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Abstract

In wireless networks, the knowledge of nodal distances semfal for performance analysis and
protocol design. When determining distance distributiongandom networks, the underlying nodal
arrangement is almost universally taken to be a stationaigsBn point process. While this may be
a good approximation in some cases, there are also certaimcsmings to this model such as the
fact that in practical networks, the number of nodes in digjareas are not independent. This paper
considers a more realistic network model where a known aredl fitumber of nodes are independently
distributed in a given region and characterizes the digidb of the Euclidean internode distances. The
key finding is that when the nodes are uniformly randomly @thinside a ball of arbitrary dimensions,
the probability density function of the internode distasméellows a generalized beta distribution. This
result is applied to study wireless network charactesstiuch as energy consumption, interference,

outage and connectivity.
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I. INTRODUCTION
A. Motivation

In wireless channels, the received signal strength faflsviah distance according to a power
law, at a rate termed the large scale path loss exponent (PLUE)Given a link distance
[, the signal power at the receiver is attenuated by a factoi~®f where o is the PLE.
Consequently, in wireless networks, distances betweeassttiongly impact the signal-to-noise-
and-interference ratios (SINRSs), and, in turn, the linkatalities. The knowledge of the nodal
distances is therefore essential for the performance sisadyd the design of efficient protocols
and algorithms.

In many wireless networks, nodes can be assumed to be scat@rdomly over an area or
volume; the distance distributions then follow from thetgdastochastic process governing the
locations of the nodes. For the sake of analytical convesiethe arrangement of nodes in a
random network is commonly taken to be a homogeneous (adoséay) Poisson point process
(PPP). For the resulting so-called “Poisson network” ofsikgn\, the number of nodes in any
given setV of Lebesgue measun@’| is Poisson with mean\|V|, and the numbers of nodes
in disjoint sets are independent. Even though the PPP assumgan lead to some insightful
results, practical networks differ from Poisson netwonksertain aspects. First, networks are
usually formed by scattering a fixed (and finite) number ofesth a given area. In this case,
the nodal arrangement istanomial point process (BPP), which we define shortly. Secondly,
since the area or volume of deployment is necessarily fitfite,point process formed is non-
stationary and often non-isotropic, meaning that the nekwbaracteristics as seen from a node’s
perspective such as the nearest-neighbor distance orttréerence distribution is not the same
for all nodes. Furthermore, the numbers of nodes in disgeig are not independent; in the case
of the BPP, they are governed by a multinomial distribution.

Definition: Formally, a BPP®, is formed as a result of distributiny points independently
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uniformly in a compact sell’.

The density of the BPP at any locatianis defined to be\(z) = %1@). In this paper, we
considedV C R? (d is an arbitrary positive integer). For any $étc R¢, the number of points in
V, ®(V), is binomial(, p) with parameterss = N andp = |V nW|/|W| [3]. By this property,
the number of nodes in disjoint sets are joint via a multiredndistribution. Accordingly, for
disjoint setsVy,...,V, andn =n; +... + ng, we have

nl (VinWm .V N W™
nal- ey | '

Pr(({)(vl) =N1,..., (I)(Vk) = nk) =

If the number of nodes or users is known, the PPP is clearlyangbod model, since
realizations of the process may have more nodes than the eruaitnodes deployed or no
nodes at all. In particular when the number of nodes is srtal,Poisson model is inaccurate.
The main shortcoming of the Poisson assumption is, howéwverindependence of the number
of nodes in disjoint areas. For example, if all thenodes are located in a certain part of the
network area, the remaining area is necessarily empty. Jimple fact is not captured by the
Poisson model. This motivates the need to study and acturetaracterize finite uniformly
random networks, in an attempt to extend the plethora ofitsefar the PPP to the often more
realistic case of the BPP. We call this new modddimomial network, and it applies to mobile
ad hoc and sensor networks and wireless networks with infictsire, such as cellular telephony
networks.

In this paper, we analytically characterize the distribatof internode distances in a binomial
network wherein a known number of nodes are independerdlyilolited in a compact set. As
a special case, we derive the Euclidean distance propémtiasi-dimensional isotropicBPP,
and use it to study relevant problems in wireless network$ s1$ energy consumption, design

of efficient forwarding and localization algorithms, irference characterization, and outage and

A point process is said to be isotropic if its distributioningariant to rotations.
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connection probability evaluation.

B. Related Work

Even though the knowledge of the statistics of the node imeatin wireless networks is
crucial, relatively few results are available in the litewa in this area. Moreover, much of the
existing work deals only with moments of the distances (meamd variances) or characterizes
the exact distribution only for very specific system models.

In [4], the probability density function (pdf) and cumulai distribution function (cdf) of
the distances between nodes are derived for networks witloromy random and Gaussian
distributed nodes over a rectangular area. [5] studies nm@amodal distance properties for
several kinds of multihop systems such as ring networks,Hdtan street networks, hypercubes
and shufflenets. [6] provides closed-form expressions Ier distributions ind-dimensional
homogeneous PPPs and describes several applications oédbks for large networks. [7]
considers one-dimensional Poisson networks and analyeedistribution and moments of the
single-hop distance, which is defined as the maximum passikBtance between two nodes that
can communicate with each other. [8] derives the joint digtron of distances of nodes from a
common reference point for networks with a finite number oflerandomly distributed on a
square and [9] determines the pdf and cdf of the distancedsetviwo randomly selected nodes

in square random networks.

[I. DISTRIBUTION OF INTERNODE DISTANCES

In this section, we determine the distribution of the Eusdid distance to the" nearest
point from an arbitrary reference point for a general BPRhmspecial case of @dimensional
isotropic BPP, we establish that this random variable) (follows a generalized beta distribution.
We also derive the distances to the nearest and farthess raoikthe void probabilities.

Consider the BPR with N points uniformly randomly distributed in a compact $86tc R¢

(see Fig. 1). Leik,, denote the r.v. representing the Euclidean distance froarlatrary reference
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Fig. 1. A BPP with/N = 16 points uniformly randomly distributed in an arbitrary comep setlV. We wish to determine the
distribution of the distances to the other points from thfenence pointc. The dashed circle represents the Ballx, r).

point = to the n'" nearest node of the BPRnd letb,(z, ) denote thed-dimensional ball of
radiusr centered atr.

The complementary cumulative distribution function (9cdf R, is the probability that there
are less tham points inby(z, ) :

n—1

Fp,(r) = (‘Z)p’“(l -p)NF 0<r<R, (1)
k=0

wherep = |by(z,7) N W|/|W]|. In the case of amon-homogeneous BPP with a general density
function A(z), p = [, ;. o AM@)da.

Fgr. can be written in terms of the regularized incomplete betetion as
FRn(T):Il—p<N_n+17n)7 OSTSRa (2)

where
Syt 1 — )Pt

Lo(a,b) = B(a, b)

Here, B(a,b) denotes the beta function, which is expressible in termsanfiga functions as

2For the rest of the paper, we assume thas not a point of the BPP. However, if ¢ ®, the remaining point process simply
becomes a BPP witlv — 1 points.
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B(a,b) = T(a)T(b)/T(a + b).

The pdf of the distance function is given by

fRn = —dFRn/d’/’

dp (1 —p)Mrpn!
dr B(N —n+1,n)

®3)

We now analytically derive the pdf of the Euclidean distabe&veen points in d-dimensional
isotropic BPP, and later, in Section Ill, compute its morsefrt Section IV, we derive the pdf of
the distances whel’ is a general-sided regular polygon. In Section V, we apply our findings
to the study of wireless networks.

Theorem 2.1: In a point process consisting &f points uniformly randomly distributed in a
d-dimensional ball of radiug: centered at the origin, the Euclidean distaiefrom the origin

to its n'" nearest point follows a generalized beta distribution, i.e

_ dB(n—-1/d+1,N—-n+1) Tyt 1 B
fr,(r) = 7 BN —n+in) ﬁ((ﬁ) in d+1,N n+1), r e [0, R],

where §(z; a, b) is the beta density functidrdefined as3(z;a,b) = 5r52* (1 — 2)" .

Proof: For the isotropicd-dimensional BPP, we havid’ = b,(0, R). The volume of this
ball W] is equal toc,R?, where

/2

ca = [ba(0,1)] = m

is the volume of the unit ball iiR? [3]. Important cases includg = 2, ¢, = 7 andcs = 47 /3.
The density of this process is equal X/ (c,R?) inside the ball.

With the reference point being the origin, note that c,r?/c,R? = (r/R)" and from (3),

3Mathematica: PDF[BetaDistribution[a, b],x].

February 9, 2009 DRAFT



we have
d /r\d¢1 (1 —p)N-rpn-t
Jr(r) = E(E) é(NZi)nerl,n)
d (1 —p)Nrpr /e
RB(N —n+1,n)
EB(n—l/d+1,N—n+1)ﬁ(<L)d
R B(N —n+1,n) R

1
;n—a+1,N—n+1) ()

for 0 <r < R. The final equality cast®, as a generalized beta-distributed variable. m

Corollary 2.2: For the practical cases df= 1 andd = 2, we have

fr,(r) = lﬁ <£;n,N —n+ 1)

R \R
and
2T(n+HT(N+1) [
== —n+-,N—-n+1
respectively.

Fig. 2 plots the distance pdfs for the casesief 1 andd = 2.

Remarks:

1) The void probabilityp% of the point process is defined as the probability of theredei

no point of the process in an arbitrary test $2f3]. For a BPP with/NV points distributed

over a sefiV, it is easy to see that
Py =1 —|BAW|/[W)Y. (5)

For the isotropic BPP considered above, when the test sét is b,(0,7), we have

= (1-6/B")"

2) Of interest in particular are the nearest- and farthestendistances. The nearest-node

February 9, 2009 DRAFT



distance pdf is given by

= (-3 @ ©

and the distance to the farthest point from the origin isrittisted as

_ N

fo) =S5 ()L 0<rsh )

R

r

Both are generalized Kumaraswamy distributions [10].

3) For a one-dimensional BPPz,(r) = fr,_,...(R — ), and therefore knowledge of the
distance pdfs for the neare§fv/2] nodes gives complete information on the distance
distributions to the other points.

4) If a point of the BPPy, is located at the origin, the remainidg— 1 points are uniformly
distributed inb, (0, R). Thus, the pdf of the Euclidean distance framo its neighbors is
identical to (4), withN replaced byN — 1. Also note that (4) also holds for any reference
pointx for 0 <r < R — ||zl

We wish to compare the distance distributions from the orfgr an isotropic BPP and a PPP

with the same density. However, note that in general, the R have fewer points than the
number dropped. In order to make a fair comparison, we camddn the fact that there are at
least N points present in the PPP model. The following corollanaklshes the distance pdfs
for such a conditioned PPP. Also note that conditioned oretheing exactlyV points present,
the PPP is equivalent to a BPP [3].

Corollary 2.3: Consider a PPP of density over a finite volumeb,(o, R). Conditioned on

there being at leaslV points in the ball, the distance distribution from the amigo the n™

nearest noden(< N) is given by

;o Adear® (A (r) (27w Bi(r)))
fRn(r) - ZZO:N Ak(R) ’ re [OvR]v (8)
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where A, (r) := e A’ ()\cdrd)k Jk! and By (r) = e ea(R=r) (Acqg (R —r )) kL.

Proof: The complementary conditional cdf &, is given by

Frg,(r) = Pr(®(bao,r)) <n|®(balo, R)) = N)

)
Pr (@ (ba(o,7)) < n, @ (ba(0, R)) = N)
Pr (@ (ba(o, R)) = N)

"o Pr(® (ba(0,7)) = k) Pr (® (ba(o, R) \ ba(o,7)) > N — k)

(@) (ba

- Pr (@ (ba(0, R)) = N)

NS A) (1- X5 ) o
B S A(R) |

where (a) is obtained from the property that the number of points of FfiRP in disjoint sets

are independent of each other. It is easy to see that

;

d Adegrd=1 (Ap_1(r) — Ag(r)) k>0 _
d—Ak(T) = ()
" —Adegr®=1 Ay (r) k=0
and .
d Adegrd=! (By(r) — Bi_1(r)) >0 i
S Bilr) = (i
" Adegr®=t By(r) [=0.
Therefore, we have
—k—
dﬂ Z = Mdcgr™ "By (7). (iii)

=0
The details of the remainder of the proof are straightfodMaut tedious and are omitted here.
Since the pdf of the conditional distance distributioryfs = —dF'p, /dr, one basically has to
differentiate the numerator in (9), and after some simgiifans using (i)-(iii), it will be seen
that the conditional distance pdf is identical to (8). [ |
Fig. 2 depicts the pdfs of the distances for one- and two-dgsiomal BPPs (from (4)) and
compares it with the distance pdfs for a conditioned PPP thithsame density.

When a large number of points are distributed randomly ovarge area, their arrangement
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N=10,R=10,d=1 N=10,R=10,d=2

— B PP
= = = Conditioned PPP

1.8f . : — BPP
= = = Conditioned PPP

Fig. 2. Distance pdfs for each of the neighbors for one- arm thimensional binomial and conditioned Poisson networks.

can be well approximated by an infinite homogeneous PPP. Rie¢ fodel for the nodal
distribution is ubiquitously used for wireless networkdamay be justified by claiming that
nodes are dropped from an aircraft in large numbers; for laadd hoc networks, it may be
argued that terminals move independently of each other.&epnesent a corollary to the earlier
theorem, that reproduces a result from [6].

Corollary 2.4: In an infinite PPP with densitx on R¢, the distanceR,,, between a point and
its n'!" neighbor is distributed according to the generalized gardisiibution.

dd()\Cd’r’d)n

T(n) r € R. (10)

fRn (T) _ e—)\cdr

Proof: If the total number of pointsV tends to infinity in such a way that the density

A = N/(cqR?) remains constant, then the BPP asymptotically fas» oo) behaves as a PPP
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11
[3]. Taking R = {/ N/cq\ and applying the limit asV — oo, we obtain for a PPP,

o 40D Y )
fro(r) = NP R T(N—n+1)D(n)

d o Acar™\V N(N=1)...(N=n+1)
— n] 1 —
Ty e i ( N ) N
—>\Cd7“d d()\Cd’rd)n
rI'(n)
for » € R. This is an alternate proof to the one provided in [6]. [ |

[1l. M OMENTS OF THEINTERNODE DISTANCES

We now consider the isotropi¢-dimensional BPP and use the internode distance pdf (4) to

compute its moments. Theg" moment of R, is calculated as follow's
d 1 R 7\ nd—1 rad\ VT
E[R)] = — 7 (= 1— (= .
) RB(N—n+1,n)/O : (R) ( (R) ) ]dr
R ' +v
n+y/d—1 1 — N—-n
B(N—n+1,n)/0t (1" "de
RY

= B, d,N — 1|3

)
RYT(N+1)I'(v/d4+n) :
) T(n)T(7/d+ N+1) if n+v/d>0

00 otherwise

\
,

Rt/ /(N + 1)/ if n+~/d >0
B J(N +1) 7/ a
00 otherwise

where B,[a, b] is the incomplete beta functidrand 2" = T'(z + n)/I'(x) denotes the rising

Pochhammer symbol notation. Hef@, is obtained by making the substitution= Rt'/¢ and

“Note thaty € R in general, and is not restricted to being an integer.

*Mathematica: Beta[x, a, b].
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12
(b) using the following identities:

Bo(a.h) 0 Re(a) >0
ola, =
—o00  Re(a) <0,

and By (a, b) = B(a,b) if Re(b) > 0.

The expected distance to th&' nearest node is thus

Rpl1/d
E(B) = N (12)
and the variance oR, is easily calculated as
R2p12/d) Rplt/d \?
Var|R,] = REECE ((N n 1>[1/d]) (13)

Remarks:
1) For one-dimensional networkB/R,| = Rn/(N + 1). Thus, on an average, it is as if the
points are arranged on a regular lattice. In particular,rnNeis odd, the middle point is

located exactly at the center on average.

2) On the other hand, at— oo, E[R,] — R and it is as if all the points are equidistant at

maximum distance? from the origin.

3) In the general case, the mean distance tortheearest node varies ad/¢ for large n.

This follows from the series expansion of the Pochhammeunessce [11]

nld =n?(1—-0(1/n)).

Also, for d > 2, the variance goes t0 asn increases. This is also observed in the case

of a Poisson network [6].

4) By the triangle inequality, the mean internodal distabeéween the™ and ;" nearest
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nodes from the originp;;, is bounded as (assuming< ;)

R (j[l/d} — i[l/d])
(N + )74

R (Z’[l/d} _|_j[1/d])
(N + )i/

< E[DU] <

5) For the special case af/d € Z, we obtain

s () /0

IV. DISTANCE DISTRIBUTIONS IN REGULAR POLYGONAL BPPs
In this section, we derive the pdf of the distance to tffenearest node from the origin, in

BPPs distributed on &sided regular polygonl’. Assume that the polygon is centered at the

origin and|WW| = A. Then, its inradius and circumradius are respectively rgive

A T 2A 27
R = HTCOt <7) andR. = Tcsc (T)

Also, let the total number of nodes B¢ and assume that no point of the process is at the origin.
Clearly, whenr < R;, by(o,r) lies completely within the polygon and the number of points

lying in it, ®(by(0,7)), is binomial distributed with parameters= N andp = 7r?/A.

Fig. 3. Section of d-sided regular polygon depicting one of its sides. O is thgior For Ri < r < R., the area of the
shaded segment ABC is'0 — Ri+/r? — RZ.

WhenR; < r < R., |W Nby(o,r)| can be evaluated by considering the regions of the circle
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lying outside the polygon (see the shaded segment in Fidt &.easy to see thab(b,(o,r))

follows a binomial distribution with parameters= N and

_mr? = 1?0 + IR;\/1? — R?

A Y

q

wheref = cos™' (R;/r). Following (3), we can write

2rm (1—p)N —mpn—1 .
“A B(N—ntin) 0<r<R

frn(r) = BEFRGRIES Ri<r<R. a4

0 R. <.

Fig. 4 plots the pdf of the farthest neighbors in a BPP withnodes, distributed on &asided

regular polygon withA = 100, for [ = 3,4,5 andl — oo.

N =10, A=100,n=10

1.6 T T T T
memi] =3

14F . — = ]
===]=5
-e—l—>oo

1.2f b

N0

Fig. 4. The pdf of the distances to the farthest nodes fronotiggn in a BPP with10 nodes and are&00 units, distributed
on al-sided polygon forl = 3,4 and5. The dotted line depicts the farthest neighbor distance d¢ivde (| — o), for which
Ri = R. = 10/+/7.
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V. APPLICATIONS TO WIRELESS NETWORKS

We now apply the results obtained in the previous sectionitel@ss networks. For the system
model, we assume @&dimensional network over a bdl},(o, R), where N nodes are uniformly
randomly distributed. Nodes are assumed to communicate avibase station (BS) positioned
at the origino. The attenuation in the channel is modeled by the large gtle loss function
g with PLE «, i.e., g(z) = ||z||~*. The channel access scheme is taken to be slotted ALOHA

with contention parametey.

A. Energy Consumption

The energy that is required to successfully deliver a paoket a distance in a medium
with PLE « is proportional tor®. Therefore, the average energy required to deliver a packet
from then™ nearest neighbor to the BS is given by (11), wite= . This approximately scales
asn®/? when the routing is taken over single hops. Wher d, it is more energy-efficient to

use longer hops than when the PLE is greater than the numlzémehsions.

B. Design of Routing Algorithms

The knowledge of nodal distances is also useful for the amabnd design of routing schemes
for wireless networks. We illustrate this via an example rghrea greedy forwarding strategy
that maximizes the expected progress of a packet towardiedisnation needs to be designed.

Consider the scenario wheré nodes are uniformly distributed in a disk of radids Assume
that several packets need to be forwarded from the BS to amaailly chosen destination node
D, which lies far away from the BS. We also assume that eacle i@ a peak (transmit)
power constraint of? < R“. Let us suppose that the nodes adopt a greedy forwardinggjra
wherein each relay nodk; that gets a packet relays it to its farthest neighbor in aocseuft
angleo (0 < ¢ <), i.e., along+¢/2 around theX;-D axis (see Fig. 5). Evidently, for largg,

the direction of the farthest neighbor in the sector may lhehaf X;-D axis, while for smalle,
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there may not be enough nodes inside the sector. The natugatign to ask is: what value of

¢ maximizes the expected progress of packatsvards the destination?

Fig. 5. The greedy forwarding strategy. Each relyforwards the packet to its farthest neighbor lying inside slector of
radius ¢ around theX;-D axis. The thick lines represent the path taken by the pgagtkeough three arbitrary relays) for this
particular realization.

A problem of similar flavor is studied in [12] for an interfex@e-limited PPP, wherein the
authors evaluate the optimal density of transmitters thatimizes the expected progress of a
packet. In [13], the author determines the energy requicedediver a packet over a certain
distance for various routing strategies in a PPP. In [148, dptimal transmission radius that
maximizes the expected progress of a packet is determinmedifferent transmission protocols
in Poisson packet radio networks.

In order to evaluate the progress of a packet in the binonealark, we first note that if
there are exactly: nodes in an arbitrary sector of angleand radiusr = P/* (which is the
range of transmission), the average distance to the far(htg neighbor in that sector is the
same as (12) with n = k, R = r andd = 2. We also know that the number of nodes lying
in that sector is binomial with parameteis and (r?¢/2x R?). Thus, the mean distance to the

®We define the progress of a packet from a relay nidas the effective distance travelled along eD axis.

"This follows from the observation that in (1), the distandstributions depend only op = |b2(z,r) N W|/|W|, and the
values ofp for the sector and the circle are the same.
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farthest neighbor in the considered sector can be written as

SILAYEERY r2p \NF 2ork
Z<k) (27TR2) (1_27TR2) 2k +1° (15)

k=1

Note that the sectors emanating from nodgsand X;,; overlap partially, and also, the total
number of nodes is fixed; therefore the mean distance to theett neighborE[X'], is actually
upper-bounded by (15). However, since we consider thedartheighbors, the sectoral overlap
is small.

Next, let U denote the angle between the line connecfingo its farthest neighborX;_ )
and theX;-D axis. Since the nodal distribution is uniformly rando¥njs uniformly distributed
on [—¢/2,¢/2]. The expected progress of a packeffis(| = E[X'|E[cos(¥)] sinceV and X’
are independent of each other, and is upper-bounded as

2 (6 o= 2P0k (NY [ PYop\" porag\ N
E[X]Sgsm@)szH(k;) (%R?) (1‘ gsz) : (16)

k=1

The optimum value of) that maximizes the progress of packets can be numericalgrrdaned
from (16).

Fig. 6 plots the expected progress of a packet (upper bowerduse for several values oV
using (16), and compares it with the empirical value, olgdinia simulation. We see that the
bound is reasonably tight, in particular at low&r The optimum values of are also marked

in the figure.

C. Localization

In wireless networks, localization is an integral compdneh network self-configuration.
Nodes that are able to accurately estimate their positiansscipport a rich set of geographi-
cally aware protocols and report the regions of detectedtevéocalization is also useful for
performing energy-efficient routing in a decentralizechfas.

In this section, we investigate conditional distance thsations and study their usefulness to

February 9, 2009 DRAFT



18

0.7 T T T

= = =Upper Bound
= Simulation

Expected progress of a packet

0 8 4 w2 314 7178 m

Fig. 6. The expected progress of a packet (empirical andrupmend) for various values a¥. The square markers correspond
to the optimum values op that maximize the packet’s progress.

localization algorithms. We consider the scenario whegeifew nodes can estimate or even
precisely measure their distances from the BS. What canideabaut the distance statistics of
the other nodes given this information?

Suppose we know that tHé" nearest neighbor is at distaneérom the centél. Then, clearly,
the firstk — 1 nodes are uniformly randomly distributedig(o, s) while the more distant nodes
are uniformly randomly distributed iby (o, R) \ b4(o0, s). Following (4), the distance distributions
of the firstk — 1 nearest neighbors from the origin can be written as

fr,(r| Ry =5) = gB(n_Bzd_jLnl;j_n)ﬁ((g)d;n—éle,k—n), n <k

for 0 < r < s, which again follows a generalized beta distribution.

8Based on the RSS from the base station, perhaps averaged pegiod of time to eliminate the variations due to fading,
nodes can determine how many other nodes are closer to ti@titéer than they are. This way, a node would find out that it
is the k™" nearest neighbor to the base station.
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For the remaining nodes i.e., far> k, we have inr € [s, R,

d
fr.(r | Rp=s) = —yfl—q(]\f —n+1,n—k)
drit (1= g gt

Rt —s¢B(N —n+1,n—k)

whereq = (r? — s4) /(R — s%).
The moments ofR,, are also straightforward to obtain. Following (11), we deat forn < k

andn + «/d > 0,
San[a/d]

E[R | Ry = s] = Tt D)o/

(17)

Forn > k, we have

R d?"a+d_1 (1 _ q)N—n qn—k—l
E[R® | Ry = 5] =
o | B = /S Rd—sdB(N—n+1,n—k)dT

1

1
_ n—k-1q _ \N-n d_ d d\e/d
- B(N—n+1,n_k;)/0 ¢ =g (g (BT = s) +5%) T dg

s « R?
- Filn—tn-—N-Sn—ks11,1- 2
n—KBN —ntLn—k 1(" o T T R L sd)’

where Fi[a; by, by; ¢; 7, y] is the Appell hypergeometric function of two variables
Often, it is easiest to measure the nearest-neighbor dist&ive this distance as we have

for n > 1,

N—n n—2
wi (1= (522)) (322
fr (1| By = s) = —o—

for r € [s, R]. Also, the mean conditional distances to the remaininghi®gs are

S

E pu— p—
Bl Bi=sl = O BN stz

1 R4
>F1 (n—l;n—N,—E;n—l;l,l—?) .
Fig. 7 plots the mean conditional distances in a network withodes when the nearest-neighbor

9Mathematica: AppellF1[a, b1, b2, c, X, y].
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distance is unity.

N=10,R=10,s=1

=
o

©

Mean conditional distances to the nth nearest neighbor

Fig. 7. The mean conditional distances of the higher-ordgghbors in a binomial network witlh0 nodes andi = 1,2, 3,
when it is known that the nearest neighbor is at unit distaaway from the base station.

D. Interference

In order to accurately determine network parameters suohtagle, throughput or transmission
capacity, the interference in the systénmeeds to be known.

Let 7, € {0,1}, 1 < n < N denote the random variable representing whethemtheearest
node to the BS transmits or not, in a particular time slot.nWite channel access scheme being
ALOHA, these are i.i.d. Bernoulli variables (with paranredg.

The mean interference as seen at the center of the networkeis gy

pro= E|Y (TuR,*)| = ELJE[R],
= 6y E[R"].
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Settingy = —«a andn = 1 in (11), we can conclude that the mean interference is iefifat
d < . This is due to the nearest interferer. Even the mean imerée from just the:" nearest
transmitter is infinite ifa > nd. When the number of dimensions is greater than the PLE, we

have

SROT(N +1) <~ ['(n— a/d)
M= TN 11— a/d) 2 T(n)

n=1

One can inductively verify that

I'n—a/d) T(k—a/d)k—a/d
2. )~ T 1—ajd "L (18)

n=1

and we obtain after some simplifications,

 N&dR™

=i e 49

The unboundedness of the mean interference at practiasvalfd and« (i.e., d < «) actually
occurs due to the fact that the path loss model we employ bréakn for very small distances,
i.e., it exhibits a singularity at = 0. One way to overcome this issue is to impose a guard zone
of radiuse around every receiver. In other words, every receiver haaxatusion zone of radius
e around it and the nodes lying within it are not allowed to $rait.

Since the average number of nodes in the ball¢) is Ne?/R?, we obtain the mean inter-

ference in this case to be

NpdR=®  Netdde®

ML= "4”a " Rid—a)
Nod(Re — @)
T Yi#a (20)

Taking limits, we obtairy; = NédIn(R/e)/R¢ whend = a.
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E. Outage Probability and Connectivity

Assuming that the system is interference-limited, an caitdgs defined to occur if the SIR at
the BS is lower than a certain threshddd Let the desired transmitter be located at unit distance
from the origin, transmit at unit power and also not be a phathe original point process. Then,
the outage probability i®r(O) = Pr[1/I < ©].

Considering only the interference contribution from themst neighbor to the origin, a simple

lower bound is established on the outage probability as

Pr(0) > Pr(TiR;* >1/0)
= §Pr (R <0V

K (1 -(1- @gﬁ“)N) o < R

0 O > R~

(21)

The empirical values of success probabilities and theieuppunds (21) are plotted for different
values of NV in Fig. 8. As the plot depicts, the bounds are tight for lowalues of N and©, and
therefore we conclude that the nearest neighbor contsbuest of the network interference.
However, asy decreases, the bound gets looser since the contributiomsthre farther neighbors
are also increased.

Next we study the connectivity properties of the binomialwgek, assuming that interference
can be controlled such that the system is noise-limited.neefi node to be connected to the
origin if the SNR at the BS is greater than a thresh®ldLet the nodes transmit at unit power

and assume noise to be AWGN with variangg In the absence of interference, the probability

February 9, 2009 DRAFT



23

R=25,d=2, a=4,56=05

0.9

o
o)
a

Success probability
o
3 [=}
[6)] <]

0.7
065" e Empirical value i
= = =Upper bound
1 1 1 1 1
-10 -5 10 15 20

0 5
Threshold © (dB)

Fig. 8. Comparison of exact success probabilities verseis tipper bounds for different values of the system pararsete

that the BS is connected to itd" nearest neighbor is

= PI‘(R;LQ > No@)

= 1—Pr(R, > (Ny©)" V)
1—-IL_y(N—-n+1,n) © > R /N,
) - ) /No o2
1 © < R™%/Ny,
d
wherep’ = <(N0@)‘1/“ /R) . Fig. 9 plots the connection probability in a two-dimensibn
binomial network with25 nodes.

“1/a\ d
The mean number of nodes that are connected to the BSnisn{1, <%) }.

F. Other Applications

We now list a few other areas where knowledge of the distamtehiitions is useful.
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N:25,d:2,a:4,R:20,N0:5e—6

o
)

Probability of connectivity
o o
» a1

o
w

o
)

0.1

0 I

10 15 20

5
Threshold © (dB)

Fig. 9. The probability of the:" nearest neighbom = 1,2, ..., 10, being connected to the BS for a binomial network with
25 nodes.

« Routing: The question of whether to route over smaller or longer hs@s important, yet
a nontrivial issue [15], [16], and it gets more complicatedhe presence of interference in
the network. The knowledge of internodal distances is resggdor evaluating the optimum
hop distance and maximizing the progress of a packet towtsatestination.

« Path loss exponent estimation: The issue of PLE estimation is a very important and relevant
problem [17]. Several PLE estimation algorithms are basedezeived signal strength

techniques, which require the knowledge of distances twmdes.

VI. CONCLUDING REMARKS

We argue that the Poisson model for nodal distributions nel@ss networks is not accurate in
many practical situations and instead consider the ofteremealistic binomial network model.
We derive exact analytical expressions for the pdfs of thermmodal distances in a network where

a known number of nodes are independently distributed imapeat set. Specializing to the case
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of an isotropic random network, we show that the distancésd®n nodes follow a generalized
beta distribution and express the moments of these randoiabies in closed-form. We also
derive the distribution of the internodal distances for BfeP distributed on a regular polygon.
Our findings have applications in several problems relatingireless networks such as energy
consumption, design of efficient routing and localizatidgoathms, connectivity, interference

characterization and outage evaluation.
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