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Delay-optimal Power Control Policies
Xinchen Zhang, Student Member, IEEE, and Martin Haenggi, Senior Member, IEEE

Abstract—The delay till success (DTS) is the mean number
of transmissions needed, averaged over the fading, until a single
packet is successfully received (decoded) over a wireless link. This
paper shows that under a mean and a peak power constraint,
random power control can significantly reduce the DTS. We
derive the optimal power control policies that minimize the
DTS at one link of given length. For most commonly used
fading distributions, these optimal power control policies are
random on-off policies, whose parameters depend on the fading
statistics and the link distance. We present two applications
of this result in the context of noise-limited wireless networks:
minimizing the local delay (mean delay for successful nearest-
neighbor communication) and minimizing the local anycast delay
(mean delay for a transmission to any node).

Index Terms—Wireless links, fading, power control, delay,
local delay.

I. INTRODUCTION

A. Motivation and Main Contribution

CONSIDER a fading wireless link where the transmitter
keeps sending the same packet. The delay till success

(DTS) is the mean number of transmissions needed, averaged
over the fading, until this packet is successfully received (de-
coded) at the receiver. Assuming independent and identically
distributed (iid) block fading and that the transmitter is allowed
to vary only the transmit power, the DTS is a function of the
fading statistics and the power control policy. The DTS can
be interpreted as the service time of the head-of-line packet,
if the transmit buffer and the link are viewed as a queueing
system.

This paper shows that under a mean and a peak transmit
power constraint, randomly varying the transmit power can
significantly reduce the DTS. In particular, we derive the
optimal (DTS-minimizing) power control policies for different
fading statistics. It turns out that for almost all popular fading
distributions (Rayleigh, Nakagami-m, Rician, lognormal) the
optimal power control policy is a random on-off policy.

B. Related Work

Recently, [1]–[4] introduced the notion of the local delay,
which is a fundamental source of delay in wireless networks.
It is the mean time until a node successfully transmits to its
nearest neighbor in a wireless network whose node locations
are governed by a point process, averaged over fading, channel
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access, and the point process. The local delay can be character-
ized in networks both with [1], [3], [4] and without [1], [2], [4]
interference. In [2], the author shows that power control can
significantly reduce the local delay in noise-limited networks,
but the optimum power control policy is not derived. The DTS
can be viewed as the conditional local delay, i.e., the local
delay conditioned on the link distance (see Section II-B for
details).

Besides its use in reducing the local delay, power control
can benefit both point-to-point wireless communication and
wireless networks in many different ways (see [5]–[8] and the
references therein).

In the context of point-to-point communication, typical
power control policies include water-filling, dynamic program-
ming, and channel inversion. Water-filling is typically used to
maximize the throughput under energy constraints [9]–[13].
Power control policies based on dynamic programming is
useful in reducing the queueing delay under power constraints,
or, conversely, reducing energy consumption under queueing
delay constraints [8], [14]–[17]. All the above power control
policies require instantaneous channel state information (CSI)
at the transmitter, while no such assumption is made in this
paper.

In wireless networks, power control is often considered
as a tool of interference management, see, e.g., [7] and the
references therein. While the conclusion has been drawn that
random transmit power control may improve the network
performance [18], [19] in the presence of interference, this
paper considers the noise-limited case, with an explicit focus
on delay-optimality.

C. Applications to Wireless Networks

The optimal power control schemes devised in this paper
have two direct applications in the context of noise-limited
wireless networks: the minimization of the local delay [1]–
[4]; and the minimization of the local anycast delay. The
local delay is the DTS averaged over the random distances
in an ensemble of links. The local anycast delay is the mean
time until a packet is successfully received (decoded) in any
of a set of the desired receivers. Since the DTS-minimizing
power control policies (where the link distance is fixed) are
also delay-optimal for random link distances if they are known
at the transmitter, this paper is the first to provide and prove
the optimal power control schemes in terms of reducing the
local delay.

D. Organization

The rest of the paper is organized as follows: Section II
introduces the system model and defines the DTS (or con-
ditional local delay), local delay and local anycast delay. In
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Section III, we provide and prove the optimal power control
policy for Rayleigh fading, while Section IV extends the
results to general fading distributions. Concluding remarks are
provided in Section V.

II. PROBLEM FORMULATION

A. Reception Model

The basic model we use in this paper is the one provided
in [2]. The received power is

Pr = PHr−α,

where P is the transmit power, H is the iid (power) fading
coefficient1, r is the link distance, and α is the path loss
exponent. We use an SNR condition to define whether a trans-
mission is successful. A transmission is regarded successful if
Pr > θ, where θ incorporates both the SNR threshold and the
noise power. Then, we can write the success probability of a
single transmission as a (deterministic) function of r as

ps(r) = P(PHr−α > θ),

where P(·) denotes the probability measure and P can be a
stochastic function of r as r is considered as a constant that
can be learned by the transmitter. H is assumed to be iid over
time and unknown to the transmitter.

B. Delay Definitions

1) DTS and Local Delay: The delay till success (DTS) is
defined as the mean number of time slots that the receiver
needs to successfully receive (decode) the message over a
link distance of distance r. With iid fading and iid transmit
power P (or constant transmit power), the event of successful
transmission is iid over time. Thus, the time to the first
successful transmission is geometrically distributed with mean

Dr =
1

ps(r)
, (1)

which is, by definition, the DTS. If the link distance is a
random variable R, which is constant over time and known at
the transmitter, the local delay [1]–[4] is the ensemble average
of the DTS, i.e.,

D = ER[DR] = ER

[
1

ps(R)

]
. (2)

Such a situation arises when considering a noise-limited
static random wireless network, which can be modeled as a
collection of links with spatially random but temporally fixed
distances (Fig. 1). Hence the DTS can also be interpreted
as the local delay conditioned on the link distance, and we
may use the two terms DTS and conditional local delay
interchangeably.

1Here, H is iid both over time and space. The assumption that H is iid
over time holds when the time between packet transmissions is equal to or
larger than the channel coherence time.
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Fig. 1. A collection of links with random distances. Transmitters are denoted
by x and receivers are denoted by o. The distances rk, k ∈ [5]3, are iid drawn
from some distribution fR(x).
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Fig. 2. Broadcast in wireless network. Transmitters are denoted by x and
receivers are denoted by o. The distances rk, k ∈ [5], are deterministic and
known to the transmitter.

2) The Local Anycast Delay: Consider the case where a
transmitter wants to transmit the message to any one of the
n desired receivers (Fig. 2). Let ri be the distance from the
transmitter to each receiver and Hi be the fading coefficient
from the transmitter to each receiver, where i ∈ [n], and the Hi

are iid both over time and space. Then the local anycast delay,
defined as the mean time until the message is successfully
decoded at any of the desired receivers, is

Da =
1

1− P(PH1r
−α
1 ≤ θ, PH2r

−α
2 ≤ θ, · · · , PHnr

−α
n ≤ θ)

=
1

P(P max{Hir
−α
i , i ∈ [n]} > θ)

. (3)

Comparing (3) with (1), it is obvious that Da is equiva-
lent to the conditional local delay D1, where the link dis-
tance r = 1 and the fading subject to the distribution of
max{Hir

−α
i , i ∈ [n]} > θ. Since Hi is iid over space,

this fading distribution can be completely characterized by
P(max{Hir

−α
i , i ∈ [n]} ≤ x) =

∏n
i=1 P(Hir

−α
i ≤ x).

C. The Optimal Stationary Power Control Policy

We concentrate on stationary power control policies, i.e.,
the statistics of the transmit power P in different time slots
are the same, and define the optimal stationary power control
policy to be the stationary power control policy that minimizes
the conditional local delay (or, delay till success). Without loss
of generality, we consider a unit mean power constraint and
a peak power constraint Pmax, with Pmax > 1 (otherwise the
mean power constraint will always be loose), and call a policy
to be valid if and only if it satisfies both the constraints. In
other words, a valid policy has EP = 1 and P ≤ Pmax.
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Let P be the class of probability density functions (pdfs)
with support at most [0, Pmax] and mean 1. The problem is to
find the pdf f∗

P |r of the transmit power P (r), where

f∗
P |r � argmin

fP |r∈P
Dr = argmax

fP |r∈P
P(P (r)Hr−α > θ). (4)

Initial efforts to reduce the local (unicast) delay using power
control are made in [2]. (2) shows that the power control
policy minimizing Dr for all r is the power control policy
that minimizes the local delay. Thus, an important application
of the results on conditional local delay is the discovery of a
local delay-minimizing power control policy.

For the local anycast delay, we observe from (3) that
with the appropriate adjustment in the fading distribution, the
optimal power control policy can be applied to minimize the
local anycast delay as well.

III. RAYLEIGH FADING

A. Random On-off Is the Optimal Policy

In the iid fading case, the conditional local delay (or, delay
till success) is simply the inverse of the success probability
P(HPr−α > θ). For Rayleigh fading,

P(HPr−α > θ) =

∫ ∞

0

F̄P

(
θrα

h

)
e−hdh

= θrα
∫ ∞

0

F̄P (x
−1)e−θrαxdx,

where F̄P (x) is the complementary cumulative distribution
function (ccdf) of the randomly controlled power P . Thus it
must be monotonically decreasing, F̄P (x) = 0 ∀x > Pmax,
and, by the mean power constraint

∫∞
0

F̄P (x)dx ≤ 1.
To simplify the notation, we define the following function

F ′(x) � F̄P (x
−1), ∀x > 0, (5)

which is the cumulative distribution function (cdf) of P−1.
The constraints on F̄P are mapped to the constraints that
F ′(x) is monotonically increasing, F ′(x) = 0 ∀x < P−1

max,
limx→∞ F ′(x) ≤ 1 and EP =

∫∞
0

x−2F ′(x)dx ≤ 1.
Therefore, the problem now becomes to find the F ∗(x),

defined as the optimal F ′(x) satisfying all the requirements
above and maximizing

∫∞
0

F ′(x)e−θrαxdx. In order to main-
tain full generality of the transmit power distribution, we do
not require limx→∞ F ′(x) = 1. This is because

lim
x→∞F ′(x) = lim

x→∞P(P−1 ≤ x)

= lim
x→∞P

(
P ≥ 1

x

)
= P(P > 0),

which is less than 1 when P(P = 0) > 0. In fact, as will be
shown later, P(P = 0) > 0 is often the case for the optimal
power control policies.

Lemma 1. The desired function F ∗(x) satisfies F ∗(x) =
F ∗(xM ), ∀x > xM , where xM � max{P−1

max,
1

θrα }.
Proof: See Appendix A.

Analogously, we have the following lemma.

Lemma 2. If 1 ≤ θrα ≤ Pmax, we have F ∗(x) = 0, ∀x <
1

θrα .

Proof: Similar to the proof of Lemma 1, we start with the
case where F ∗(x) is simple and then generalize to the case
of all valid cdfs.

Consider the case where F ∗(x) is a simple function and
write it as (11). Assuming 1

θrα ∈ [bl, bl+1), we can construct

F̃ (x) = F ∗(x)−
l∑

n=1

an1[bn,∞)(x) +
l∑

n=1

an
bnθrα

1[ 1
θrα ,∞)(x),

where 1A(·) is the indicator function. Suppose that F ∗(x0) >
0 for some x0 < 1

θrα , we know F̃ (x) �= F ∗(x), since
F̃ (x) = 0, ∀x < 1

θrα . Meanwhile, it can be verified
that

∫∞
0

x−2F̃ (x)dx =
∫∞
0

x−2F ∗(x)dx. By Lemma 1,
F ∗(x) = F ∗( 1

θrα ), ∀x > 1
θrα and thus F̃ (x) ≤ 1 (because∫∞

1
x−2dx = 1). All other constraints on F̃ (x) a valid

candidate for F ′(x) are automatically satisfied. Also,∫ ∞

0

e−θrαxF̃ (x)dx−
∫ ∞

0

e−θrαxF ∗(x)dx

=

l∑
n=1

∫ ∞

0

(
an

bnθrα
1[ 1

θrα ,∞) − an1[bn,∞)

)
e−θrαxdx

=

l∑
n=1

an
bnθrα

(
1

θrα
e−θrα 1

θrα − bne
−θrαbndx

)
,

which is strictly larger than zero due to the fact that bn ≤
1

θrα , ∀n ≤ l by assumption and the monotonicity of xe−θrαx

in [0, 1
θrα ]. Therefore, we found F̃ (x) as a strictly better

candidate than F ∗(x), contradicting the assumption that it is
the desired function. The generalization from simple functions
to general functions are the same as in the proof of Lemma
1.

Similarly, it can be shown that:

Lemma 3. If θrα < 1, we have F ∗(x) = 0, ∀x < 1.

Although special care must be taken to make sure that
F̃ (x) ≤ 1, the proof of Lemma 3 directly follows from that
of Lemma 2 and is therefore omitted.

Combining Lemmas 1, 2, 3 and the requirements we have
for a valid F ′(x), we conclude that F ∗(x) is of the form:

F ∗(x) =

⎧⎨
⎩

1[1,∞)(x), θrα ≤ 1
1

θrα 1[ 1
θrα ,∞)(x), 1 < θrα ≤ Pmax

P−1
max1[P−1

max,∞)(x), θrα > Pmax.

As stated earlier, there is a one to one mapping between F ′(x)
and F̄P (x) (and thus FP (x)). Hence, the result above directly
leads to the following theorem.

Theorem 1. For Rayleigh fading, given a link distance r, the
optimal distribution of the transmit power P that minimizes
DTS is FP (x) =⎧⎨
⎩

1[1,∞)(x), θrα ≤ 1
(1− 1

θrα )1[0,θrα)(x) + 1[θrα,∞)(x), 1 < θrα ≤ Pmax

(1− P−1
max)1[0,Pmax)(x) + 1[Pmax,∞)(x), θrα > Pmax.

More concisely, if we let ξ � max{1,min{Pmax, θr
α}},

Theorem 1 says: the optimal random power control strategy
is a random on-off policy with transmit probability ξ−1 and
transmit power ξ.
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Definition 1. A link is said to be in the peak-power-limited
regime if the optimal power control policy is to transmit at
power Pmax with probability P−1

max.

Definition 2. A link is said to be in the mean-power-limited
regime if constant power transmission (P ≡ 1) is the optimal
power control policy.

The optimal strategy maximizes the variance of the transmit
power in the peak-power-limited regime, while minimizing this
variance in the mean-power-limited regime.

Theorem 1 also indicates that in order to apply the optimal
power control policy, the transmitter needs to know either r
and α or rα. Since EH = 1, rα can be easily obtained by
simply taking the average of the received power.

Corollary 1. Without peak power constraint, but with the
mean power limited to EP = 1, the optimal (DTS-minimizing)
random power control policy is

FP (x) =

{
1[1,∞)(x), θrα ≤ 1
(1− 1

θrα )1[0,θrα)(x) + 1[θrα,∞)(x), θrα > 1.

The exact value of the local delay depends on the dis-
tribution of the link distance R. An important case is the
Rayleigh distribution, since it is the distribution of the nearest-
neighbor distance in a 2-dimensional network, whose nodes
are distributed as a Poisson point process (PPP) [21]. It is
shown in [2] that with such a distribution of R, the local
delay is unbounded if Rayleigh fading is considered and no
power control is applied (except for the case of α = 2). The
natural question is whether random power control can make
the local delay finite in the same scenario, which is answered
by the following proposition.

Proposition 1. Without a peak power constraint, (random)
power control can reduce the local delay to be finite while
keeping the mean transmit power at each node unit even if
the link distance is Rayleigh distributed. However, with a peak
power constraint, power control cannot achieve a finite local
delay if the link distance is Rayleigh distributed and α > 2.

Proof: The first part (no peak power constraint) can be
shown by directly applying the result in Corollary 1. When
link distances are Rayleigh distributed, we have

D = E

[
1

ps|R

]

= 2πλ

∫ θ− 1
α

0

reθr
α−λπr2dr + 2πλθe

∫ ∞

θ− 1
α

rα+1e−λπr2dr

≤ e(1− e−λπθ− 2
α ) + θe(λπ)−

α
2 Γ
(α
2
+ 1, λπθ−

2
α

)
< ∞,

where Γ(·, ·) is the upper incomplete gamma function.
To show the second part, we realize that, with only a peak

power constraint, the minimum local delay is achieved when
the transmit power is Pmax at each link in each time slot.
Then the proposition trivially follows from the fact that any
constant power is not sufficient to keep the local delay finite
when the link distance is Rayleigh distributed and α > 2 [2].

B. Comparison of Random Power Control Schemes

In this subsection, we compare the DTS performance (in the
presence of Rayleigh fading) of several power control policies,
defined as follows:

Definition 3. The optimal power control (OPC) policy is the
power control policy defined in Theorem 1.

Definition 4. The peak power control (PPC) policy transmits
at power Pmax with probability P−1

max and does not transmit
with probability 1− P−1

max, regardless of the value of r.

Definition 5. The uniform power control (UPC) policy trans-
mits at power P each time with P uniformly distributed in
[1−Δ, 1 + Δ], where Δ � min{1, Pmax − 1}.

Definition 6. The hybrid uniform power control (HUPC)
policy transmits with probability 2

Pmax+1 . If transmitting, the
transmit power is uniformly distributed between 1 and Pmax.

Definition 7. The 1-bit power control (1BPC) policy transmits
at constant power (P = 1) when θrα ≤ logPmax

1−P−1
max

. When θrα >
logPmax

1−P−1
max

, the policy transmits at power Pmax with probability

P−1
max and does not transmit with probability 1− P−1

max.

While the peak power control (PPC) policy, the uniform
power control (UPC) policy, and the hybrid uniform power
control (HUPC) policy are all suboptimal, their complexity is
lower than OPC’s in the sense that they do not require the
link distance information R. Meanwhile, their constructions
are inspired by Theorem 1 in different ways. For example,
in the peak-power-limited regime PPC is the same as OPC.
The intuition behind HUPC is that Theorem 1 implies that for
all realizations of R it is always suboptimal to transmit with
power in (0, 1).

The 1-bit power control (1BPC) policy is proposed as a
trade-off between OPC and other kinds of power control
policies that do not utilize the link distance information. In
practice, although the link distance can always be measured,
its precise value might be difficult to acquire, e.g., it may
take too long to accurately measure. In such occasions, the
performance of OPC becomes difficult to realize, and 1BPC
turns out to be more suitable, since it only requires 1 bit of
information about the link distance.

The intuition of 1BPC lies in the observation that OPC is
constant power transmission in the mean-power-limited regime
and PPC in the peak-power-limited regime. Therefore, 1BPC
switches between these two types of power control policies,
utilizing the 1 bit information and achieving minimum DTS
in the two regimes. The switching point logPmax

1−P−1
max

is chosen in
a way that 1BPC always achieves the smaller DTS achievable
by either constant power transmission or PPC.

It is not difficult to find that if the link distance r is known
and OPC is applied, the conditional local delay is

Dr =

⎧⎨
⎩

Pmaxe
θrα

Pmax , θrα ≥ Pmax

θrαe, 1 < θrα < Pmax

eθr
α

, θrα ≤ 1.

In comparison, we can see that with constant power transmis-
sion, the conditional local delay is always equal to exp(θrα).
When Pmax ≥ 2, the transmit power of UPC is uniformly
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Fig. 3. Comparison of the conditional local delay for different power control
schemes. Here, Pmax = 4, θ = 1, α = 2.

distributed in [0, 2]. Its conditional local delay can be calcu-

lated as
(
exp(− 1

2θr
α)− 1

2θr
α
∫∞

1
2 θr

α

exp(−x)
x dx

)−1

. Straight-
forward (but tedious) manipulation reveals the conditional
local delay for HUPC to be

P 2
max − 1

2

(
Pmaxe

− θrα

Pmax − e−θrα − θrα
∫ θrα

θrα

Pmax

e−x

x
dx

)−1

.

The calculation of the conditional local delay for 1BPC is
similar to that of OPC.

Fig. 3 compares all the power control policies defined
above along with constant power transmission (P ≡ 1). The
parameters in the figure are chosen in a way that the mean-
power-limited regime is r < 1 and the peak-power-limited
regime is r > 2 for the sake of easy illustration. The figure
shows that in the peak-power-limited regime (large r) the
conditional local delay grows exponentially with r for all
power control policies. This is mainly due to the peak power
constraint. However, for different power control schemes the
exponent is quite different, which can result in many orders
of difference in the conditional local delay. As expected, in
this regime, OPC, PPC and 1BPC perform the best among all
schemes, and constant power transmission is the worst.

In the mean-power-limited regime (small r), the difference
in the conditional local delay between the different schemes
can be at most a factor of 4 (Fig. 3). Still, UPC and HUPC
perform between the two extremes. Fig. 3 also shows that
1BPC is not considerably inferior to OPC even in its subopti-
mal regime (1 < θrα < Pmax), and thus is a good substitute
for OPC in many cases.

IV. GENERAL FADING DISTRIBUTIONS

A. The Optimality of Random On-off

Results in Section III raise a more general question: Is the
random on-off policy still optimal in reducing the (conditional)
local delay if the fading is not Rayleigh? To answer this ques-
tion, this subsection derives more general sufficient conditions
for the optimality of random on-off policies. We use g(x) to
denote the pdf of the fading random variable H .

Lemma 4. For a given r, if there exists a constant ϑ < ∞
such that x

∫∞
x

g(θrαy)dy is strictly monotonically decreasing
for all x > ϑ, we have

F ∗(x) = F ∗(xM ), ∀x > xM ,

where F ∗(x) is the desired function as defined before, and
xM � max{P−1

max, ϑ}.

Proof: Using the definition of F̄P (x) and F ′(x) as before,
we have

P(HPr−α > θ) =

∫ ∞

0

F̄P

(
θrα

h

)
g(h)dh

= θrα
∫ ∞

0

F ′(x)g(θrαx)dx.

As in the proof of Lemma 1, we prove Lemma 4 by contra-
diction. Starting with simple functions, we write F ∗(x) as in
(11) and construct F̃ (x) as (12). Straightforward manipulation
shows∫ ∞

0

F̃ (x)g(θrαx)dx−
∫ ∞

0

F ∗(x)g(θrαx)dx

=

j∑
n=l+1

Δan
bn

(
xM

∫ ∞

xM

g(θrαx)dx− bn

∫ ∞

bn

g(θrαx)dx

)
,

(6)

where Δan � an − an−1. By the monotonicity of
x
∫∞
x g(θrαy)dy, (6) is strictly larger than zero, and thus the

lemma is proved for simple functions. The generalization to
non-simple functions is just as in Lemma 1.

A simple sanity check would be to consider the
Rayleigh fading case, where g(x) = exp(−x). Then,
x
∫∞
x

g(θrαy)dy = x
θrα exp(−θrα), which is strictly mono-

tonically decreasing for x ≥ 1
θrα . This retrieves Lemma 1.

Similarly, Lemmas 2 and 3 can be generalized as follows:

Lemma 5. For a given r, let ς be any constant such that
x
∫∞
x

g(θrαy)dy is strictly monotonically increasing for all
0 ≤ x < ς . Then the desired function F ∗(x) must have

F ∗(x) = 0, ∀x < xm,

where xm � min{1, ς}.

The proof is analogous to that of Lemma 4. For Rayleigh
fading, x

∫∞
x

g(θrαy)dy is strictly increasing for all 0 ≤ x ≤
1

θrα .

Theorem 2. Let Ḡ(x) denote the ccdf of H . If there exists
some x0 > 0, such that xḠ(θrαx) is strictly increasing
on [0, x0) and strictly decreasing on (x0,∞), the opti-
mal power control policy is a random on-off policy with
transmit power ξ and transmit probability ξ−1, where ξ �
max{1,min{Pmax, x

−1
0 }}.

Theorem 2 is simply a combination of Lemmas 4 and 5. In
Appendix B, we show that Nakagami-m fading satisfies the
condition in Theorem 2, which leads to the following corollary.

Corollary 2. The optimal power control policy for Nakagami-
m fading is a random on-off policy.



ZHANG and HAENGGI: DELAY-OPTIMAL POWER CONTROL POLICIES 3523

B. Peak-power-limited and Mean-power-limited Regimes

For a more general class of fading distributions, the condi-
tions in Theorem 2 may not be satisfied. The simplest example
may be the (discrete) fading distribution with pdf

g(x) = q1δ(x− h1) + q2δ(x− h2), (7)

where 0 ≤ h1 < h2 < ∞, q1h1 + q2h2 = 1, and q1 +
q2 = 1. Then, xḠ(x) = x1[0,h1/θrα)(x)+q2x1[h1/θrα,h2/θrα),
which does not satisfy the conditions in Theorem 2 for two
reasons: 1) there is no strict monotonicity for x > h2

θrα ; 2)
even if we relax the strictness requirement, there is still no
such x0 that xḠ(x) is monotonically increasing on [0, x0)
and decreasing on (x0,∞), as long as q2 > 0. Thus, results
so far are not applicable in this case. However, some of the
results can still be obtained in particular regimes of r even
when the conditions in Theorem 2 are not met.

Theorem 3. For a general fading distribution with ccdf
Ḡ(x), fixed threshold θ, and link distance r0, if xḠ(θrα0 x) is
monotonically decreasing for all x > P−1

max, the random on-off
peak power control policy with on power Pmax achieves the
minimum conditional local delay. Moreover, for all r > r0,
the same policy is still delay-optimal.

Proof: When the monotonicity of xḠ(θrα0 x) is strict, the
proof of the first part of Theorem 3 trivially follows from
Lemma 4, since F ′(x) = 0 ∀x < P−1

max. In the non-strict
case, Lemma 4 needs to be slightly generalized, i.e., (6) is
no longer strictly larger than zero. Yet, (6) is still no less
than zero, which ensures that the constructed F̃ (x) produces a
conditional local delay no larger than the minimum conditional
local delay. Thus, the first part is of the theorem is proved.

For the second part, let P−1
max < x1 < x2 and r > r0.

Letting x̂1 = ( r
r0
)αx1 and x̂2 = ( r

r0
)αx2, we have

x1

θrα

∫ ∞

θrαx1

g(t)dt =
θrα0
θrα

(r0
r

)α x̂1

θrα0

∫ ∞

θrα0 x̂1

g(t)dt

>
θrα0
θrα

(r0
r

)α x̂2

θrα0

∫ ∞

θrα0 x̂2

g(t)dt

=
x2

θrα

∫ ∞

θrαx2

g(t)dt,

where the inequality uses the monotonicity of
x
∫∞
x

g(θrα0 t)dt = x
θrα0

∫∞
θrα0 x

g(t)dt. Thus, the monotonicity

of x
∫∞
x

g(θrαt)dt is proved for all r > r0.
Note that Theorem 3 does not imply that, for general

fading, there must exist a peak-power-limited regime where
the random on-off peak power control (PPC) is delay-optimal.
To show this, one can consider a fading distribution with an
oscillating tail in the pdf, where xḠ(θrαx) does not have a
monotonic tail for all 0 < r < ∞.

Likewise, we can deduce the following theorem:

Theorem 4. Constant power transmission minimizes the con-
ditional local delay, if xḠ(θrα0 x) is monotonically increasing
for all x < 1. Moreover, the optimality still holds for all
r < r0.

For the particular example we raised at the beginning of
this subsection, where the fading coefficient has a pdf as in

(7), Theorems 3 and 4 indicate: 1) when Pmaxh2 < θrα,
the random on-off power control policy achieves minimum
conditional local delay; 2) when h1 > θrα, constant power
transmission minimizes local delay. These two facts are intu-
itive in this example. Because, when Pmaxh2 < θrα, even full
power transmission (P = Pmax) cannot achieve a successful
transmission, and thus the conditional local delay is always ∞.
When h1 > θrα, constant-power transmission (P = 1) always
succeeds. So, the minimum conditional local delay Dr = 1 is
achieved by such policy.

In addition to the toy example above, Theorems 3 and 4
are useful when the fading distribution has a very complicated
shape, making xḠ(θrαx) non-unimodal.

C. Numerical Approach

In general, when the fading distribution is very complicated
and the conditions in Theorems 3 and 4 are not satisfied,
the optimal power control policy is difficult to characterize
analytically. However, if there are only a finite number of
transmit power levels, the optimal policy can be found through
linear programming, and we have the following theorem.

Theorem 5. If the transmit power can P only be chosen from
a finite set of power levels W = {w0, w1, · · · , wN}, where
0 = w0 < w1 < · · · < wN = Pmax, and Ḡ(x) is the ccdf
of the fading coefficient H , then the optimal power control
policy is of the form

F ∗
P (x) =

N∑
k=0

pkwk, (8)

where (p0, p1, · · · , pN ) ∈ [0, 1]N+1 is the solution of the
following linear programing problem:

maximize
{pk,0≤k≤N}

N∑
k=0

pkḠ

(
θrα

wk

)

subject to pk ≥ 0, k = 0, . . . , N
N∑

k=0

pk = 1,

N∑
k=0

pkwk = 1.

The proof of Theorem 5 is straightforward and thus omitted
from the paper.

D. Examples

1) Nakagami-m Fading: The optimality of random on-off
in the presence of Nakagami-m fading is shown in Corol-
lary 2. Then, the implementation of the optimal policy hinges
on finding the corresponding x0, which is the solution of
Γ(m,mθrαx) = (mθrαx)me−mθrαx. Numerically solving
this equation yields the optimal policy as well as the mini-
mum conditional local delay. Fig. 4 compares the minimum
conditional local delay for different m (m = 1 is the Rayleigh
fading case). As expected, when r is small, a larger m yields a
lower conditional local delay, since there is less chance for the
channel to be in a bad condition. On the other hand, for large
r, Nakagami fading with a larger m has a larger conditional
local delay, since the chance of a particularly large channel
gain is considerably smaller than in the Rayleigh fading case.
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Fig. 4. Minimum conditional local delay for Nakagami-m fading, where
Pmax = 4, θ = 1, α = 2.

In particular, for any two curves in Fig. 4, there is a
crossover point slightly larger than r = 2. Before this point,
channel (fading) randomness increases the conditional local
delay, i.e., a larger m results in a smaller delay. After this
point, channel (fading) randomness helps reduce the condi-
tional localy delay, i.e., a larger m results in a larger delay.

2) Rician Fading and Lognormal Shadowing: The condi-
tions in Theorem 3 are not restrictive. In fact, almost all prac-
tical continuous fading distributions satisfy them although it
can be tedious to prove. In particular, apart from the Rayleigh
fading and Nakagami-m fading, two of the most common
types of fading, Rician fading and lognormal shadowing,
satisfy these conditions. In the following, we use the numerical
approach described in Theorem 5 to verify the optimality of
random on-off policies.

The ccdf of the Rician fading is Ḡ(x) = Q
(

s
σ ,

√
x
σ

)
, where

s2 is the line of sight (LOS) power component, 2σ2 is the non-
LOS power component, and Q(·, ·) is the Marcum Q function.
The mean power is the sum of these two power components.
Let K = s2/2σ2, and fix the mean of H to be one. The ccdf
can be written as

Ḡ(x) = Q(
√
2K,

√
2(K + 1)x). (9)

If H represents the effect of lognormal shadowing and
EH = 1, the ccdf of H is

Ḡ(x) =
1

2
− 1

2
erf

(
lnx+ σ2/2

σ
√
2

)
, (10)

where σ2 is proportional to the variance of the received power
in dB, and erf(·) is the error function.

Fig. 5 and Fig. 6 show the cdf of the optimal power control
policy for different link distances. For small link distances,
e.g., r = 0.5, constant power transmission is optimal. For large
distances, e.g., r = 2, peak power control (PPC) is optimal.
Between these two regimes, e.g., r = 1.5, the optimal policy is
a random on-off power control policy with a certain transmit
probability in [P−1

max, 1]. In any case, the random on-off policy
is optimal.
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Fig. 5. Numerically obtained F ∗
P (x), CDF of the optimal transmit power

distribution, for Rician fading. Here, Pmax = 4, θ = 1, α = 2, K = 1.
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Fig. 6. Numerically obtained F ∗
P (x), CDF of the optimal transmit power

distribution, for lognormal fading. Here, Pmax = 4, θ = 1, α = 2, σ = 1.

3) Local Anycast Delay: As mentioned in Section II-B,
the optimal policy in this paper can be directly applied as
the optimal policy that minimizes the local anycast delay. In
particular, we provide the following corollary which follows
from Theorem 2 and is proven in Appendix C.

Corollary 3. When the desired receivers are located at the
same distance to the transmitter and Rayleigh fading is
considered, the optimal policy that minimizes the local anycast
delay is a random on-off policy.

Similar to the Nakagami-m fading case, in general, there
is no closed form expression for the (optimal) transmit prob-
ability. However, this optimal configuration is implied by the
solution of d

dxL(x) = 0, where L(x) is defined in Appendix C.
Table I compares the transmit power ξ of the optimal

random on-off policy for different number of receivers and
different common link distances r. It shows that with a
larger number of desired receivers, the optimal policy tends to
reduce the transmit power of each transmission attempt while
increasing the transmit probability ξ−1.

Fig. 7 shows how the minimum local anycast delay de-
creases as more desired receivers are available. In both Table I
and Fig. 7, the case n = 1 corresponds to the single-link
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TABLE I
OPTIMAL TRANSMIT POWER ξ FOR ANYCAST WITH RAYLEIGH FADING,

WHERE Pmax = 4, α = 2, θ = 1.

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

r = 0.5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
r = 1.5 2.2500 1.8566 1.6352 1.4893 1.3841 1.3038
r = 2.5 4.0000 4.0000 4.0000 4.0000 3.8448 3.6218
r = 3.5 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000
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Fig. 7. Minimum local anycast delay in the Rayleigh fading case. Here,
Pmax = 4, θ = 1, α = 2.

Rayleigh fading case.

V. CONCLUSIONS

This paper provides a set of power control policies that
minimize the conditional local delay (or delay till success)
for channels with different fading statistics. We give sufficient
conditions under which the random on-off policy is optimal
and show that almost all common fading models satisfy these
conditions, including Rayleigh fading, Nakagami-m fading,
Rician fading and lognormal shadowing. These results nat-
urally lead to a solution for minimizing the local delay in
random but fixed wireless networks and also provide the
solution for minimizing the local anycast delay.

Although we focused on minimizing the DTS, given a
single-bit Automatic Repeat reQuest (ARQ), the optimal
policies derived also maximize the network throughput and
minimize the queueing delay. To see this, recall that (4)
shows that the optimal power control policy is the policy
that maximizes the transmission success probability of a link
of length r. For a single rate of transmission, the success
probability equals the long term throughput. Thus, given a
single-bit ARQ, the delay-optimal power control policies also
maximize the throughput in noise-limited networks. At the
same time, since the transmission success probability can
be interpreted as the service rate of the transmission queue,
with the ARQ, the DTS-minimizing power control policy
minimizes the queueing delay as well.

While the literature studying power allocation over time,
frequency or space is extensive, this paper shows that power
control can improve the performance of wireless communica-
tion through assigning transmit power in another dimension,
the probability space.

As in many cases the optimal policy derived in this paper
is a ‘peaky’ scheme (random on-off), our results bear inter-
esting relations to some of the results also suggesting ‘peaky’
transmissions, e.g., [22]–[24].

Although this paper focuses on noise-limited network, the
results are also applicable to wireless networks where inter-
ference is not negligible. On the one hand, the power control
schemes in this paper can be used as lower-layer power control
policies when concurrent transmissions are scheduled by an
upper layer interference-managing MAC scheme (e.g., CSMA,
LMAC [25], etc.). On the other hand, the optimality of random
on-off power control policies can also hold in networks with
interference. In particular, it can be shown that the random
on-off policies are single-node optimal and constitute Nash-
equilibria in interference-limited networks [26].

APPENDIX A
PROOF OF LEMMA 1

Proof: First, consider the case that F ∗(x) is a simple
function. Since, F ∗(x) is monotonically increasing, we can
write it as

F ∗(x) =
N∑
i=0

ai1[bi,bi+1)(x), (11)

where 0 = a0 < a1 < a2 < · · · < aN ≤ 1 and 0 = b0 < b1 <
b2 < · · · < bN+1 = ∞. Suppose there exists a x0 > xM , such
that F ∗(x0) �= F ∗(xM ), i.e., F ∗(x0) > F ∗(xM ), and assume
x0 ∈ [bj , bj+1), xM ∈ [bl, bl+1), for some l, j ∈ N such that
0 < l < j. Then, let

F̃ (x) � F ∗(x) −
j∑

n=l+1

(an − an−1)1[bn,∞)(x)

+ xM

j∑
n=l+1

an − an−1

bn
1[xM ,∞)(x). (12)

It can be easily verified that
∫∞
0 x−2F̃ (x)dx =∫∞

0 x−2F ∗(x)dx and F̃ (x) satisfies all the requirements for
a valid F ′(x) over [0,∞). Moreover,∫ ∞

0

e−θrαxF̃ (x)dx−
∫ ∞

0

e−θrαxF ∗(x)dx

=

∫ ∞

0

e−θrαxxM

j∑
n=l+1

an − an−1

bn
1[xM ,∞)(x)dx

−
∫ ∞

0

e−θrαx

j∑
n=l+1

(an − an−1)1[bn,∞)(x)dx

=

j∑
n=l+1

an − an−1

bnθrα

(
xM e−θrαxM − bne

−θrαbn
)
,

which is strictly larger than zero because of the monotonicity
of xe−θrαx at [ 1

θrα ,∞) and the fact that bn > xM ≥
1

θrα ∀n ≥ l + 1. This contradicts the assumption that F ∗(x)
is the function which maximizes

∫∞
0

F ′(x)e−θrαxdx and
satisfies all the constraints.

For general F ∗(x), consider a sequence of simple func-
tions (F ∗

k )
∞
1 such that F ∗

i < F ∗
j < F ∗, ∀i < j and



3526 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 11, NO. 10, OCTOBER 2012

limk→∞ F ∗
k = F ∗. By the monotone convergence the-

orem, limk→∞
∫∞
0

x−2F ∗
k (x)dx =

∫∞
0

x−2F ∗(x)dx and
limk→∞

∫∞
0 e−θrαxF ∗

k (x)dx =
∫∞
0 e−θrαxF ∗(x)dx. Using

the construction in the proof for the simple functions, we are
able to produce another sequence of simple functions (F̃k)

∞
1 ,

such that
∫∞
0 e−θrαxF̃k(x)dx >

∫∞
0 e−θrαxF ∗

k (x)dx, ∀k.
Meanwhile, limk→∞ F̃k �= F ∗, since F̃k(x0) = F̃k(

1
θrα ).

Thus, the limiting function of F̃k(x) is a strictly better
candidate for F ′(x) than F ∗(x).

APPENDIX B
THE OPTIMAL POWER CONTROL POLICY UNDER

NAKAGAMI-m FADING

Let K(x) = xΓ(m,mθrαx). With Theorem 2, the follow-
ing proposition is sufficient to prove Corollary 2.

Proposition 2. There exists a unique x0 ∈ (0, m+1
mθrα ), such

that d
dxK(x)|x=x0 = 0. K(x) is strictly increasing on (0, x0)

and strictly decreasing on (x0,∞).

Proof: Since K(x) is twice-differentiable, the monotonic-
ity in the proposition can be shown by evaluating the deriva-
tives of K(x). To prove the first part of the proposition, we
first notice that there must exist at least one x0 ∈ (0, m+1

mθrα ),
such that d

dxK(x)|x=x0 = 0. This is due to the continuity of
K(x) as well as the fact that K(0) = limx→∞ K(x) = 0 and
d

dxK(x)|x=0 = Γ(m) > 0.
In the following, we prove the uniqueness of x0 by con-

tradiction. Assume there is another point x1 �= x0 and
d

dxK(x)|x=x1 = 0. Without loss of generality, consider
x1 > x0 (otherwise, we can exchange the subscripts). Because
limt→∞ d

dxK(x)|x=t = 0 and

d2

dx2
K(x) = (mθrαx)me−mθrαx

(
mθrα − m+ 1

x

)
, (13)

which is strictly positive when x > m+1
mθrα , we must have

x0 < x1 < m+1
mθrα . However, (13) also indicates d

dxK(x)
is strictly decreasing on (0, m+1

mθrα ). Then, d
dxK(x)|x=x0 =

d
dxK(x)|x=x1 = 0 implies x0 = x1, which contradicts the
assumption that x1 �= x0.

Since K(x) is continuous and K(0) = limt→∞ K(t) = 0,
the uniqueness of x0 implies that there are at most two
monotonic region of K(x) over [0,∞). Combined with the
fact that d

dxK(x)|x=0 = Γ(m) > 0, we conclude that K(x)
is strictly increasing on [0, x0) and strictly decreasing on
[x0,∞).

APPENDIX C
LOCAL ANYCAST DELAY

In the Rayleigh fading case, the distribution of fading
coefficients Hi is exponential with unit mean. As we are
considering the case where the link distances to each of the
n desired receivers are the same, the cdf of max{Hir

−α
i }

is then G(x) = (1 − e−rαx)n, where r is the link distance.
Let L(x) � x(1 − G(θx)). With Theorem 2, the following
proposition suffices to show Corollary 3.

Proposition 3. There exists a unique x0, such that L(x)
is monotonically increasing on [0, x0] and monotonically
decreasing on [x0,∞).

Proof: Since L(x) is differentiable on [0,∞) and its
derivative is continuous, it suffices to show that there exists
a unique x0, such that d

dxL(x)|x=x0 = 0, and d
dxL(x) is

positive on [0, x0] and negative on [x0,∞). Observing that
limx→0+

d
dxL(x) > 0 and that d

dxL(x) approaches zero from
below when x → ∞, we can deduce the latter directly from
the former. Thus, the key is to show d

dxL(x) = 0 has a unique
solution on [0,∞).

This is proved in three steps: first, we show that there can
be at most one solution of d

dxL(x) = 0 on [0, 1
θrα ]; second,

we show there can be at most one solution of d
dxL(x) = 0 on

[ 1
θrα ,∞); third, we observe that cannot be two solutions of
d

dxL(x) = 0 on [0,∞).
First, d

dxL(x) can be expanded as

1− (1− e−θrαx)n − nθrαxe−θrαx(1 − eθr
αx)n−1,

which is strictly decreasing on [0, 1
θrα ] due to the monotonicity

of e−θrαx, the monotonicity of xe−θrαx on [0, 1
θrα ]. Thus

there cannot be more than one solution of d
dxL(x) = 0 on

[0, 1
θrα ].

Second, d
dxL(x) = 0 can be rearranged as 1 − (1 −

nθrαx)e−θrαx = (1 − e−θrαx)1−n, where the left side is a
strictly increasing function of x for x > n−1

nθrα and the right
side is a decreasing function of x. Thus, there can be at most
one solution of d

dxL(x) = 0 on [ 1
θrα ,∞) ∈ ( n−1

nθrα ,∞).
Third, there can be only an odd number of zero cross-

ings of d
dxL(x) on [0,∞) since d

dxL(x) is continuous,
limx→0+

d
dxL(x) > 0, and d

dxL(x) approaches zero from
below as x → ∞. Combining with results above, we conclude
there is a unique zero crossing of d

dxL(x) on [0,∞).
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