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Abstract—The goal of this paper is to establish which practical
routing schemes for wireless networks are most suitable for
power-limited and bandwidth-limited communication regimes.
We regard channel state information (CSI) at the receiver and
point-to-point capacity-achieving codes for the additive white
Gaussian noise (AWGN) channel as practical features, inter-
ference cancellation (IC) as possible, but less practical, and
synchronous cooperation (CSI at the transmitters) as impractical.
We consider a communication network with a single source node,
a single destination node, and N — 1 intermediate nodes placed
equidistantly on a line between them. We analyze the minimum
total transmit power needed to achieve a desired end-to-end rate
for several schemes and demonstrate that multihop communica-
tion with spatial reuse performs very well in the power-limited
regime, even without IC. However, within a class of schemes not
performing IC, single-hop transmission (directly from source to
destination) is more suitable for the bandwidth-limited regime,
especially when higher spectral efficiencies are required. At such
higher spectral efficiencies, the gap between single-hop and mul-
tihop can be closed by employing IC, and we present a scheme
based upon backward decoding that can remove all interference
from the multihop system with an arbitrarily small rate loss. This
new scheme is also used to demonstrate that rates of O(log N)
are achievable over linear wireless networks even without syn-
chronous cooperation.

Index Terms—Cooperation, network information theory, relay
networks, routing, wireless networks.

1. INTRODUCTION

F we assume that the typical deployment phases of cellular

wireless networks are indicative of how other types of wire-
less networks might evolve, we should expect an initial phase of
coverage growth, in which the geographical size of the network
is increasing, followed by a phase of throughput growth, in
which the density of the network is increasing. The coverage
growth phase is typically characterized by a relative abundance
of radio bandwidth compared to the required throughput and
large signal attenuations due to the large distances between
transmitters and receivers. This scenario corresponds to low
spectral efficiencies and low signal-to-noise ratios (SNRs),
and the main challenge is minimizing the energy per bit used
by the network. In contrast, the throughput growth phase
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involves a relative scarcity of bandwidth, lower attenuations
due to denser inter-node spacing, higher spectral efficiencies,
and higher SNRs. Communication schemes suitable for this
phase should offer good tradeoffs between energy per bit and
spectral efficiency. The former set of conditions is commonly
referred to as the power-limited regime, and the latter is called
the bandwidth-limited regime [1]. Since many communication
schemes that perform relatively well in one regime might be a
poor choice for the other, cross-regime performance compar-
isons can help identify the most efficient transmission approach
for each deployment phase. This can be particularly useful
if upgrading the nodes as the network matures is difficult or
impossible and planning for later phases must be done at design
time.

Of particular interest are wireless ad hoc networks, which
consist of nodes that can serve as relays, i.e., assist transmission
of the messages without being either the source or the destina-
tion for the data. The problem of finding upper and lower bounds
on the transmission rates achievable over such networks has
been recently studied in [2]-[8] under various assumptions on
the network topologies and node capabilities. Gupta and Kumar
[2], [3] and Xie and Kumar [4] considered planar networks with
N nodes and multiple source—destination pairs and character-
ized attainable transport rates (in bit-meters per second) for fi-
nite and infinite N. For networks with a single source and desti-
nation, perfect channel state information (CSI) at all nodes, and
perfect synchronization, Gastpar and Vetterli [5] showed that
the achievable rate is logarithmic in N if the distance from each
relay node to the source and destination is lower-bounded, and
without such a bound it can grow linearly in IV [3]. Recently, a
more general problem of rates achievable over a multiple-relay
channel was considered by Xie and Kumar [6] and by Kramer
et al. [7], [8].

Routing is an important special case of relaying in the sense
of [3]-[8]. In this paper, we determine which routing schemes
for wireless ad hoc networks based on capacity-achieving
point-to-point codes are best suited in the power-limited and
bandwidth-limited regimes. As a reference scheme, we also
consider single-hop transmission consisting of direct trans-
mission between source and destination, which we simply
view as a special case of multihop with no intermediate nodes.
Although most of the work mentioned above focuses on
“order-of” results, we are interested in the actual capacities and
power and bandwidth efficiencies, i.e., results that include the
pre-constants. To still have a tractable problem, we consider
a one-dimensional chain of nodes, a so-called linear network,
with equidistant nodes. This case is obviously a simplification,
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but it constitutes an important special case of more general
two-dimensional networks. Assuming only a single route is
active in a multihop network, point-to-point coding is used, and
there is no interference between nodes, placing all intermediate
nodes on a line at equal intervals is the best case in terms of
throughput and energy consumption (the same is not true for
the general relay channel, see [8]). The same linear network
model is used in [9]-[13].

We adopt a fairly conservative view of which schemes can
be regarded as practical. We require that the multihop transmis-
sion be based entirely on point-to-point coding for the additive
white Gaussian noise (AWGN) channel. This implies that each
node fully decodes the original message based on the signal re-
ceived from the preceding node, re-encodes it, and forwards it
to the following node. The decoding operation must rely on the
decoder for the AWGN channel, and all interference from all
nodes transmitting simultaneously with the preceding node is
regarded as additional Gaussian noise. As more difficult to im-
plement, but still practical, we also consider canceling a known
interference from the received signal before decoding.

Among the techniques that are frequently encountered in the
literature but cannot be integrated into the above framework
are synchronous cooperation and sliding-window decoding.
Synchronous cooperation (used in, e.g., [3]-[5]), which is anal-
ogous to beamforming performed by several transmit antennas
controlled by a single transmitter, gives the transmitter full con-
trol over how the signals add up at the receiver’s antenna. This
includes maximum ratio transmission, in which several copies
of the same signal transmitted from different antennas add up
in amplitude at the receiver, providing large power savings, and
active interference cancellation (IC), in which two signals sent
from two different nodes add up to zero at a selected receiver,
and neither of them interferes with that receiver. However,
whenever the antennas attempting to synchronously cooperate
are controlled by separate transmitters, providing precise timing
and phase synchronization between them is extremely difficult.
Sliding-window decoding, which was originally introduced by
Carleial [14] and generalized to the multiple-relay channel in
[4], [6], involves determining the most likely message using not
only the signal from the preceding node received in the current
slot, but also from the upstream transmissions received in past
slots. However, since in general the codebooks used at each
hop are different, the complexity of a sliding-window decoder
is considerably larger than that of a standard point-to-point
decoder.

There are two main contributions of this paper. First, we
demonstrate that multihop with spatial reuse, but without
IC, achieves excellent performance in the power-limited
regime, but due to excess interference its performance suf-
fers in the bandwidth-limited regime. In fact, above certain
rates, single-hop communication performs significantly better.
Second, we present an IC scheme based on backward decoding
[15]-[17], capable of canceling all interference in a linear mul-
tihop network at an arbitrarily small rate loss. This technique,
called recursive backward IC, can significantly improve the
performance of multihop transmission in the bandwidth-limited
regime at a complexity and delay cost. Additionally, the new
scheme shows that the capacity of a linear wireless network
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Fig. 1. Single-hop and multihop communication over a regular linear network.
without synchronous cooperation is O(log N), i.e., of the same
order as the capacity of a network with synchronous coopera-
tion. The possibility of extending block Markov encoding and
backward decoding to the multiple-relay channel using nested
blocks was first mentioned briefly in [7].

The remainder of this paper is organized as follows. Section II
describes the operation of the regular linear network. Section III
defines the concept of a communication scheme for this net-
work and describes our methods for evaluating performance.
Section IV presents and evaluates two communication schemes
not requiring IC, namely single-hop and multihop with spatial
reuse. Section V introduces the multihop scheme with recursive
backward IC. Finally, Section VI presents some concluding re-
marks.

II. SYSTEM MODEL
A. A Wireless Linear Network Model

The communication system under consideration is illustrated
in Fig. 1. It consists of a source node S and a destination node D,
separated by a distance L, and N — 1 intermediate relay nodes
F;,i=1,..., N — 1, placed equidistantly on the line from S
to D. The nodes share a band of radio frequencies allowing for
a signaling rate of W complex-valued symbols per second. The
objective of the system is the reliable delivery of bits generated
at the source node S at a bandwidth-normalized rate (henceforth
just called the rate) of R bits per second per hertz (i.e., RW
bits per second) to the destination node using coded transmis-
sion and consuming the least possible total transmission power
Pr. We place no restriction on how this total power is allo-
cated among nodes. The nodes comprising the system operate
in half-duplex, i.e., they are incapable of simultaneous transmis-
sion and reception. Additionally, the source node S does not re-
ceive, and the destination node D does not transmit.

If at any given time the nodes in a set

ST - {S7F17"'7FN71}
transmit and the nodes in a set
Sr C {Fl,...,FN_l,D}

receive, the sequence y;[n] of baseband-equivalent, discrete-
time complex-valued symbols received by node F;, i € Sk,
can be expressed as

yi[n] = Z as i xs[n] + z[n]

SEST

ey

where x5[n] is the complex-valued symbol transmitted by node
s at time n, a, ; is a distance-dependent attenuation factor, and
z;[n] is white Gaussian noise with zero mean and variance Nq /2
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per dimension. The attenuation factor a,,; depends on the dis-
tance d(s, ) between nodes as

as; = cd(s;i)_(’/2 2)

which corresponds to 10alog;q d(s,i) — 20log;, ¢ decibel
power loss. In (2), « is the path loss exponent (typically taking
values between 2 and 4), and c is a constant.

To simplify our analysis, we will assume L = 1l and ¢ = 1
throughout this paper. Different choices for these parameters
will only cause scaling of the total transmission power Pr or
energy per bit E} identically for all communication schemes
and will not affect the outcome of performance comparisons
among them. Finally, we do not impose any delay constraints
on the system, and we allow the coded transmission to have an
arbitrarily large block length.

B. Communication Schemes

Information from S to D is sent through the linear net-
work in N hops, being sequentially recovered at nodes F;,
i = 1,...,N — 1, before it arrives at D. The transmission at
each hop is implemented using capacity-achieving codes for the
complex-valued AWGN channel. To be precise, we assume that
for any positive rate r and block size b there exists a set of mes-
sages M,.;, with |M,.,| = [2""], an encoder f,.;, : M, — C?,
and a decoder g, : Ct — M,.;. Let m be a random variable
drawn uniformly from M, 3, z a b-vector of independent and
identically distributed (i.i.d.) zero-mean complex Gaussian
random variables with variance Ny/2 per dimension, and
define z = f,,(m),y = & + 2, and 7 = g, ,(y). Then for
b — oo, the covariance R,., — E I}, and Pr(m # m) — 0,
where F, Ny, and r are related by r = log,(1 + E4/Ny), and
I, is the identity matrix of dimension b. The existence of such
codes is one of the main results of [18].

The communication takes place in time slots of length b. The
information generated at S is mapped to a sequence of messages
my,. If node F'; knows a certain m,,, but node F';; does not,
F; is allowed to transmit it to F'; 1 using one of the encoders in
a single time slot. Node F';11 can then use the signal received
during this time slot (and only during this time slot) to recover
the message using a corresponding decoder. As an extension,
the decoding step can be preceded by IC, assuming the interfer-
ence is caused by messages already decoded at this node. The
remaining interference is regarded as Gaussian noise.

Suppose that Py and [y denote, respectively, the transmit
power of S and the fraction of time S transmits, and F;, 3;,

i =1,...,N — 1, denote the analogous parameters for the re-
lays F;. Let Pr = " P;/3; be the total average power. Then the
rate r; achieved athop: =1,..., N is

P,_1N®
T, = ﬂz 10g2 1+ N1 -
WNo+ >y Vs,i—1PsN*|i — 5|7
3)
where 75,1 = 1 if nodes F'; and F;_; transmit simultane-
ously and the receiver at F; cannot cancel out the interfering

signal from F';, and otherwise ,vs;_1 = 0. The achievable
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end-to-end rate is the minimum of the rates achievable at each
of the N hops

R= min r;. “4)

i=1,...,N
Communication schemes described in the following sections,
depending on the processing performed at each node, will differ
in the values of 3;, s ;—1, and in the values of the optimal power
allocation P;*( R) that minimizes the total transmit power Pr for
a given R.

Let R*(Pr) denote the highest rate achieved with total
transmit power Pr for a certain scheme. Then the following
simple properties hold.

Property 1: The maximum achievable rate R*(Pr) is strictly
increasing in Pr.

Proof: Suppose that for a given Pr, {P},...,Px_,} is
the power allocation that achieves the maximum rate R*(Pr).
Suppose we are now allowed to use aPp transmitted power,
where @ > 1. Let us choose a (possibly suboptimal) power
allocation {aPf,...,aP%_;}. Then it is easy to see that the
rate at every hop (3), as well as the overall rate (4), has increased.
But since the rate R*(a.Pr) can only be greater than or equal to
this new rate, R*(Pr) is strictly increasing in Pr. O

Property 2: The power allocation that achieves the max-
imum rate R*(Pr) forces the rates at all hops 7; to be equal.
Proof: Let {Pf,..., PX_,} be the optimum power allo-
cation for a certain R*(Pr). Suppose that for a certain hop i,
r; > R*(Pr). Since r; is continuous and increasing in P;_1,
we can replace P* ; by aslightly smaller value, for which r; >
R*(Pr) still holds. Since all other r;, j # 4 — 1, are nonin-
creasing in P;_, the new power allocation achieves the same
or a higher rate R at a lower power Pr. But this contradicts

Property 1. Hence, at all hops, r; = R*(Pr). O

Property 3: The power allocation that achieves the max-
imum rate R*(Pr) is unique.

Proof: Let {Pf§,...,P%_,} be a power allocation that
achieves R*(Pr) for a certain Pr. Suppose that a different
power allocation {Fg, ..., P} ,} also achieves R*(Pr). By
Property 2, both allocations yield r;, = R*(Pr). Suppose that
for a certain i, P} = aiﬁi* with «; < 1. Then both power
allocations can yield the same value of 7;1 in (3) only if, for
some other j # i, P} = a]-f’]*, and «; > o . By applying
this argument recursively, we can construct an infinite chain of
inequalities ov;, > o, > «;, > - - -. But since there is only a finite
number of nodes, this will eventually lead to a contradiction.
Hence P} = P;* for all i. a

Property 4: Let {P{(Pr),...,Pyx_,(Pr)} denote the
power allocation achieving R*(Pr). Then each P}(Pr) is
nondecreasing in Pr.

Proof: Analogous to the proof of Property 3, it can be
shown from (3) that, if P*(Pr) is decreasing for some Pr and 4,
then some other P7'(Pr) must be decreasing even faster. Using
this fact recursively shows that assuming P;(Pr) to be de-
creasing leads to a contradiction. O

Property 5: The maximum achievable rate R*(Pr) is con-
tinuous for Pr > 0.
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power allocation achieving R*(Pr). Using the fact that Py =
> B: P} (Pr) for every Pr, we can write

Proof: Again let {P;(Pr),..., P} _(Pr)} denote the

0= lim ((Pr+6) - Pr)

a. (Sarevo -

- 51_i>%1+ ZIB7 (Pi(Pr+6) = P(Pr)).

By Property 4, the P*(Pr) are nondecreasing, and so all terms
Pr(Pr + 6) — P?(Pr) must be nonnegative. But if a sum of
nonnegative terms converges to zero, each term separately must
also converge to zero. Hence,

lim P(P 6) = P (P
Jim PP (Pr+06) = P (Pr)

and P(Pr) is right-continuous. Using the limit § — 0~ in-
stead, we can also show that P*( Pr) is left-continuous. Finally,
since r; in (3) are continuous in P; and the minimum of the con-
tinuous functions in (4) is itself continuous, R*( Pr) is contin-
uous in Pr. O

We use P7.(R) to denote the minimum transmit power nec-
essary to achieve I2 > 0. For the rates that can be achieved with
finite power, Py (R) is simply the inverse of R*(Pr), and for all
other rates we define P (R) = +o0. An even more useful char-
acterization of the achievable power—throughput tradeoff can
be obtained by looking at the energy spent by the entire net-
work per information bit, i.e., E;(R) = Pj.(R)/RW, and its
inverse, R*(F,), where we define E;(0) £ limg_o E;(R).
These two functions are the main tools used in the remainder
of the paper for comparing different communication schemes.
In order to distingush between the power—rate functions for dif-
ferent schemes we will adopt the notation of replacing the as-
terisk in £} (R) with an acronym of the scheme name.

III. PERFORMANCE EVALUATION METHODS FOR
COMMUNICATION SCHEMES

A. Power-Limited Regimes

A power-limited communication regime is the preferred way
of sending information over systems in which transmitter power
is much more costly than bandwidth. Since bandwidth is in
abundance, communication in this regime is characterized by
low SNRs, very low signal power spectral densities, and negli-
gible interference power. It is fairly easy to distinguish among
schemes in this regime by comparing their £, (R) in the neigh-
borhood of zero bandwidth efficiency R.

Definition 1: A communication scheme X is more power ef-
ficient than scheme ) if there exists an 2y > 0 such that, for all
0 < R < Ry, we have E;¥(R) < EY(R) and this inequality is
strict for at least one such R.

Since E;'(R) and E}’(R) are continuous in the neighbor-
hood of R = 0, two simple tests for checking if A" is more
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power efficient than ) can be used. The first test simply in-
volves checking if E;*(0) < E(0)—if this condition is sat-
isfied, then X is indeed more power efficient. If the first test
yields E;¥(0) = E;’(0), the second test is to check if

OE;¥ (R)/OR|r=o < OEY (R)/OR|r=0.

This second test is essentially the wideband slope introduced
in [19], where the significance of OE,(R)/JR for evaluating
the performance in the power-limited regime is thoroughly an-
alyzed.

B. Bandwidth-Limited Regimes

A bandwidth-limited communication regime is needed when-
ever bandwidth is scarce and much more costly than transmit
power. This regime is characterized by higher SNRs, higher
signal spectral densities, and high susceptibility to interference.
By analogy to the power-limited case, we can adopt the fol-
lowing definition.

Definition 2: A communication scheme X’ is more band-
width efficient than scheme ) if there exists an Ry < oo such
that, for all R > Ry, we have E;¥ (R) < EY(R) and this in-
equality is strict for at least one such R.

Unfortunately, Definition 2 for the bandwidth-limited regime
is not as useful as Definition 1 for the power-limited regime,
since the smallest R for which the condition in Definition 2 is
satisfied might itself be very large. In such a case, a supposedly
less bandwidth-efficient scheme could still achieve large sav-
ings in E}, at practical rates below R(. Hence, when comparing
communication schemes, we will be more interested in identi-
fying rate regions in which one of them has the lowest Ej,.

C. Limits on Communication Over Linear Networks

The ability to assess the performance of any particular com-
munication scheme is most useful if it can be compared to the-
oretical upper bounds. A simple bound based on the max-flow
min-cut principle [20] can be derived using the broadcast cut,
i.e., the cut separating the source node S from all remaining
nodes F'; and D. We allow the source node to use all avail-
able transmission power Pr and all channel time, while letting
all remaining nodes exchange information for free (the relay
nodes thus become additional antennas of the destination node).
The rate is then upper-bounded by the capacity of the resulting
single-input multiple-output channel, i.e.,

N

P
R < log, (1+—T

T (z‘/N)a) SENC)

=1
The finite sum in (5) can be further upper-bounded by an infinite
sum, which converges for & > 1 and is proportional to the
Riemann Zeta function ((«) [21]

R < log, <1 LI Nag(a)> . (6)

W N,

It follows that, given the power Pr, the rate R can asymptoti-
cally scale at most as fast as alog, N. To make the bound (6)
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useful for the power-efficient regime, we can substitute Pr =
RW Ey, solve for Ey(R), and take the limit as R — 0 to obtain

E,(0) S N~%In2
No ((a)
It is interesting to note that the above bound holds for an arbi-
trary communication scheme, including those performing syn-

chronous cooperation, since the broadcast cut involves only a
single transmitter (see, for example, [5]).

(7

IV. COMMUNICATION SCHEMES WITHOUT INTERFERENCE
CANCELLATION

A. Single-Hop Transmission

The simplest communication scheme defined for N = 1,
called single-hop, involves just a direct transmission from S to
D. All power and channel time is allocated to the source node,
which uses capacity-achieving coding with complex Gaussian-
distributed symbols. Its power efficiency—bandwidth efficiency
characteristic is captured by the well-known capacity formula
for the complex-valued AWGN channel

RE,
R= 10g2 <1 + T@) (8)
and its inverse
ESY(R or 1
b ( ) — . (9)
Ny R

At first glance, single-hop transmission only seems to
be useful as a reference for more advanced schemes. In-
deed, it performs poorly in the power-limited regime with
E3H(0)/Ng = In2 (—1.59 dB). However, it will soon be
apparent that it performs surprisingly well in the bandwidth-
limited regime relative to the other schemes we consider.

B. Multihop With Spatial Reuse

Multihop transmission is the most natural extension of
single-hop transmission that can take advantage of the re-
duced attenuation between closely spaced relay nodes. In
multihop transmission, each node utilizes capacity-achieving
point-to-point codes to forward the most recently decoded
message to its nearest neighbor in the direction of D. Each
codeword is received, decoded, and retransmitted by each relay
F,,i=1,...,N — 1, until it is finally received and decoded
at D. To facilitate parallel transmission of several packets
through the network, the available bandwidth is reused between
transmitters, with a minimum separation of K nodes between
simultaneously transmitting nodes (2 < K < N). When
decoding the message, nodes F'; and D regard all signals not
originating from the preceding node as Gaussian interference.

Suppose that S transmits with power Py and the relays F;,
i =1,...,N — 1, with power P;, respectively, so that Pr =
% > P;. Then the achievable end-to-end rate is the minimum
of the rates achievable at each of the N hops

R =
i=0,...,N—1

L og, (14 FiN*® (10)
K 082 WiNo + e, PNJi+1—s]0
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where S; denotes the set of nodes transmitting simultaneously
with node F;, i.e.,
S;={se{0,1,...,N —1}|s # i and K divides i — s} .
(1D
An optimal power allocation maximizing R is nontrivial to com-
pute for arbitrary N, K, and Pr. However, for a large N and
K < N, all nodes except those close to S and D have the same
distances to their primary interferers, and so we can approximate
the optimal power allocation as uniform. Though suboptimal,
the uniform allocation yields the useful lower bound on (10)

1 PrKNe~!
R>=log, (1 12
> K B < TN +PTKNalz(K,a)> 12)
where
Z(K,a)=) (sK+1)""+ ) (sK —1)""  (13)
s=1 s=1

Similarly, we also assume the uniform power allocation when
Pr — 0, since the vanishing interference terms in (10) will
make all hops symmetric.

1) Performance of Multihop in the Power-Limited
Regime: The derivations presented in the Appendix demon-
strate that, under the optimal power allocation, the multihop
system described by (10) in the power-limited regime has

Ey™(0)
=~ =Nt n2 14
N, n (14)
and
E{)MH(O) o 1 1 N-1 ‘ n
1=0 s€S;
(15)

Based on (14) it is clear that multihop can take advantage of the
increased node density, and that it provides 10(«c — 1) logyg N
decibel power savings relative to single-hop. The 10(a — 1)
decibel gain resulting from a tenfold increase in node density
falls just short of the 10« decibel gain indicated by the outer
bound (7).

Since (14) does not depend on the spatial reuse parameter
K, the size of the network N is the primary factor in deciding
which multihop variant is most power efficient—higher N al-
ways means higher power efficiency. However, among schemes
with the same N but different K, the most power-efficient
scheme can be identified by the least value of E;(0) in (15).
By numerically evaluating (15) for N > 3,2 < K < N,
and 2 < a < 4, we determined that in each case K = 3 is
the optimal choice for the power-limited regime. The power
efficiency—bandwidth efficiency characteristics for low rates R
and for selected values of IV and K are plotted in Fig. 2.

2) Performance of Multihop, K = N, in the Bandwidth-Lim-
ited Regime: To examine the bandwidth efficiency of multihop,
we need to distinguish between two cases: K = N and K < N.
In the first case, each transmission takes place in a separate slot,
and receivers do not have to deal with interference. Since all
hops have the same distance (attenuation), the same noise level,
and no interference, the uniform power allocation is optimal.
The bandwidth efficiency—power efficiency characteristic (10)
consequently simplifies to

R=N"'log, (1 +

RE'bNO‘> (16)

Ny
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Fig. 2. Performance of the multihop scheme in the power-limited regime for
a = 2 and selected values of NV and K.

and

MH,K=N RN _
E, (R) _2 L an

Ny RN«

The preceding formulas suggest a tradeoff involved in the choice
of N—increasing the number of nodes N leads to a shorter
inter-node distance and a larger effective received power, at the
cost of decreasing the slot duration.

For R sufficiently large, the expression N~ is always
increasing in N and so is E3(R) in (17). Following Defini-
tion 4 exactly, we conclude that multihop with K = N is more
bandwidth efficient for lower values of IV, with the single-hop
scheme being the most bandwidth efficient. However, there are
still some values of R for which it might be beneficial to choose
N > 1. Fig. 3, in which we plot the characteristic (16) for sev-
eral values of IV, suggests that there is an interval of rates R for
which each given N is optimal. Indeed, we have shown in [22]
that, for a given rate R, the number of nodes yielding the least
required power can be approximately computed as

a2RN

1+ W(—ae™®)

Nopt = |R™
pt In2

(18)
+

where [z]+ denotes the positive integer closest to x and W(z)
is the principal branch of the Lambert W function. The approx-
imation (18) is obtained by replacing the discrete variable N by
the continuous variable N* in (17) and minimizing E} by set-
ting the derivative 9E;, /ON* to zero. This yields

2RN (RN*In2 —a)+a =0 (19)

which can be solved for RN*, giving
RN* = m_ (20)

In 2

The result (18) is obtained from (20) by using the approximation
Nopt = [N*]4.
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Fig. 3. Performance of the multihop scheme with X' = N in the

bandwidth-limited regime for @ = 2.

Additionally, we can compute the exact value of R above
which single-hop achieves a lower E} and below which mul-
tihop with N = 2 performs better. This R must give the same
value of Ejp in (17) for N = 1 and N = 2, i.e., it must satisfy

R 2R
2 —1 _ 248 — 1. 21
R 2¢R
After assuming 2 > 0 and rearranging the terms of (21) we
obtain

(2F)2 — 222 4 9o _1=0 (22)
which has an admissible solution R = log, (2% — 1). Hence, for
rates R > log,(2% — 1), single-hop transmission outperforms
multihop with K = N, forany N > 2. A yet simpler sufficient
condition is R > «.

3) Performance of Multihop, K < N, in the Bandwidth-Lim-
ited Regime: The shape of the power efficiency—bandwidth ef-
ficiency characteristic for multihop transmission changes dra-
matically if we choose K < N. In this setting, at least one node
will be receiving the usable signal corrupted not only by thermal
noise, but also by interference from another node. If our goal is
to attain high rates R using high signal power, the hops involving
interfering transmitters will become the bottlenecks of the net-
work. In fact, if K < N, rates above some R (NN, K) can never
be achieved by multihop, even if infinitely large transmit power
is available. Hence, according to Definition 4, multihop with
K < N is always less bandwidth efficient than multihop with
K = N and single-hop.

If the desired communication rate falls below R, (N, K),
multihop with K < N may still provide considerable savings
in Ey. It is interesting to study what choice of K results in the
largest R..(N, K). Suppose we parametrize the power alloca-
tionas P; = 3;KPr,1=0,..., N — 1, with the new constraint
> B; = 1. We can obtain R, (N, K) by substituting these P,
into (10), taking the limit Pr — oo, and maximizing this rate
over all fractional power allocations [3;. We performed this max-
imization using a numerical search for several values of NV, and
the results are plotted in Fig. 4.
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for very large N.

For very large N (N > K), the uniform power allocation
becomes asymptotically optimal, and R.,(K, N) can be accu-
rately approximated as

Roo(K,N)~ Ro(K) = %ng (1 + (23)

1
Z(K, a)>
which does not depend on N. The values of R..(K) versus K
are plotted in Fig. 5 for « = 2 and a@ = 4. In both cases, the
highest value of R..(K) is achieved for K = 5.

It is interesting to observe that there are three distinct rate
regimes, each of which requires a different multihop strategy. If
the rate is above log, (2% — 1), single-hop transmission offers
the smallest Ey,. If the rate is less than log,(2* — 1) but above
R..(5), some combination of N and K yields the smallest .
However, if the desired rate is below R..(5), transmission can
be performed with arbitrarily small Fj, provided that K = 5
and N is sufficiently large.
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V. MULTIHOP WITH INTERFERENCE CANCELLATION

Interference cancellation (IC) is a powerful technique that
can significantly improve the performance of schemes aiming
at high spectral efficiency. Schemes performing full IC can be
costly in terms of memory, complexity, and delay, and they are
much more susceptible to error propagation. Even though in this
paper we regard them as less practical than schemes without IC,
they are of interest from an information-theoretic perspective
for establishing the range of rates and energies per bit that are
achievable.

Successful IC is only possible if the interfering signal and
the channel between the interferer and the receiver are known
with very high reliability to the IC module in the receiver. In
our system model, the receivers know the channel state for the
incoming signals by assumption, but if the interfering signal can
be determined, the channel state can be reliably estimated with
a practical receiver by using this signal as a pilot sequence.

In this section, we incorporate the IC technique into the mul-
tihop scheme with K < N. Among the interfering signals at
node F; (i.e., all signals arriving at F'; from nodes different than
F;_,), it is convenient to distinguish between downstream in-
terference (from Fy, k > i) and upstream interference (from
Fi,k <i—1,and,if i > 1, from S). Node D receives only
upstream interference. Since the downstream nodes are always
transmitting messages that were already decoded at the current
node, the downstream interfering signals are known exactly (if
no transmission errors occurred), and hence they can be can-
celed without additional processing. All that is required at each
node is to keep track of the last N decoded messages. Removal
of the upstream interference turns out to be more challenging
and is addressed next.

A. Multihop With Genie-Aided Interference Cancellation

Suppose that each receiving node could employ a genie to de-
termine all upstream interference signals and cancel them. Mul-
tihop transmission would then consist of N hops with identical
attenuation and noise power, making the uniform power distri-
bution optimal. After removing the interference terms from (10),
the achievable performance is described by

1 P
R =  log, (1 + W]TVO KN"‘1> (24)
and
E[9(R) 2KF_1
Ny  RKNo1 @5)

The above equations show that, with perfect IC, multihop ben-
efits from increasing IV at all rates (not just below some R..).!
Also, not surprisingly, since the rate (24) is strictly greater than
(10) for a fixed N, K, and FEj, multihop with perfect IC is both
more power efficient and more bandwidth efficient than mul-
tihop without IC.

For the power-limited regime we can compute

E,°(0)

20 ) Ni-agy
N, "

INote that (24) still relies on point-to-point coding. Higher rates can be
achieved with synchronous cooperation and/or sliding window decoding.

(26)

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on May 13, 2009 at 15:42 from IEEE Xplore. Restrictions apply.



SIKORA et al.: BANDWIDTH- AND POWER-EFFICIENT ROUTING IN LINEAR WIRELESS NETWORKS

and

EII)IC(O) — (1n2)2KN17a.

No 2

27)

Expression (27) shows that decreasing K improves power ef-
ficiency, and hence the most power-efficient choice is K = 2
(K = lisnotallowed since it would require simultaneous trans-
mission and reception at relay nodes). The same choice of K
turns out to be optimal for the bandwidth-limited regime, since,
for fixed Pr and N, the rate in (24) is strictly decreasing in K
for K > 2. Surprisingly, according to Definition 4, single-hop is
still more bandwidth efficient than multihop without IC for any
fixed N, i.e., there exists a rate Ro(/N') above which single-hop
requires a lower Ej,. For K = 2, this Ry(N) satisfies

22R0(]V) _— 1 Ro(N
e =20 -1 (28)
which then gives
Ro(N) = logy, (2Nt — 1), (29)

For larger N we have Ry(N) = 1+ (a — 1) log, N, which can
be relatively large, especially for higher «.. Thus, practical sce-
narios in which single-hop could actually outperform multihop
with IC are rare.

B. Multihop With Recursive Backward Interference
Cancellation

In this subsection, we present a new IC scheme based on
backward decoding [15]-[17] that allows for cancellation of the
upstream interference at an arbitrarily small rate loss and does
not require the aid of a genie to achieve (24). The scheme is
constructed recursively, with each recursion allowing interfer-
ence-free communication over an additional hop. The scheme
is then complete after IV such recursions. The possibility of
extending backward decoding to multiple hops using nested
blocks was first suggested in [7] in the context of the multiple-
relay channel and block Markov encoding, but the authors fo-
cused on sliding-window decoding and did not develop the idea
further. The main advantage of recursive backward IC in our
scenario is the fact that it relies exclusively on buffering, IC,
and point-to-point decoding.

For the sake of a clearer presentation, we first describe this
process for a linear network in which full-duplex communi-
cation (simultaneous transmission and reception at the relay
nodes) is allowed, along with a spatial reuse parameter K =
1, even though our system model explicitly prohibits such a
setting. We will later argue that the same principle applies to
half-duplex networks.

Let us fix NV and assume a uniform power allocation of Pr/N
per node. The basic building block for our scheme will be a
point-to-point coding scheme that achieves rate R = log,(1 +
PrN°~1/W Ng) over a hop between two neighboring nodes
when no interference is present. We assume a finite block length,
which will later be made arbitrarily large to drive the probability
of error to zero. Suppose that we are first interested only in deliv-
ering the messages from the source node S to the first relay F'y
using the coding scheme mentioned above. Since F'; receives
only downstream interference, it can cancel the interference and
decode the message from S upon reception.
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Fig. 6. Multihop with recursive backward IC up to F5.

In order to further deliver the message to relay F'o, node F'y
retransmits the message immediately after it receives and de-
codes it. Even though node F'5 can cancel all the downstream in-
terference, it will still receive upstream interference from S. To
deal with this interference, we can use the backward-decoding
principle. Suppose that, after transmitting B blocks of data, the
source node S does not transmit anything in slot B + 1, as il-
lustrated in Fig. 6. During slot B + 1, the relay F'; retransmits
message B, which is then received by F'5 with no upstream in-
terference. It is only at this point in time that F'5 attempts to
recover messages 1 to B based on previously received signals.
First, it decodes message B and uses it to cancel the upstream
interference corrupting message B — 1, then it decodes message
B — 1 and uses it to cancel the interference corrupting message
B — 2, and so on. Eventually, all messages 1 to B are decoded
by node Fs.

The scheme just presented uses B + 1 time slots to deliver
B data blocks from S to F'; and F'5. We will now extend it to
deliver B? data blocks in (B + 1)? time slots to nodes F'1, Fo,
and F'3. Suppose that node F'5, after listening to the channel
for B + 1 time slots and decoding B blocks of data, starts to
retransmit these B blocks to node F'3. During the same time
nodes S and F'; proceed with the transmission of blocks B+1 to
2B, causing upstream interference at F'3. Node F'3 just buffers
the received signal, but does not attempt decoding. Eventually,
after delivering B? data blocks to F, nodes S and F'; stop
transmitting for a duration of B + 1 time slots, as shown in
Fig. 7. During these time slots, node F's receives no upstream
interference, and it can decode the data blocks (B —1)B + 1 to
B? received from F'5. Using the backward decoding principle,
it can then cancel these blocks from signals received earlier and
continue decoding the initial B2 blocks.

One more recursion is shown in Fig. 8. These recursive ex-
tensions continue until the messages reach the destination node
D. The final step involves transmitting B~ ~! data blocks using
(B + 1)V~ time slots. Since, for any N, the rate loss incurred
by this scheme tends to zero as B goes to infinity, we have shown
that the complete removal of all upstream interference is indeed
possible at an arbitrarily small rate loss. We emphasize, how-
ever, that the delay of this scheme grows exponentially in N,
which limits its applicality to extremely delay-insensitive appli-
cations.

The same principle of operation can be used in multihop
transmission with K > 1. In fact, increasing K reduces the
number of upstream interferers and can only result in a simplifi-
cation of the algorithm (e.g., with careful scheduling it might be
possible to extend the number of hops by K in each recursion).
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Also, if K > 2, when F; is transmitting, we are guaranteed that
F;_, is not attempting to send anything to F';, and any signal
that F'; could receive at this time would be useless. Hence,
for K > 2, this scheme works and performs identically in a
half-duplex network, and all the results derived in the previous
subsection for multihop with genie-aided IC apply without
modification to multihop with recursive backward IC.

C. Upper and Lower Bounds on the Capacity of a Linear
Wireless Network

The existence of a concrete scheme capable of complete re-
moval of interference shows that the capacity of the considered
network is lower-bounded by (24). Since (24) is O(log N) and
the upper bound (6) is also O(log N), the capacity itself must
also be O(log V). Since (6) is also an upper bound on the ca-
pacity of a linear network with synchronous cooperation, we
have shown that synchronous cooperation is not a prerequisite
for O(log N) rate growth. (Similar results were reported in [8].)
The lower bound Ry < QT_l logy N and the upper bound
Rimax < alog, N have different proportionality constants, so
at least one of them is not asymptotically tight. Nevertheless, we
can conclude that multihop with IC is order-optimal in N.

VI. CONCLUSION

In this paper, we consider one-way communication between
a single source and destination over a regular linear wireless
network with N — 1 relays. We adopt a conservative ap-
proach in deciding which communication techniques can be
regarded as practical, by allowing only point-to-point coded
transmission, conditionally allowing IC, and excluding the
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possibility of synchronous cooperation between nodes. In the
class of networking schemes not employing IC, we analyze
the performance of single-hop and multihop with spatial reuse.
Additionally, we present a new information-theoretic scheme,
called multihop with recursive backward IC, that removes all
interference caused by spatial reuse at an arbitrarily small rate
loss.

Our analysis reveals that multihop transmission performs
very well in the power-limited regime but can become ineffi-
cient in the bandwidth-limited regime without IC. In the latter
case, single-hop provides reliable communication at lower
energy per bit than multihop whenever the required spectral
efficiency exceeds log, (2% — 1). The removal of interference
with recursive backward IC improves the performance of
multihop at higher rates and, at a fixed energy per bit, provides
asymptotic rate growth of order O(log V).

The high-level conclusion is that physical layer and medium-
access layer resource allocation, half-duplex transmission, and
IC dramatically impact the power and bandwidth efficiency of
multihop routing schemes. Thus, it is important to take these
interdependencies into account when designing routing algo-
rithms for real-world networks intended to operate in different
regimes.

APPENDIX
DERIVATION OF E3(0) AND E}(0) FOR MULTIHOP WITHOUT
INTERFERENCE CANCELLATION

The main problem in the derivation of £;(0) and E} (0) based
on (10) is the necessity of finding the optimal power allocation.
Let P, = B;KRWE,, i =0,...,N — 1, where §;(R) are all

functions of R, satisfying > 8;(R) = 1. We will use the fact
that the power allocation maximizing (10) makes all terms under

the minimum operator equal. Hence, forall: =0,...,N — 1
1 Bi(R)RE,KN*
R=—log, |1+ -
K g2< No+RE,KNY, g Bo(R)|i+ 1 —s|-@
(30)
and
Ey(R) (KR _)K-IN—«

No ~ RA(R)-(2KF—1RY. g fu(R)li+1-s°
€1y
where S; is the set of transmitters active simultaneously with
node ¢, as defined in (11). By taking the limit as R — 0 and
applying 1’Hopital’s rule, we obtain

Eb(o) A —1laT—a

where equality must hold for all 7. Hence, for R = 0, the uni-
form power allocation is optimal, i.e., 3;(0) = N~!, and

Ey(0) 1—
——==N""In2.
N, n (33)

Next we want to find E;(0) by first taking the derivative of
(30) with respect to R and then taking the limit as R — 0. After
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lengthy but straightforward calculations involving two applica-
tions of I’Hopital’s rule, we arrive at

E] K(In2)? 1
o _ s A0 105
No Ne \26,(0)  B2(0)
(0 -
+> i+1—s"*| (34
2
SES; '8 (0
and after substituting the known values for (3;(0)
Ej(0)  K(n2)> (1 Ngi(0 e
Ny ~ Nel 27 K2 +5€§; fi+1=
(35)

The above expression for £} (0) must yield the same value inde-
pendent of 7 = 0,..., N — 1, and the average over ¢ also gives
the same value. By taking the average and exploiting the fact
that Y 3 = 0, we arrive at

Ej(0) _ K(n2)? o
N, _ No-1! _+_ZZ|Z+1_S|
1=0 s€S;
(36)
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