%, and 4.6%,
respectively. It can be explained as follows: the square lattice
is more regular than the GPP, thus the approximation of the
interference from the square lattice tier by that of a PPP leads
to a less accurate approximation.

C. Non-Poisson/Non-Poisson Deployment

In this subsection, we again consider two types of HCNs:
one is composed of two β-GPPs, and the other consists of a
lattice and a β-GPP.

1) Special Case: Two β-GPPs: The locations of the MBSs
Φ1 and the PBSs Φ2 are two independent β-GPPs. Figure
6 shows the coverage probability with different α when
λ1 = λ2 = 10−5, µ1 = µ2 = 1 and β = 1, which
again demonstrates the accuracy of the per-tier ASAPPP

approximation. Letting ω , λ2

λ1

(
µ2

µ1

)δ
, we also see from (15)

that the coverage performance for the two-tier independent
GPP networks is the worst with ω = 1 (while better than that
of Poisson networks) because in this case the independence
between the two tiers reduces the regularity property of a
single GPP the most. Conversely, as ω tends to zero or infinity,

−20 −15 −10 −5 0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

θ (dB)

C
o
v
e
ra

g
e
 P

ro
b
a

b
ili

ty

 

 

Sim. w. β=0.5,α=2.5

Sim. w. β=0.5,α=4

Per−tier ASAPPP Approx.

Fig. 3. The per-tier ASAPPP approximation of β-GPP/PPP networks for β =
0.5.

these HCNs tend to single-tier GPP networks, since one of the
two tiers dominates.

2) Special Case: Square lattice/β-GPP: Here, the locations
of the MBSs Φ1 form a randomly translated square lattice, and
the locations of the PBSs Φ2 form a β-GPP. Figure 7 gives the
coverage probability for different α when λ1 = λ2 = 10−5,
µ1 = µ2 = 1 and β = 1. We can see that similar to the case
of square lattice/PPP, the ASAPPP-based approximations are
tight when θ tends to zero and become slightly less accurate as
θ increases. The reason is the same, i.e., the higher regularity
of the square lattice deployment leads to the less accurate
approximation in the HCNs.

D. Effective Gain of K-Tier HCNs

In the per-tier ASAPPP method, we add up the probabilities
of the disjoint events that the user accesses the BSs from
different tiers using the corresponding MISR-based gains. In
the following, we give an overall (or effective) SIR gain of
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Fig. 4. The per-tier ASAPPP approximation of β-GPP/PPP networks
for different α with β = 1.

Fig. 5. The per-tier ASAPPP approximation of the square lattice/PPP
networks for different α.
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Fig. 6. The per-tier ASAPPP approximation of the two-tier GPP
networks for different α.

Fig. 7. The per-tier ASAPPP approximation of square lattice/GPP
networks for different α.

HCNs relative to the PPP similar to the MISR-based gain
based on the per-tier ASAPPP method such that the SIR
distribution of HCNs can be approximated by shifting the
curve of the PPP with the SIR gain.

When α1 = α2 = . . . = αk = α, letting wk , λkµ
δ
k∑

i∈[K]

λiµδi
,

we rewrite (15) as5

P̂c(θ) =
∑
k∈[K]

wk
1

wkT (α, θ/Gk) + (1− wk)T (α, θ)
. (16)

Since T (α, θ/G) is a convex function of G ∈ (0,+∞), a tight
bound of (16) can be obtained. According to the definition of
a convex function, we have

tT

(
α,

θ

G1

)
+(1−t)T

(
α,

θ

G2

)
≥T

(
α,

θ

tG1+(1−t)G2

)
.

5For the HIP model, wk can be interpreted as the probability that the typical
user is associated with a BS from tier k, which is consistent with the results
concerning the association probability in [22] when the association bias is
removed.

Therefore,

P̂c(θ) ≤
∑
k∈[K]

wk
1

T
(
α, θ

wkGk+(1−wk)

) . (17)

Since
∑

k∈[K]

wk = 1 and 1/T (α, θ/G) is a concave function

of G, we obtain

P̂c(θ) ≤ 1

T

(
α, θ∑

k∈[K]

wk(wkGk+(1−wk))

)

= PPPP
c

(
θ∑

k∈[K]

wk(wkGk + (1− wk))

)
. (18)

By comparing the definition of the MISR-based gain with
(18), we define the effective gain for K-tier HCNs as follows:

Geff ,
∑
k∈[K]

wk(wkGk + (1− wk))
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Fig. 8. Effective gain approximation for the coverage probability of
square lattice/PPP deployment.

Fig. 9. Effective gain approximation for the coverage probability of
square lattice/GPP deployment.

= 1 +
∑
k∈[K]

w2
k(Gk − 1). (19)

Letting P̃c(θ) , PPPP
c (θ/Geff), we know from (18) that

the approximation by the effective gain method is an upper
bound for that by the per-tier ASAPPP method in Section
IV-A and gives a simpler expression, i.e., P̃c(θ) ≥ P̂c(θ). The
effective gain method establishes the relationship between the
overall SIR gain of HCNs and individual MISR-based gains
for the individual point processes constituting the HCNs. The
effective gain for HCNs is equivalent to the MSIR-based gain
for single-tier networks, which means the coverage probability
of HCNs can be directly obtained by shifting the SIR threshold
θ to θ/Geff from the coverage probability of the PPP. It should
be noted that for the K-tier HIP model, Geff ≡ 1, which is
consistent with the corresponding MISR-based gain. Further,
for Gk ≥ 1, k ∈ [K], Geff ≤ max{Gk} with equality only in
the single-tier case.

Subtracting 1 from the gains, the effective gain can be
compactly expressed as follows.

Corollary 2. Defining G̃k , Gk − 1 and G̃eff , Geff − 1, we
obtain

G̃eff =
∑
k∈[K]

w2
kG̃k. (20)

One might think that the effective gain is simply the
weighted average of the per-tier gains with weights wk, i.e., an
expected gain. However, this cannot hold since the superpo-
sition of many independent stationary point processes (under
some mild technical conditions) yields a PPP. The following
corollary gives a sufficient condition for the convergence of
G̃eff → 0 that is less restrictive than the one with identical
tiers.

Corollary 3. Let
(
w

(K)
1 , w

(K)
2 , · · · , w(K)

K

)
, K ∈ N, be a

sequence of probability mass functions, each corresponding
to the values wk in a K-tier network. If the probabilities
w

(K)
k satisfy lim

K→∞
max
k∈[K]

{(
w

(K)
k

)2}
= 0, Geff approaches

1 as K →∞, no matter what the Gk are.

The proof is provided in Appendix A. It shows that
Geff → 1 under certain conditions, which is consistent with
the fact that the superposition of K independent stationary
point processes converges to a PPP as K →∞.

For example, according to [23, Theorem 1], the superpo-
sition of independent β-GPPs converges in distribution to
a PPP, if the sequence (ck)k∈N, ck ∈ R+ is bounded and
lim
K→∞

K−1
∑K
k=1 ck is finite and equal to c, each ci relating

to the density of a β-GPP with λi = ci/π. These conditions
are consistent with Corollary 2, i.e., w(K)

k = ck/(
∑K
i=1 ci)

and lim
K→∞

max
k∈[K]

{(
w

(K)
k

)2}
= 0, which is proved in the

following. Since lim
K→∞

K−1
∑K
k=1 ck = c, ∀ε > 0, ∃M > 0,

s.t. when K > M , we have |K−1
∑K
k=1 ck − c| < ε and thus∑K

k=1 ck > K(c − ε). Assume ci = max
k∈[K]

{ck} and thus the

maximal probability is w(K)
i = ci/(

∑K
k=1 ck). We obtain

(
w

(K)
i

)2
=

(
ci∑K
k=1 ck

)2

<

(
ci

K(c− ε)

)2

<

(
ĉ

K(c− ε)

)2
(d)
< ε, (21)

where ĉ is an upper bound of (ck)k∈N and (d) holds

when K > max{M,
√

1/ε
(

ĉ
c−ε

)2

}. Therefore, ∀ε > 0,

∃M̃ = max{M,
√

1/ε
(

ĉ
c−ε

)2

} > 0, when K > M̃ ,

max
k∈[K]

{(
w

(K)
k

)2}
< ε and thus lim

K→∞
max
k∈[K]

{(
w

(K)
k

)2}
= 0.

Table II gives the effective gains for some types of HCNs
whose tiers have equal densities and transmit powers. Figure
8 and 9 show the coverage probability of two-tier heteroge-
neous networks comprising the square lattice/PPP and square
lattice/GPP networks when λ1 = λ2 = 10−5, µ1 = µ2 = 1
and α = 4. We also give two examples of 3-tier heteroge-
neous networks. Figure 10 and Figure 11 show the coverage
probability of GPP/0.5-GPP/PPP and square lattice/GPP/PPP
networks for different α, respectively. It is shown that both
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Fig. 10. The coverage probability of GPP/0.5-GPP/PPP networks for
different α with λ1 = 10−5, µ1 = 1, λ2 = 2λ1, µ2 = µ1/5,
λ3 = 5λ1 and µ3 = µ1/25.

Fig. 11. The coverage probability of square lattice/GPP/PPP networks
for different α with λ1 = 10−5, µ1 = 1, λ2 = 2λ1, µ2 = µ1/5,
λ3 = 5λ1 and µ3 = µ1/25.

TABLE II. Effective gains for HCNs with tiers of equal densities and transmit powers

Two-tier HCNs β-GPP/PPP square lattice/PPP β1-GPP/β2-GPP square lattice/β-GPP
Effective Gain 1+β/8 1.25 1+(β1 + β2)/8 1.25 + β/8

Three-tier HCNs β1-GPP/β2-GPP/β3-GPP square lattice/β1-GPP/β2-GPP
Effective Gain 1+(β1 + β2 + β3)/18 1+(β1 + β2 + 2)/18
K-tier HCNs each tier with the same MISR-based gain G
Effective Gain 1 + (G− 1)/K

per-tier and effective gain ASAPPP methods can approximate
the simulation results in both two and three-tier HCNs cases,
which demonstrates the effectiveness of the proposed methods
for K-tier heterogeneous networks. We also observe that the
effective gain method provides a closer approximation to the
simulation results than the per-tier ASAPPP method.

E. Comparison of the two methods

We have established that the per-tier ASAPPP method
provides an asymptotic lower bound to the exact results and
is upper bounded by the effective gain method. Hence it is
interesting to quantify how close the two are. Here, we will
give an asymptotic comparison as θ → 0. According to the
definition of the effective gain, we have

F̃ (θ) , 1− P̃c(θ) ∼ MISRPPP

Geff
θ, θ → 0, (22)

and according to the first-order Taylor expansion, we have

F̂ (θ) , 1− P̂c(θ) ∼ −P̂ ′c(0)θ, θ → 0, (23)

where P̂ ′c(0) is the derivative of P̂c(θ) at θ = 0, given by

P̂ ′c(θ)=
∑
k∈[K]

−wk
wkT

′(α, θ/Gk) + (1− wk)T ′(α, θ)

(wkT (α, θ/Gk) + (1− wk)T (α, θ))
2 , (24)

where

T ′
(
α,

θ

G

)
=

δ

G

(( θ
G

)δ−1
∫ ∞

( θG )
−δ

1

1 + tα/2
dt+

G

θ+G

)
.

Based on the L’Hôpital’s rule, T ′(α, θ/G)|θ=0 = 2
(α−2)G and

we have

P̂ ′c(0) = − 2

α− 2

∑
k∈[K]

wk(wk/Gk + (1− wk))

= −MISRPPP

(
1 +

∑
k∈[K]

w2
k(1/Gk − 1)

)
. (25)

Thus, the SIR gain Ĝ of the per-tier ASAPPP in K-tier HCNs
relative to the PPP is given as

Ĝ ,
MISRPPP

−P̂ ′c(0)

=
1

1 +
∑

k∈[K]

w2
k(1/Gk − 1)

, (26)

and we call it per-tier overall gain. Consequently, the horizon-
tal gap between the per-tier ASAPPP and the effective gain
ASAPPP is given as

Gg ,
Geff

Ĝ

=
(

1+
∑
k∈[K]

w2
k(Gk − 1)

)(
1+
∑
k∈[K]

w2
k(1/Gk − 1)

)
= 1+

(
1−

∑
k∈[K]

w2
k

)∑
k∈[K]

w2
k(Gk + 1/Gk − 2)

+
∑
i,j∈[K]
i<j

w2
iw

2
j

(
Gi
Gj

+
Gj
Gi
−2

)
≥ 1, (27)
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where the equality holds only in the case Gk = 1, k ∈ [K],
and thus we obtain P̃c(θ) ∼ P̂c(θ/Gg), θ → 0. The reason
why we call Geff the effective gain is as follows: shifting
the SIR distribution of Poisson networks with Ĝ has the
same asymptotics as the per-tier ASAPPP and thus gives an
asymptotically lower bound to the ccdf of the SIR, while the
effective gain ASAPPP provides a tight upper bound for the
per-tier ASAPPP and better approximates the SIR ccdfs, which
can be observed from the results in Section IV-D.

V. THE TAIL OF THE SIR DISTRIBUTION FOR HCNS

Similar to the asymptotic gain with θ → 0 in Section III,
the gain G∞ with θ → ∞ is used to characterize the tail
asymptotics of the ccdf F̄SIR of the SIR in [14, 15] and defined
as

G∞ , lim
θ→∞

G(θ). (28)

The expected fading-to-interference ratio (EFIR) is defined
and plays a similar role for the gain with θ → ∞ as the
MISR does for θ → 0. For a point process Φ with density λ,
the EFIR is defined as

EFIR ,

(
λπE!

o

[(
h

I∞

)δ])1/δ

, (29)

where I∞ ,
∑
x∈Φ hx`(x), h is a fading random variable

independent of all (hx), and E!
o is the expectation with respect

to the reduced Palm measure of Φ. The EFIR for the PPP
with arbitrary fading is given by EFIRPPP = (sinc δ)

1/δ . It is
shown in [14, 15] that for an arbitrary stationary point process
Φ with nearest-BS association,

Pc(θ) ∼ ζθ−δ, θ →∞, (30)

where the pre-constant ζ = EFIRδ . It follows that the gain at
θ →∞ relative to the PPP is

G∞ =
EFIR

EFIRPPP
. (31)

Thus we call G∞ EFIR-based gain, and we have Pc(θ) ∼
PPPP

c (θ/G∞), θ → ∞. However, the complexity of hetero-
geneous networks prevents the straightforward application of
the EFIR method for the tail of the SIR distribution for HCNs.
Hence we explore whether the ASAPPP method depicted in
Section III-B can be used to characterize the SIR tail of general
HCNs. From [15, Lemma 7], the interference only affects the
pre-constant on the tail of SIR distribution for all stationary
point process and arbitrary fading. Therefore, we investigate
how to use Gk∞ for the individual tiers to estimate the pre-
constant ζ using the ASAPPP method, where Gk∞ is the k-th
tier EFIR-based gain of K-tier HCNs.

Theorem 2. Let

P̂c(θ),
∑
k∈[K]

λkπθ
−δkE(hδk)E

[(
IPPP
k

Gk∞
+
∑
i∈[K]!

µi
µk
IPPP
i

)−δk]
,

where IPPP
k ,

∑
x∈ΦPPP

k

hx|x|−αk and the ΦPPP
k are indepen-

dent PPPs with densities λk. For K-tier HCNs where the typi-
cal user is served by the BS with the strongest average received

power, the coverage probability Pc(θ) is asymptotically lower
bounded by

Pc(θ) & P̂c(θ), θ →∞. (32)

The proof is provided in Appendix B. Since the asymptote
is obtained using the EFIR-based gains for each individual tier
with the ASAPPP method, we call it per-tier ASAPPP asymp-
tote at infinity. As before, we obtain a simplified expression
when the path loss exponents are all equal.

Corollary 4. When α1 = . . . = αk = α, let

ζ̂ ,
∑
k∈[K]

λkµ
δ
ksinc δ

λk(µk/Gk∞)δ +
∑

i∈[K]!
λiµδi

. (33)

The pre-constant ζ of the K-tier HCNs is ζ & ζ̂, i.e., Pc(θ) &
ζ̂θ−δ , θ → ∞, and the per-tier overall gain at infinity is
Ĝ∞ = ζ̂1/δ/EFIRPPP.

Proof: When α1 = . . . = αk = α,

E

{(IPPP
k

Gk∞
+
∑
i∈[K]!

µi
µk
IPPP
i

)−δ}

=
1

Γ(δ)

∞∫
0

LIPPP
k

(s/Gk∞)
∏
i∈[K]!

LIPPP
i

(µis/µk)s−1+δds

=
1

Γ(δ)

∞∫
0

exp

(
−πE(hδ)Γ(1−δ)sδ

×
( ∑
i∈[K]!

λi

( µi
µk

)δ
+

λk
(Gk∞)δ

))
s−1+δds

=
µδksinc δ

πE
(
hδ
)(
λk(µk/Gk∞)δ +

∑
i∈[K]!

λiµδi

) (34)

because I−δ ≡ 1
Γ(δ)

∫∞
0
e−sIs−1+δds. Thus

Pc(θ)&θ−δ
∑
k∈[K]

λkµ
δ
ksinc δ

λk(µk/Gk∞)δ +
∑

i∈[K]!
λiµδi

, θ →∞.

(35)

As for the derivation of the effective gain at zero in Section
IV-D, we can rewrite (33) as

ζ̂ =
∑
k∈[K]

wk
sinc δ

wk(Gk∞)−δ + 1− wk

≤ sinc δ
∑
k∈[K]

wk(wkG
k
∞ + 1− wk)δ

≤ sinc δ
( ∑
k∈[K]

wk(wkG
k
∞ + 1− wk)

)δ
, (36)

because G−δ and Gδ are convex and concave functions of G,
respectively. Compared with the definition of the EFIR-based
gain in (30) and (31), we also define the effective gain for
HCNs as θ →∞, given by

Geff
∞ =

∑
k∈[K]

wk(wkG
k
∞ + 1− wk)
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Fig. 12. Scaled coverage probability Pc(θ)θδ per (35) and (37) for non-
Poisson/PPP networks with α = 4, λ1 = λ2 = 10−5 and µ1 = µ2 =
1.

Fig. 13. Scaled coverage probability Pc(θ)θδ per (35) and (37) for
non-Poisson/non-Poisson networks with α = 4, λ1 = λ2 = 10−5 and
µ1 = µ2 = 1.
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Fig. 14. Gains G(θ) for GPP/GPP networks with α = 4, λ1 = λ2 =
10−5 and µ1 = µ2 = 1.

Fig. 15. Gains G(θ) for square lattice/GPP networks with α = 4,
λ1 = λ2 = 10−5 and µ1 = µ2 = 1.

= 1 +
∑
k∈[K]

w2
k(Gk∞ − 1). (37)

The asymptote is obtained using the effective gain at infinity
with the ASAPPP method, and thus we call it effective gain
ASAPPP asymptote. As for the gain at 0 in Corollary 2, this
can be written more compactly.

Corollary 5. Defining G̃k∞ , Gk∞ − 1 and G̃eff
∞ , Geff

∞ − 1,
we obtain

G̃eff
∞ =

∑
k∈[K]

w2
kG̃

k
∞. (38)

Geff
∞ has the same expression as Geff , which is again

in agreement with the fact that the superposition of many
independent stationary point processes yields a PPP under
certain conditions. According to [15], the EFIRs of the square
lattice and GPP with α = 4 are 1.42 and 0.80, respectively.
Therefore, the corresponding EFIR-based gains are 3.49 and
1.95, respectively. Figure 12 and 13 show the scaled coverage

probability Pc(θ)θδ of the heterogeneous networks compris-
ing non-Poisson/PPP and non-Poisson/non-Poisson networks,
respectively. Since the approximations are obtained by the
asymptotic gains at ∞, we focus on the range of relatively
large θ. It can be observed that the per-tier ASAPPP asymp-
tote provides a closer approximation than the effective gain
ASAPPP asymptote except for GPP/PPP networks while the
per-tier ASAPPP asymptote also approximates the simulation
results well in GPP/PPP networks. When θ > 15 dB for non-
Poisson/PPP networks and θ > 20 dB for non-Poisson/non-
Poisson networks, the coverage probability is quite close to
the per-tier ASAPPP asymptotes.

Figure 14 and 15 show the gains as a function of θ and
the effective gains and per-tier overall gains at 0 and ∞ for
the GPP/GPP and square lattice/GPP networks, respectively.
It is observed that the gain is larger than the per-tier overall
gain at 0 and smaller than the effective gain at infinity. We
also observe that the gains for the two types of networks are
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not monotone, first decrease and then increase similar to the
single-tier case illustrated in [15, Fig. 7]. As θ → 0, the
gains approximate the effective gains at zero and are larger
than the corresponding per-tier overall gains. As θ → ∞,
the gains approximate the per-tier overall gains at infinity and
are smaller than the corresponding effective gains, and the
approximation provided by the per-tier overall gain is highly
accurate at infinity. From the above discussion, it is interesting
to determine a demarcation of the SIR threshold θd such that
G(θ) ≈ Geff if θ < θd, otherwise G(θ) ≈ Ĝ∞. Letting
Pc1(θ) = PPPP

c (θ/Geff) and Pc2(θ) = PPPP
c (θ/Ĝ∞), θd is

obtained by minimizing the following metric

E(θd)=

∫ θd

a

(
Pc(t)−Pc1(t)

)2
dt+

∫ b

θd

(
Pc(t)−Pc2(t)

)2
dt, (39)

where a, b ∈ R, t is the SIR threshold in dB, and Pc(t)
is the actual coverage probability. Using this approach, when
a = −20 dB and b = 40 dB, we obtain θd = 11.65 dB and
18.35 dB in Figure 14 and 15, respectively.

VI. EXACT ANALYSIS OF β-GPP/PPP HCNS

In [10, 24, 25], the authors derived the coverage proba-
bility for the typical user associated with the BS that offers
the strongest average received power. However, an explicit
derivation for the coverage performance of HCNs based on the
β-GPP and PPP is still missing in the literature, and Section
IV-B1 only gives the ASAPPP-based approximations. There-
fore, in this section we derive the exact coverage performance
for this type of HCNs and compare it with the approximative
approaches. Assume that the locations of the MBSs Φ1 are
modeled by a β-GPP, and the locations of the PBSs Φ2 are
modeled by a PPP. The following theorem gives the exact
coverage probability for the typical user with the strongest-
BS association in the β-GPP/PPP deployment.

Theorem 3. When the user accesses an MBS, we have

Pm(θ) =β
∑
k∈N

∞∫
0

rk−1e−r

Γ(k)

∏
i∈N\{k}

(
1−β

+β

∞∫
r

ti−1e−t

Γ(i)
(

1+θ
(
r
t

)α/2)dt

)
e−ωβT (α,θ)rdr. (40)

When the user accesses a PBS, we have

Pp(θ) =

∫ ∞
0

∏
i∈N

(
1−β

+β

∫ ∞
r
ωβ

ti−1e−t

Γ(i)
(

1+ θrα/2

(ωβt)α/2

)dt

)
e−T (α,θ)rdr. (41)

By substituting (40) and (41) into (2), we obtain the coverage
probability.

The proof is provided in Appendix C. The complexity of
(40) is the same as the single-tier β-GPP result [5], and (41) is
simpler with just two infinite integrals and one infinite product
due to the tractability of the PPP. According to [25, Lemma

3 and 4], we can straightforwardly obtain asymptotics of (40)
and (41) as θ →∞, given by

Pm(θ)∼θ−δ
∞∫

0

∞∏
i=2

(
1−β+β

∞∫
0

ti−1e−t

Γ(i)
(

1+ rα/2

(βt)α/2

)dt

)
e−

ωr
sinc δ dr,

(42)

Pp(θ)∼θ−δ
∞∫

0

∞∏
i=1

(
1−β+β

∞∫
0

ti−1e−t

Γ(i)
(

1+ rα/2

(βt)α/2

)dt

)
e−

ωr
sinc δωdr.

(43)
From the proof of [25, Proposition 5], we obtain

∞∏
i=2

1−β+β

∞∫
0

ti−1e−t

Γ(i)
(

1+(r/(βt))
α/2
)dt

 ∼ exp(− r

sincδ
)

as β → 0. Therefore, when β → 0,

Pm(θ) ∼ θ−δ λ1µ
δ
1

λ1µδ1 + λ2µδ2
sinc δ, θ →∞, (44)

Pp(θ) ∼ θ−δ λ2µ
δ
2

λ1µδ1 + λ2µδ2
sinc δ, θ →∞. (45)

Consequently, when β → 0, Pc(θ) = Pm(θ) + Pp(θ) ∼
θ−δsinc δ, θ → ∞, which is consistent with the asymptotic
behavior in Poisson networks.

Figure 16 compares the theoretical results and the effective
gain ASAPPP approximations for different α, and Figure 17
compares the theoretical asymptote and ASAPPP asymptotes
when β = 1, λ1 = 10−5, µ1 = 1, λ2 = 2λ1 and µ2 = µ1/25.
We observe that the effective gain ASAPPP and ASAPPP
asymptotes approximate theoretical results quite well. From
the expressions of the theoretical and approximative results,
the ASAPPP method avoids the numerical computation of
infinite sum, product and integral and thus the results can
be obtained much more efficiently. For Figure 16, it takes
about 600s to calculate one point of the theoretical curves
for α = 4, 3.5 and 3, while in the case α = 2.5, about
25 hours are needed to calculate one point of the theoretical
curve with Matlab2014b6, because more items (inner integrals
for different i) in the infinite sum and product part should
be calculated to avoid the truncation error (50000 items are
needed in our results for α = 2.5 and 500 items are needed
for α = 4, 3.5 and 3). However, it takes only about 0.03s
to calculate one point in the approximative curves with the
help of hypergeometric functions in Matlab. The speed-up
from using ASAPPP is about four orders of magnitude and
even larger when α = 2.5. Consequently, the above discussion
demonstrates the effectiveness of the ASAPPP-based approx-
imations for their simplicity and acceptable accuracy.

VII. CONCLUSIONS

In this paper, we provided simple approximative approaches
to the SIR analysis in general K-tier HCNs based on the
MISR-based gain for each individual tier. We first established
the per-tier ASAPPP-based approximation for general K-tier

6The results are obtained on a Mac equipped with 3 GHz Intel core i7
processors.
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Fig. 16. Exact and approximative coverage probabilities of GPP/PPP
networks for different α when λ2 = 2λ2 and µ1 = 25µ2.

Fig. 17. Scaled coverage probability Pc(θ)θδ per (35), (37), (42) and
(43) for GPP/PPP networks with α = 4, λ2 = 2λ1 and µ1 = 25µ2.

HCNs, and then an alternative approach is inspired by the per-
tier ASAPPP method with an explicit expression for the effec-
tive gain Geff of HCNs such that PHCN

c (θ) ≈ PPPP
c (θ/Geff)

when the path loss exponents are the same for all tiers. We
found that the effective gain at zero lies in between the tier
with the largest MISR-based gain and the Poisson networks
due to the independence among different tiers. Furthermore,
we gave the approximative asymptote for the tail of the SIR
distribution using the ASAPPP method. The expression of the
effective gain at infinity is the same as the one at zero. The
effective gains at both infinity and zero approach 1 as K
grows (under certain conditions), which is consistent with the
fact the superposition of many independent stationary point
processes yields a PPP. Besides, to highlight the simplicity
and effectiveness of approximative approaches, we compare
the approximative and exact SIR distributions in terms of
accuracy and efficiency in the two-tier HCNs modeled by β-
Ginibre and Poisson point processes. The results indicate that
the ASAPPP method gives simple yet close approximations
to the SIR distribution over a wide range of SIR thresholds,
thus providing a useful approach for practical network models
where an exact calculation of the SIR distribution is unfeasible
or very hard.

APPENDIX A
PROOF OF COROLLARY 3

We first prove that when lim
K→∞

max
k∈[K]

{(
w

(K)
k

)2}
= 0,

lim
K→∞

∑
k∈[K]

(
w

(K)
k

)2
= 0 holds. We assume max

k∈[K]
{w(K)

k } =

w
(K)
i and thus w(K)

i ≥ 1/K. According to the definition of
a limit, ∀ε > 0 and ε < 1, ∃M > 0, s.t. when K > M ,
we have

(
w

(K)
k

)2
< ε2 < 1, k ∈ [K] and thus w(K)

k < ε.
Letting M̃ = max{M, 1/ε} > 0, when K > M̃ , we have
w

(K)
i ∈ [1/K, ε). Then, for any i ∈ [K],∑
k∈[K]

(
w

(K)
k

)2
= 1−w(K)

i

(
1−w(K)

i

)
−
∑
k∈[K]
k 6=i

w
(K)
k

(
1−w(K)

k

)

< 1−w(K)
i

(
1−w(K)

i

)
−
∑
k∈[K]
k 6=1

w
(K)
k (1− ε)

=
(
w

(K)
i

)2
+ ε(1− w(K)

i )
(a)
< ε. (46)

Step (a) holds because when K > M̃ , it is obtained that the
maximum of the quadratic function with respect to w

(K)
i in

(46) is achieved at w(K)
i = ε. Therefore, ∀ε > 0, ∃M̃ > 0,

s.t. when K > M̃ , we have
∑

k∈[K]

(
w

(K)
k

)2
< ε. Accordingly,

we obtain lim
K→∞

∑
k∈[K]

(
w

(K)
k

)2
= 0.

Second, we prove lim
K→∞

G̃eff = 0, no matter what the Gk

are. We denote the maximum and minimum of G̃k as G̃max

and G̃min, respectively. Since G̃min

∑
k∈[K]

(
w

(K)
k

)2 ≤ G̃eff ≤

G̃max

∑
k∈[K]

(
w

(K)
k

)2
and Gk is bounded7, e.g., G̃max < 2,

lim
K→∞

G̃eff = 0 holds, and Geff approaches 1.

APPENDIX B
PROOF OF THEOREM 2

As before, we express the coverage probability Pc(θ) as
the total probability of the disjoint events that the typical user
accesses a BS from tier k, i.e.,

Pc(θ) =
∑
k∈[K]

P(SIR > θ, x0 ∈ Φk). (47)

Defining R , |x0|, we obtain

P(SIR > θ, x0 ∈ Φk)

= E

{
µkR

−αkh1x0∈Φk∑
x∈Φ!

k

µk|x|−αkhx +
∑

i∈[K]!

∑
y∈Φi

µi|y|−αihy
> θ

}

= E
{
F̄h(θRαkI)1x0∈Φk

}
, (48)

7The triangular lattice (which has hexagonal cells) has the maximal gain
3.4 dB, i.e., G̃tri ≈ 1.2 [6].
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where I =
∑
x∈Φ!

k

µk|x|−αkhx +
∑

i∈[K]!

∑
y∈Φi

µi|y|−αihy .

Letting Ck(x) = {Φk(b(o, |x|) = 0)}, Di,k(x) =
{Φi(b(o, (µi/µk)1/αi |x|αk/αi)) = 0)}, and using the repre-
sentation [15, Eqn. 18] and following the Campbell-Mecke
theorem [21, Thm. 8.2], the coverage probability of the user
accessing a BS from the k-tier can be expressed as

P(SIR > θ, x0 ∈ Φk)

= E
∑
x∈Φk

F̄h

[
θ|x|αk

( ∑
y∈Φ!

k

|y|−αkhx

+
∑
i∈[K]!

∑
y∈Φi

µi
µk
|y|−αihy

)]
1Ck(x)

∏
i∈[K]!

1Di,k(x)

= λk

∫
R2

E!k

{
F̄h

[
θ|x|αk

( ∑
y∈Φxk

|y|−αkhy

+
∑
i∈[K]!

∑
y∈Φi

µi
µk
|y|−αihy

)]
1Ck(x)

∏
i∈[K]!

1Di,k(x)

}
dx

(a)∼ λk

∫
R2

E!k

{
F̄h

(
θ

Gk∞
|x|αk

∑
y∈Φxk,PPP

|y|−αkhy

+θ|x|αk
∑
i∈[K]!

∑
y∈Φi

µi
µk
|y|−αihy

)
1Ck(x)

∏
i∈[K]!

1Di,k(x)

}
dx

(b)

& λk

∫
R2

E!k

{
F̄h

[
θ|x|αk

(
1

Gk∞

∑
y∈Φxk,PPP

|y|−αkhy

+
∑
i∈[K]!

∑
y∈ΦPPP

i

µi
µk
|y|−αihy

)]
1Ck(x)

∏
i∈[K]!

1Di,k(x)

}
dx (49)

as θ → ∞, where Φx , {y ∈ Φ : y + x} is a translated
version of Φ and E!k is the expectation with respect to Φi,
i ∈ [K]!, and the reduced Palm measure of Φk. Step (a) uses
the asymptotically exact ASAPPP approximation of Φk by
shifting θ to θ/Gk∞ as θ → ∞ and replacing Φk by a PPP
[15]. In step (b) the interference from Φi is upper bounded
by that of a PPP. Substituting xθδ/2 7→ x and letting Ik =∑
x∈Φk

hx|x|−αk ,

P(SIR > θ, x0 ∈ Φk)

& λkθ
−δk
∫
R2

E!k

{
F̄h

(
|x|αk

(IPPP
k

Gk∞
+
∑
i∈[K]!

µi
µk
IPPP
i

))

×1Ck(θ−δk/2x)

∏
i∈[K]!

1Di,k(θ−δk/2x)

}
dx

(c)∼ λkθ
−δk
∫
R2

E!k

{
F̄h

(
|x|αk

(IPPP
k

Gk∞
+
∑
i∈[K]!

µi
µk
IPPP
i

))}
dx

∼ λkθ−δkE!k

{(
IPPP
k

Gk∞
+
∑
i∈[K]!

µi
µk
Ii

)−δk}∫
R2

F̄h(|x|αk)dx

∼ λkπθ−δkE(hδk)E!k

{(
IPPP
k

Gk∞
+
∑
i∈[K]!

µi
µk
Ii

)−δk}

(d)∼ λkπθ
−δkE(hδk)E

{(
IPPP
k

Gk∞
+
∑
i∈[K]!

µi
µk
Ii

)−δk}
, (50)

where (c) follows since θ−δk/2 → 0 and hence
1Ck(θ−δk/2x) → 1 and 1Di,k(θ−δk/2x) → 1, and (d) holds since
E!
o = E for the PPP.

APPENDIX C
PROOF OF THEOREM 3

We know that the distance between a user and its nearest
PBS is distributed as f(r) = 2πλ2re

−λ2πr
2

. Letting c = πλ1,
the squared moduli of the distances between the user and
the MBSs have the same distribution as the set of random
variables obtained by retaining the gamma variables Qk ∼
gamma(k, β/c), k ∈ N, with probability β independently
(details in the Proposition 1 in [5]). For simplicity, we use
a family of independent indicators (Ti) with ETi = β,
Ti ∈ {0, 1} to indicate whether the gamma variables are
retained. As before, the coverage probability is expressed as
the total probability of the typical user being served by a BS
from different tiers. When the user accesses an MBS, i.e.,
µ1`(x0) > µ2`(y), where x0 ∈ Φ1 and y ∈ Φ2, we have

Pm(θ) = P(SIR > θ, x0 ∈ Φ1)

=E

{
exp

(
− θ

µ1`(x0)

(∑
x∈Φ!

1

µ1`(x)hx+
∑
y∈Φ2

µ2`(y)hy

))
1x0∈Φ1

}

=E

{ ∏
x∈Φ!

1

(
1+

θ`(x)

`(x0)

)−1

1{|x|≥|x0|}
∏
y∈Φ2

(
1+

θµ2`(y)

µ1`(x0)

)−1

1{|y|≥η|x0|}

}

=
∑
k∈N

E

β ∏
i∈N\{k}

(
1+

θ`(
√
Qi)

`(
√
Qk)

Ti

)−1

1{QiTi≥Qk
⋃
Ti=0}

×
∏
y∈Φ2

(
1+

θµ2`(y)

µ1`(
√
Qk)

)−1

1{|y|≥η
√
Qk}


=
∑
k∈N

E

β ∏
i∈N\{k}

(
1−β+β

(
1+

θ`(
√
Qi)

`(
√
Qk)

)−1

1{Qi≥Qk}

)

×
∏
y∈Φ2

(
1+

θµ2`(y)

µ1`(
√
Qk)

)−1

1{|y|≥η
√
Qk}


= β

∑
k∈N

∫ ∞
0

rk−1e−r

Γ(k)
ξ!k
m(βr/c)ξp(βr/c)dr, (51)

where η = (µ2/µ1)δ/2 and

ξ!k
m(r)=

∏
i∈N\{k}

(
1−β+

β

Γ(i)

∫ ∞
cr
β

ti−1e−t

1+θ
(
cr
βt

)α/2dt
)
, (52)

ξp(r) = exp
(
−πλ2η

2T (α, θ)r
)
. (53)

By substituting (52) and (53) into (51), we obtain (40).
When the user accesses a PBS, i.e., µ2`(x0) > µ1`(x),

where x0 ∈ Φ2 and x ∈ Φ1, we have

Pp(θ) = P(SIR > θ, x0 ∈ Φ2)
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=E

{
exp

(
− θ

µ2`(x0)

(∑
x∈Φ1

µ1`(x)hx+
∑
y∈Φ!

2

µ2`(y)hy

))
1x0∈Φ2

}

=E

{ ∏
x∈Φ1

(
1+

θµ1`(x)

µ2`(x0)

)−1

1{|x|≥|x0|/η}
∏
y∈Φ!

2

(
1+

θ`(y)

`(x0)

)−1
}

=

∞∫
0

∏
i∈N

(
1−β+β

∞∫
r
ωβ

ti−1e−t

Γ(i)
(
1+ θrα/2

(ωβt)α/2

)dt

)
e−T (α,θ)rdr. (54)

By substituting (51) and (54) into (2), we obtain the result.
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coverage probability in cellular networks,” in Proc. 12th Int. Symp. on
Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks
(WiOpt), Hammamet, Tunisia, May 2014, pp. 693–700.

[13] A. Guo and M. Haenggi, “Asymptotic deployment gain: A simple
approach to characterize the SINR distribution in general cellular
networks,” IEEE Trans. Commun., vol. 63, no. 3, pp. 962–976, Mar.
2015.

[14] R. K. Ganti and M. Haenggi, “SIR asymptotics in general cellular
network models,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Hong
Kong, China, Jun. 2015, pp. 1009–1013.

[15] ——, “Asymptotics and approximation of the SIR distribution in general
cellular networks,” IEEE Trans. Wireless Commun., vol. 15, no. 3, Mar.
2016. To be published.

[16] M. Haenggi, “ASAPPP: A simple approximative analysis framework for
heterogeneous cellular networks,” presented at Workshop on Heteroge-
neous and Small Cell Networks (HetSNets’14), Dec. 2014 [Online].
Available: http://www3.nd.edu/∼mhaenggi/talks/hetsnets14.pdf.

[17] ——, “Mean interference in hard-core wireless networks,” IEEE Com-
mun. Lett., vol. 15, no. 8, pp. 792–794, Aug. 2011.

[18] X. Zhang and M. Haenggi, “A stochastic geometry analysis of inter-cell
interference coordination and intra-cell diversity,” IEEE Trans. Wireless
Commun., vol. 13, no. 12, pp. 6655–6669, Dec. 2014.

[19] J. Andrews, F. Baccelli, and R. Ganti, “A tractable approach to coverage
and rate in cellular networks,” IEEE Trans. Commun., vol. 59, no. 11,
pp. 3122–3134, Nov. 2011.

[20] M. Haenggi, “On distances in uniformly random networks,” IEEE Trans.
Inf. Theory, vol. 51, no. 10, pp. 3584–3586, Oct. 2005.

[21] ——, Stochastic geometry for wireless networks. Cambridge, U.K.:
Cambridge Univ. Press, 2012.

[22] S. Singh and J. Andrews, “Joint resource partitioning and offloading
in heterogeneous cellular networks,” IEEE Trans. Wireless Commun.,
vol. 13, no. 2, pp. 888–901, Feb. 2014.

[23] J. Gomez, A. Vasseur, A. Vergne, P. Martins, L. Decreusefond, and
W. Chen, “A case study on regularity in cellular network deployment,”
IEEE Wireless Commun. Lett., vol. 4, no. 4, pp. 421–424, Aug. 2015.

[24] N. Miyoshi and T. Shirai, “A cellular network model with Ginibre
configured base stations,” Adv. Appl. Probab., vol. 46, no. 3, pp. 832–
845, Sep. 2014.

[25] ——, “Cellular networks with α-Ginibre configurated base stations,”
in The Impact of Applications on Mathematics. Springer, 2014, pp.
211–226.

Haichao Wei received the B.S. degree in electronic
engineering from the University of Science and
Technology of China (USTC), Hefei, China, in 2010.
He is currently working toward the Ph.D. degree
in electronic engineering at USTC. His research in-
terests include heterogeneous and cellular networks,
stochastic geometry, green communications, and un-
derwater acoustic communications.

Na Deng received the B.S. and Ph.D. degrees
in electronic engineering from the University of
Science and Technology of China (USTC), Hefei,
China, in 2010 and 2015, respectively. During her
Ph.D. study, she was a Visiting Student in Prof.
Martin Haenggi’s Group at the University of Notre
Dame, Notre Dame, IN, USA from August 2013 to
August 2014. After graduation, she joined Huawei
Technologies (Shanghai) Co., Ltd. Her research in-
terests include heterogeneous and cellular networks,
stochastic geometry, point process theory, green

communications, and cooperative communications.

Wuyang Zhou (M’09) received the B.S. and M.S.
degrees from Xidian University, Xi’an, China, in
1993 and 1996, respectively, and the Ph.D. degree
from the University of Science and Technology of
China, Hefei, China, in 2000. He is currently a
Professor of wireless communication networks with
the Department of Electronic Engineering and In-
formation Science, University of Science and Tech-
nology of China. He participated in the National
863 Research Project Beyond Third Generation of
Mobile System in China (FUTURE Plan) and has

been a Task Director in many projects, including Innovative Wireless Campus
Experimental Networks Research on High Frequency Networking Tech-
nologies, and Research on Transmission and Networking Technologies in
Satellite Mobile Communications. His research interests include cooperative
communications, radio resource management, wireless networking, satellite
mobile communications, and underwater acoustic communications.

http://www3.nd.edu/~mhaenggi/talks/hetsnets14.pdf


15

Martin Haenggi (S’95-M’99-SM’04-F’14) received
the Dipl.-Ing. (M.Sc.) and Dr.sc.techn. (Ph.D.) de-
grees in electrical engineering from the Swiss Fed-
eral Institute of Technology in Zurich (ETH) in 1995
and 1999, respectively. After a postdoctoral year at
the University of California in Berkeley, he joined
the University of Notre Dame, IN, USA, in 2001,
where he currently is a Professor of electrical engi-
neering and a Concurrent Professor of applied and
computational mathematics and statistics. In 2007-
2008, he was a visiting professor at the University

of California at San Diego, and in 2014-2015 he was an Invited Professor at
EPFL, Switzerland. He is a co-author of the monograph “Interference in Large
Wireless Networks” (NOW Publishers, 2009) and the author of the textbook
“Stochastic Geometry for Wireless Networks” (Cambridge University Press,
2012). His scientific interests include networking and wireless communica-
tions, with an emphasis on cellular, amorphous, ad hoc, cognitive, and sensor
networks. He served an Associate Editor of the Elsevier Journal of Ad Hoc
Networks from 2005-2008, of the IEEE Transactions on Mobile Computing
(TMC) from 2008-2011, and of the ACM Transactions on Sensor Networks
from 2009-2011, and as a Guest Editor for the IEEE Journal on Selected Areas
in Communications in 2008-2009 and the IEEE Transactions on Vehicular
Technology in 2012-2013. He also served as a Steering Committee member
of the TMC from 2011-2013, as a Distinguished Lecturer for the IEEE Circuits
and Systems Society in 2005-2006, as a TPC Co-chair of the Communication
Theory Symposium of the 2012 IEEE International Conference on Commu-
nications (ICC’12) and of the 2014 International Conference on Wireless
Communications and Signal Processing (WCSP’14), as a General Co-chair of
the 2009 International Workshop on Spatial Stochastic Models for Wireless
Networks (SpaSWiN’09) and the 2012 DIMACS Workshop on Connectivity
and Resilience of Large-Scale Networks, and as a Keynote Speaker of
SpaSWiN’13, WCSP’14, and the 2014 IEEE Workshop on Heterogeneous
and Small Cell Networks. Presently he is the Chair of the Executive Editorial
Committee of the IEEE Transactions on Wireless Communications. For both
his M.Sc. and Ph.D. theses, he was awarded the ETH medal, and he received
a CAREER award from the U.S. National Science Foundation in 2005 and
the 2010 IEEE Communications Society Best Tutorial Paper award.


	Introduction
	Motivation
	Related Work
	Contributions

	System Model
	The ASAPPP Approach
	The ASAPPP Approach for Single-tier Networks
	The ASAPPP Approach for Heterogeneous Networks

	K-tier Heterogeneous Cellular Networks
	Main Result
	Non-Poisson/PPP Deployment
	Special Case: -GPP/PPP
	Special Case: Square lattice/PPP

	Non-Poisson/Non-Poisson Deployment
	Special Case: Two -GPPs
	Special Case: Square lattice/-GPP

	Effective Gain of K-Tier HCNs
	Comparison of the two methods

	The tail of the SIR distribution for HCNs
	Exact Analysis of -GPP/PPP HCNs
	Conclusions
	Appendix A: Proof of Corollary 3
	Appendix B: Proof of Theorem 2
	Appendix C: Proof of Theorem 3
	Biographies
	Haichao Wei
	Na Deng
	Wuyang Zhou
	Martin Haenggi


