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Abstract—We evaluate the end-to-end delay of a multi-hop A. Related work and motivation

transmission scheme that includes a source, a number of rela

and a destination, in the presence of interferers located @ording The delay and throughput of multi-hop networks has been
to a Poisson point process. The medium-access control (MAC) 3 topic of intense investigation, in particular in the last
protocol considered is a combination of TDMA and ALOHA, 4. .oqa [1]-[4]. An important line of work, spurred by [5]
according to which nodes located a certain number of hops apa . ’ . ’ L
are allowed to transmit with a certain probability. Based on Cconsiders the network as a collectionemodes randomly dis-
an independent transmissions assumption, which decouplake tributed in a unit-area disk, where source-destinationspaie
queue evolutions, our analysis provides explicit expressis for randomly formed, and focuses on obtaining asymptotic tesul
the mean end-to-end delay and throughput, as well as scaling a5, grows large. Following [5] and a number of other papers

laws when the interferer density grows to infinity. If the souce . . . .
always has packets to transmit, we find that full spatial reus, that dealt exclusively with the issue of achievable thrqugh

i.e., ALOHA, is asymptotically delay-optimal, but requires more (S€€ [2] for an overview), [3] raised the question of delay-
hops than a TDMA-ALOHA protocol. constrained throughput. In particular, under an ideal sehe

The results of our analysis have applications in delay- that can schedule transmissions throughout the netwoey, th
minimizing joint MAC/routing algorithms for networks with  showed that, for almost all network realizations, the optim
randomly located nodes. We simulate a network where sources delay-throughput tradeoff is given b§(m) = ©(mT(m)),

and relays form a Poisson point process, and each source .
assembles a route to its destination by selecting the relag$osest whereD(m) andT () are the delay and throughput scaling,

to the optimal locations. We assess both theoretically andiax r€SPectively. A similar result was derived in [6], albeittfan
simulation the sensitivity of the end-to-end delay with repect to  a different framework where nodes were allowed to move

imperfect relay placements and route crossings. throughout the network in an independent and identically

Index Terms—Multi-hop, end-to-end delay, throughput, Pois- distributed (iid) fashlon. ) )
son point process, queueing. Although useful in shedding light on fundamental perfor-

mance trends, the previous approach falls short in progidin
concrete results for given design choices, which are based o
realistic routing and MAC protocols. In [7], it was argued
|. INTRODUCTION that a functional network capacity theory should take into
account issues of delay and overhead, since these draltyatica
The main question pertinent to wireless multi-hop networksffect the performance of practical networks. An approach
is determining the delay at which a certain throughput cauioneered in [8] was to consider the network as a collection o
be achieved, at the end-to-end level. The question is tetate transmitters, each with a distinct receiver, which areritisted
the following fundamental tradeoff: On the one hand, a senallon the plane as a Poisson point process (PPP). The PPP
hopping distance provides more robustness to interferande framework is well suited for networks with no particulanstr
noise, resulting in better link reliability; on the otherntth ture and uncoordinated transmissions, i.e., a random sicces
each node that is added between the source of packets RAC (ALOHA). A significant amount of work has been
their final destination also incurs additional delay, as ekptt devoted to the study of single-hop PPP networks (see [9]
typically has to wait in line before it is transmitted to thexh for a comprehensive overview) and the evaluation of metrics
node [1]. The treatment of the problem depends on a numiseich as the expected packet progress [8], the transmission
of diverse factors, among which are the employed routing andpacity [10] and the spatial density of progress [11].

medium-access (MA) control (MAC) protocols, the channel Given the tractability of the PPP framework, some exten-
model and, quite importantly, the topology of the network. sjons have been proposed to accommodate multi-hop transmis
This paper obtains concrete end-to-end delay and througion. In [12], an opportunistic routing strategy was adveda
put results for multi-hop networks with randomly placedvhere the relay with the most favorable channel is selected
nodes, taking into full account the effects of fading, ifdger in each hop, and the end-to-end delay was evaluated via
ence and queueing delays due to packet buffering. We omimgmulation. In [4], the end-to-end throughput was derived
the delay over the number of hops between the source afd optimized over the number of hops, assuming that in
packets and their destination, and other network parasieterach hop the interferer locations are drawn independently
obtain asymptotic delay-throughput tradeoffs as the dgw$i according to a PPP. The authors coined the term random-
nodes goes to infinity; and propose a delay-optimal routiragcess transport capacity for the optimized throughput, to
algorithm for networks with randomly placed nodes. emphasize that, as in [5], the metric reflects the rate athwhic



packets are transported from the source to the destinatieanse” a network consisting of an infinite number of mutually
but in the specific setting where interferer locations arairth interfering routes, which employ the TDMA-ALOHA MAC
transmissions are random. In [13], the multi-hop problerotocol. We study in detail a scenario where the sourceyawa
was studied from an end-to-end connectivity perspective ahas packets to transmit (“backlogged” source) and show how
bounds were determined on the time required for a path ttte analysis can also be adapted for the case of sources with
form between the source and the destination. The commg&ometric arrivals. In summary, our main contributionssisin
trait of these papers is their “throughput-centric” apptgat of:

is assumed that nodes always have packets to transmit ang Optaining analytical expressions for the hop success
queueing delays resulting from packet buffering are igdore  propability and the end-to-end delay as functions of the

Other related work includes [14]-{19], which have studied  number of hops, the source MA probability and the intra-
the “line network” consisting of a source, a number of relays  route spatial reuse factor.

and a destination. The common assumption here is that the lin, Deriving the delay-optimal values of these parameters,
network operates in a stand-alone fashion, i.e., intemfezre and delay-throughput scaling laws when the density of
from other such “lines”, which are expected to be present interferers grows to infinity. In particular, it is shown tha
in a network environment, is not considered. Assuming a in the limit of a large interferer density, maximum intra-
channel model with path-loss, fading and noise, and no delay route reuse, i.e., slotted ALOHA, minimizes the end-to-

constraints, [15], [16] determined the end-to-end rate,, i. end delay.
the minimum achievable rate over all hops, when a TDMA- , Using the theoretically obtained delay-optimal number of
access protocol is employed. Alternatively, under a givelayl hops in order to perform routing in a network where both

constraint, [17] specified the number of hops and the rate sources and relays form a PPP. The routing algorithm
allocation among them, such that the total power consumptio  consists of each source selecting the relays closest to
is minimized. A similar problem was studied in [14], under  the optimal locations on the source-destination line. We
an end-to-end success probability requirement. In [19], @ assess theoretically and via simulation the sensitivity
decomposition approach was employed to decouple the line of the end-to-end delay with respect to imperfect relay
network into isolated qgueues and the end-to-end delay @f-tim p|acement5 and the utilization of given re|ay5 by more
division multiple access (TDMA) and ALOHA protocols was  than one source-destination pairs. Moreover, we verify via
evaluated. a number of experiments the validity of the assumptions
that form the backbone of our analysis, in the “small”
B. Contributions MA probability regime.
In this paper, we study the end-to-end delay performance of ) ]
a multi-hop transmission system (or route, in routing tewhi C- Paper outline and notation
ogy) consisting of a source, a number of relays and a destinain Section II, the system model is described in detail.
tion, in a network where interferers are located according t Section Ill is devoted to the evaluation of the hop success
PPP. In this manner, we bridge the gap between existing eptebability. In Sections IV and V, the mean end-to-end delay
to-end delay results for line networks that do not account fis derived and optimized over the relevant network pararsete
interference [19], and existing end-to-end throughputlliss for the cases of backlogged sources and geometric arrivals,
for PPP multi-hop networks that do not account for queueimgspectively. In Section VI, we present our simulation hessu
delays [4]. Our main departure point from previous work iand in Section VIl we summarize our conclusions. Table |
the introduction of buffers at the nodes, which leads to thecludes a list of the main symbols employed throughout the
explicit evaluation of the associated packet service aritinga paper. Note that the following conventions are employed for
times. The coupling of the queue evolutions renders the— x,: If lim,_,,_ f(z)=lim,_,, g(x), thenf(z) = g(z);
evaluation of the end-to-end delay a very challenging bl if lim,_,, f(x)/g(x) =1, thenf(x) ~ g(z).
consequently, we assume that transmissions across naales ar
independent, which allows the use of the framework develope Il. SYSTEM MODEL
in [20], in order to evaluate the steady-state distributibthe )
size of each node queue. Section VI-D is devoted to verifyirfty T0Pelogy, source traffic and MAC protocol
the validity of our approach through simulations. A source node employd — 1 relays,N € N, to commu-
The MAC protocol considered is a combination of TDMAnicate with a destination at distanée The relays are placed
and ALOHA. In each slot, the protocol schedules nodes whighguidistantly on the source-destination line so that thgpirg
are separated by a given number of hops, and the schedu&tance isR/N (if N = 1 we have single-hop transmission).
nodes are allowed to transmit with a certain probability. A node in the source-destination path is specified by thexinde
is selected in light of the fact that, in practice, while @mtr n =0,..., N, wheren = 0 corresponds to the source,= 1
route coordination is fairly easy, inter-route coordioatiis to the first relay and so on.
hard, hence a random-access policy for scheduled nodes is in [4], [11], we assume that time is slotted and nodes
easily implementable. Moreover, slotted ALOHA arises asae synchronized to a common clock. We define the intra-
special case, when all nodes in the route are simultaneousiyte spatial reuse factat = 1,..., N, which determines
scheduled. In this manner, we model and analyze in a “met@ pairwise distance (in hops) between nodes in the route



TABLE | Interference from PPP ®(t)
COMMONLY USED SYMBOLS

SOURCE RELAY 1 g{ELAY 2 DEST.

| Symbol ] . Meaning . | llll‘ ll\ l‘
D(t) interferer PPP at time
Aex interferer density (extrinsic interference) {} ﬁ {}
A source density (intrinsic interference)
Do source MA probability

—>
v relay A probabilty _ S t

D node transmission probability

a source packet arrival probability (geometric arrivals RI
Ds hop success probability R2 @ |I|
R

N

~

source-destination distance

number of hops (a)
d=1,...,N intra-route spatial reuse factor
Y spatial contention .
5(d) intra-route spatial contention Worst interfered hops
b propagation exponent
[4 SINR threshold for successful reception S D
—0 0 o 0 0 0 o 0
4 4 & 4 ¢ & 4 9
that may simultaneously transmit in a slot. By definition, (b)
there ared such groups of nodesP, = {0,d,2d,...},
Py ={1,d+1,2d+1,...},...,Pg_1 ={d—1,2d—1,...}. Fig. 1. (a) TDMA-ALOHA MAC protocol with N = 3, d = 2. In the

The valued = 1 corresponds to maximum intra-route reusdirst slot , the source and the second relay are sched@gd=( {0,2}); in
e., @ slotted ALOHA protocol, whiel — X corresponds to e X000 % he 1 ey = schootf (1), e 6 o Wher
no intra-route reuse, i.e., the case where only one node mgyf the source is backlogged it always has packets to trénsnarrivals
transmit at any given time, respectively. Whér< N, simul- are geometric, a new packet arrives at the end of its queus eivee it
taneous transmissions credftira-route interference, which, ?hzcaf)?:t'_?gt’en'grldprﬁg;sb'gxéégé’At?]uesxia.n;p'{e_fﬁrﬁ a:nd8tﬁgdrélspzec‘:’i've
on the average (due to the presence of fading), is larger ftances ard +1=14,d —1 = 2.
smaller values ofl.

Each node is equipped with an infinite-capacity bdffer
where received packets are stored in a first-in first-outiesh i L ) _—
We consider two different cases regarding packet traffibat tThe protocol for both ”?ﬁ'c scenarios 1S depicted in Figr)1(
source: backlogged, where the source always has packet¥V NN =3,d = 2. Itis emphasized that a node #(t)

transmit, and geometric arrivals, where a new packet arate transmits only when_it is allowed to (by the_ A.LOHA part of
the source buffer with probability everyd slots, i.e., traffic the MAC) andthere_ Is at least one packet in its queue. (The
intensity a/d. The first case models a scenario where a lar o events are equivalent only for the back[qgged source.) W
amount of information rests at the source, e.g., a largerfile enote_ byp”,’ n =0, ',’N — 1, the probability that node,

an FTP-type application. The second one models in a simﬁqgnsm'ts' given that it is scheduled by the TDMA part of the

manner the bursty nature of packet traffic in other types 0t C- BY definition, po < po andp, <p, n=1,...,N - 1.

applications. We model network ointer-routeinterference by assuming

The MAC protocol is a combination of TDMA and ALOHA that, in slott, the locations of inter-route interferers are drawn
and is described beldw from a PPRD(¢) of density\ppp, where{®(¢)} are iid across
1. Sett = 0 and randomly selecdt € {0,...,d — 1}. t. We consider two cases, one@fitrinsicand one ointrinsic

2. SetP(t) = Py. If the source is inP(t), it is allowedto interference, which are defined below:
transmit with probabilityp,. If a relay is inP(t), it is allowed  Extrinsic interference: Appp = Aex. Inter-route interferers
to transmit with probabilityp. are randomly located on the plane with arbitrary denaity.

3. A packet is successfully sent.oyer a hop if the .re.celv?rqtrinsic interference: Appp = ANp/d. The network consists
SINR is larger than a thresholdl If it is not, the transmitting f an infinite number of randomly located and mutually

node_|s informed via an _|dea| feedback channel and the IoaC|E%‘1E{£erfering routes, whose nodes observe the MAC protocol
remains at the head of its queue.

. . ) . described above in a slot-synchronous manner. In particula
4. For geometric arrivals only: If the source isf(t), a new . . : _
. . : s is the density of sources (or routes) in the network, ahEf d
packet arrives at the end of its queue with probabiityat o
reflects the fact that, with intra-route reugethere are on av-
t+1—¢, wherel > ¢ > 0.

i erageN p/d interferers per route, wherg= N ! ij;ol Pr-
5. Sett — ¢+ 1 andk — mod(k + 1,d). Repeat 2-5. If d = N, only one node per route is scheduled at any given

1At “low-traffic”, the assumption of infinite buffer capacityas negligible SIOt, SO Appp = Ap/N; if d = 1, all nodes per route are

impact on the derived results. simultaneously scheduled antdpp = Ap. Since Appp IS
2The proposed protocol can be implemented in a distributetiida as proportional top, we explicitly take into account that an inter-

follows. Once the route is established, send a test pack#ietaestination dei . n | h it is all d .

that includes a hop counter. Each relay increases the haperooy one, thus route node Is an interferer only when it is allowed to trartsmi

learning its position and corresponding time slot in theteou andit has at least one packet in its queue.



B. SINR-based packet successes with ¢ = (1 4 2/b)T(1 — 2/b)76>/?,

The channel between two nodes at distamcéncludes p
Rayleigh fading and path-loss according to the taw, where Dsji = H L=p+ 1+ |di—1]-%6
b > 2 is the path-loss exponent. The fading coefficients are
spatially iid, with a coherence time that takes values$lin/] ~with

(i.e., the fading is assummed to change at least as frequentl { {1 {N‘H L1 {N" {1 {N'H 1}
- ) T Ly Ly E - - )

i€l

as a node is allowed to transmit). All the nodes have the sa 5| d 51 d
transmit power and the transmit signal-to-noise-rati@.is (7)
Suppose that node — 1 is scheduled at time, i.e., and

n —1 € P(t) and its queue is not empty. Without loss of Psn = o—(R)'o8" 8)

generality, assume that nodeés located at the origin. A packet

is successfully received by if Proof: For the proof, we employ the approach in Sec-
o tion III.B of [9]. From (1), the success probability can be

SINR,, (1) 2 A(t)(R/N) >0 (1) Witten as

In,o(t) +In,i(t) +571 ps = P (A(t) Z G(R/N)b (Ino(t) +In 1( )+ﬂ ))

Due to the independence od(t),I,0(t), I,i(t), and the
exponential distribution ofd(¢), we have that

where

o A(t) is the fading coefficient between — 1 and n,
exponentially distributed with unit mean.

« I, .(t) is the total inter-route interference power p.=E [67(%)170[,1,0(25)} E [67(%)1’91",;(0} o (£)'o8™" )
Z A (8], (2) Each term in this product corresponds to the success proba-
z€D(t) bility taking into account only inter-route interferenge, (),

intra-route interferencep( ;), and noise #; ). Since ®(t)
a PPP with density\ppp, pso is given by (5) (see [9,
(9)]). Moreover, the index of the transmitter with the
worst-interfered receiver is = |1[27], where[Z] is the
maximum number of concurrently scheduled nodes gilen
Li(t) = Z em(®) Am®)zm| b (3) and d The potentigl intra-route in‘terferers are_thus located
at distance§ R/N)|id — 1|, wherei € Z and Z is the set
defined in (7). Due to the independence of transmission syent

where A, (t), exponentially distributed with unit mean,.
is the fading coefficient between the interferer at Iocatlolg
x € ®(t) andn.

« I, ;i(t) is the total intra-route interference power

meP(t)\{n—1}

where e, (t) = 1 if m is a transmitter (and zerofrom [21, Eq. (19)], we obtain (6). This concludes the proof.
otherwise), A, (t) is the fading coefficient betweem ]
andn, andz,, is the location ofm. Remarks on Proposition 1:

Note that the reception model based on (1) has an embeddedhe sef defined in (7) determines the distances of the intra-
half-duplex constraint. Ifl = 1, n € P(t), thus, ife,(t) =1, route interferers for the worst-interfered hop. In Fig.)1@n
SINR,, (t) = 0. example is shown fo’V = 8, d = 3. Whend = N, Z = ),
andp,; = 1.
2. The assumption of independent transmission events ig mad
for the sake of analytical tractability as the exact tandem
gueueing system is a very involved problem [19], [22]. When
In order to simplify the analysis, we ignore the favorabld < N, the queue states are correlated due to (a) intra-
fact that nodes at the edge of the route are subject to lgss infoute interference, and (b) the common to all scheduled hops
route interference and assume that the success protesbiliee interference proces®(t). Regarding (a), we maintain that
equal to the one of the worst-interfered hop, which we dendfe assumption is reasonable when the nodes are not allowed
by p,. Due to symmetry, the probabilities of transmissiotp transmit often, and this is the regime considered in the
are equal, i.e.p; = --- = py_1 2 p andj = p. In the rest of the paper; indicativelypax{p,, p} < 0.1. Regarding
following proposition, we derive an expression fay, under (b), as shown in [23], the spatial correlation coefficient of

the assumption that transmissions ocawnlependentlywith the interference power resulting from a PPP is zero (under
probability p. the path-loss and fading model of this paper). This indkate

that the dependence between packet successes at a given
Proposition 1 If nodes scheduled by the TDMA part of thdime slot due to®(t) is very weak. On the grounds of
MAC transmit independently with probabiligy then these observations, packet successes, determined byNe Sl
criterion in (1), are considered independent acresand t.
Ds = Ps.o " Ps.i* Psn (4) Note that wheni = N, the independence of packet successes
(hence transmission events) is exact, since only one node is
where , scheduled at a timg,®(¢)} are independent acrossand the
Ds,o = e rere(R) (5) coherence time of the fading is at madst slots.

IIl. A GENERAL EXPRESSION FOR THE HOP SUCCESS
PROBABILITY

)



Based on (6), we now derive a lower boundptg.

Proposition 2 If d < N, thenp,; can be lower-bounded as

psiZ e, (10)
where o
|di — 1/
0= 1-— _— . 11
> < PR L (11)
i€2\{0} 5l
The bound is tight fop — 0. — ps.i» €0. (6)
0.75} ‘e
Proof: Taking the inverse of (6) -o- e % eq. (10) K
. p 0.75 B
Pei = <1 —+ - > . 10 10
o1 g 1—p+|di—1°/0 p
Applying the logarithm to both sides and using the inequalifig. 2. Success probability, taking into account only inmate interference,
10g(1 4 :C) < x. x>0, we obtain that as a function op, for N = 10 andd = 1, 2, 3, 4. The lower-bound calculated
’ ' in Proposition 2 becomes tighter dsincreases.i(= 3, § = 6 dB, p = 0.1)
1
i > ex — - . TABLE 1l
Psi P ( piGZI 1—p+|di— 1|b/9> MAIN ASSUMPTIONS OFSECTION |

Sincep < p arﬂpl C Z\{O]_», (10) follows. Whenp — 0, Assumption | Comments
Dsji — 1 ande — 1, which proves the tlghtness of the Inter-route interference] Crucial; reasonable for small MA probabil-
bound. n PPP and iid across timg ities (see Fig. 9)

As shown in Fig. 2,e_5” provides a good approximation Hop success probabili{ Conservative; can be relaxed, but would

. - ; _ ties: equal to success lead to cumbersome expressions; reasonable

to p,s" for suff|C|entIy Sm?‘” values Ob' FC()SI‘ analytlcal con probability of “worst” | for range of interest of path-loss exponents
venience, we (conservatively) sgf; = e °” whend < N. hop (see Fig. 10)
Sinc;eps_i =1 for d = N, from (4), we have the following Transmission events: in} Crucial; reasonable for small MA probabil-
general expression far,, which is employed throughout the ~dependent ities (see Fig. 11)

rest of the paper,

R\’ R\’
Ps = €XP (—)\pppc (N) —6&p— <_) 951> , (12) IV. BACKLOGGED SOURCES

N A. Evaluation of the mean end-to-end delay

whered’” = ¢ for d < N and¢’ = 0 for d = N. Based  \yg first determine the probability of transmissiprwhen
on (12), we define the parameter £ 9p,/dp|,—o as the the source is backlogged.
spatial contentior{24]. It measures how steeply the success
probability decreases with the transmission probabpitylf
d < N,~ =26 for Appp = Aex, andy = AcR?/(Nd) + § for -
Appp = ANp/d. In the latter case, i.e., intrinsic interference? = Po:
7 consists of both an inter- and an intra- route component. Proof: Recall the analysis in [20]. Since packet successes
Hence,d is termed theintra-route spatial contentionwhich, are independent events with probability, if pops < pps,
as seen from (11), is a decreasing functiondofin order packets arrive to the first (and all subsequent relays) with
to emphasize the dependencedobn d, we also employ the probability p,p,. Hence the probability that a relay has a
notationd(d). Note that, ifd = N, v = AcR?/N? for intrinsic  non-empty queue i.ps/(pps) = po/p, Which yieldsp =
interference. po/P- P = po (Same as the source). ]

Armed with (12), in the next two sections we examine Settingp = p, in (12), we readily obtairp,. Note that
separately the cases of a backlogged source and geomgkiCconditionp, < p is necessary for the stability of the relay
arrivals. In each case, we evaluatederive expressions for queues, as it ensures that the packet arrival rate does ceeex
the mean end-to-end delay and throughput, and minimize i@ packet service rate. We now evaluate the mean end-to-end
delay over the relevant network parameters. Since the -noigelay D, defined as the mean total time (in slots) that it takes
dependent term in (12) does not depencppim the remainder a packet to travel to the destination from the moment of its
of the paper, we focus on the interference-limited reginge, i first transmission attempt at the source.
we let 3 — oo (ps. = 1). Closing, in Table Il, we have listed
and commented on the main assumptions made in this sectigpyposition 4 If the source is backlogged, the end-to-end
which provide the backbone for (12) and the analysis of ﬂb%lay is given by
following sections. The validity of each assumption is dtest
via simulation in Section VI-D; Table Il also lists the figsre D= d +d(N — 1)% — N(d—-1). (13)
where the respective results can be found. DoDs ps(P — Po)

Proposition 3 If the source is backlogged angl, < p, then




Proof: Since a departure occurs from the source everytractability, we relax the integer constraints dhandd and
slots independently with probability,p,, the mean service let N € [1,+0), d € [1, N].
time measured from the first transmission attempt till the We close this section by suggesting how the framework pre-
packet is successfully received by the first relay,Hs = sented in this paper can also be employed to compute the delay
d/(pops)—d+1. Forp, < p, packets arrive at a relay evedy in a network where the distande of each source-destination
slots with probabilityp,ps and are serviced with probability pair is drawn in an iid fashion from a given distribution.
pps. The mean service time for the head-of-line (HOL) pack&or eachR, we let N(R) = R/r, wherer is an inter-relay
at arelay is thereforél, = d/(pps)—d+1. The mean waiting distancer that does not depend aR. Therefore, on average,
time at a relaylV,., defined as the mean total time from thehe number of hops performed in the networE{s]/r, where
moment a packet arrives at the end of the queue till it becontes expectation is taken with respect to the distributiorRof
the HOL packet, is calculated with standard queueing theoffhe relevant interferer density dspp = Ap,E[R]/(rd), and
The probability that there ark packets in the queue is the mean delay in the network can readily be computed by
k k-1 (13), where the optimization parameters are now; p,, with
T = (po/p) ( 1= pps ) (1—po/p), k>1. (14) E[R] in place of the common distande of the homogeneous
1 —pops \ 1 — pops Setting_

By Little’s theorem,W,. is the average queue size, excluding
the HOL packet, divided by the arrival rate, in this casg gxtrinsic interference
pops/d. Using (14), we find that

We consider the cases of no intra-route spatial redse (
_d > _ Po 1 —pps N) and intra-route spatial reusé € N) separately.

Wr = PoDs Z(k —Dme = d; ps(p — o) (15) 1) No intra-route spatial reused(= N): In the following

h=2 proposition, the delay-optimaV, p, are determined.
By definition,D = H;+ (N —1)(H,+W,), and (13) follows.
. ) 5 ion 4 et i . d.b Proposition 5 Let A\ppp = Aoy andd = N.
emarks on Proposition 4Since a packet is received by "\t p2 o 1 then for give
the destination everyl slots with probabilityp,ps, the first ex€ ' » 107 gIverp,,

term in (13) is the inverse of the end-to-end throughput . [VAcxCR, V2AexCcR)  po € (0,p/2],

T = pops/d. The second term is the mean total time from N [1’ \/ER) Po € (p/2,p). (17)
the moment a packet arrives at the end of the queue of the _

first relay till it arrives at the destination. It is propantial to « ForgivenN >1

(ps(p —po)) ™1, i.e., the inverse of the difference between the . D 18
packet service and arrival rates at each relay buffer. Hefice Po = 1+VN -1 (18)
N > 1, a necessary condition for finitB is p, < p. Proof: See Appendix A. -

From (13), the following upper bound can be readily ObF_eem

tained, which is tight for “small’p. arks on Proposition 5:

1. For given ., in the light-traffic regime, i.e.p, — 0,
D ~ 1/T, so N* — /2\.cR, which is the value ofN

. <7
Corollary 1 If the source is backlogged? < D, where that maximizes the end-to-end throughfit= p,p./N —

D= d n d(N —1) _ (16) poerex¢(R/N)” N As we move into the high-traffic regime,
PoPs (P —Po)Ps i.e., p, > p/2, the second term of (16), which increases with
The bound is tight fop — 0. N2, dominates the delay. Therefore, a smaller number of hops

_is more delay-efficient an@* < \/AcxcR.

In the next section, we pursue the optimization Bf 2. The delay-optimap, decreases a(1/v/N). For a given
over the parameters/, d,p, for the cases of extrinsic and y, (18) achieves the best tradeoff between throughput and
intrinsic interference. We obtain two kinds of results: (afptal time spent in the relay queues.

Exact expressions or tight bounds on the delay-optimalevalu We now determine the jointly delay-optima&lV, p,) as
of each parameter, keeping the other parameters fixed, and — oo.

(b) asymptotic expressions for the jointly delay-optimal p

rameter values, ad.x — oo for extrinsic interference, and proposition 6 Let A\ppp = Aex andd = N. The jointly delay-
A — oo for intrinsic interference. Note that, in an interferencegptimal (IV, p,) for Aex — oo are

limited network, (12) depends only on the produgt.cR?

for extrinsic interference andcR? for intrinsic interference. N*™ ~\/AexcR (19)
Hence, all asymptotic results may equivalently be derived pE o~ p2 T (20)
letting AexcR? — oo and AcR? — oo, respectively. The (AexcR?)

delay-optimal parameter values and the respective deldy arhe respective minimum delay is
throughput are denoted by the superscrigf: For analytical N R 9
_ cR<e
D* ~ == 1+ : 21
3We do not employ different notation for the optimal and jbirdptimal D (NexcR2)1/4 (21)
parameter values. To make the distinction clear, we staenwlie parameters .
are separately or jointly optimized. Proof: See Appendix B. [ |




Remarks on Proposition 6: minimizes the delay is thap} (as well as the busy probability
1. From (21), it is seen thaD* = ©O(\.). The linear of the relay bufferg? /p) goes to zero wheh,., — oc. Hence,
scaling is due to the factoN? in (16) and the fact that p,; = e~°P¢ — 1, and D in (16) is proportional tal, making
N* = O(v/)ex). Intuitively, a HOL packet has to wait atd = 1 the optimal choice. From (12), it is also seen that the
leastN slots before a retransmission attempt, and theré\areoptimal hop success probability jg§ ~ e~/2,
buffers in the route. The respective delay-optimal thrqudgh 2. N* in (24) is larger than the respective one in (19) by a
isT* =0O(p;/N*) = @(/\C_X3/4). factor of /2. This is the price paid in terms of resources, i.e.,
2. The throughput-optimalstrategy for all \ex is to set relays, for allowing intra-route spatial reuse.

= /2XexcR (see remark on Proposition 5) apg = p (if 3. The minimum delay scales & = O(y/Acx), i.€., thereis a
po = p the delay is infinite, though). So, asymptotically, thelelay gain ofd(y/A.x) compared to the case of no reuse. Since
throughput-optimal number of hops is larger than the delay-= p.ps/d, the respective delay-optimal throughput scales as
optimal number of hops by a factar2. The resulting max- T* = ©(Aex’*), so the throughput gain is al$(y/ ey ).
imum throughput isT = ©(1/v/Ax). Hence, a throughput 4. The throughput-optimal strategy sele¢t§, d, p,) to max-
penalty of ©(\*) is incurred by the delay-optimal policyimize T = p,e*exc(E/N)*=dro /4 It is clear that, for a given
due to the fact thap? = (/\‘1/4)_ Aex, N — 0o maximizesT', which reduces the problem to se-

ex

2) With intra-route spatial reused( < N): Given the lecting(d,p,) to maximizep,e—°(*- /d. Since the maximum
inefficiency of a protocol which allows only one node to b&roughput is a constant with respect Xg, the throughput
scheduled at a time, we now l@t < N. In the following penalty incurred by the delay-optimal policy@ Ael*), as in

proposition, we determine the delay-optiniél p,,. the case of no reuse.
Proposition 7 Let Appp = Aex @andd € [1, N). C. Intrinsic interference
o If 2\excR? > 1, then, for giverp,, We now study the case of intrinsic interference, Mepp =

e 30 pa)enc ANp,/d. For lack of space (and similarity of the relevant
{ { 2AexCR, v/ 2p/Po) eXCR) po € (0,p/2], derivations), we only state the asymptotic results Xor co.

[1,V2XexcR) € (p/2,p).  As in the case of extrinsic interference, we consider N
_ (22) andd < N separately.
« ForgivenN,d 1) No intra-route spatial reused(= N): The interferer
. < 2 density is Appp = ANp,/N = Ap,. The jointly delay-
Po = \/52 TAN —Lp(o+p 1)+ s (23) gfgirr)‘rg)zlit(ilgfr,lpo) when)\ — oo are determined in the following
The bound is tight forV — oc. '
Proof: See Appendix C. - Erzmﬂsllt(ljcifn 9)L;e0tr/\/p\>p_p> :O)\;oroeandd = N. The jointly delay-
Remarks on Proposition For given\.,, if p, — 0, the upper P »Po
bound in (22) goes to infinity. Indeed, fpr, — 0, N* — oo i} CAeR2p\V/?
is delay-optimal, sincé (see (45) in proof) is dominated by N~ ( 5 > (27)
1/T, whereT = pe~*exc(R/N)*=3po /4 and settingV* — oo <13
maximizesI'. Also, note thatV* does not depend afy which P~ ( p ) ’ (28)
is easy to see from (45) In contrap]; in (23) is a decreasing ¢ 4¢CAcR?

Based on Proposmon 7, we now der|ve the jointly delay

optimal (N, d, p,), @SAex — 0. D o ol/C (C/\CRQ) 1/3 (3 (Q\ch) - L) (29)
2p 2 p1/3 ’
Proposition 8 Let Appp = Aex andd € [1, N). The jointly )
delay-optimal(N, p,, d) for Aexy — oo are d* ~ 1 and Proof: See Appendix E. .
Remarks on Proposition 9:
V2XexCR (24) 1. The minimum delay scales a@8* = ©(\*/3), and the
o~ P (25) respective delay-optimal throughput & = 0(\~2/3). We
¢ (14 0(1)p)(2AexcR?)1/4 can interpret this result by defining the delay and through-

put exponentsA = limy_ o logD(\)/log) and 7 =

limy o log T'(A\)/ log A and lettingp, = A™", whereX > 1.

_ Noywrry (1 1+o(1)p ) From (17), it is seen that, for a givem, the delay-optimal
+ .

The respective minimum delay is

D* ~ ERE (26) N must satisfyN = ©(1/po(MA) = O(1'7"). Substituting
in (13), we have thatA(k) = max{(x + 1)/2,1 — x} and
Proof: See Appendix D. B 7(k) = —(k+ 1)/2. The value ofx that minimizesA(x) is
Remarks on Proposition 8: 1/3, which yieldsA(1/3) = 7(1/3) = 2/3.
1. In the limit \ex — o0, (slotted) ALOHA is the delay- 2. The constanf arises due to the fact that* is in the range
optimal MAC protocol. The reason that maximum reusg,/Acp:R,2+/AcpiR) (See proof).



TABLE Ill 10*
SCALING LAWS FOR BACKLOGGED SOURCEFOR THE CASES OF
EXTRINSIC AND INTRINSIC INTERFERENCE

Intrinsic

| | extrinsic: Aex — oo | intrinsic: A — oo | )
Metric | d= N d<N d=N d<N °
D* O(Mex) 0V ex) | O3 | (V) T ;
T [ 6(1/VAe) | ©(1/VAex) [ OO 27) [ ©(1/VN) 5
N | 0(ex) | O(WAx) | BOP) | e 3
a - ~1 - ~1
ps | e | s | e | e(1/va)
P: o) o) o) o)
108 --- No reuse |
P -= Max. reuse
3. The throughputl” = pe=*<P-(B/N)* /N is maximized for 10° 10° ) 10

- e
po = p and N = /2\pcR. The maximum throughput scales Density (nodes/f)

asT = 6(1/\/X)’ hencel tGhe delay-optimal policy incurs q:ig. 3. D in (13) plotted in solid lines vsAcx for extrinsic interference,
throughput penalty o®(\!/6). and X for intrinsic interference. Maximum reuse & 1) corresponds to a

2) With intra-route spatial reused(< N): The interferer slotted ALOHA MAC. For each density) is numerically optimized oveN
d ity IS\ —\N d andp,. The expressions foD* given, from left to right, in (21), (26), (29)
ensity ISAppp = Po/d. and (32) are also plotted for comparison (dashe®).= 500 m, p = 0.1,
b=3,0=06dB)
Proposition 10 Let A\ppp = ANp,/d andd € [1,N). The

jointly delay-optimal(N, p,, d) for A — oo are d* ~ 1 and

N* ~ +/2AcpR (30)

p
APV 31
Po INCR? (31)

The respective minimum delay is %
2e\cR? £
D ~ 2| 2224 @ &
p
Proof: See Appendix F. [ ] o
Remarks on Proposition 10 \
1. As in the case of extrinsic interference, ALOHA is asymg. -=- No reuse Intrinsi
: ; o - -= Max. reuse sic

totically delay-optimal. The minimum delay scales B$ = 10° - - .
O(V), i.e., there is a delay gain ab(\'/6) compared to 10 10 10

10
the case of no reuse (Proposition 9). Sifite= p,ps/d, the Density (nodes/)

respective delaY'Optimff‘l thrOUghpUt scaledas= @(Vﬁ)* Fig. 4. Delay-optimalN, corresponding to Fig. 3. The solid lines (staircase
so the throughput gain is aIs@()\l/G). These gains are curves) correspond to the delay-optimal found numerically. The dashed

achieved by increasing the number of hOpS fravit = !ines correspond, fr_om left to right, to (29), (24), _(27) a3d). For extrinsic
1/3 hend = N to N* — © \/X interference, the ratio of the delay-optimalfor maximum reuse and no reuse
9(/\ )1 whena = [V, 10 - ( ) is v/2; for intrinsic interference, this ratio increases ®Y°® (R = 500 m,

2. The throughput-optimal strategy sele¢®, d, p,) to maxi- p=0.1,b=3, 0 = 6 dB)
. 2 . . .

mize T = p,e~ P/ (Nd)=dpo /4 Since N — oo maximizes

T, the maximum throughput is a constant with respech.to

Ir;i(()alli‘]&ei,stge(\t/hxr;ughput penalty incurred by the dEIay_Optlmglotted for comparison. Note that, even though asymptotic,

The scaling laws derived throughout Section IV are suntnhey provide good approximations of the respective minimum

marized in Table Ill. We now provide numerical results fofmlay and delay-optimal number of hops for a realistic rasfge
specific values of the network parameters densities. Indicatively, for the case of intrinsic integfiece and

A =10"* m~2, Fig. 4 shows that 3 hops are required when no

) reuse is employed, while 9 hops are required with maximum

D. Numerical results reuse, when the source-destination distance is 500 m. l§as a
Let R = 500 m, b = 3,0 = 6 dB andp = 0.1. In apparent that, for the selected parameter values, maximum

Fig. 3, D in (13) is plotted vs.\.. for the case of extrinsic reuse outperforms no reuse for all density values, but the

interference, and for the case of intrinsic interferenc® is required number of hops is larger. In the case of extrinsic

numerically optimized oveN andp, whend = N (no reuse) interference, the ratio of the delay-optim&l for maximum

andd = 1 (maximum reuse, or slotted ALOHA). Fig. 4 showseuse and no reuse is approximatel2, while, for intrinsic

the respective delay-optimal numbers of hops. The themdetiinterference, this ratio increases &5°. These observations

expressions fotD* and N*, derived in this section, are alsoare in agreement with the scaling laws listed in Table Il1.



V. GEOMETRIC ARRIVALS 3. If the queues are stable, the end-to-end throughput is

In the previous section we examined in detail a heavy-trafflc = a/d, since a packet arrives at the destination euery
scenario, where the source always has packets to transmitS|PtS With probabilitya. For a given end-to-end throughput
this section, we briefly treat the case of geometric arrigals "equirement!” = 7, we can show that the number of hops
the source. The analysis follows closely the one of Section |1V that minimizes (35) satisfies the relation
We focus on the case of intrinsic interference, iXepp = N AcR2pT, (38)
ANp/d, andp, = p (the cases of extrinsic interference or (1 4+ W(—~*dT})) (peW(w*dTo) — dTo)’

Ppo # p can be treated very similarly).

* 2 * *
The main result is stated in the following proposition. Le\f\'her-e*7 = Aclt /(N.d). +o. It f9”0W5. that N* = 6().‘T°)
W(), # > —e~1, denote the principal branch of the Lambe %mdD = O(A\T,). This is a manifestation of the scaling law

function [25] rderived in [3], in the context of our model, which assumes
' perfectly placed relays and interferers located accorting

i . PPP.
Proposition 11 Assume that a new packet arrives at the
source everyd slots with probabilitya and interference is VI. APPLICATION
o B _ 2 ) .
L?]ten:sm. If a < pexp(—yp), wherey = AcR*/(Nd) + 9, A. Simulated network setting
ps = exp (W(—ay)) (33) In the previous sectlon_s, we developed an analytical frame-
work to evaluate and optimize the mean total delay from the
and source to the destination in the presence of interferers tha
p = aexp (—W(—ay)). (34) form a PPP. In particular, the case of intrinsic interfeeenc

was considered, in order to evaluate the delay in a network
The mean end-to-end deldy, measured from the moment &ith mutually interfering routes. We now examine how the
packet arrives at the end of the source queueDis= D — yegyits of Section IV can be applied in a seting where
N(d —1), where backlogged sources have to route packets to their destirsati
_ 1—a by employing a common pool of relays. We consider a network
D= Ndpps —a (35)  where both the source and relay locations are drawn from
N a PPPII; of total density)\;, and a node is a source with
Proof: The conditiona < pexp(—~p) ensures that the nropapility 4, or a relay with probabilityl — 1. Therefore,
queues are stable — see [26, Prop. 1]. In this case, the packgtrces and relays form two independent PRBsand I,
arrival proba_bility to eaqh re_Iay is. Hence, the probability \yith densities\ — )\ and\, = (1—p) )\, respectively. Each
that a node is a transmitter js= (a/pps) - p = a/ps. FroM  soyrce has a destination at distadtand random orientation,
(12), this results in the following fixed-point equation oye  ang selects out of the available relays the ones which are
a closest to the delay-optimal locations. In each route fatine
bs = €Xp (_VP_S) (36) this manner, the nodes observe the MAC protocol described
in Section Il, in a slot-synchronous manter
Eqg. (36) has two solutions if and only i < (ve)™',  The simulated network departs from the theoretical model
which always holds iz < pexp(—vp). The smaller solution as relays are not perfectly placed on the line between the
is increasing ina, on the basis of which it is rejected,source and destination, and two or more routes may utilize
since it represents a network where the hop success pregde same relay. We first discuss the impact of these factors on
ability increases with increasing traffic. Rewriting (363 athe theoretical performance, and then describe our sifonlat

—ay/psexp(—ay/ps) = —ay and applying the Lambert campaign and results.
function to both sides, we obtain (33). Singe= a/ps, (34)
follows. B. Imperfect relay placements

The proof of (35) follows the one of Proposition 4.

’ - ; If For ease of exposition, we considir > 2, and no reuse,
a < pps, the packet arrival probability to all nodes is

- vt i.e.,d = N.Assume that the second relay selected is displaced
and the packet service probability jp,. Due to symmetry, p . from the ideal position on the source-destination line,

D= N(H + W), whereH = d/(pps) —d + 1 and wherez < r andr = R/N is the hopping distance. We derive
- the incurred delay penalty for small perturbatian .
W = diﬂ’ (37) y p ty p &r
PPs PPs — @ L.
Proposition 12 Let z < r = R/N, =z > 0, N > 2, be the

and (35) follows. _ ®  displacement of the second relay from the ideal positioreh
Remgrks on Proposition 11: r — 0, the delay increasé D = Dgis, — D is given by
1. p, is a decreasing function af. In the extreme case = 0, N
the throughput is zero ang, = 1. 5D = AN Acpope™ T <1 2P +po> 2 4

_ _ i _ . = —————— | 1+ 2Aepor"—— +0O(z"),
2. The fixed-point equation (36) is the result of the assuompti (p—po)? Pl = o v @)
that packet successes are iid. Note that similar “decogplin (39)

as.sumption_s employed in [27] _anq [28] also_r.esu“ed in fixed-4the siot boundaries are synchronized, but not the TDMA sdesdii.e.,
point equations for the transmission probability. P(t) (see Section II) is generally different across routes invergislott.



10

10 T

~s- Theor. approx
-e- Simulation

1000

800~
600
4001

200F°

£ of ok
-2001

-400}

Source

X
600
- ¢ Dest
o]

Selected relay 5
Relay
X

10 20 30 40 50 60
Ar/A

-800

~19%%00 -500

Fig. 6. Crossing probability vs\, /X for N = 2, 3, 4. The simulation results
were obtained fort\ = 10~* sources/m and R = 500 m. The theoretical

Fig. 5. Crossings of different source-destination pairscahmon relays for approximation in (40) is plotted for comparison.

a network with\ = 1074 m2, N = 3, R = 500 m and a relay density
Ar = 32\, Utilized (non-utilized) relays are shown with circlesdsses).

For N > 2, we then approximat@., x by

where D is defined in (16). N = (N —=1)P,, (40)
Proof: From (16),6D is found to be since, for a sufficiently large relay density, (a) a relayikelly
Neepor? NeAewor o N epor? to be utilized by its neighboring points iH, ;qea1;, and (b)

eXepo eepo eepo

the probability of a crossing should increase roughly prepo
tionally with the desired number of hops. In the following
Taking the Taylor series expansionat= 0, we obtain (39). proposition, we derive an expression fBf, ,.

[ |
Remarks on Proposition 1Zq. (39) implies that the delay Proposition 13 P/, , is given by
penalty due to imperfect relay placement is more severe if '

oD = pe—kcpo(wz-i-QCrw) pe—)\cpo(wz—chm) o D — Do

. if . . 4/ﬂ_ +o0 +o0 ™
po — D, I.€., if the system is operated close to capacity, and P o= / dtl/ dtz/ a6
it is proportional toN, if no intra-route reuse is employed. T4 % 0 t 0
Moreover, forz < R/N, the penalty is approximately pro- toe— i3 (B (=) +13(+0)+yt1 sin ¢) (41)
portional toz? (and an even function of, due to symmetry). 1
If we setz = (2/A,)~1, which is the expected distance of y = \/tf + 13 — 2t1t5 cosf
the closest relay to the desired point, it follows that thiage £ sin
penalty is also roughly inversely proportional to the dgnef ¢ = tan? (27> .
. t1 — tacost
relays in the network.
Proof: See Appendix G. [ ]

C. Route crossings P, ny was evaluated by simulation over different relay

Each source selects the relays which are closest to fifghsities and network realizations, fof = 2,3,4 hops,

desired locations on the source-destination line. As shiawn = 10~ * sources/rfiand R = 500 m. The results are plotted

the example of Fig. 5, this results in the utilization of partar N Fig. 6, as a function of the ratia, /A. Is is seen that’), v
relays by more than one source-destination pai(’Ifs the N (40), provides a good approximation Bf; . We can verify
number of times the typical relay node is actually employed 13t Per, v roughly follows the trend N — 1)(1 + 2\, /A) .

a relay in a network where the desired number of hop¥ js

we define thecrossing probabilityP., y = P(C' > 1|C > 0). D. Simulation results

The exact evaluation o, v appears complicated, hence we \y ot \ — 104 m=2 p=010b=3 0 =6 dB and
resort to the following approximation. Let be the typical o rtorm a number of simulations for different valuesiof d,
relay inII,.. Denote the point process of ideal relay Iocation}:,i’ o and,.. The network area is square, with size such that,
asIl, ;qea1, @and letz be the closest point dfl; ;qea1 t0 «, and on average2000 sources are included; fox = 10~ m~2,

2" the second closest. We define &5 ,, the probability that, ;s corresponds to a square side 7f 4.5 km. For each

in a two-hop system (i.e., one ideal relay Iocatlonlper_ SBUMCperating point, we generatmne network topology and run
destination pair)z is the closest neighbor dl,. to z', given g experiment with duration00000 slots (at the beginning
that it is also the closest neighbor to Mathematically, of each experiment the node buffers are empty). In order
P to resolve conflicts when a relay is selected by more than

=P |(arg min |2’ — 2| =2 arg min |2’ —z| =2 ). . ) N .
er,2 gm’6H7‘| | gm/eHT| | one sources, packets with different destinations are dtiore
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Fig. 7. Delay vs. number of hops fop{ = 0.01, R = 500 m) and p, = Fig. 8. Throughput vs. number of hops corresponding to Fig. 7
0.005, R = 1000 m), and various reuse factors. The markers correspond to
simulation results obtained fox, = 4N\ for each N and the solid curves

correspond to (13). is valid in the considered regime. In Figs. 9-11, we look

more closely at the assumptions that underly our analysis,

a common queue and the following rule is applied at arWhiCh are listed ip Table 1. In.ord.er to validate the iid
given slot: if the relay is a receiver for one route and §oMPonent of the first assumptiyrin Fig. 9 we selectV = 4
transmitter for another, the reception fails; in all otheses, 2nd @ = 1,....4, and plot: the squares of the cdfs of
successful reception follows the SINR criterion (1). In erd the simulated interference power at the origin at odd and
to avoid edge effects, for each topology, sample-metries &Ven time slots,Pi(z) = P(lno(t) + In,(t) < ) and
only collected for the routes with th200 innermost sources. ,P%(x), = Plno(t + 1) + Ina(t + 1) = z); the simulated
For each operating point, the plotted metrics are obtained jgint mterfe_rence power cdf at the origin, over odd and even
averaging over routes (where applicable) and time slots.  UMe SIOtS, i.8.P12(2) = B(Lno(t) +1n,i(t) < @, Ino(t+1) +

We first select a relay density of, — 4N\, where N is In,i(tﬂ- 1) < z); and the product of the individual S|mglated
the desired number of hops, such that, for a given numtd's: i-e..21 () Py(z). The matclh between the curves is very
of hops, relays are found close to the desired locations wifod for the whole range of interference values and reuse
high probability. We consider two scenaridg:= 500 m and 'actors, which implies that, in the considered regime, the
R = 1000 m, which arel0 and20 times the expected closest-te_mporal iid assgmp'uon is reasonable. This resul_t alseexgr
neighbor distance in the source PPP, ilg/(2v/A) = 50 m, with a recently discovered r_ule of thumb that the interfeeen _
respectively. According to (30) and (31), the correspogdir{nay be considered approximately temporally independént, i
optimal values of V, p, ) are(10,0.01) and (20, 0.005). Since p(1 - 2/b) < 0.1 [29]. . _
the relay MA probability is set tg — 0.1, these values of Fig. 10 shows the simulated success probabilities of the

p, correspond to a traffic generation ratelaf% and 5% of last hop and the worst-interfered hop, i.e., the hop witteind
. ; " | 1[X7] +1, that correspond to the set of curves & 0.01
capacity, respectively (Proposition 3). 21743 ' p 0] :

In Figs. 7-8, we have plotted the theoretically computeﬁ = 500 _m) of Fig. 7. In, almost all cases, the curve
delay (13) and throughputl{ = p,p./d), along with the corresponding to the vyorst—mterfered hop lies very s];gh_t
simulation results, forN ranging from3 to 10 hops, and below the correspondmg_ one for the _Iast hop, '”d'c"?‘““g
various reuse factors. Figs 7-8 illustrate the generaleagest that _the secon_d assumptlon IS al_so quite reasonable_ in the
between theory and simulation; the discrepancy is largest f:%r_‘s'dzred reg(;;me. (?fur ]lcnterplretat_lon of thes_e re?ulthﬂeit
small numbers of hops and reuse factors. The main messag! ige edge nodes sufier from [ess Intra-route interfere
thatd — 1 (maximum reuse) is optimal ond¥ is sufficiently inter-route interference is the same (on average); for A pat
large; for small N, it is more advantageous to space odﬁss exponenb = 3, it dominates the total interference, such

transmissions by imposing &> 1, e.g., forp, = 0.01 and t at_ edge_eﬁects candbe_shafﬁlylneglected. _ ¢ Tabl
R = 500 m, d — 2 yields a smaller delay thad — 1 for Fig. 11 is concerned with the last assumption of Table Il. To

N < 4, while for p, — 0.005 and R = 1000 m, d — 3 yields this extent, we have plotted the simulated joint probabiit
a2 smaller delay tﬁard — 1for N < 6. In addition. note transmission of two nodes in the same route at distartueps,

from Fig. 8 that, while there exists a delay-optimal numbier &S Well as the product of the respective individual prolsl

hops, the throughput increases with since the distance perof transmission. As in Fig. 10, the plotted curves correspon
hop decreases for fixe. to the set of curvespl, = 0.01, R = 500 m) of Fig. 7. The

_The agreement between theoretical and Simu"’f‘tion results isince the source and relay locations form two independesPEhe
Figs. 7-8 implicitly demonstrates that the theoreticalrapgh interference power is generated from a PPP with very goodoajpation.
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Fig. 9. Simulated interference power (at origin) cdfs f5r = 4, d = Fig. 11. Simulated joint probability that two nodes at dis®d hops within
1,...,4 and p, = 0.01, R = 500 m). The x-axis is normalized to one. a route are simultaneously transmitting (dashed line) andyzt of respective

Py (z) and P2(x) are the interference power cdfs at odd and even time slosimulated individual probabilities of transmission (doline), corresponding
and P2 (z) is the joint interference power cdf over two consecutivessidhe to the delay curves of Fig. 7 fop{ = 0.01, R = 500 m). The maximum
conclusion is that the iid assumption is reasonable in tmsidered operation difference between the two curves is ab60t% for all reuse factors.
regime.

10°

—&— N=5, d=3 ]
—o—N=10, d=1 |

Delay (slots)

=
o
w

10 10
3 4 5 6 7 8 9 10 Relay density (relays/mz)

Fig. 12. Simulated delay vs. relay density fa¥ (= 5,d = 3) and (V =
Fig. 10. Simulated success probabilities of last (solig)imnd “worst’ 10, d = 1). The delay converges to the theoretically predicted vaitien
(dashed line) hops corresponding to the set of curvgs< 0.01, R = 500 m)  Ar > NA. (R =500 m, p, = 0.01)
of Fig. 7. The discrepancy is small due to the dominance @frirdgute over
intra-route interference for path-loss exponént 3.
(at reuse factor 3) for convergence, as the attempted number
of hops is larger. In particular, fok, < 20, the bottlenecks
results indicate that the joint probability of transmissis that occur at overutilized relays by multiple sources inaur
smaller than the product by at mos0% for all considered gjgnificant delay penalty, and thus performing 5 instead®f 1
values of N andd. hops results in smaller delay.

Finally, in Fig. 12, we examine the sensitivity of the delay
with respect to the relay density. We select two operating
points from those in Fig. 7:N = 5,d = 3) and (V = 10,

d = 1), and let the relay density, vary between\ and 64\ We evaluated the end-to-end delay of multi-hop transmis-
(note that for these two points, the results in Fig. 7 wergon in the presence of interferers that form a PPP, under a
obtained for relay densitie20\ and 40\, respectively). We TDMA-ALOHA MAC protocol. We considered the case of
observe that the simulated delay converges to the theoreti arbitrary interferer density, as well as the case whege th
cally predicted value when, takes values larger thaivA. density depends on the number of scheduled nodes per route
Moreover, consistent with intuition, performing 10 hops$ (aand the transmission probability. The delay-optimal nundfe
maximum reuse) requires a larger relay density than 5 hdpsps was determined, and asymptotic expressions werederiv

VII. CONCLUSIONS
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a random access policy is asymptotically delay-optimat, bu

_ 2 2

D= Np! (1 + VN 1) Hexe( ) (43)
routing algorithm for networks with randomly distributed
the delay-optimal number of hops to its destination, byiraut N* + — =0. (44)
reasonable for small enough MA probabilities; as a conses, we obtain (19). Substituting (19) in (18) and (43), we
the sensitivity of the delay with respect to imperfect relay

In conclusion, this paper combined elements from queueing

for large values of the interferer density. Consistent witB. Proof of Proposition 6
intuition, we obtained that, when the source is baCKIOgged'Substitutingpo — p/(1+ VN =T) in (42), we obtain
requires more hops than a TDMA-ALOHA protocol.

The theoretical results were applied to a delay-minimizing
nodes. We simulated a static network setting, where bo%?tt'ngaD/aMN:N* =0
sources and relays formed a PPP, and each source performed N*(N* — 1) AexcR? o0/N* —1

exX 1
s1o1ts dos . — -5 ()

to the relays closest to the optimal locations. We confirmed Nr=1
that the main assumptions on which the analysis is based Hra., — oo, (44) is satisfied only ifV* — oco. Letting N* —
guence, the match between the theoretical and simulategt dedbtain (20) and (21), respectively.
is also satisfactory in this regime. In addition, we ass@sse
placements and relay-utilization by more than one sourde- Proof of Proposition 7
destination pairs. From (12) and (16),
theory and the theory of PPPs in order to obtain explicit end- D(N, d, py) = d (i N N - 1) Aexc(B)*+5po (45)
to-end delay results for multi-hop networks with randomly

Po P~ Do
placed nodes, fading and interference. These results fill .in
the gap between existing work on multi-hop networks, tha—th
has focused exclusively on scaling laws, and existing Work « \n\ _ A N2 _ 93\ cR2) — 90\ ¢R2 9 46
on PPPs that has focused on throughput, without taking intof( ) ( exCR7) exCR” (p/po—2). (46)

account the effects of paCket buffering. We examine the two ranges pg Separate|y:
ACKNOWLEDGMENTS * Do € (p/2,p): OD/ON >0, for N > v/2AexcR, which

The partial support of the DARPA/IPTO IT-MANET pro- pro"ees g‘e Sze]?ol'f‘d bra;‘ChOOf (2)2)' SDJON < 0 for
gram (grant W911NF-07-1-0028) and the U.S. National Sci-* Pe € (%:2/2: 1t po € (0,p/2),

X : N < V2XexcR. If p, = p/2, 9D/ON = 0 yields
ence Foundation (grant CNS 10167423) is gratefully acknowl N* — 2hrcR. This proves the lower bound in the

e sign ofdD/ON is determined by the function

edged. first branch of (22). In order to prove the upper bound,
APPENDIX we setN = /2a(p/po)AexcR, o > 1. Then
A. Proof of Proposition 5 F(N)/OexcR?) =
Settingd = N in (12) and (16

I (12) and ( N) V2a(p/po)AexcR (20p/po — 2) — 2 (p/po — 2) >

_ 1 —1 o £)?

D(N.p,) =N <p— o > Hee(F) 0 (42) 2(VZ0/po—1) - (0/po—2)) >
The sign ofdD/dN is determined by the function 2(vV2-1) (p/po = 1) >0,
F(N) = (p/po — 2) (N? — 2XexcR?) + 2N (N? — \excR?). sincea > 1, p/po > 2 and AexcR2 > 1/2. This

] concludes the proof of the upper bound.
We examine the two ranges pf separately:

_ For the proof of the second statement, we set
e po € (0,p/2]: If po € (0,p/2), BDJON < 0 for N < P

VAexcR and9D/ON > 0 for N > 2AcR. If p = 9D 7 L+£+ N -1 +(N— 1)0 0. (47)
po/2, thenf(N) = 0 yields N* = AucR. This proves  3p,| _ = p2 pr (p—pp)2  p—p;
the first branch of (17). °
e Do € (p/2,p): We setN = y/alexcR, a > 1. Then This equation holds only if
N)/(AexcR?) = 1 N-1 (N-1)
F(N)/(AexcR7) _*2+l*<_ . ( )0 (48)
2y adexcR2(a— 1) 4+ (p/po — 2) (v — 2) > Do™ Do p p
2V adexcR? (o — 1) — (. — 2) > Solving overp;,
2vVala—1) — (a—2) > 1 5
*\ 2
(2va—1)(a—1) >0, (N—1)(E+5>(po) +6po — 1 <0,
sincep/p, > 1, AexcR® > 1 anda > 1. This proves the which is equivalent to (23). FoN — oo, p’ — 0, therefore
second branch of (17). (48) becomes an equality. This proves the tightness of the

Finally, settingdD/0p,|p,—p: = 0 yields (18). bound.
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D. Proof of Proposition 8 whereK £ (pi + %). Equating the right-hand sides and
Assume that, fol\., — co, N* — co. Then, from (23), it rearranging terms
follows thatp} ~ p/+/N*(1 + §(d*)p). Setting (46) equal to N* N*—1  §(d)(N*—1) 1 §(d*)
zero atN = N* and substituting?, we obtain o T et — =z T
o ps(p—ps)  (p—ps) p—p; (29 Pha)
*\3 2 NT* 2 * *
(V)" =22excRENT =2Aexc R ( N (1 +4(d")p) - 2) ~ 0 For A = oo, we either have: = ©(1) or p — 0:
or N* ~ v/2)cccR. Finally, substitutingV* andp} in (45) o If p} — 0, then (53) yields
D* ~ d'p! (\/N*(l T 0(d)p) + N*) Ve, N*py + (N* = 1)(p;)? (p~' + 8(d*)) ~ p,
Henced* ~ 1 and (26) follows. or N* ~ p/p%. Substituting this condition in (52) yields
We now return to the assumption tht — oo for Ay — pi o~ /pd*/(2AcR?), sO N* ~ \/2XcR?p/d*. From
oo. If N* = 0(1) for Aex — o0, then (45) implies thaD* = (51), we obtainD* ~ 2./2d*ep~!\cR2. Therefored* ~
e®Pe) Therefore,N* = O(1) is rejected, and the proof is 1 and (30)-(32) follow.
concluded. o If p* = 0O(1), it is necessary thaV*d* = ©()\), other-
wise, from (51) D* = ¢®™). Therefore,D* = O()).
E. Proof of Proposition 9 Since this scaling is worse tha®(v/)\), this case is
SettingA = Ap, andd = N in (12) and (13), we obtain rejected, which concludes the proof.
that p, = e *Po(R/N)* and 2.d* = ©(N*): From (33), it is necessary that* = ©(\T,)
_ 1 N-1 RA2 for a non-vanishingp;. From (35), it follows thatD* =
D(N,p,) =N (p_o p—po) ereve(F) (49) o(N*d*) = O((\T,)?). Since this scaling is worse than

. . i O(AT,), this case is rejected, which concludes the proof.
The jointly optimal (N*,p*) are found by solving the

systemdD/ON = 0 anddD/dp, = 0. After some manipu- -
lations, we obtain G. Proof of Proposition 13

NR2 /1 N*-1 1 N*—1 Sincell, _is a PPP,_We assume, Withogt_los_s of generality,
— = ( - that the typical relay is located at the origin, i.e.= (0,0).

- + s
(N*)2\ps  p—D; p;)?  (p—pp)?
AcR? 1 N*—1 1 1 2N* —1
s\t T— ) = -t ~ArA(B(z,11)UB(2' r2)})
(N> \ps  p=ps/) 205\P5 P—P; o Errae {e B }
Equating the right-hand sides Pernp = E,, [e—ATA(B(z,m))} ’
2N* —1 2N* =2

Then P/, , can be written as

" 5 = L. (50) wherery = |z|, ro = |2/|, 0 = 4(z,7'), B(z,m) is the disc
p/ps =1 (p/ps—1) with centerz and radiusr;, and A(-) denotes area. 1§
For A — oo, we either havey? = O(1) or p¥ — 0: [0, 7), geometric calculations lead to

| ![Lizoimp(ﬁ((e?,tgt%girzgggs, tha™ = O(1). From (49). - A (B(z,11) UB(#',12)) = (m— 6)r2 + (94 O)r +yr sin,

o If p¥ — 0, then, from (50), it is necessary that* — co, wherey = |z —2'| and¢ = £(z,z — 2’). For N = 2, by the
which also implies thap’ ~ p/(2N*). Moreover, using displacement theorem [9]], iqca1 IS @ PPP with density.
the same steps as in the proof of Proposition 5, we ca@herefored is uniformly distributed in[0, 27), the joint pdf
show that, since} < p/2, it is necessary thalN* = of (ry,r2) is f(r1,r2) = 4()\7r)27°17°2e_)‘”§, re > 71, and
VapicR, wherea € (1,2). SettingN* = \/aApicR  the pdf ofry is f(r1) = 2/\7rre‘”rf, r1 > 0. Performing the
in p} ~ p/(2N*), we obtain (27) and (28). Substitutingexpectations over, r, 8, taking into account the symmetry
(27) and (28) in (49) results in (29). Since, in this caséor § € [0,7) and# € [r,27), and making the change of
D* = ©(\?/3), the casep = O(1) is rejected, which variablest; = v Arry, t2 = VArrs, we obtain (41).
concludes the proof.
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