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I. INTRODUCTION

In many applications, such as computed tomography (CT) image reconstructions [1], distri-
butions of bounded support need to be reconstructed from moment sequences. Without loss of
generality, we assume the support of the distributions is [0, 1]. The problem can be formulated
as follows. Let [n] £ {1,2,...,n} and [n]o = {0} U[n]. Given a finite sequence (my)?_,, n € N,
find an F' that solves

/1 o dF(x) = my, Yk € [n]o, (1)
0

where F' is right-continuous and increasing with F'(0~) = 0 and F'(1) = 1, i.e., F' is a cumulative
distribution function (cdf). This problem is known as the truncated Hausdorff moment problem
(THMP) [2]. Let F,, denote the set of all possible F' that solve (1). Assuming such solutions
exist, it is natural to consider the sharpest bounds of F’ at the point of interest, i.e., inf pe 7, F'(¢)
and suppcr F(xo) for any z, € [0, 1].

The problem that asks for the sharpest bounds of F' was first stated by Chebyshev [3] and
later solved by Markov [4]. Possé [5] simplified the original proof of Markov. Zelen [6] was the
first one to state the sharpest bounds in a generalized form, i.e., he gave the formulation of the
sharpest bounds not only in the bounded support case, but also in the unbounded support cases
such as (—o0, 00), [0,00), and (—o0, 0]. The inequalities established by the sharpest bounds are
called the Chebyshev-Markov (CM) inequalities [6]. This report is mainly based on the results

of [2], [5], [6], and we only consider the case of bounded support.
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II. THE CM INEQUALITIES

Markov [4] provided a method to obtain the infimum and supremum

inf F F 2
Fer, (z0), ﬁgﬁn (o) )

for any zy € [0,1]. The most important step of the method is the construction of a discrete
distribution in JF,, where the maximum mass is concentrated at zy. Let py denote the maximum
mass that is possible to be concentrated at x, and F'* denote the discrete distribution where the
maximum mass is concentrated at o, i.e., F*(xo)—F*(zy) = po. Then, infpex, F(zo) = F*(zy)
and suppcz F(x9) = F*(x0). In the following, we recall the details of the method to construct
F*. As for any discrete distribution, there are jump locations and jump heights (probability
masses concentrated at the jumps). Suppose that /™ is constructed by jumps at x; with heights

pi» 1 <i<w,veN. If we know (x;);_,, then (p;);_, can be obtained by solving

1 1 c. 1 P1 mo
Ty T2 Ly D2 my

= . |- 3)
G o Do my,

To find (x;);_, and further construct F*, we recall the following definition and lemma.

Definition 1 (Orthogonal polynomials w.r.t. measures [7]). An orthogonal polynomial of degree

m w.r.t. a measure dF, associated with the moment sequence (mk)z’za 1 is given by'

mo my mm
my ma Mm41
“4)
Mm—1 Mp Mom—1
1 T "

Lemma 1 ([2], [6]). Let t,, u,, v, w, be the orthogonal polynomials of degree r € N w.r.t. the
measures dF,ydF, (1 —y)dF and y(1 —y)dF associated with the moment sequences (my);,
(mas1)iy!s (me — mpy1)iy' and (my1 — myao)iy', respectively. For a moment sequence

(mk)Z:o,

"We ignore the arbitrary constant factor since we are only interested in the roots.
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1) if zo € (0,1) is distinct from the roots of U, vy, (for n = 2m) and t,,, w,,_1 (for n =

2m — 1), let the polynomial q of degree | be defined as

( (y - $0)w(y)> n=2m, um($0)vm(:p0) > 0, (5)
(v — Dy(y —zo)w(y), n=2m, un(xo)vm(zo) <0, (6)
q(y) =
yly — xo)w(y), n=2m—1, ty,(xe)wm_1(xg) > 0, @)
(v =Dy —z0)w(y), n=2m—1, ty(zo)wm_1(r0) <0, (8)

where | = m+ 2 for (6), | = m+ 1 for the others, and w(y) is the orthogonal polynomial
of degree m w.r.t. the measure (y — x¢)dF associated with the moment sequence (Mmy. 1 —
zomi) ity ! for (5) and of degree m—1 w.r.t. the measures (y—1)y(y—xo)dF, y(y—xo)dF
and (y — 1)(y — zo)dF associated with the moment sequences (my+3 — (1 + xo)myi2 +
ToMis1)nry s (Mo — Tomus1 )ty > and My — (14 x0)myrr + zomy) 37y > for (6), (7)
and (8), respectively. The roots of the polynomial q of degree | are in [0, 1], they coincide
with the jumps (x;);_,, and xo is one of them.

2) if zg € (0,1) is a root of U, or vy, (for n = 2m) and t,, or w,,_1 (for n =2m —1), it is
clear that the roots of the corresponding orthogonal polynomial are all in [0,1],> and the
roots plus 0 and/or 1 coincide with the jumps (x;);_,.

3) if xg =0, let the polynomial q of degree | be defined as

Yw(y),  Um(wo)vm(zo) > 0, )
a(y) £ ¢ (v = Dyw(®),  tm(@o)vm(w0) < 0 0r tin(x0)wm—1(z0) <0,  (10)
yw(y), tm<x0)wm—1($0) > 07 (11)

where m = "], | = m for (11), | = m + 1 for the others, and w(y) is the orthogonal
polynomial of degree m w.r.t. the measure ydF associated with the moment sequence
(mis1)7 " for (9) and of degree m—1 w.r.t. the measures (y—1)ydF and ydF associated
with the moment sequences (Mo — mkH)i:o_g and (mk+1)i720_3 for (10) and (11),

respectively. The roots of the polynomial q of degree | are in |0, 1], they coincide with

the jumps (x;);_,, and x is one of them.

>The roots of t,, are different from those of w,,. The roots of v,, are different from those of Wy,_1.
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4) if xqg = 1, let the polynomial q of degree | be defined as

(y — Dw(y),  um(xo)vm(wo) > 0, (12)
a(y) £ (= Dyw®),  tm(@o)vm(wo) <0 0r tin(x0)wm—1(z0) >0,  (13)
(y - 1)‘“’(9)7 tm(x())wm—l(zo) < 07 (14)

where m = 2], | = m for (14), | = m + 1 for the others, and w(y) is the orthogonal
polynomial of degree m w.r.t. the measure (y— 1)dF associated with the moment sequence
(mis1—my)i"s " for (12) and of degree m—1 w.rt. the measures (y—1)ydF and (y—1)dF
associated with the moment sequences (myyo —myi1)ary” and (Mg —my)3"y > for (13)
and (14), respectively. The roots of the polynomial q of degree | are in [0, 1], they coincide

with the jumps (x;);_,, and xo is one of them.

Theorem 1 ([2]). For the truncated Hausdorff moment problem with a moment sequence (my,)y_o,
for all zo € [0, 1], let F* denote the discrete distribution constructed by jump locations (z;);_,

obtained in Lemma 1 and jump heights (p;);_, obtained by solving (3). Then

;;%F(xo):F*(xo):jg P (15)
1 <To

sup F(xzg) = F*(xg) = ;. (16)
FE]I—')n (o) (o) j:;xopa

The inequalities established by the infima and suprema obtained in Theorem 1 are the CM
inequalities.
In the following, we provide two examples with n = 1 and n = 2, which prove the well-known

Markov’s inequality and Chebyshev’s inequality, respectively.

Example 1 (n = 1). For n = 1, we have t,(x) = x —my, wo(z) = 1 and w(y) = 1. If zo < my,

the roots of q are xy and 1, thus 0 < F(xy) < 11’_’:; ; if xo > my, the roots of q are 0 and

To, thus 1 — ’:—01 < F(xo) < 15 if xg = my, 0 < F(xg) < 1. The lower bound is equivalent to

Markov’s inequality.

Example 2 (n = 2). For n = 2, we have ui(x) = mix—msg and v1(x) = (mo—my)z—(mq—my).

Consider the case where all the Hankel determinants are positive. Then momso > m3 and thus

o <2 Jf wo < p=r2, then w(y) = (ma — zomo)y — (M2 — xoma), the roots of q are

2
mo—xgmi mo—xgmi m2—my m2
zo and TA=0 and wo < TR0 Thus 00 < F(zg) < T P —"_ If xo > 2, then
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—Zomi

w(y) = (m1 — zomo)y — (M2 — xoma), the roots of q are xo and T2="0", Ma—ZoML

mi—zomo’

Thus ( (zo—m1)® > < F(zo) < 1. If% <z < 2, then w(y) = 1, the roots of q are 0, x

zo—m1)2+ma —m3

and xy >

ma2—mi _ _ Mm2—my __ m2
and 1, and 1 —my + "2 < F(zg) <1—my e If wg = 72, the roots are 0 and o,

and 1 — Z—E < F(xo) < 1. If wo = 72212, the roots are o and 1, and 0 < F(z,) < _(mo—ma)*_

mo—2mi1+mso”

We can prove Chebyshev’s inequality in this way.?
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3Zelen [6] has also proved Chebyshev’s inequality as a special case of n = 4. Chebyshev’s inequality can also be proved by

Markov’s inequality.
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