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Abstract—Consider a cognitive radio network with two types
of users: primary users (PUs) and cognitive users (CUs), whose
locations follow two independent Poisson point processes. The
cognitive users follow the policy that a cognitive transmitter
is active only when it is outside the primary user exclusion
regions. We found that under this setup the active cognitive
users form a point process called the Poisson hole process. Due
to the interaction between the primary users and the cognitive
users through exclusion regions, an exact calculation of the
interference and the outage probability seems unfeasible. Instead,
two different approaches are taken to tackle this problem. First,
bounds for the interference (in the form of Laplace transforms)
and the outage probability are derived, and second, it is shown
how to use a Poisson cluster process to model the interference in
this kind of network. Furthermore, the bipolar network model
with different exclusion region settings is analyzed.

Index Terms—Cognitive radio, cognitive network, interference
modeling, Poisson point process, Poisson cluster process, stochas-
tic geometry.

I. INTRODUCTION

THE inefficiency in the spectrum usage of current wireless
systems has led to significant research activities in cogni-

tive radio. One of the ideas in cognitive radio is that a cognitive
(secondary) user is allowed to share the spectrum with primary
users as long as the interference is below a threshold (the
underlay type of cognitive network) [1]. In wireless networks,
a cognitive user can take advantage of either the time (when
a primary user is not transmitting), the frequency (when a
primary user is transmitting at a different frequency band), or
the space (when a primary user is far away). The latter is a
form of spatial reuse, thus the geometry plays a key role in
this type of cognitive network. A cognitive user may transmit
when the neighboring primary users are idle, but the signals of
several secondary users could still cause harmful interference
at primary users further away. As a result, there is a need to
characterize the aggregate interference in order to satisfy the
interference temperature metric [2].

This paper considers a cognitive radio network with two
types of users: primary users (PUs) and cognitive users (CUs).
Primary users are licensed users while cognitive users are
allowed to transmit only if the performance of the primary
network is not harmfully affected. This is the so-called under-
lay type of cognitive network. The cognitive users employ the
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following “cognition” in order to control their interference:
a cognitive user may transmit only when it is outside the
primary exclusion regions. For this setup, the primary metrics
of interest are the aggregate interference and the outage
probabilities at the primary and secondary users.

This paper deals with general wireless network scenarios
and focuses on cognitive networks where the spatial distri-
bution of users follows the Poisson law. We assume that the
locations of PUs and CUs follow two independent Poisson
point processes. The advantages and validity of using spatial
Poisson process for modeling the locations of the wireless
devices have been stated in many articles1. Quite often the user
locations are time-varying, and we would like to determine
the average performance over a large population of users for
a class of random networks [3]. Stochastic geometry, a field
focusing on the study of random spatial patterns, provides
an elegant way of analyzing large networks. The spatial
points, representing the locations of users, are constructed
according to a spatial point process model. Without any prior
knowledge, the user locations are often assumed independent
and completely random. The spatial Poisson process is thus
a natural (and a popular) choice in such situations because,
given that a user is inside a region B, the PDF of its location
is conditionally uniform over B [4]. In addition, the Poisson
process is a fundamental point process that is easy to handle
analytically, and it provides bounds for the performance of
more general network models. The performance in clustered
networks is lower than for the PPP [5], whereas the perfor-
mance in more regular networks is higher [6], [7]. The Poisson
bipolar network model was considered in [8], in which further
justification of using the PPP model is given.

This stochastic geometry model also applies to multi-
channel networks. If multiple channels are available, our
model captures the situation in a single channel. Moreover,
stochastic geometry permits spatial averaging and thus inher-
ently considers all possible network realizations, weighed by
their likelihood of occurring. As a result, time, space, and
frequency sharing in the cognitive network are all included in
the stochastic geometry model presented in this paper.

A. Contributions

Due to the interaction between the primary and the cognitive
users, an exact calculation of the interference and outage
probability seems unfeasible. Instead, two different approaches
are taken in this paper: the first approach is to derive bounds

1See the IEEE Journal of Selected Areas on Communications Special Issue:
Stochastic Geometry and Random Graphs for Wireless Networks (September
2009) and the references therein.
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for the outage probability, and the second approach is to
approximate the point process formed by the active cognitive
users using Poisson cluster processes. From the first approach,
the interference and outage for the bipolar Poisson cognitive
network model are analyzed and bounded. Variations of the
model are also discussed. In the second approach, it will be
shown that under the exclusion region setup, the cognitive
users form a Poisson hole process [6], which exhibits proper-
ties similar to a Poisson cluster process.

Our main contributions are the following: (1) This paper an-
alyzes all four types of aggregate interference between primary
and cognitive users, including the auto-interference between
primary users among themselves and secondary users among
themselves as well as the cross-interference from secondary
to primary users and vice versa, in spectrum sensing cognitive
networks, considering simultaneously the Rayleigh fading, the
Poisson point process (PPP) model, and the exclusion regions.
(2) A novel approach is proposed to estimate the interference
between cognitive users, namely, approximations based on the
Poisson cluster process.

We believe that the results in this paper are inspiring
and applicable to important emerging classes of cognitive
networks, including TV white space applications and ad hoc-
type cognitive networks. Furthermore, the results with the
independence assumption provides interesting bounds even if
the PU and CU networks are highly dependent.

B. Related Work

Point process theory has been successfully applied to wire-
less network analysis in the last two decades [9]. Recently,
with the prosperity of research on cognitive radio, point
process models find applications to cognitive networks. Pinto
et al. considered a stochastic geometry-based mathematical
model for coexistence in networks composed of both narrow-
band and ultra-wideband (UWB) wireless nodes [4]. In the
paper by Huang et al. [10], the capacity trade-off between the
coexisting cellular uplink and mobile ad hoc networks under
spectrum underlay and spectrum overlay was analyzed based
on the transmission capacity of a network with Poisson inter-
ferers. Ren et al. studied power control in cognitive networks
and qualitatively characterized the impacts of the transmission
power of secondary users on the occurrence of spectrum
opportunities and the reliability of opportunity detection [11].
Riihijarvi and Mahonen utilized spatial statistics to improve
the performance of cognitive radio networks [12].

Although there is already a vast body of research on
cognitive networks, very few papers have focused on the
aggregate interference caused by multiple secondary users,
together with the interference that the primary users cause
among themselves in the Poisson point process setup. Three
papers are closest to our work. Hong et al. [13] and Ghasemi
and Sousa [14] modeled the aggregate interference from the
cognitive users outside the primary exclusion regions in fading
channel, but both papers only considered a single primary re-
ceiver (instead of multiple primary transmitters and receivers).
Yin et al. [15] derived the maximum primary and secondary
transmitter densities given outage constraints for the overlaid
network with multiple primary and cognitive users, but they
considered non-fading channel and no exclusion regions.

C. Mathematical Preliminaries

Here we give a brief overview of some terminology and
mathematical tools for stochastic geometry. Readers are re-
ferred to [9], [16], [17], [18] for further details.

Definition 1. The Poisson point process with uniform intensity
λ > 0 is a point process in R

2 such that [16]

1) For every bounded closed set B, the counting measure
(number of points) N(B) has a Poisson distribution with
mean λ · |B|, where |B| denotes the area of B.

2) If B1, ...,Bm are disjoint regions, then N(B1), ...,N(Bm)
are independent.

This definition leads to the following property: given N(B) =
n, then the n points are independently, uniformly distributed
in B. This point process is thus a good model when the user
locations are independent and completely random.

Definition 2. A hard-core point process is a point process
in which the points are forbidden to lie closer than a certain
minimum distance [18].

Definition 3. A Poisson cluster process is formed by taking
a Poisson process Φ of parent points and replacing each point
x ∈ Φ by a random cluster Zx which is a finite point process.
The superposition of all clusters yields the Poisson cluster
process Y =

⋃
x∈Φ Zx [16].

Definition 4. The Laplace transform L of X is defined as
LX (s) = E [exp (−sX)] [17].

In the case of Rayleigh fading, the received signal power
S is exponentially distributed. Let the transmit power be
μ, the transmission distance r, and the path loss r−α with
a path loss exponent α. Then E [S] = μr−α. Denoting
the interference by I and ignoring the noise, the success
probability ps (θ) is a function of the threshold θ as ps (θ) =

P
[
S
I > θ

]
= E

[
exp
(
− θrα

μ I
)]

. Since E [exp (−sI)] is the
Laplace transform of the interference, the success probabil-
ity can be obtained by setting s = θμ−1rα. As a result,
the Laplace transform characterizes the interference and the
success probability in Rayleigh fading. We will frequently
use the property that the Laplace transform of the sum of
independent random variables is the product of the individual
Laplace transforms. See [17] for further details on using the
Laplace transform.

D. Organization

Section II describes the network model. Section III derives
bounds of interference and outage probability for the bipolar
network. Section IV then generalizes the results to variations
of the bipolar model. The Poisson cluster process is introduced
as an approximation model for the Poisson hole process in
Section V, and finally the paper is concluded in Section VI.

II. NETWORK MODEL

Let us consider an underlay type of cognitive network with
all the primary and cognitive users operating at the same
frequency band. Assume that the cognitive users can perfectly
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Fig. 1. The bipolar network model. The squares are the primary transmitters
and the triangles are the primary receivers, and the transmitter-receiver pairs
are represented by thick lines with the arrows pointing to the receivers. The
distance between a primary transmitter-receiver pair is rp. The big circles
are the exclusion regions with radius D. The filled circles are the cognitive
transmitters and the x’s are the cognitive receivers. The hollow circles and
the +’s are the cognitive transmitters and receivers that are inactive due to the
exclusion regions. The cognitive transmitter-receiver pairs are represented by
thin lines with the arrows pointing to the receivers, and the distance between
a cognitive transmitter-receiver pair is rc.

detect the primary receivers2, so that the cognitive users have
full knowledge of the locations of the primary users. The
cognitive users also know the transmission parameters of
the primary users in order to set up the exclusion regions
(described later). Since the cognitive users will avoid the
exclusion regions to limit their interference, the primary users
do not need any information about the cognitive users.

The bipolar network model is considered in this paper. In
this model, transmitters are assumed to have receivers at a
fixed distance. This model provides an insight into how the
network performance depends on the link distance. The results
obtained thus can also be interpreted as the performance of
networks with random link distances conditioned on the link
distance having a certain value.

A. Bipolar Model

The bipolar (BP) model is shown in Fig. 1. The locations
of the primary transmitters follow a homogeneous Poisson
point process (PPP) Φp = {x1, x2, . . .} ⊂ R

2 of density
λp, and the locations of the potential cognitive transmit-
ters follow another, independent, homogeneous Poisson point
process Φc = {y1, y2, . . .} ⊂ R

2 of density λc. Assume
that all the primary transmitters use the same transmission
power μp, and all the primary receivers are at a distance

2How to detect the primary users is outside the scope of this paper, and
many schemes have been proposed. If the primary receivers are passive,
detecting the power leakage of local oscillator is a possible way. See [19]
for a survey.

rp from the corresponding primary transmitters in a random
direction. Similarly, all the cognitive transmitters use the same
transmission power μc, and all the cognitive receivers are at
a distance rc from the corresponding cognitive transmitters.
The locations of the primary and the cognitive receivers are
also PPPs with density λp and λc, respectively. rc is assumed
to be small relative to the mean nearest-neighbor distance of

Φc (rc � λ
− 1

2
c ) since the transmission power and the range

of the cognitive users are usually small. The activation of the
cognitive users depends on the exclusion region setup of the
primary users. The exclusion regions are circular regions with
radius D designed to guarantee that cognitive transmitters will,
on average, not generate an aggregate interference resulting in
the outage of primary users, which occurs when the instan-
taneous signal-to-interference ratio (SIR)3 is lower than θp.
Similarly, the SIR threshold for the cognitive users is denoted
as θc.

The radius D of the exclusion region in the bipolar model
is chosen as

D = rp

[
θp

(
βμc

μp

)] 1
α

, (1)

where α is the path loss exponent and β is a design factor. It is
intuitive why D is in such form since the radius D should be
proportional to the distance between the primary transmitter-
receiver pair rp, the SIR threshold θp, and the transmission
power of cognitive users μc, and inversely proportional to
the transmission power of primary users μp. The path loss
coefficient should also be taken into account since it greatly
affects the amount of interference. In order to make the
formula of D as general as possible, a design parameter β
is also included. If Rayleigh fading is taken into account
in the decision of which cognitive users to silence, we may
define β′ = βΓ(1 + δ), where Γ is the gamma function and
δ � 2/α, and then replace β with β′ in (1) since the number
of interfering cognitive nodes increases by a factor of Γ(1+δ)
under Rayleigh fading [20].

Let us assume that D is larger than rp + rc, ensuring that
the primary transmitters are inside the exclusion regions such
that a cognitive receiver and a primary transmitter cannot be
arbitrarily close.

B. Interference Model

Define I(y) =
∑

x∈Φ μxhx�(y−x) as the total interference
at y resulting from the interferers positioned at the points of
the process Φ, where �(x) = ‖x‖−α is the large-scale path
loss model, and assume the power fading coefficients hx are
i.i.d. exponential (Rayleigh fading) with E [h] = 1. μx is either
μp or μc (thus a fixed value), depending on which interference
is considered.

The interference to the primary users and the interference
to the cognitive users are considered separately. For each case,
the interference is comprised of contributions by both primary
transmitters and cognitive transmitters, so there are four types
of interference: the interference from the primary transmitters

3Throughout the paper, the noise is neglected since interference is what
causes the interaction between primary and cognitive users. Hence the focus
is on the SIR instead of the signal-to-interference-and-noise ratio (SINR).
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to the primary receivers Ipp, the interference from the primary
transmitters to the cognitive receivers Ipc, the interference
from the cognitive transmitters to the primary receivers Icp,
and the interference from the cognitive transmitters to the
cognitive receivers Icc. To calculate the interference to the
primary users, we condition on having a primary receiver at
the origin, the typical receiver, which yields the Palm dis-
tribution for the primary transmitters. By Slivnyak’s theorem
[18], this conditional distribution is the same as the original
one for the rest of the primary network. For the secondary
network, however, conditioning on a typical cognitive receiver
generally changes the distance distribution since the activation
of the cognitive transmitters is determined by the locations of
the primary users. This is the reason why only bounds can be
obtained for any interference involving the cognitive users.

III. ANALYSIS OF THE BIPOLAR MODEL

In this section, the bipolar model with the exclusion regions
around the primary receivers is discussed4. The following two
lemmas are used as building blocks for the analysis of the
bipolar model.

Lemma 1. ((3.21) in [17]) Let I(y) =
∑

x∈Φ ηhx ‖x− y‖−α

where Φ is a PPP with density ν and hx’s are i.i.d. exponential
with E [h] = 1, η is the transmission power, and

L0(ν, η, s) � exp

{
−ν

π2δ

sin(πδ)
ηδsδ

}
. (2)

Then the Laplace transform of the interference I is L0(ν, η, s).

Lemma 2. ((3.46) in [17]) Let

L1(ν, η, ρ, s) � exp

{
−νπ

(
ηδsδEh

[
hδγ
(
1− δ, sηhρ−α

)]

− sηρ2−α

1 + sηρ−α

)}
, (3)

where γ(a, z) =
∫ z

0
exp(−t)ta−1dt is the lower incomplete

gamma function. Following the setup in Lemma 1, except that
now the interference from the users within the distance ρ is
not included, the Laplace transform of the interference I is
L1(ν, η, ρ, s).

A. Interference to Primary Users

The interference to a primary user is composed of two
parts: the interference to a primary receiver from other primary
transmitters, denoted as Ipp, and the interference to a primary
receiver from the cognitive transmitters, denoted as Icp.

Since the fading is Rayleigh and the primary transmitters
are distributed as a PPP, the Laplace transform of Ipp, denoted
as LIpp(s), is obtained from Lemma 1 with density λp and
transmission power μp, i.e.,

LIpp(s) = L0(λp, μp, s). (4)

The interference to a primary receiver from the cognitive
transmitters, denoted as Icp, is hard to calculate exactly.

4In Section IV, the case with exclusion regions around the primary
transmitters will be considered.

Instead, a bound can be derived as follows. Let Φa and Φa′ be
the partition of Φc into active and inactive nodes depending
on whether the cognitive transmitters are outside or inside
the exclusion regions. Let ΦD include all the points in Φc

except the points that are within the exclusion region of the
typical primary receiver. Since Φa ⊂ ΦD , the interference Icp
caused by the active cognitive transmitters is stochastically
dominated5 by the interference Îcp caused by ΦD (denoted

as Icp
s
< Îcp). Since the cognitive transmitters are at least at

distance D, the Laplace transform of Îcp, denoted as LÎcp
(s),

is given by Lemma 2 with density λc and transmission power
μc, i.e.,

LÎcp
(s) = L1(λc, μc, D, s). (5)

Now we are ready to bound the outage probability of the
primary users.

Theorem 1. The outage probability of the primary users εp
is upper-bounded as

εp < 1− exp

{
−θδpr

2
p

[
λp

π2δ

sin(πδ)
+ λcπ

(
μc

μp

)δ

×
(
Eh

[
hδγ

(
1− δ,

h

β

)]
− βδ

1 + β

)]}
. (6)

Proof: With Rayleigh fading, the transmission success
probability of the primary users is the Laplace transform
evaluated at s = θpμ

−1
p rαp . Since the interference from the

primary transmitters and the interference from the cognitive
transmitters are independent, the outage probability εp is
upper-bounded by ε̂p = 1−LIpp

(
θpμ

−1
p rαp

) ·LÎcp

(
θpμ

−1
p rαp

)
.

When α = 4 (δ = 1
2 ) and β = 1, the upper bound for the

outage probability of the primary users εp can be simplified
to

εp < 1− exp

{
−√θpr

2
p

(
λp

π2

2
+ λc

π2

4

√
μc

μp

)}
, (7)

which follows from Eh[h
δγ (1− δ, vh)] = π

2−arctan
(

1√
v

)
+

√
v

1+v .

Note that the point process of active cognitive users Φa is
not a PPP but a Poisson hole process (see Def. 5 and Fact
1 in Section V). Nonetheless, independent thinning of the
cognitive users outside the exclusion regions with probability
exp(−λpπD

2) yields a good approximation on Icp, since the
higher-order statistics of the point process, which govern the
interaction between nodes, become less relevant in this case
[21]. Thus we obtain the approximation Ĩcp with Laplace
transform

LĨcp
(s) = L1

(
λc exp(−λpπD

2), μc, D, s
)
. (8)

An approximation to the outage probability of the primary

5A random variable A stochastically dominates a random variable B if
P [A > x] ≥ P [B > x] for all x, or equivalently, FA(x) ≤ FB(x) for
cumulative distribution functions FA(x) and FB(x).
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users εp is, therefore, given by

εp ≈ 1− exp

{
−θδpr

2
p

[
λp

π2δ

sin(πδ)
+ λcπ

× exp

(
−λpπr

2
pθ

δ
p

(
βμc

μp

)δ
)(

μc

μp

)δ

×
(
Eh

[
hδγ

(
1− δ,

h

β

)]
− βδ

1 + β

)]}
. (9)

When α = 4 and β = 1, the above approximation can be
simplified to

εp ≈ 1− exp

{
−√θpr

2
p

(
λp

π2

2
+ λc

π2

4

√
μc

μp

× exp

[
−λpπr

2
p

√
θp

(
μc

μp

)])}
. (10)

B. Interference to Cognitive Users

Similar to the case of estimating interference to the primary
users, the interference to a cognitive user is composed of two
parts: the interference to a cognitive receiver from the primary
transmitters, denoted as Ipc, and the interference to a cognitive
receiver from other cognitive transmitters, denoted as Icc.

First let us consider the interference from the primary
transmitters. Since a cognitive transmitter is at least at distance
D from a primary receiver, and the distance between a primary
transmitter-receiver pair is rp, the distance between a primary
transmitter and a cognitive transmitter is at least D − rp.
Furthermore, the distance between a cognitive transmitter and
its corresponding cognitive receiver is rc, so the distance to
the nearest primary transmitter for a cognitive receiver is at
least D̄ = D−rp−rc (D̄ > 0 since D > rp+rc as described
in Section II). Denote by Îpc the random variable whose
Laplace transform is L1(λp, μp, D̄, s). Since the location of
the transmitter is not at the center of the exclusion region,
the interference Ipc to a cognitive receiver from the primary
transmitters is stochastically dominated by the random variable
Îpc with Laplace transform

LÎpc
(s) = L1(λp, μp, D̄, s). (11)

Now let us consider the interference from the other cogni-
tive transmitters. Let Îcc be the interference generated by the
process Φc. Since Φa ⊂ Φc, Icc is stochastically dominated by
Îcc. Since Φc is a PPP, the Laplace transform of Îcc, denoted
as LÎcc

(s), is
LÎcc

(s) = L0(λc, μc, s), (12)

which follows from Lemma 1.

The following theorem gives a upper bound for the outage
probability of the cognitive users.

Theorem 2. Let ξ =
θcμp

μc

[(
θpβμc

μp

) 1
α
(

rp
rc

)
− rp

rc
− 1

]−α

.

The outage probability of the cognitive users εc is upper-
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Fig. 2. Bounds and simulation results of the outage probabilities of the
primary and the cognitive users. For comparison, the outage probability in
the primary network without the presence of cognitive users (“PU only” in
the figure) is also shown. The simulation parameters are: λp = 0.1, λc = 1,
μp = 1, μc = 0.2, rp = 0.5, rc = 0.1, β = 81, and α = 4. D is determined
using (1). When calculating the outage probability of the cognitive users, θp
is set to 10.

bounded as

εc < 1− exp

{
−λpπ

(
θδc

(
μp

μc

)δ

r2cEh

[
hδγ (1− δ, ξh)

]

−r2p

[(
θpβμc

μp

) 1
α

− rc
rp

− 1

]2 (
ξ

1 + ξ

))
−λc

π2δ

sin(πδ)
θδcr

2
c

}
.

(13)

Proof: The success transmission probability of the cog-
nitive users is the Laplace transform evaluated at θcμ

−1
c rαc .

Since the interference from the primary transmitters and the
interference from the cognitive transmitters are independent,
the outage probability εc is upper-bounded by ε̂c = 1 −
LÎpc

(
θcμ

−1
c rαc

) · LÎcc

(
θcμ

−1
c rαc

)
.

For α = 4, the upper bound for the outage probability of
the primary users εc can be simplified to

εc < 1

−exp

{
−λpπ

[√
θc

(
μp

μc

)
r2c

(
π

2
− arctan

(
1√
ξ

)
+

√
ξ

ξ + 1

)

−r2p

[(
θpβμc

μp

) 1
4

− rc
rp

− 1

]2(
ξ

1 + ξ

)⎤⎦− λc
π2

2

√
θcr

2
c

⎫⎬
⎭ .

(14)

C. Numerical Examples

Fig. 2 shows the simulation results and the upper bounds
of the outage probabilities of the primary and cognitive users
for different θp and θc. It also shows the approximation of
the primary user outage probability and the simulation results
for the primary user-only network. The simulation parameters
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Fig. 3. εp and εc as a function of λc/λp under different λp using (6) and
(13), respectively. μp = 1, μc = 0.2, rp = 0.5, rc = 0.1, θp = 10, and
θc = 10.

are: λp = 0.1, λc = 1, μp = 1, μc = 0.2, rp = 0.5,
rc = 0.1, β = 81, and α = 4. D is determined using (1). We
observe that for large θp the primary user outage is dominated
by the interference from the primary users, since a large θp
implies a large exclusion region radius D, which means that
few secondary users are active. Fig. 2 also shows that the
approximation of the location distribution of the cognitive
users outside the exclusion regions with a PPP of the same
intensity using (9) is very good.

D. Asymptotic Regions of εp and εc

Besides of showing the tightness of the bounds, it is
interesting to explore some asymptotic regions of εp and εc.
First we check the invariant properties. If λp and λc are scaled
by some factor c and both rp and rc by c−

1
2 , the same result

will be obtained. Thus, as a function of the ratio λc/λp, the
results should look the same as a function of

√
rp/rc. The

result will also be the same if both μp and μc are scaled by c.
However, εp and εc are not only a function of the ratio λc/λp,
but also a function of the densities λp and λc themselves.
Fig. 3 shows εp and εc as a function of λc/λp under different
λp using (6) and (13). These two bounds also imply that (a)
εp becomes smaller with the decrease in rp, λp, λc, and μc

and the increase in μp, and (b) εc becomes smaller with the
decrease in rc, λp, λc, and μp and the increase in rp and μc.
Thus, it is easy to obtain the following results: (a) If rp → ∞
(then D → ∞), there will be no interference from CU. Under
fixed μp, however, μpr

−α
p → 0. Therefore, εp → 1. For the

same reason, if rc → ∞, then εc → 1 since μc is fixed. (b) If
rp → 0, then εp → 0; similarly, if rc → 0, then εc → 0. (c) If
λp → ∞ or λc → ∞, then εp → 1 and εc → 1 since the total
interference sums to infinity. (d) Obviously, if θp → 0, then
εp → 0; if θp → ∞, then εp → 1. The same results apply to
θc.

IV. VARIATIONS ON THE BIPOLAR MODEL

In Section III, bounds of the outage probabilities for the
exclusion regions around the primary receivers for the bipolar

model have been derived. In this section, some variations, i.e.,
exclusion regions around the primary transmitters, exclusion
regions around both the transmitters and the receivers, and
the case when primary users employ a CSMA-type MAC, are
considered.

A. Exclusion Regions around Primary Transmitters

Detecting primary receivers is very difficult if the receivers
are passive. In this case, setting the exclusion regions accord-
ing to the primary transmitters is a reasonable and practical
compromise [22], [23]. Under this setup, the interference
Ipp,PT and the interference Icc,PT (the subscript “PT” denotes
the case of exclusion regions around the primary transmitters)
remain the same as Ipp and Icc, respectively, in the primary
receiver exclusion region case. This is because the exclusion
regions do not apply to the primary users, so the interference
between the primary users is not affected by the change
of exclusion regions. The interference between the cognitive
users is the same since no matter whether the exclusion regions
are around the primary transmitters or around the primary
receivers, the fraction of the cognitive users that are active
is the same. For the interference Icp,PT to a primary receiver
from the cognitive transmitters and the interference Ipc,PT to
a cognitive receiver from the primary transmitters, bounds can
be obtained as follows.

The cognitive transmitters must be at distance at least D
from the primary transmitters, so the distance between a
primary receiver and a cognitive transmitter is at least D− rp
and the distance between a primary transmitter and a cognitive
receiver is at least D − rc. Plugging this into (3), it is easy
to find that Icp,PT is stochastically dominated by the random
variable Îcp,PT with Laplace transform

LÎcp,PT
(s) = L1(λc, μc, D − rp, s), (15)

and Ipc,PT is stochastically dominated by the random variable
Îpc,PT with Laplace transform

LÎpc,PT
(s) = L1(λp, μp, D − rc, s). (16)

The outage probability of the primary users εp,PT and
the outage probability of the cognitive users εc,PT when the
exclusion regions are around the primary transmitters are
upper-bounded respectively by

ε̂p,PT = 1− LIpp

(
θpμ

−1
p rαp

)× LÎcp,PT

(
θpμ

−1
p rαp

)
(17)

= 1− L0

(
λp, μp, θpμ

−1
p rαp

)
×L1

(
λc, μc, D − rp, θpμ

−1
p rαp

)
, (18)

and

ε̂c,PT = 1− LÎpc,PT

(
θcμ

−1
c rαc

)× LÎcc

(
θcμ

−1
c rαc

)
(19)

= 1− L1

(
λp, μp, D − rc, θcμ

−1
c rαc

)
×L0

(
λc, μc, θcμ

−1
c rαc

)
. (20)

B. Exclusion Regions around both Primary Transmitters and
Receivers

In practical scenarios, traffic is often bi-directional due
to acknowledgments (ACK). The roles of transmitters and
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receivers change frequently, and so do the exclusion regions.
However, a cognitive user might not be able to react in such a
short time, and the consequence of failing to do so is signif-
icant. One possible solution is to set the exclusion regions
based on both the primary transmitters and the receivers.
In this case, the density of active cognitive users is lower
compared to the single-exclusion region setup. Hence, the
interference from the cognitive transmitters (to either primary
or other cognitive receivers) is stochastically dominated by
the interference in the single-exclusion region setup, which is
bounded according to (5) and (12). Since the exclusion region
setup does not affect the relationship between the primary
users, the interference between the primary users is the same
as Ipp. The interference from the primary users to a cognitive
user is bounded by (16) due to the exclusion regions around
the primary transmitters. Note that the bounds become less
tight due to the silencing of extra cognitive users.

C. Primary User MAC

Until now, only the case of controlling the interference
from the cognitive users is discussed. However, as shown
in Fig. 2, the interference from other primary users might
dominate since primary interferers may be arbitrarily close.
It is therefore reasonable to apply a MAC scheme among
primary users. When a CSMA-type MAC is employed, the
primary transmitters form a hard-core process, in which no
any two primary transmitters are allowed to be closer than a
distance Dp (the radius of a guard zone).

When the primary users employ the CSMA-type MAC, the
interference Ipp,CSMA to a primary receiver from the other
primary transmitters is stochastically dominated by the random
variable Îpp,CSMA with Laplace transform LÎpp,CSMA

(s) =

L1(λp, μp, Dp, s), which follows directly from Lemma 2, but
now the interference is smaller due to the CSMA-type MAC
for every primary transmitter.

Since the active primary transmitters form a hard-core
process, the density of the active primary transmitters when
the primary users apply CSMA-type MAC with sensing range
Dp is [18]

λ′
p =

1− exp(−λpπD
2
p)

πD2
p

. (21)

An approximation of LIpp,CSMA(s) is thus LĨpp,CSMA
(s) =

L0(λ
′
p, μp, s).

Eqn. (5) can be used to bound the interference Icp,CSMA

from the cognitive transmitters to the primary receivers. The
bound is tighter in the case with primary user MAC than
without primary user MAC. The reason is the following.
Let λ′

a = exp(−πλ′
pD

2) and λa = exp(−πλpD
2) be

the densities of the active cognitive users with and without
primary user MAC, respectively. Since λ′

p < λp, it follows
that λa < λ′

a < λc. Since L0(ν, η, s) is a monotonically
decreasing function of the variable ν, the bound is tighter in
the case with the primary user MAC.

Eqn. (11) and Eqn. (16) can be used to give bounds for
the interference Ipc,CSMA from the primary transmitters to
a cognitive receiver when the exclusion regions are around
the primary receivers and around the primary transmitters
respectively. The interference Ipc,CSMA to a cognitive receiver

from the primary transmitters is approximated by the random
variable Ĩpc,CSMA with Laplace transform LĨpc,CSMA

(s) =

L1(λ
′
p, μp, D−rp−rc, s) and LĨpc,CSMA

(s) = L1(λ
′
p, μp, D−

rc, s) if the exclusion regions are around the primary receivers
and around the primary transmitters, respectively. Eqn. (12)
can also be used to bound the interference Icc,CSMA from
the cognitive transmitters to the primary receivers. Note that
again this bound is tighter than in the case without primary
user MAC because λ′

a > λa.
Note that if the cognitive users also apply CSMA-type

MAC, a similar analysis can be carried out by replacing λc

with

λ
′
c =

1− exp(−λcπD
2
c )

πD2
c

, (22)

where Dc is the sensing range of the cognitive transmitters,
because the CSMA-type MAC for the cognitive users does not
change the exclusion regions. Since λ

′
c < λc, the interference

to primary users and the interference between cognitive users
become smaller. For a more detailed discussion, see [24],
where this observation has also been made.

V. INTERFERENCE MODELING USING POISSON CLUSTER

PROCESSES

It turns out that the interference between the cognitive users
is the hardest to calculate or bound. In this section, a novel
approach will be pursued: modeling the interference using a
different point process model. We start by defining the Poisson
hole process:

Definition 5. (Poisson hole process) Let Φ1 and Φ2 be
independent PPPs of intensities λ2 > λ1. For each x ∈ Φ1,
remove all the points in Φ2 ∩ b(x,D), where b(x,D) is a
ball centered at x with radius D. All the removed points of
Φ2 form the hole-0 process and the remaining points form
the hole-1 process, as introduced in [6]. Here we denote the
hole-1 process as the Poisson hole process.

Now let Φp be Φ1, λp be λ1, Φc be Φ2, and λc be λ2 in
Def. 5. Then we make the following observation of the point
process formed by the active cognitive users.

Fact 1. Φa is a Poisson hole process.

The Poisson hole process behaves like a Poisson cluster
process. The reason is that forming “holes” (due to the
exclusion regions in our case) forces nodes to concentrate in
some areas. This kind of node distribution looks as if the
nodes are “clustered” by nature. Fig. 4 compares the Poisson
hole process and the Thomas cluster process, with the same
parameters given in Section III (λp = 0.1, λc = 1, μp = 1,
μc = 0.2, rp = 0.5, β = 81, α = 4, θp = 10, and
D = 1.7838). It is easy to observe that both processes are
very different from a PPP.

A. Fitting a Poisson Cluster Process

Since the Poisson hole process is analytically intractable (in
particular, its probability generating functional is unknown),
we approximate it with a Poisson cluster process by matching
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Fig. 4. Comparison of the Poisson hole process (left) and the Thomas cluster process (right). λp = 0.1, λc = 1, μp = 1, μc = 0.2, rp = 0.5, β = 81,
α = 4, θp = 10, and D = 1.7838.

first- and second-order statistics. The first-order statistic is the
intensity, so

λc exp
(−λpπD

2
)
= λlc̄, (23)

where the left hand side is the intensity of the active cognitive
users; λl at the right hand side is the density of parent points
of the cluster process, and c̄ is the average number of points
in a cluster. For motion-invariant processes, the second-order
statistics are fully described by the pair-correlation function
g(r) [18]. Here two kinds of Poisson cluster processes, the
Matern cluster process and the Thomas cluster process, are
considered.

Let R be the cluster radius in the Matern cluster process.
The g-function of the Matern cluster process is [18]

gM (r) ={
1 + 2

λlπ2R2

[
arccos

(
r
2R

)− r
√
4R2−r2

4R2

]
if 0 < r < 2R,

1 if r ≥ 2R.

(24)

λl and R can be determined using curve-fitting to the g-
function of the Poisson hole process. c̄ is then determined
using (23). For the Thomas cluster process, the g-function is
[18]

gT (r) = 1 +
1

4πλlσ2
exp

(
− r2

4σ2

)
. (25)

Again, λl and σ are obtained using curve-fitting and c̄ is then
determined using (23).

To illustrate the fitting, we use the same example in Section
III (λp = 0.1, λc = 1, μp = 1, μc = 0.2, rp = 0.5,
β = 81, and α = 4) and let θp = 10, then D is 1.7838.
By using the nlinfit function (nonlinear least-squares fit) in
Matlab, we get λl = 0.0825, c̄ = 4.4623, and R = 1.5305
for the Matern cluster process, and λl = 0.0809, c̄ = 4.5497,
and σ = 0.8206 for the Thomas cluster process. Fig. 5(a)

shows the g-functions of the Poisson hole process, Thomas
cluster process, Matern cluster process, and PPP obtained
by simulations. Following the same procedure, the Poisson
hole process resulting from the primary user MAC (a hard-
core process) can also be modeled, as shown in Fig. 5(b),
where Dp = 2. The parameters for fitting are λl = 0.1722,
c̄ = 2.1370, and R = 1.4033 for the Matern cluster process
and λl = 0.1673, c̄ = 2.1997, and σ = 0.7664 for the Thomas
cluster process. The results show that the Poisson hole process
can be closely approximated by the Thomas and the Matern
cluster processes, no matter whether the primary users employ
a CSMA-type MAC or not.

Note that the difference between the Poisson hole process
and the Poisson cluster process (as an approximation to the
Poisson hole process) is the higher-order statistics. Although
we are able to fit the first- and the second-order statistic of
the Poisson hole process using the Poisson cluster process, the
higher-order statistics might be different. For the interference
modeling, however, the first- and the second-order statistics
prove sufficient, as shown in the following subsection.

B. Interference Modeling using Poisson Cluster Processes

As explained earlier, it is possible to approximate the
Poisson hole process using a Poisson cluster process; now
we will show how the Poisson cluster process models the
interference in the cognitive network. The focus will be
on the interference to a cognitive receiver from the other
cognitive transmitters for the following reasons. The Laplace
transform of the interference to a primary receiver from the
other primary transmitters is given in (4), and the Laplace
transform of the interference to a cognitive receiver from
the primary transmitters is tightly upper-bounded using (11).
For the interference to a primary receiver from the cognitive
transmitters, the higher-order statistics of the point process
formed by the active cognitive transmitters is less relevant (see
(8) and [21]). Whether the cognitive transmitters behave as a
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Fig. 5. (a) Comparison of g-functions of the Poisson hole process, the
Thomas cluster process, the Matern cluster process, and PPP. (b) Comparison
of g-functions of the Poisson hole process resulting from the primary user
hard-core process, the Thomas cluster process, and the Matern cluster process.
In both cases, λp = 0.1, λc = 1, μp = 1, μc = 0.2, rp = 0.5, β = 81,
α = 4, θp = 10, and D = 1.7838. For (b), Dp = 2.

Poisson hole process or a PPP will introduce approximately
the same interference to the primary receivers (as shown in
(8) and Fig. 2).

Fig. 6 shows the simulation results of the complementary
cumulative density function (CCDF) of the interference among
active cognitive users (Poisson hole process) and among the
nodes in the Matern and Thomas cluster processes. The
simulation uses the same parameters as before: λp = 0.1,
λc = 1, μp = 1, μc = 0.2, rp = 0.5, β = 81, α = 4, θp = 10,
and D = 1.7838. From the simulation, the interference
distributions in the Poisson cluster process and the Poisson
hole process are essentially the same.

The way to obtain the outage probability of the cognitive
users for Poisson-type cognitive networks from the known
results of the Poisson cluster process is the following. First we
find the parameters of the Poisson cluster process which give
the first- and second-order statistic that match the Poisson hole
process. The formula for calculating the outage probability
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Fig. 6. The CCDF P(I > x) of the interference among active cognitive
users (Poisson hole process) and among the nodes in the Matern and Thomas
cluster processes. The simulation parameters are λp = 0.1, λc = 1, μp = 1,
μc = 0.2, rp = 0.5, β = 81, α = 4, θp = 10, and D = 1.7838.

is then adapted from [5], as shown later. By plugging the
parameters into the formula, the outage probability is obtained.

Let LIPCP(s, z) be the Laplace transform of the interference
in the Poisson cluster process, where z ∈ R

2 is the location
of the receiver under consideration. We have [5]6

LIPCP(s, z) = exp

{
−λl

∫
R2

[1− exp(−c̄ϕ(s, z, y))] dy

}

×
∫
R2

exp(−c̄ϕ(s, z, y))f(y)dy, (26)

where

ϕ(s, z, y) =

∫
R2

g(x− y − z)

s−1 + g(x− y − z)
f(x)dx. (27)

f(x) is the PDF of the node distribution around its parent
point. For the Thomas process, g(r) = gT (r) and

f(x) =
1

2πσ2
exp

{
−‖x‖2

2σ2

}
, (28)

and for the Matern process, g(r) = gM (r) and

f(x) =

{
1

πR2 if ‖x‖ < R,

0 otherwise.
(29)

Note that the interference is location-dependent, since the
Palm distributions of the cluster and the hole processes are
not stationary.

The Laplace transform of the interference among the cog-
nitive receivers can then be approximated as

LĨcc
(s) ≈

∫
R2

LIPCP(s, z)f(z)dz, (30)

which is obtained by averaging over all the possible locations
of the cognitive receivers. Furthermore, since every cognitive

6Note that this equation is different from (35) in [5] due to a different
setup. In [5], the transmitter corresponding to the conditioned receiver is at
the origin but in our setup, the transmitter is at a fixed distance away from
the receiver.
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receiver is part of the cluster process (recall that rc � λ
− 1

2
c ),

it must belong to one of the clusters. That means only the
locations within one cluster need to be considered.

VI. CONCLUSIONS

The interference in the cognitive radio network is hard to
analyze due to the interaction between the primary and the
cognitive users: the Poisson point process of the primary users
and the Poisson hole process of the cognitive users are not
independent. Two approaches have been taken in this paper:
bounding and approximation. First, we have bounded the four
types of interference for the bipolar model: the interference
from the primary transmitters to the primary receivers, from
the cognitive transmitters to the primary receivers, from the
primary transmitters to the cognitive receivers, and from the
cognitive transmitters to the cognitive receivers. The outage
probabilities for the primary and the cognitive users are
also bounded. Different exclusion region setups have been
discussed, including exclusion regions around the primary
receivers, primary transmitters, and both. Second, we have
shown that the Poisson cluster process can model the Poisson
hole process accurately, and a good estimate of the interference
can be obtained. Consequently, the known results of the
Poisson cluster process can be applied to the Poisson hole
process formed by the active cognitive users.
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