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The Chebyshev-Markov Inequalities

Xinyun Wang and Martin Haenggi

I. INTRODUCTION

In many applications, such as computed tomography (CT) image reconstructions [1], distri-

butions of bounded support need to be reconstructed from moment sequences. Without loss of

generality, we assume the support of the distributions is [0, 1]. The problem can be formulated

as follows. Let [n] ≜ {1, 2, ..., n} and [n]0 ≜ {0}∪ [n]. Given a finite sequence (mk)
n
k=0, n ∈ N,

find an F that solves ∫ 1

0

xk dF (x) = mk, ∀k ∈ [n]0, (1)

where F is right-continuous and increasing with F (0−) = 0 and F (1) = 1, i.e., F is a cumulative

distribution function (cdf). This problem is known as the truncated Hausdorff moment problem

(THMP) [2]. Let Fn denote the set of all possible F that solve (1). Assuming such solutions

exist, it is natural to consider the sharpest bounds of F at the point of interest, i.e., infF∈Fn F (x0)

and supF∈Fn
F (x0) for any x0 ∈ [0, 1].

The problem that asks for the sharpest bounds of F was first stated by Chebyshev [3] and

later solved by Markov [4]. Possé [5] simplified the original proof of Markov. Zelen [6] was the

first one to state the sharpest bounds in a generalized form, i.e., he gave the formulation of the

sharpest bounds not only in the bounded support case, but also in the unbounded support cases

such as (−∞,∞), [0,∞), and (−∞, 0]. The inequalities established by the sharpest bounds are

called the Chebyshev-Markov (CM) inequalities [6]. This report is mainly based on the results

of [2], [5], [6], and we only consider the case of bounded support.
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II. THE CM INEQUALITIES

Markov [4] provided a method to obtain the infimum and supremum

inf
F∈Fn

F (x0), sup
F∈Fn

F (x0) (2)

for any x0 ∈ [0, 1]. The most important step of the method is the construction of a discrete

distribution in Fn where the maximum mass is concentrated at x0. Let p0 denote the maximum

mass that is possible to be concentrated at x0 and F ∗ denote the discrete distribution where the

maximum mass is concentrated at x0, i.e., F ∗(x0)−F ∗(x−
0 ) = p0. Then, infF∈Fn F (x0) = F ∗(x−

0 )

and supF∈Fn
F (x0) = F ∗(x0). In the following, we recall the details of the method to construct

F ∗. As for any discrete distribution, there are jump locations and jump heights (probability

masses concentrated at the jumps). Suppose that F ∗ is constructed by jumps at xi with heights

pi, 1 ≤ i ≤ v, v ∈ N. If we know (xi)
v
i=1, then (pj)

v
i=1 can be obtained by solving

1 1 . . . 1

x1 x2 . . . xv

...
... . . . ...

xn
1 xn

2 . . . xn
v




p1

p2
...

pv

 =


m0

m1

...

mn

 . (3)

To find (xi)
v
i=1 and further construct F ∗, we recall the following definition and lemma.

Definition 1 (Orthogonal polynomials w.r.t. measures [7]). An orthogonal polynomial of degree

m w.r.t. a measure dF , associated with the moment sequence (mk)
2m−1
k=0 , is given by1∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m0 m1 . . . mm

m1 m2 . . . mm+1

...
... . . . ...

mm−1 mm . . . m2m−1

1 x . . . xm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (4)

Lemma 1 ([2], [6]). Let tr, ur, vr, wr be the orthogonal polynomials of degree r ∈ N w.r.t. the

measures dF, ydF, (1− y)dF and y(1− y)dF associated with the moment sequences (mk)
2r−1
k=0 ,

(mk+1)
2r−1
k=0 , (mk − mk+1)

2r−1
k=0 and (mk+1 − mk+2)

2r−1
k=0 , respectively. For a moment sequence

(mk)
n
k=0,

1We ignore the arbitrary constant factor since we are only interested in the roots.
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1) if x0 ∈ (0, 1) is distinct from the roots of um, vm (for n = 2m) and tm, wm−1 (for n =

2m− 1), let the polynomial q of degree l be defined as

q(y) ≜



(y − x0)ω(y), n = 2m, um(x0)vm(x0) > 0,

(y − 1)y(y − x0)ω(y), n = 2m, um(x0)vm(x0) < 0,

y(y − x0)ω(y), n = 2m− 1, tm(x0)wm−1(x0) > 0,

(y − 1)(y − x0)ω(y), n = 2m− 1, tm(x0)wm−1(x0) < 0,

(5)

(6)

(7)

(8)

where l = m+2 for (6), l = m+1 for the others, and ω(y) is the orthogonal polynomial

of degree m w.r.t. the measure (y−x0)dF associated with the moment sequence (mk+1−

x0mk)
2m−1
k=0 for (5) and of degree m−1 w.r.t. the measures (y−1)y(y−x0)dF , y(y−x0)dF

and (y − 1)(y − x0)dF associated with the moment sequences (mk+3 − (1 + x0)mk+2 +

x0mk+1)
2m−3
k=0 , (mk+2−x0mk+1)

2m−3
k=0 and (mk+2− (1+x0)mk+1+x0mk)

2m−3
k=0 for (6), (7)

and (8), respectively. The roots of the polynomial q of degree l are in [0, 1], they coincide

with the jumps (xi)
v
i=1, and x0 is one of them.

2) if x0 ∈ (0, 1) is a root of um or vm (for n = 2m) and tm or wm−1 (for n = 2m− 1), it is

clear that the roots of the corresponding orthogonal polynomial are all in [0, 1],2 and the

roots plus 0 and/or 1 coincide with the jumps (xi)
v
i=1.

3) if x0 = 0, let the polynomial q of degree l be defined as

q(y) ≜


yω(y), um(x0)vm(x0) > 0,

(y − 1)yω(y), um(x0)vm(x0) < 0 or tm(x0)wm−1(x0) < 0,

yω(y), tm(x0)wm−1(x0) > 0,

(9)

(10)

(11)

where m = ⌊n+1
2
⌋, l = m for (11), l = m + 1 for the others, and ω(y) is the orthogonal

polynomial of degree m w.r.t. the measure ydF associated with the moment sequence

(mk+1)
2m−1
k=0 for (9) and of degree m−1 w.r.t. the measures (y−1)ydF and ydF associated

with the moment sequences (mk+2 − mk+1)
2m−3
k=0 and (mk+1)

2m−3
k=0 for (10) and (11),

respectively. The roots of the polynomial q of degree l are in [0, 1], they coincide with

the jumps (xi)
v
i=1, and x0 is one of them.

2The roots of tm are different from those of um. The roots of vm are different from those of wm−1.
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4) if x0 = 1, let the polynomial q of degree l be defined as

q(y) ≜


(y − 1)ω(y), um(x0)vm(x0) > 0,

(y − 1)yω(y), um(x0)vm(x0) < 0 or tm(x0)wm−1(x0) > 0,

(y − 1)ω(y), tm(x0)wm−1(x0) < 0,

(12)

(13)

(14)

where m = ⌊n+1
2
⌋, l = m for (14), l = m + 1 for the others, and ω(y) is the orthogonal

polynomial of degree m w.r.t. the measure (y−1)dF associated with the moment sequence

(mk+1−mk)
2m−1
k=0 for (12) and of degree m−1 w.r.t. the measures (y−1)ydF and (y−1)dF

associated with the moment sequences (mk+2−mk+1)
2m−3
k=0 and (mk+1−mk)

2m−3
k=0 for (13)

and (14), respectively. The roots of the polynomial q of degree l are in [0, 1], they coincide

with the jumps (xi)
v
i=1, and x0 is one of them.

Theorem 1 ([2]). For the truncated Hausdorff moment problem with a moment sequence (mk)
n
k=0,

for all x0 ∈ [0, 1], let F ∗ denote the discrete distribution constructed by jump locations (xi)
v
i=1

obtained in Lemma 1 and jump heights (pi)
v
i=1 obtained by solving (3). Then

inf
F∈Fn

F (x0) = F ∗(x−
0 ) =

∑
j:xj<x0

pj,

sup
F∈Fn

F (x0) = F ∗(x0) =
∑

j:xj≤x0

pj.

(15)

(16)

The inequalities established by the infima and suprema obtained in Theorem 1 are the CM

inequalities.

In the following, we provide two examples with n = 1 and n = 2, which prove the well-known

Markov’s inequality and Chebyshev’s inequality, respectively.

Example 1 (n = 1). For n = 1, we have t1(x) = x−m1, w0(x) = 1 and ω(y) = 1. If x0 < m1,

the roots of q are x0 and 1, thus 0 ≤ F (x0) ≤ 1−m1

1−x0
; if x0 > m1, the roots of q are 0 and

x0, thus 1 − m1

x0
≤ F (x0) ≤ 1; if x0 = m1, 0 ≤ F (x0) ≤ 1. The lower bound is equivalent to

Markov’s inequality.

Example 2 (n = 2). For n = 2, we have u1(x) = m1x−m2 and v1(x) = (m0−m1)x−(m1−m2).

Consider the case where all the Hankel determinants are positive. Then m0m2 > m2
1 and thus

m1−m2

m0−m1
< m2

m1
. If x0 < m1−m2

m0−m1
, then ω(y) = (m1 − x0m0)y − (m2 − x0m1), the roots of q are

x0 and m2−x0m1

m1−x0m0
, and x0 < m2−x0m1

m1−x0m0
. Thus 0 ≤ F (x0) ≤ m2−m2

1

(x0−m1)2+m2−m2
1
. If x0 > m2

m1
, then
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ω(y) = (m1 − x0m0)y − (m2 − x0m1), the roots of q are x0 and m2−x0m1

m1−x0m0
, and x0 >

m2−x0m1

m1−x0m0
.

Thus (x0−m1)2

(x0−m1)2+m2−m2
1
≤ F (x0) ≤ 1. If m1−m2

m0−m1
< x0 <

m2

m1
, then ω(y) = 1, the roots of q are 0, x0

and 1, and 1−m1 +
m2−m1

x0
≤ F (x0) ≤ 1−m1 − m2−m1

1−x0
. If x0 =

m2

m1
, the roots are 0 and x0,

and 1− m2
1

m2
≤ F (x0) ≤ 1. If x0 =

m1−m2

m0−m1
, the roots are x0 and 1, and 0 ≤ F (x0) ≤ (m0−m1)2

m0−2m1+m2
.

We can prove Chebyshev’s inequality in this way.3
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