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Abstract—For communication between two neighboring nodes
in wireless networks, the local delay, which is defined as the time
it takes a node to successfully transmit a packet, is an important
quantity. Previous research focuses on the local delay in static or
infinitely mobile Poisson networks with ALOHA. In this paper,
we extend the local delay results to Poisson networks with finite
mobility. Bounds of the local delay in mobile Poisson networks are
derived for different mobility and transmission models. Although
mobility helps reduce the local delay, its impact depends on the
particular mobility model. The phase transition that marks the
jump of the local delay from finite to infinite is also characterized.

Index Terms—Interference, local delay, mobility, Poisson point
process.

I. INTRODUCTION

A. Motivation

In a wireless network, it is fundamentally necessary that
every node is able to successfully transmit messages to at
least one other node in the network in a finite amount
of time. Hence, the local delay, which is defined in [1],
[2] as the average time (in numbers of time slots) until a
packet is successfully transmitted, is an important quantity.
The local delay and its phase transition condition in static
Poisson networks are analyzed in [1]. The local delay in
power- and interference-limited networks is presented in [2].
Only two extreme cases are considered in their analysis: the
network is either completely static (nodes do not move after
initial placement), or infinitely mobile (a new and independent
Poisson point process (PPP) is drawn in each time slot).
However, no work has analyzed the local delay under practical
(finite) mobility models, which is the important intermediate
regime between the two extreme cases. In this paper, we extend
the local delay results to this practical regime. Each node has a
randomly chosen initial (home) location and a mobility region.
Due to the temporal correlation of the node locations and inter-
ference, the events of successful transmission are temporally
correlated, which strongly affects the local delay. Mobility
helps reduce the temporal correlation of the interference and
outage in large wireless networks [3]. Here, we evaluate its
impact on the local delay.

B. Related work

Besides the local delay analysis in static and infinitely
mobile Poisson networks [1], [2], the local delay in clustered
networks is analyzed in [4]. A set of power control policies

The authors are with the Wireless Institute, Department of Electrical
Engineering, University of Notre Dame, Notre Dame, IN 46556, USA (e-
mail: {zgong, mhaenggi}@nd.edu).

The support of the NSF (grants CNS 1016742 and CCF 1216407) is
gratefully acknowledged.

are provided in [5] to minimize the local delay in static
Poisson networks. The interference correlation due to long
transmission duration and the corresponding local delay
are evaluated in [6] using joint interference statistics. The
throughput/delay and power/delay tradeoffs for mobile ad hoc
networks have been evaluated in [7], [8] and [9], respectively.
A delay analysis for two-hop relay networks is presented
in [10]. The delay in buffered ALOHA networks has been
analytically characterized in [11].

Mobility models and their effects on the topology of ad
hoc networks are compared in [12]. The benefits of mobility in
wireless networks have been explored in terms of connectivity
[13], [14], coverage [15], and capacity [16]. However, no work
has analyzed the impact of node mobility on the local delay.

C. Main contributions

The main contributions of this paper are:
1) We calculate the local delay in mobile Poisson networks

with concrete results or bounds for the local delay for
deterministic, random static, and random time-variant
transmission distances.

2) We evaluate the effects of mobility on the local delay
under different mobility and transmission models.

3) We derive the range of network parameters under which
a finite local delay can be achieved.

D. Paper organization

The rest of the paper is organized as follows. We
introduce the system model in Section II. The local delay
for deterministic transmission distance is presented in Section
III. The local delay for random static transmission distance is
discussed in Section IV. Section V presents the local delay
for random time-variant transmission distance. Conclusions
are drawn in Section VI.

II. SYSTEM MODEL

A. Transmitter process

The potential transmitters in a network are randomly
distributed on R

2. Each of them has a home location and a
mobility region. The home locations form a PPP Φ̃ = {yi} ⊂
R

2 with intensity λ. Φ̃ is assumed temporally static. Nodes
make an excursion in the mobility region independently of
each other at each time t ∈ Z with a certain probability. The
definition of the mobility models will be given in Section
II-C. Hence at all times, the node locations form another
PPP Φt = {xi(t)} ⊂ R

2 (correlated with Φ̃) with the same
intensity λ. If a transmitter is scheduled to transmit at time
t, we assume that the transmission starts at the beginning of
that time slot. Each transmission is finished within one time
slot. Slotted ALOHA with parameter p > 0 is assumed as the
medium access control (MAC) protocol.
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B. Transmission scheme and receiver process

In Section III and IV, the receiver process does not affect the
local delay calculation, since the transmission distance in the
desired link is either deterministic or random static. In Section
V, we consider three transmission schemes: random bipolar,
quasi-nearest-receiver, and nearest-receiver models. Different
transmission schemes lead to different local delays in the
network.

1) Random bipolar model: We assume that each transmitter
has an assigned receiver. The receivers are situated at the home
locations of their assigned transmitters and stay fixed, i.e., the
receiver process is given by Ψ = Φ̃. Those receivers can be
thought of as randomly placed base stations. Each transmitter
keeps transmitting to the same receiver. Figure 1(a) shows a
realization of such a random bipolar network1.

2) Quasi-nearest-receiver model: Here each transmitter
conveys a message to a node that is close to the transmitter.
We denote the receiver process as Ψ = {zi}, which is a PPP
with intensity λ′ and independent of the transmitter process
Φt. (Those nodes in Φt that are not scheduled to transmit are
not available for reception.) Ψ is assumed temporally static.
Each transmitter xi chooses the receiver that is the closest to
its home location yi ∈ Φ̃, i.e., z∗i = argminz∈Ψ {‖z − yi‖}.
We use the term “quasi-” to indicate that the receiver selected
is not always the closest receiver to the transmitter’s current
position. A realization of the Poisson network with quasi-
nearest-receiver transmission is shown in Figure 1(b).

3) Nearest-receiver model: Different from the quasi-
nearest-receiver model, where the receiver is chosen based on
the distance to a transmitter’s home location, each transmitter
xi(t) always picks the receiver that is the closest to it, i.e.,
z∗i (t) = argminz∈Ψ{‖z − xi(t)‖} under the nearest-receiver
model. A realization of the Poisson network with nearest-
receiver transmission is shown in Figure 1(c).

The validity of quasi-nearest-receiver and nearest-receiver
models depends on the frequency with which the nodes
exchange their location information. If every node exchanges
its location with other nodes in each time slot t, we
choose the nearest-receiver transmission scheme. If nodes
do not (or seldom) exchange their location information,
the quasi-nearest-receiver model is more appropriate. Hence,
the difference between Figure 1(b) and 1(c) is that the
transmitter keeps transmitting to the same receiver under the
quasi-nearest-receiver scheme while it changes destinations
in different time slots under the nearest-receiver scheme.
Moreover, the transmission distance is not necessarily the
shortest among all the potential receivers under the quasi-
nearest-receiver scheme.

C. Mobility models

We use a constrained i.i.d. mobility (CIM) model, under
which each node has a home location and makes excursions
in a mobility region. Under CIM, the node locations in two
different time slots are independent given the node’s home

1The bipolar model usually has a fixed transmission distance (see Section
5.3 in [17]). In this model, however, the transmission distance is a random
variable due to mobility.

location. We denote the pdf of the excursions by fw(x). Two
specific models are considered.

Definition 1. The node locations under the uniform mobility
model (UMM) follow a uniform distribution in a ball of radius
a0 centered at the home location, i.e.,

fw(x) =

{
1

πa2
0

‖x‖ � a0

0 otherwise,
(1)

where ‖·‖ is the Euclidean distance.

The distance distribution between the home and the node
locations is then given by

fR(x) =

{
2x
a2
0

x � a0

0 otherwise.
(2)

Definition 2. The node locations under normal mobility model
(NMM) follow a symmetric normal distribution with variance
σ2 centered at the home location, whose pdf is given by

fw(x) =
1

2πσ2
exp

(
−‖x‖2

2σ2

)
. (3)

The distance distribution is given by the Rayleigh
distribution

fR(x) =
x

σ2
exp

(
− x2

2σ2

)
. (4)

We define vi(t) � ‖xi(t)− xi(t− 1)‖. Let

v̄i(t) � E [vi(t)] , ∀t ∈ Z.

Due to ergodicity and point process homogeneity, the mean
speed averaged over all nodes for a fixed time t is equal to
the mean speed averaged over time for a fixed node. Hence,
we drop i and t, and simply denote by v̄ the mean speed of the
node. For UMM, we have v̄ = 128a0/45π [18, (8)] and for
NMM, we obtain v̄ =

√
πσ. The mean speed v̄ is proportional

to a0 or σ.
The frequency at which nodes update their locations greatly

affects the network geometry and performance. If nodes update
their locations independently at time t with probability 1/K ,
where K > 1, i.e., xi(t) = yi + wi(t), where wi(t) is the
random excursion, and stay at their previous locations with
probability 1 − 1/K , i.e., xi(t) = xi(t − 1), we term this
model block mobility. If the nodes update their locations in
each time slot t, we then have xi(t) = yi + wi(t) (or K = 1
in the block mobility case). In order to distinguish the cases
where K > 1 and K = 1, we term K = 1 fast mobility. In
the analysis, the interfering transmitters are always assumed
mobile. The desired transmitter is assumed static in Section
III and IV, and assumed mobile in Section V.

D. Channel model and total interference

The attenuation in wireless channels is modeled as the
product of a large-scale path-loss component and a small-
scale fading component. The large-scale path-loss function
is given by ‖x‖−α, where α is the path loss exponent. For
the multi-path fading, we consider Rayleigh fading with pdf
fh(x) = exp(−x), where x � 0. The Rayleigh fading
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(b) Quasi-nearest-receiver model
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(c) Nearest-receiver model

Figure 1: Illustration of the three transmission models. The triangles represent potential receivers (shortened as “receivers”), and the crosses represent potential
transmitters (shortened as “transmitters”). The potential transmitter-receiver pairs are connected by dashed lines. The transmitters are mobile in a circular
region of radius a0 = 1. The dotted circles represent their mobility regions. The network intensity λ = 0.1. Under the random bipolar scheme (a), each
transmitter has an assigned receiver, whose location is the home location of the transmitter. Under quasi-nearest-receiver (b) and nearest-receiver (c) schemes,
the receiver process, whose intensity is λ′ = 0.07, is independent of the transmitter process. In (b), the assigned receiver is not always the nearest receiver
to the transmitter, and the transmitter keeps transmitting to the same receiver. In (c), however, the transmitter always transmits to its nearest receiver and thus
changes destinations, if another receiver is closer. (See the middle part of (b) and (c) as an example.)

assumption is valid even if a node has no macroscopic mobility
since multi-path fading is induced by slight changes in the
location or environment.

At time t, the total interference at the receiver (located at
z) is given by

I(t) =
∑
x∈Φt

Tx(t)hx(t) ‖x− z‖−α
, (5)

where Tx(t) is i.i.d. Bernoulli with parameter p due to
ALOHA and the multi-path fading hx(t) has mean Eh = 1.
The random variables I(t), t ∈ Z, are exchangeable [19].

E. Local delay definition

Let S be the static elements of a network. Assume the
desired receiver2 at the origin o, we let CS be the event that the
receiver is successfully connected to its assigned transmitter
in a single transmission conditioned on S. The conditional
success probability is given by

P(CS) = P(SIR > θ | S),
where θ is a given threshold. If the receiver fails to decode a
packet, it is retransmitted in the next scheduled transmission
slot. Conditioned on S, the success indicator random variables
are temporally i.i.d. Hence, the distribution of the conditional
local delay is geometric with mean P(CS)−1. The local delay
is then the expectation with respect to (w.r.t.) S:

D � ES

(
1

P(CS)
)
. (6)

D denotes the average number of slots that it takes the
transmitter to successfully convey a packet to the receiver.

2In Section III and IV the origin o does not belong to the receiver process
Ψ. In Section V, however, we need to slightly change the definition of the
local delay.

III. LOCAL DELAY FOR DETERMINISTIC TRANSMISSION

DISTANCE

In this section, we present some basic results on the local
delay, which will be used in the following sections. For
completeness, the conditional Laplace transform of I(t) given
S in static networks (v̄ = 0) is given by

L0(s | S) � LI(s | S = Φ) =
∏
x∈Φ

(
1− ps

‖x‖α + s

)
, (7)

whose derivation is presented in [2], and the unconditional
Laplace transform of I(t) in infinitely mobile networks (v̄ =
∞) is given by

L∞(s) � LI(s | S = ∅) = exp

(
−δλpπ2sδ

sin(πδ)

)
, (8)

where δ � 2/α.
We assume that the transmission distance is R. The

interfering transmitters are mobile following the mobility
models introduced in Section II-C. Given R, we calculate the
conditional local delay for the receiver at the origin. Two cases
are considered: fast mobility and block mobility.

A. Fast mobility

If the excursions wi(t) are i.i.d. across time and space,
the static elements of the network are S = Φ̃. We have the
following proposition about the conditional Laplace transform
of the interference and the conditional local delay.

Proposition 3. Given the static elements of a network S = Φ̃,
the conditional Laplace transform of the interference Lv(s |
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S) is given by3

Lv(s |S) � LI(s | Φ̃) =
∏
y∈Φ̃

(
1−ps

∫
R2

fw(x)

‖y + x‖α + s
dx

)
,

(9)
where fw(x) is the pdf of the excursion vector. Given a
transmission distance R, the conditional local delay is given
by

Dv(θ | R) =

1

p
exp

⎛
⎝λ∫

R2

⎛
⎝ 1

1− pθRα
∫
R2

fw(x)
‖y+x‖α+θRα dx

− 1

⎞
⎠dy

⎞
⎠ .

(10)

Proof: From (5), the total interference at the origin is
given by

I(t) =
∑
x∈Φt

Tx(t)hx(t) ‖x‖−α =
∑
y∈Φ̃

Ty(t)hy(t) ‖y + w‖−α .

The conditional Laplace transform of the interference given Φ̃
is thus given by

LI(s | Φ̃) = E

[
e−sI(t) | Φ̃

]
(a)
= E

⎡
⎣exp

⎛
⎝−s

∑
y∈Φ̃

Tyhy ‖y + w‖−α

⎞
⎠
∣∣∣∣∣∣ Φ̃

⎤
⎦

(b)
= exp

⎛
⎝∑

y∈Φ̃

log

(
1−ps

∫
R2

fw(x)

‖y + x‖α + s
dx

)⎞⎠
=

∏
y∈Φ̃

(
1− ps

∫
R2

fw(x)

‖y + x‖α + s
dx

)
,

where (a) holds since the interferences I(t) are exchangeable;
(b) follows from [20, Lemma 16.6.5] and averaging over the
random excursions. Furthermore, we have

Dv(θ | R) � EΦ̃

(
1

pLI(s | Φ̃)

)∣∣∣∣
s=θRα

,

where the term pLI(s | Φ̃) is the probability that the sched-
uled transmitter successfully transmits a packet. (10) is then
imminent from (9) using the probability generating functional
(pgfl) of the PPP.

The following corollary is then straightforward.

Corollary 4. Given a transmission distance R, the local delay
is lower bounded by

Dv(θ | R) � D∞(θ | R).

Proof: From the definition of the local delay, we have

Dv(θ | R)
(a)

� 1

pEΦ̃

(
LI(θ | Φ̃)

) =
1

pL∞(θ)
= D∞(θ | R),

(11)
where (a) holds due to Jensen’s inequality.

3Similar to L0(s | S) and L∞(s), the subscript v in Lv(s | S) indicates
a mobile network, where the nodes are with finite mean speed.

The following proposition provides an upper bound of
Dv(θ | R).

Proposition 5. Let a = a0 under UMM and a =
√
2σ

under NMM. The conditional local delay given a transmission
distance R is upper bounded by

Dv(θ | R) �
{

1
p exp

(
λπpγa2R2

πa2−pγR2

)
aβ > R

D0(θ | R) otherwise,
(12)

where

D0(θ | R) =
1

p
exp

(
λpγR2

q1−δ

)
, (13)

q = 1− p, and

γ � δπ2θδ

sin(πδ)
(14)

is the spatial contention (see [2, (4)]), and β �√
(1− q1−δ)π/pγ.

Proof: See Appendix I.
D0(θ | R) is identical to [2, (23)] and always finite for any

given R and θ, so is Dv(θ | R). When a � Rβ−1 (a = a0
under UMM and a =

√
2σ under NMM), we use D0(θ | R)

(the static case) to bound the local delay. If a > Rβ−1, a
tighter upper bound is provided in (12).

Propositions 3 and 5 present generalized expressions of
the conditional Laplace transform of the interference I and
the conditional local delay in mobile networks4 given a
transmission distance. (11) and (12) are corresponding lower
and upper bounds, respectively, since the network realizations
endure maximum temporal correlation in the static case and
are mutually independent in the infinitely mobile case.

To demonstrate the impact of even a very low level of
mobility, we calculate the slope of Dv(θ | R) at a = 0. Under
UMM, for example, the sensitivity of Dv(θ | R) at a0 = 0 is
given by

∂Dv(θ | R)

∂a0

∣∣∣∣
a0=0

= −∞.

This shows that the local delay decreases drastically with small
excursions from the interferers since the uncertainty induced
by mobility greatly reduces the temporal correlation of the
interference. An identical result also holds for NMM. Figure 2
shows the local delay as a function of the mean speed v̄ under
UMM and NMM. The simulation curves and upper bounds
show the results for the intermediate mobility regime between
the static case and the infinitely mobile case. Random mobility
of the interferers positively affects the network performance
(in terms of the local delay). Long local delays are due to the
high temporal correlation of the interference and thus outage,
and the random mobility reduces such correlation [3]. The
more uncertainty the mobility induces, the less correlated the
outage. Therefore, fewer transmission attempts are necessary.
Both lower and upper bounds in (11) and (12) get tight as the
mean speed v̄ increases.

4Recall that mobility models only apply to interferers in this section.
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(a) UMM case
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Figure 2: The conditional local delay Dv(θ | R) as a function of the mean
speed v̄ under UMM and NMM. v̄ = 128a0/45π for UMM and v̄ =

√
πσ

for NMM. The simulation result is the solid curve. The dashed curve is an
upper bound from (12). The dotted line is the infinitely mobile case, which
provides a lower bound. The static case (v = 0) is represented in a triangle.

B. Block mobility

In the previous analysis we assumed fast mobility, where
nodes update locations in every time slot. However, this may
not be an appropriate assumption for all networks. In a heavy-
traffic network, for example, a large number of packets are
transferred before a node makes a significant location change.
Another example is a mobile network with low speed. In
these cases, it is reasonable to use the block mobility model,
which includes dwell slots. A node updates its location with
probability 1/K , where K > 1, and stays in its previous
location with probability 1− 1/K . K is the average location
coherence time. The multi-path fading component, however, is
i.i.d. in different time slots. Again, slotted ALOHA is assumed
as the MAC scheme.

For any time t ∈ Z, we partition the transmitter process Φt

into two PPPs,

Φt,1 = {xi(t) ∈ Φt : xi(t) 	= xi(t− 1)}

and

Φt,2 = {xi(t) ∈ Φt : xi(t) = xi(t− 1)} .

The nodes in Φt,1 update their locations in time t while the
nodes in Φt,2 do not move. Φt,1 and Φt,2 are independent
with intensities λ/K and λ(K − 1)/K , respectively, due to
the independent thinning of the PPP. The total interference is
then given by

I(t) =
∑

x∈Φt,1

Txhx ‖x(t)‖−α +
∑

x∈Φt,2

Txhx ‖x(t)‖−α

=
∑
y∈Φ̃1

Tyhy ‖y + wy(t)‖−α +
∑

x∈Φt,2

Txhx ‖x(t)‖−α ,

where Φ̃1 is the home location process of the nodes in Φt,1. In
this case, the static elements S in the network are S = Φ̃1∪Φ2.
We have the following corollary about the conditional Laplace
transform of the interference I and the conditional local delay
for a given R under the block mobility case.

Corollary 6. Given the static elements of a network S =
Φ̃1 ∪ Φ2, where Φ̃1 and Φ2 are independent, the conditional
Laplace transform of the interference I(t) is given by

LI(s | S) = Lv(s | Φ̃1)L0(s | Φ2), (15)

where Lv(·) and L0(·) are from (9) and (7), respectively. Let
a = a0 under UMM and a =

√
2σ under NMM. Given the

transmission distance R, the conditional local delay is upper
bounded by

DK(θ |R) �

⎧⎪⎪⎨
⎪⎪⎩
D0(θ |R) · exp

(
λpγR2

K

(
πa2

πa2−pγR2 − 1
q1−δ

))
aβ > R

D0(θ | R) otherwise,
(16)

where the spatial contention γ is from (14), β �√
(1− q1−δ)π/pγ, and D0(θ | R) is from (13).

Proof: LI(s | S) in (15) is straightforward due to the
independence property of Φ̃1 and Φ2. For the local delay, we
have

DK(θ |R) =
1

p
EΦ̃1

(
1

LI(s | Φ̃1)

)
EΦ2

(
1

LI(s | Φ2)

)∣∣∣∣
s=θRα

.

The rest of the steps follow the proofs of (10) and (12) in
Propositions 3 and 5, respectively.

Figure 3 shows the local delay as a function of the mean
location coherence time K under both UMM and NMM. The
mean speed in the simulations is set at v̄ = 7/K . The mean
speed decreases with the increase of the mean coherence time
K , since the average hop length of nodes (if the node moves)
is kept constant. The mean coherence time K greatly affects
the local delay in the low K regime, while its impact shrinks in
the high K regime. (16) provides a tight upper bound and thus
can be used to approximate the intermediate results between
the static and fast mobility cases. For the case where the dwell
time is a constant, the local delay can be analyzed through
similar steps.
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Figure 3: The conditional local delay DK(θ | R) as a function of the mean
location coherence time K under UMM and NMM. The simulation and an
upper bound from (16) are marked by circles and solid curve, respectively.
The dashed line is the static case.

IV. LOCAL DELAY FOR RANDOM STATIC TRANSMISSION

DISTANCE

In the previous section, we evaluated the local delay for a
given transmission distance R. If R itself is a random variable,
we can average over the random distance by

Dv = ER [Dv (θ | R)] .

Note that we still do not consider mobility in the desired
link (mobility models only apply to the interferers). The
randomness of R is due to the spatial averaging over different
network realizations. In the rest of the paper, we assume fast
mobility at the interferers. Block mobility (K > 1) can be
treated similarly by replacing Dv(θ | R) by DK(θ | R). As
already defined in Section II-E, the desired receiver is located
at the origin o. If the location of the desired transmitter is
uniformly distributed, we have the following proposition about
the local delay.

Proposition 7. Assume that the desired transmitter is
uniformly distributed around o with radius a0 so that R is
distributed as given in (2), and the interferers follow UMM.
The local delay for β =

√
(1− q1−δ)π/pγ < 1 is upper

bounded by

DFMOI,a0 � π

γp2

(
1− q1−δec̄u(q

δ−1−1)
)
+

πc̄ue
−c̄u

γp2
(
Ei

(
c̄uq

δ−1
)− Ei(c̄u)

)
+

πq1−δ

γc̄up2

(
e

c̄upγ

πq1−δ − ec̄u(q
δ−1−1)

)
, (17)

where Ei(x) �
∫ x

−∞ t−1etdt, c̄u � λπa20 is the mean number
of nodes in a circular region of radius a0, and “FMOI” is
the abbreviation of “fast mobility only at interferers”.

For β � 1, the local delay is upper bounded by

DFMOI,a0 � π

γp2

(
1− (1− pγ

π
)e

c̄upγ
π−pγ +

c̄ue
−c̄u

(
Ei

(
πc̄u

π − pγ

)
− Ei(c̄u)

))
. (18)

The local delay is lower bounded by

DFMOI,a0 � π

γc̄up2

(
e

c̄upγ
π − 1

)
. (19)

Proof: See Appendix II.
Similarly we have the following proposition, if the location

of the desired transmitter is normally distributed.

Proposition 8. Assume that the desired transmitter is normally
distributed around o with parameter σ so that the distribution
of R is given in (4), and the interferers follow NMM. Let
β =

√
(1− q1−δ)π/pγ. The local delay is upper bounded by

DFMOI,σ <
π

γp2
exp

((
q1−δ − 1

)( π

pγ
− c̄nq

δ−1

))
·(

1− q1−δ +
pγ

π − pγc̄nqδ−1

)
, (20)

if 2σ2 < q1−δ/λpγ, where c̄n � 2λπσ2, and lower bounded
by

DFMOI,σ � π

p (π − c̄npγ)
, (21)

if 2σ2 < 1/λpγ. The local delay is infinite for 2σ2 >
q1−δ/λpγ.

Proof: See Appendix III.
The local delay is always finite if the location of the

desired transmitter is uniformly distributed, since the support
of transmission distance R is finite. Figure 4 corroborates
the observation. This observation can be extended to any pdf
of R via Proposition 5 as long as it has finite support. If
the location of the desired transmitter is normally distributed,
however, the local delay is finite only if 2σ2 < q1−δ/λpγ. If
the randomness of the transmission distance induces too much
uncertainty in the typical link, the local delay becomes heavy-
tailed. The infinity of the local delay does not imply that a
node can not convey a message to other nodes in the network
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in a finite time. However, it implies that the distribution of the
local delay is heavy-tailed.

The next proposition contrasts the local delay for mobility
only at interferers with the result for static networks.

Proposition 9. If the location of the desired transmitter is
uniformly distributed, the local delay in a static network is
given by

Dstatic,a0 =
πq1−δ

c̄uγp2

[
exp

(
c̄upγ

πq1−δ

)
− 1

]
. (22)

If the location of the desired transmitter is normally
distributed, the local delay is finite if 2σ2 < q1−δ/λpγ and
given by

Dstatic,σ =
πq1−δ

p (πq1−δ − c̄npγ)
. (23)

Proof: In a static network, the static elements in the
network are S = Φ. Given a transmission distance R, the
local delay is given by D0(θ | R), which is from (13).
Deconditioning on the random variable R in (13) using (2),
we have

Dstatic,a0 =

∫ a0

0

2r

a20
D0(θ | r)dr,

which yields (22). Similarly for the Rayleigh pdf of R given
in (4), we have

Dstatic,σ =

∫ ∞

0

r

pσ2
exp

(
λpγr2

q1−δ
− r2

2σ2

)
dr.

The integral is finite if 2σ2 < q1−δ/λpγ. (23) then follows
from straightforward calculations.

We denote by DFMOI,a0 and DFMOI,σ the upper bounds of
the local delay given in Proposition 7 and 8, respectively. We
then have the following corollary.

Corollary 10. For a0 → ∞, DFMOI,a0 and Dstatic,a0 have
the following relationship

DFMOI,a0 =

{
Θ(Dstatic,a0) β < 1

o (Dstatic,a0) β � 1.
(24)

For σ =
√

q1−δ

2λpγ , we have

DFMOI,σ

Dstatic,σ

∣∣∣∣
σ=

√
q1−δ

2λpγ

= 1. (25)

Proof: See Appendix IV.
We define R̄ � E[R] as the mean transmission distance.

Figures 4 shows the local delay as a function of R̄ for both
β < 1 and β � 1. We find that mobility at the interferers helps
reduce the local delay. However, the local delay is dominantly
affected by the distribution of the transmission distance.

V. LOCAL DELAY FOR RANDOM TIME-VARIANT

TRANSMISSION DISTANCE

In this section, we evaluate the local delay under several
transmission schemes. Conditioned on o ∈ Φ̃, the success
probability given the static element S is given by

P
o (CS) = P

o (SIR > θ | S) ,
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Figure 4: The local delay as a function of the mean transmission distance
R̄ = E[R], where a0 = 45πR̄/128 and σ = R̄/

√
π. The solid curve shows

the simulation results for fast mobility only at interferers with their upper and
lower bounds in circles and dashed lines, respectively. The crosses are the
static case.

where P
o(·) is the Palm distribution [17]. The local delay is

then given by

D � E
o
S

(
1

Po(CS)
)
.

A. Random bipolar model

Here, we evaluate the local delay under the random bipolar
model, which is described in Section II-B. It is complicated to
analyze the case of fast mobility in both desired and interfering
links directly. Hence we consider a joint random variable G �
hR−α, since the macroscopic mobility in wireless networks
can be treated as another source of uncertainty in addition to
multipath fading [3], [21]. Given the static elements in the
network S = Φ̃, the conditional success probability is

P
o(G > θI(t) | Φ̃) = EG

[
P
o
(
I(t) < θ−1G | G, Φ̃

)]
.
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In order to evaluate the local delay, we need the following
lemma.

Lemma 11. For a static network (the static elements in the
network S = Φ), we have the following relationship of the
conditional success probability

EG

[
P
o
(
I(t) < θ−1G | G,Φ

)]
� P

o
(
I(t) < θ−1

E[G] | Φ) .
(26)

Proof: See Appendix V.
Deconditioning on the point process leads to the following

proposition.

Proposition 12. The local delay under the random bipolar
model is always finite, i.e.,

Dv = E
o
Φ̃

⎡
⎣ 1

pEG

[
Po

(
I(t) < θ−1G | G, Φ̃

)]
⎤
⎦ < ∞.

Proof: The local delay under the random bipolar model
is given by

E
o
Φ̃

⎡
⎣ 1

pEG

[
Po

(
I(t) < θ−1G | G, Φ̃

)]
⎤
⎦

� E
o
Φ

[
1

pEG [Po (I(t) < θ−1G | G,Φ)]

]
(a)

� E
o
Φ

[
1

pPo (I(t) < θ−1E[G] | Φ)
]

< ∞,

where (a) holds due to Lemma 11.
The simulation results under the fast mobility case are

shown in Figure 5. For comparison, we also show the
conditional local delay for a given transmission distance R,
where R = v̄. The benefit of fast mobility is obvious from the
figure, since the nodes take advantage of spatial diversity in the
desired link and mobility reduces the temporal correlation of
interference in the interfering links. We notice from the figures
that the local delay increases with the mean speed v̄. This is
because the long transmission distance more than offsets the
benefit of the spatial diversity of the desired transmitter. An
alternative way is to let a transmitter talk to the receiver that
is close to it, as explored in the next subsection.

B. Quasi-nearest-receiver (QNR) transmission

Here, we assume that each transmitter tries to talk to its
quasi-nearest receiver whose home location is the closest to
the receiver. We only discuss UMM. Recall from Section II-B2
that the potential receiver process Ψ is a PPP with intensity
λ′ = qλ. The assumption maintains the same density of
receivers as the nodes that are not scheduled for transmission.
Ψ is independent of the transmitter process Φt. We assume the
typical transmitter has its home location at the origin o and
denote by R0 the distance between the home location of the
transmitter to its quasi-nearest receiver. To calculate the local
delay under the quasi-nearest-receiver transmission, we need
the following lemma.
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Figure 5: Local delay under the random bipolar model for UMM and NMM.
For comparison, the conditional local delay for a fixed transmission distance
R = v̄ is also included, where the upper bound is from (12) with R = v̄.

Lemma 13. Let R0 denote the distance between the home
location of the typical transmitter to its quasi-nearest receiver
and a0 denote the radius of the mobility region of the
transmitter. Given R0, upper and lower bounds of the local
delay under the quasi-nearest-receiver transmission are given
by Dv(rmax) and D∞(rmin), where rmax = R0 + a0 and
rmin = max{0, R0 − a0}.

Proof: The lemma is proved by evaluating the local delay
at two extreme points in the mobility region.

Based on the Rayleigh distribution of R0 obtained in [22],
we have the following proposition.

Proposition 14. A lower bound of the local delay under quasi-
nearest-receiver transmission is given by

DQNR =
1

p

(
1− e−qc̄u

)− 2πqλ

p
exp

(
pqγc̄u
qπ − pγ

)
·

φ

(
a0,

a0pγ

qπ − pγ
,
pγ − qπ

π

)
, (27)
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if p < π/ (π + γ), where

φ(x,m, s) =

∫ ∞

x

t exp
(
s(t+m)2

)
dt,

= m

√
π

−s

(
1

2
erf

(
x√
2σ2

− 1

2

))
−

1

2s
exp

(
s (x+m)

2
)
, s < 0. (28)

For β � 1, an upper bound of the local delay is given by

DQNR =
2πqλ

p
exp

(
pqγc̄u

q2−δπ − pγ

)
·

φ

(
0,

pγa0
pγ − q2−δπ

,
λ
(
pγ − q2−δπ

)
q1−δ

)
, (29)

if q2−δ/p > γ/π, where φ(x,m, s) is from (28).
For β > 1 , we have an upper bound

DQNR =
1

p

∫ (β−1)a0

0

ϕ(x)dx +

2πqλ

p
exp

(
pqγc̄u

q2−δπ − pγ

)
·

φ

(
(β − 1)a0,

pγa0
pγ − q2−δπ

λ
(
pγ − q2−δπ

)
q1−δ

)
,

(30)

if q2−δ/p > γ/π, where

ϕ(x) = fR0(x) exp

(
pγc̄u(x+ a0)

2

a20π − pγ(x+ a0)2

)
(31)

and fR0(x) = 2πqλxe−πqλx2

.

Proof: From Lemma 13, a lower bound of the local delay
is

DQNR =
1

p

∫ a0

0

fR0(x)dx +

∫ ∞

a0

fR0(x)D∞(x− a0)dx.

The integral is finite if p < π/ (π + γ). On the other hand, an
upper bound of the local delay is given by

DQNR =

∫ ∞

0

fR0(x)Dv(x+ a0)dx.

The integral is finite if q2−δ/p > γ/π. The rest of the
calculation is straightforward.

Figure 6 shows the local delay as a function of the
MAC parameter p in mobile networks under quasi-nearest-
receiver transmission. For comparison, the local delay in static
networks is also included. From the figure, we observe that
fast mobility reduces the local delay (compared to the static
case), but it helps little to keep the local delay finite. This is
due to the fact that the mobility induces limited diversity under
the quasi-nearest-receiver transmission. For other transmission
schemes such as quasi-nearest-neighbor transmission etc., we
can calculate bounds of the local delay in similar ways.
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Figure 6: The local delay as a function of the transmission probability p under
quasi-nearest-receiver and nearest-receiver transmission schemes. The crosses
and circles are the simulation results of QNR and NR schemes, respectively.
The dotted line is an upper bound of the local delay under the QNR scheme
(see (29) and (30)). The dashed line is the static case from [2, (24)]. The solid
curve is a lower bound of the local delay under the QNR scheme (see (27)).

C. Nearest-receiver (NR) transmission

If each transmitter always tries to talk its nearest receiver,
we have the following proposition about the local delay.

Proposition 15. The local delay under nearest-receiver
transmission DNR is lower and upper bounded by

DQNR � DNR � DQNR, (32)

where DQNR is from (27).

Proof: Conditioned on that the quasi-nearest receiver of
the typical transmitter is at (R0, 0), there are no other receivers
in the ball of B(o,R0), where the origin o is the center of the
ball and R0 is the radius. Hence, even if the typical transmitter
always chooses its nearest receiver, the transmission distance
is not less than rmin = max{R0 − a0, 0}, where a0 is the
mobility radius of the transmitter. DNR is then lower bounded
by DQNR. On the other hand, the typical transmitter changes
the destination in different time t, if there is another receiver
that is closer to the transmitter than the quasi-nearest receiver
when the transmitter moves. The spatial correlation of the
interference at different receivers is (much) lower. Hence,
the local delay under nearest-receiver transmission is upper
bounded by DQNR.

Figure 6 shows the simulation results of the local
delay under nearest-receiver transmission, which corroborates
Proposition 15.

VI. CONCLUSIONS

In this paper, we have evaluated the local delay in
mobile Poisson networks for deterministic, random static, and
random time-variant transmission distance. The results provide
generalized expressions in addition to the two previously
explored cases of static and infinitely mobile networks. Fast
mobility has been shown to reduce the local delay in Poisson
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networks since the mobility of the interferers decreases the
spatio-temporal correlation of the interference and outage, and
mobility from the desired transmitter induces spatial diversity
during transmission. The uniform and normal mobility models
as specific examples lead to quantitively different local delay,
even if the mean speeds of the nodes under two models
are at an identical level. The range of network parameters
under which a finite local delay can be achieved has also
been derived, which depends on different mobility models and
transmission schemes. Furthermore, the frequency with which
the nodes make significant changes in locations greatly affects
the local delay performance. The more frequently the nodes
update their location, the fewer attempts a transmitter needs
for packet transmission.

APPENDIX I

Here, we present the proof of Proposition 5. We first prove
a general (looser) upper bound that Dv(θ | R) � D0(θ | R).
Since ∫

R2

fw(x)

‖y + x‖α + θRα
dx � 1

‖y‖α + θRα
,

we have

Dv(θ | R) � lim
a→0

EΦ̃

(
1

pLI(θ | Φ̃)

)

=
1

p
exp

(
δπ2pλθδR2

q1−δ sin(πδ)

)
= D0(θ | R).

Next we prove a tighter upper bound for large a (a = a 0

under UMM, and a =
√
2σ under NMM). We first consider

UMM. From (1) and (10), we have

Dv(θ | R)

=
1

p
exp

⎛
⎝λ∫

R2

⎛
⎝ 1

1− pθRα
∫
R2

fw(z−y)
‖z‖α+θRα dz

−1

⎞
⎠dy

⎞
⎠

=
1

p
exp

(
λ

∫
B(0,a0)

(
1

1− pθRα

πa2
0

∫
B(y,a0)

1
‖z‖α+θRα dz

−1

)
dy

)
·

exp

(
λ

∫
R2\B(0,a0)

(
1

1− pθRα

πa2
0

∫
B(y,a0)

1
‖z‖α+θRα dz

−1

)
dy

)

(33)
(a)

� 1

p
exp

(
λ

∫
B(0,a0)

(
1

1− pθRα

πa2
0

∫
R2

1
‖z‖α+θRα dz

− 1

)
dy

)
,

a0>R

√
pγ

π
(34)

=
1

p
exp

(
λπa20pγR

2

πa20 − pγR2

)
, a0 > R

√
pγ

π
, (35)

where (a) holds when a0 > R
√
pγ/π due to the fact that o /∈

lima0→∞ B(ca0, a0) for any c > 1; the second exponential
component in (33) hence goes to 0 for large a 0. On the other
hand, we have another upper bound D v(θ | R) � D0(θ | R).
Taking the minimum of (35) and D0(θ | R) yields (12), since
πa2(1 − q1−δ) > pγR2 implies that πa2 > pγR2.

For NMM, we have

Dv(θ | R)

=
1

p
exp

⎛
⎝λ∫

R2

⎛
⎝ 1

1− pθRα

2πσ2

∫
R2

exp(−‖z−y‖2/2σ2)
‖z‖α+θRα dz

−1

⎞
⎠dy

⎞
⎠

(a)

� 1

p
exp

(
λ

∫
R2

(
1

1− pθRα

2πσ2

∫
B(y,

√
2σ)

1
‖z‖α+θRα dz

−1

)
dy

)

(b)

� 1

p
exp

(
2λπσ2pγR2

2πσ2 − pγR2

)
, σ > R

√
pγ

2π
, (36)

where (a) holds since the non-negative function 1/ (‖x‖α + θ)
is monotonically decreasing with the increase of ‖x‖,
the fact that the indicator function 1(‖x‖ �

√
2σ) �

exp
(
−‖x‖2 /2σ2

)
for ∀x ∈ B(0,

√
2σ), and

∫
R2 1(‖x‖ �√

2σ)dx =
∫
R2 exp(−‖x‖2 /2σ2)dx; (b) follows from the

proof of (35).

APPENDIX II

Here, we present the proof of Proposition 7. For a given
transmission distance R, an upper bound of the conditional
local delay Dv(θ | R) is given in (12). If the location of the
desired transmitter is uniformly distributed, we obtain

DFMOI,a0 �
∫ a0

0

fR(r)Dv(θ | r)dr

=

⎧⎪⎪⎨
⎪⎪⎩

1
pa2

0

∫ β2a2
0

0 exp
(

c̄ux
πa2

0−pγx

)
dx+

1
a2
0

∫ a0

βa0
2xD0(θx

α)dx β < 1

1
pa2

0

∫ a2
0

0
exp

(
c̄ux

πa2
0−pγx

)
dx β � 1,

where fR(r) is from (2). On the other hand,

DFMOI,a0 �
∫ a0

0

fR(r)D∞(θ | r)dr,

where D∞(θ | r) is from (11). The rest of the steps are
straightforward.

APPENDIX III

Here, we present the proof of Proposition 8. Similar to the
proof of Proposition 7, the local delay is lower bounded by

DFMOI,σ �
∫ ∞

0

1

2σ2p
exp

(
− x

2σ2
+ λpγx

)
dx.

The integral is bounded if 2σ2 < 1/λpγ. On the other hand,
the local delay is upper bounded by

DFMOI,σ

�
∫ 2β2σ2

0

1

2σ2p
exp

(
− x

2σ2
+

c̄npγx

2πσ2 − pγx

)
dx+∫ ∞

2β2σ2

1

2σ2p
exp

(
− x

2σ2
+

λpγx

q1−δ

)
dx

(a)
=

π exp
((

q1−δ − 1
) (

π
pγ − c̄nq

δ−1
))

p (π − pγc̄nqδ−1)
+

exp(− π
pγ − c̄n)

2σ2p

∫ 2πσ2/pγ

2πσ2q1−δ/pγ

exp

(
x

2σ2
+

2c̄nσ
2π

pγx

)
dx,
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where (a) holds when 2σ2 < q1−δ/λpγ. For small σ, we
obtain

∫ 2πσ2/pγ

2πσ2q1−δ/pγ

exp

(
x

2σ2
+

2πσ2c̄n
pγx

)
dx

≈
2πσ2

pγ

(
1− q1−δ

)
exp

(
πq1−δ

pγ
+ c̄nq

δ−1

)
.

APPENDIX IV

Here, we present the proof of Corollary 10. Based on (22),
it is straightforward to find that for a0 → ∞,

Dstatic,a0 = Θ

⎛
⎝exp

(
c̄upγ
πq1−δ

)
c̄u

⎞
⎠ .

For β < 1, DFMOI is given in (17). We have

lim
a0→∞

DFMOI,a0 c̄u

exp
(

c̄upγ
πq1−δ

) (a)
= lim

a→∞
c̄2u
∫ c̄uq

δ−1

c̄u
exp(t)/tdt

exp
(
c̄u(πq1−δ+pγ)

πq1−δ

) +
πq1−δ

γp2

(b)
=

πq1−δ

γp2
< ∞,

where (a) and (b) hold due to L’Hopital’s rule and the fact
that β =

√
(1− q1−δ)π/pγ < 1. Hence, we have

DFMOI,a0 = Θ(Dstatic,a0) , β < 1.

For β > 1, on the other hand, DFMOI is given in (18). It is
straightforward to show that

lim
a0→∞

DFMOI,a0 c̄u

exp
(

pγc̄u
πq1−δ

) = 0.

For β = 1, we have

lim
a0→∞

DFMOI,a0 c̄u

exp
(

c̄upγ
πq1−δ

)

= lim
a0→∞

πc̄u
∫ πc̄u/(π−pγ)

c̄u
exp(t)/tdt

γp2 exp (c̄u(πq1−δ + pγ)/πq1−δ)
−

lim
a0→∞

(
1− pγ

π

) πc̄u
γp2

(a)
= 0,

where (a) holds due to the fact that π − pγ = πq1−δ . (24) is
then proved.

For σ =
√
q1−δ/2λpγ, (25) is immediate from (20) and

(23) via L’Hopital’s rule.

APPENDIX V

Here, we present the proof of Lemma 11. We have

∂2

∂G2
P
o
(
I(t) < θ−1G | G,Φ

)
=

∂2

∂G2

∏
x∈Φ

(
1− pθ−1G

‖x‖α +Gθ−1

)

=
∂

∂G

∑
xi∈Φ

⎛
⎝− pθ−1 ‖xi‖α

(‖xi‖α+Gθ−1)
2

∏
x∈Φ,x 	=xi

(
1− pθ−1G

‖x‖α+Gθ−1

)⎞⎠

=
∑
xi∈Φ

⎛
⎝ 2pθ−1 ‖xi‖α
(‖xi‖α +Gθ−1)

3

∏
x∈Φ,x 	=xi

(
1− pθ−1G

‖x‖α +Gθ−1

)⎞⎠+

∑
xi∈Φ

∑
xj∈Φ,xj 	=xi

⎛
⎝ ∏

x∈{xi,xj}

pθ−1 ‖x‖α
(‖x‖α +Gθ−1)

2 ·

∏
x∈Φ\{xi,xj}

(
1− pθ−1G

‖x‖α +Gθ−1

)⎞⎠
� 0.

Hence (26) holds due to Jensen’s inequality.
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