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Abstract—Densifying networks and deploying more antennas
at each access point are two principal ways to boost the capacity
of wireless networks. However, the complicated distributions
of the signal power and the accumulated interference power,
largely induced by various space-time processing techniques,
make it highly challenging to quantitatively characterize the
performance of multi-antenna networks. In this paper, using
tools from stochastic geometry, a unified framework is developed
for the analysis of such networks. The major results are two
innovative representations of the coverage probability, which
make the analysis of multi-antenna networks almost as tractable
as the single-antenna case. One is expressed as an /;-induced
norm of a Toeplitz matrix, and the other is given in a finite sum
form. With a compact representation, the former incorporates
many existing analytical results on single- and multi-antenna
networks as special cases, and leads to tractable expressions for
evaluating the coverage probability in both ad hoc and cellular
networks. While the latter is more complicated for numerical
evaluation, it helps analytically gain key design insights. In
particular, it helps prove that the coverage probability of ad
hoc networks is a monotonically decreasing convex function of
the transmitter density and that there exists a peak value of the
coverage improvement when increasing the number of transmit
antennas. On the other hand, in multi-antenna cellular networks,
it is shown that the coverage probability is independent of the
transmitter density and that the outage probability decreases
exponentially as the number of transmit antennas increases.

Index Terms—Coverage probability, MIMO, performance
analysis, stochastic geometry, wireless networks.

I. INTRODUCTION
A. Motivation

O accommodate the ever-increasing mobile data traffic,
there is a tremendous demand in boosting the capacity of
wireless networks. One promising way is to exploit the spatial
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domain resources by deploying more antennas at transceivers,
especially at the base station (BS), e.g., via the recently
proposed massive MIMO technique [2]. Another effective
way is via network densification [3]], which can significantly
improve the area spectral efficiency (ASE). In this way,
multi-antenna networks form an important enabler for next-
generation wireless networking [4]]. Thus, it is of significant
practical importance to understand the performance of such
complicated networks. While simulations can demonstrate
many key features of multi-antenna networks, mathematical
analysis is needed to help expose their salient properties
and provide effective mechanisms for comparing different
design approaches without building and running system-level
simulations. However, the analysis of multi-antenna networks
is a highly challenging task, which may hinder their wide
applicability.

To model the densely deployed transceivers, a random
network model based on Poisson point processes (PPPs)
has been extensively adopted to capture the irregularity and
randomness of transmitter locations [5]], [6]. With the help
of stochastic geometry, this model turns out to be tractable,
and the resulting aggregate interference can be analytically
characterized [[7]-[10]. Particularly, in single-antenna networks
with Rayleigh fading channels, a large number of tractable
results for various performance metrics have been derived
based on the PPP model [6]. When it comes to multi-antenna
networks, difficulties arise due to more complicated signal and
interference distributions. These distributions are determined
by two factors, namely the channel fading distribution and the
adopted multi-antenna transmission techniques, which lead to
a variety of highly challenging mathematical models to ana-
lyze. While significant efforts have been made, so far there is
no systematic methodology to analyze multi-antenna networks.
To fill this gap, in this paper we propose a unified analytical
framework for such networks, which is almost as tractable as
that for single-antenna networks. More importantly, it leads to
important system design insights for different network models.

B. Related Works

Adopting the PPP model for the analysis of cellular net-
works was first advocated in [[6], which derived tractable
results for the coverage and ergodic rate analysis mainly as-
suming Rayleigh fading channels, i.e., exponential distributed
channel power gains. It disclosed that the coverage probability
is critically determined by the Laplace transform of the ag-
gregate interference. While this study inspired many research
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TABLE I
SUMMARY OF THE ANALYTICAL RESULTS

Cellular networks Ad hoc networks

Coverage probability General channel power gain Propositionﬁl Proposition |2
expression Gamma distributed channel power gain Corollary IlT Corollary |2!
Unique properties Transmitter density Invariant Corollary |3

Antenna size

Proposition H & CorollaryH Propositions [5 &H

works on network analysis and design, e.g., [9], [11]], the main
results are only applicable to single-antenna networks.

Considering the important role of MIMO techniques, there
have been many works trying to derive tractable results for
multi-antenna wireless networks [12]-[24]. The first-order
Taylor expansion has been used to provide approximations for
the coverage probability in two-tier heterogeneous networks
(HetNets) [12] and the transmission capacity of ad hoc net-
works [13]]. In [14], the fading in the interferers’ channels
was ignored to obtain a tight lower bound on the ergodic
spectral efficiency, instead of the usual approach of calculating
E[log(1 + SINR)], which leads to a looser upper bound since
it implicitly assumes that the serving BS knows all the channel
states. Upper bounds have also been derived for signal-to-
interference ratio (SIR) outage probabilities in mobile ad
hoc networks [15]], [[16] and cellular networks [17], [18]. In
particular, different inequalities, e.g., Markov’s inequality [[15]],
Chebyshev’s inequality [16]], the union bound [17], and an
upper bound for the cumulative distribution function of gamma
random variables [|18]], have been adopted to make the analysis
tractable. Nevertheless, with approximations or upper bounds,
the results obtained may not accurately reflect the behavior
of multi-antenna networks in all operating regimes. On the
other hand, exact analytical evaluations were investigated in
[19]-]24]. The downlink spectral efficiency and rate coverage
probability were derived in [[19] and [20], respectively, with
improper integrals that are inefficient for numerical evaluation.
In addition, closed-form expressions for coverage probabilities
were obtained in [21[]-[24]. However, these results are stated in
complicated forms (nested sums) with special functions, such
as the complementary incomplete beta function [21f], [22]f,
and Stirling numbers of the first and second kind [23]], [[24].
These existing results, either approximate or with very bulky
expressions, are not able to yield insights for network design
and optimization.

Recently, some promising results were reported in [1]], [25]—
[28]], where closed-form expressions were derived for various
performance metrics in multi-antenna HetNets and further
used to solve practical system design problems. In particular,
different multi-antenna transmission techniques over different
fading channels were considered, e.g., maximum ratio trans-
mission (MRT) and zero-forcing (ZF) over Rayleigh fading
channels [25]], [26], space-division multiple access (SDMA)
in multi-tier HetNets over Rayleigh fading channels [27], jam-
ming in physical layer security-aware networks [1], and analog
beamforming in millimeter wave (mm-wave) networks with
Nakagami fading channels [28]. These results were derived for
specific scenarios. In contrast, in this paper we will develop

a unified framework to analyze multi-antenna networks based
on which key system insights are then revealed.

C. Contributions

In this paper, we analyze multi-antenna networks with a
random spatial network model, where transmitters are modeled
as a homogeneous PPP [5]]. The analytical results in this
paper are listed in Table [, and the main contributions are
summarized as follows.

o« We develop a unified analytical framework for multi-
antenna networks, which is applicable to networks where
the signal power gain is gamma distributed while the in-
terferers’ power gains have arbitrary distributions. In the
proposed framework, the recursive relations between the
n-th derivatives of the Laplace transform are exploited,
based on which two novel representations of the coverage
probability are derived in Theorems [I] and [2] namely
an {,-Toeplitz matrix representation and a finite sum
representation. We demonstrate that this new framework
makes the analysis of multi-antenna networks almost as
tractable as the single-antenna case [7]. More importantly,
many analytical techniques developed for conventional
single-antenna networks can be easily transplanted to the
general multi-antenna setting.

o With the ¢;-Toeplitz matrix representation, a general cov-
erage expression is given for cellular networks and ad hoc
networks, as presented in Propositions[I]and 2] Compared
with existing works, these analytical expressions are not
only expressed in more compact forms but also provide
an exact characterization for multi-antenna networks.

o With the finite sum representation, the impacts of the
antenna size and network density are investigated in both
cellular and ad hoc networks. It is analytically shown in
Corollary [3| that, when the transmitter density increases,
the SIR coverage probability of ad hoc networks is a
monotone decreasing convex function of the transmitter
density. In addition, the outage probability of cellular
networks decreases exponentially when increasing the
number of antennas, as shown in Proposition E} In con-
trast, Propositions [5] and [6] demonstrate that there may
exist a peak value for the coverage improvement in ad
hoc networks.

D. Organizations and Notations

The remainder of this paper is organized as follows. Section
presents the system model along with the unified analytical
framework. The proposed framework is then applied to cellular



TABLE I

TYPICAL MULTI-ANTENNA TRANSMISSION TECHNIQUES AND CORRESPONDING SIGNAL POWER GAIN DISTRIBUTIONS

Multi-antenna transmission Channel Signal power gain
technique (F;,/Wy,) fading (H,) (gz,) distribution

Throughput and Energy MRT Rayleigh Gamma(Ni, 1)
Efficiency Analysis [25]
Interference Coordination [26] Partial ZF beamforming Rayleigh Gamma(max(Ny — Ny, 1),1)
SIMO Ad Hoc Networks [15] Partial ZF combining Rayleigh Gamma(Ny — Ngq, 1)
Spatial Multiplexing Maximum ratio combining Rayleigh Gamma(N;, 1)
in Ad Hoc Networks [23] (MRC)
Multi-tier Multiuser SDMA Rayleigh Gamma(Ny — U +1,1)*
MIMO HetNets [27]
Physical Layer Security Jamming & Rayleigh Gamma(D, 1)
Aware Networks [1] ZF beamforming
Millimeter-wave Networks [28]] Analog beamforming Nakagami Gamma(Ng, 1/Ny)

* The parameters are for each tier in HetNets.

The numbers of antennas at the transmitter and receiver sides are denoted as Nt and Ny, respectively, and U denotes the number of served users in
SDMA systems. In addition, N, represents the number of transmitters that the typical receiver requests to perform interference canceling. Please refer

to the corresponding references for more details.

and ad hoc networks in Section In Section we reveal
the impact of the antenna size and network density on the
coverage probability. Finally, Section [V] concludes the paper.

In this paper, matrices are denoted by bold-face upper-
case letters, and the M x M identity matrix is represented
as Ips. The ¢;-induced matrix norm is defined as ||A|, =
maxi<j<n »ieq |@ij| for A € R™*". The expectation
is denoted as E[X], and the probability that an event A
happens is denoted as P(A). The gamma function, lower
incomplete gamma function, and upper incomplete gamma
function are denoted as I'(z), v(s,z), and T'(s,z), respec-
tively. The n-th derivative of the function f(x) is denoted as
f()(z). The falling factorial of a number z is symbolized as
(z)n. The generalized hypergeometric function is denoted as

pFy ({ai}r_ 15 {bi}1 15 2) (29, Sec. 9.14].

II. A UNIFIED ANALYTICAL FRAMEWORK
A. System Model

Consider the downlink transmission of a multi-antenna
wireless network. We focus on the performance analysis of
the typical receiver at the origin, whose signal-to-interference-
plus-noise ratio (SINR) is given by[]

SINR =

L 1)

o+ D pca gellwl =
To clarify the generality of the proposed framework, the
notations and assumptions underlying (1) are explained below.
o 79: the distance from the typical receiver to its associated
transmitter located at xg, i.e., 7o = ||zo]. It can be
either a deterministic value, or a random variable with
the probability density function (pdf) denoted as f (7).
The choice of xy depends on the adopted cell association

The expression in (T can describe the SINR for each transmitted data
stream in spatial multiplexing [24]], or the SINR in multi-tier networks given
that the typical receiver is associated with a certain tier [[12], [27], [30].

strategy which is typically based on the long-term average
received power, e.g., dipole association in ad hoc net-
works [13]], the nearest-transmitter association in cellular
networks [7]], and biased association in HetNets [27]].
aﬁ: the normalized noise power, where the normalization
is to keep expression (I) clean. For example, it is given
as 02 = UT‘IQ when assuming equal power allocation to
serve U receivers, where P is the transmit power.

gz, the channel power gain for the desired signal from
the associated transmitter located at x(. In particular,
assuming there are in total D (D > 1) data streams that
are simultaneously transmitted via spatial multiplexing,
a general form of the channel power gain for the d-
th (d € {1,...,D}) data stream with linear MIMO
transmission/reception techniques is given by [24]

|[WIOHI0FIO](1|2

W, Wi @

Gzo =

where [A], represents the d-th diagonal element of matrix
A, and H,, denotes the channel matrix from the associ-
ated transmitter to the typical receiver. In addition, F,
and W, are the beamforming and combining matrices,
which are determined by the adopted MIMO transmission
scheme.

Different channel distributions and MIMO techniques
lead to different distributions for g,,. In this paper,
a general type of distribution is assumed for g,,, as
specified below.

Assumption 1: The channel power gain g¢,, for the
desired signal is gamma distributed, ie., ¢, ~
Gamma(M, 6), where M and 6 are the shape and scale
parameters of the gamma distribution.

Table |lIf lists some commonly-used multi-antenna trans-
mission techniques and channel fading distributions and
the corresponding distributions of g, . It is shown that the



gamma distribution is typically encountered in the anal-
ysis of multi-antenna networks. Moreover, our proposed
framework can be applied to more general distributions,
as will be discussed later in Remark 3. To keep the
presentation clean, the analytical results throughout the
paper are based on the gamma distribution.

o ®’: the set of interfering transmitters. This set can be a
union of different sets consisting of J (J > 1) types of
interferers, i.e., ® = U']-]:1<I>;-. In particular, the interfer-
ers belonging to the j-th type are distributed according to
a PPP @’ conditioned on b(o,;(ro)) to be empty, where
b(z, R) is a disk centered at z with radius R, ;(r¢) is the
minimum distance between the typical receiver and the
transmitter of the j-th type, and the functions /,(-) are
determined by the cell association strategy. This model
not only reflects the general multi-tier HetNet setting but
also applies when the interferers have different channel
power gain distributions in a single-tier network.

e g,: the interferer’s power gain from the interfering trans-
mitter located at x. A concrete expression for g, similar
to (Z) can be derived [24] eq. (2)]. In the proposed frame-
work, we assume that {(gs)sca/ }j=1 are J families of
non-negative random variables that are independent and
identically distributed according to arbitrary distributions
for which the %-th moments exist.

o «: the path loss exponent. In the proposed framework,
«a can assume any value larger than 2. o = 4 is the
typical value used in many previous works to simplify
the analytical results.

B. Analytical Framework for Multi-Antenna Networks

There are various performance metrics for wireless network-
s, e.g, outage probability, ASE, average throughput, and energy
efficiency. Note that one fundamental task in characterizing
these metrics is to calculate the SINR distribution [5]], [25]—
[27]. In this paper, we focus on deriving the complementary
cumulative distribution function (ccdf) of the SINR, also called
the coverage probability, which is defined aﬂ

pe(7) 2 P(SINR > 7), (3)

where 7 denotes the SINR threshold. Its complement is the
outage probability, defined as p,(7) = 1 — p.(7).

In this section, we provide a unified analytical framework
for multi-antenna wireless networks. First, according to the
SINR expression (I)), the coverage probability defined in
can be written as

pe(T) =P [gwo > 7Ty (0121 + I)] , 4)

where I £ 3" o, golz]|~. One main difficulty of the analy-
sis comes from the gamma distributed random variable g,,,. D-
ifferent from existing works that adopted approximations [12],
[13] or upper bounds [15], [16], [18]], we derive a compact and

’For a K-tier HetNet, the coverage probability Pe,k(T) given that the
typical receiver is associated with the k-th tier can be calculated by (@), and
the overall coverage probability is then given by 25:1 Agpe,k(T), where
Ay, is the probability that the typical receiver is associated with the k-th tier.

exact expression for the probability {@). According to the ccdf
of the gamma distribution, (HI) is firstly rewritten as
7"0:| }

"N (g 0
o) =8, {3 8

AZT? (—s)"
=E, 2_:0 mﬂ“)(s)l : )

where s £ 7r§/0, and L(s) = e SOnE; [e=*T|ro] is the
Laplace transform of noise and interference conditioned on the
distance 7. According to the probability generating functional
(PGFL) of PPP [3], the conditional Laplace transform L(s)
can be expressed in a general exponential form as

J
L(s) = exp { — 502 — QWZ Aj

Jj=1

X/l( )(I—Egj[exp(—sgjv_a)]) vdv} (6)

2 exp{n(s)},

where ); is the density]’| of <I>;-, the interferers’ power gain is
denoted as g; that is identically distributed as all the (gz),cq -
Here we use 7)(s) to simplify the notation, which is called the
log-Laplace transform.

Remark 1: The proposed framework does not depend on
the form of the log-Laplace transform, and it can be readily
extended to other network models, for example, where the
transmitters are spatially distributed according to other point
processes [32]], or the multi-slope path loss model is consid-
ered [33]]. One can first determine the log-Laplace transform
n(s) according to the network model and then the analytical
framework can be applied similarly. In addition, as established
in [34], the SIR coverage probability of cellular non-Poisson
models is well approximated by p.(7/G), where p.(7) is
the coverage probability of the cellular Poisson model and
G is a gain factor that depends on the geometry of the non-
Poisson model. Hence, the results in this paper permit a simple
approximation of the coverage probabilities for any stationary
and ergodic point process model.

As shown in (B)), the main task in deriving the coverage
probability in multi-antenna networks is to calculate the n-th
derivatives of the Laplace transform L(s). In single-antenna
networks with Rayleigh fading channels, this operation is not
needed, as the signal power gain is exponentially distributed.
While there exist some approaches to calculate the n-th
derivative of a general exponential function, e.g., via Faa
di Bruno’s formula [35] or Bell polynomials [29], a direct
computation of the derivatives leads to unwieldy expressions
[21], [23[], [24], [36], which cannot be efficiently evaluated
and fail to reveal system insights.

Instead of working with the Laplace transform directly,
we analyze the log-Laplace transform 7(s). As we will see,
this approach results in tractable results for the coverage
probability. First, the recursive relation between the derivatives
of the Laplace transform is revealed in the following lemma.

3For network models incorporating load awareness [25]], [31], the activation
of transmitters can be reflected in the density A;.



Lemma 1. Defining p, = %E(")
relations between {p,}5>,, given by

(8), there exist recursive

n—1

n-—1
Pn = Z n tn—ipia (7)
=0
where .
= %n“)(s)- )

Proof: First, it is obvious that py = L(s) = e"*) and
LMD (s) = nW(s)L(s). According to the formula of Leibniz
for the n-th derivative of the product of two functions [35],
we have

(s) = V7 20 gy = 5 (7 L)) ()20
£(s) = ——LW(s)=>_ (7 )i ()L (),
i=0

©))
followed by
n—1
(—)" n— (nz)( ) ()()
n— E
= > ) (5).
(10)
which completes the proof by applying the definition that p,, =
C 2 (). m

According to the recursive relations in (7)) and the fact that
po = ﬁ(s), the only factors we need to calculate to obtain
{pn}M1 are the coefficients {t;}2' ', which are related
to the derivatives of 7(s). So the main task is shifted from
calculating the derivatives of L(s) to deriving those of 7(s).
As shown in extensive existing works [1]], [12]], [13], [15],
[16], [19]-]27], obtaining a closed-form solution for n(”)(s)
is generally much easier than for £ (s), which will be
further demonstrated in this paper. Following Lemmal[I] a finite
sum representation of the coverage probability is given in the
following theorem.

Theorem 1. (Finite Sum Representation of the Coverage
Probability) The coverage probability {@) is given by

M-—1
pc(T) = Ero [Z pn‘| .
n=0

where {p, }M ;! are given in Lemma

Y

Proof: The result follows from () and the definition of

pn in Lemma [ |
Remark 2: The main merit of this representation is that it
leads to valuable system insights. For example, the impact
of the shape parameter M in the gamma distribution, which
is typically related to the antenna size, is clearly illustrated
by this finite sum representation. We define p,, = E,, [p,] to
simplify the presentation. In particular, as shown in Table
and the references therein, the interferers’ power gains g, ; are
typically independent of A with various MIMO transmission
techniques, and so are {]Bn}fy:_ol. When M increases, e.g.,
from M to M + A, the number of terms in the sum increas-
es, and the variation of the coverage probability is directly
related to the coefficients {p,, }2*7 +2=1 This property will be
leveraged to reveal the impact of the antenna size in Section

vl

From both () and (TI), it is apparent that the main
challenge in evaluating the coverage probability is to derive
a tractable expression for {p,}, M- 1. With Theorem I we
need to calculate {pn}i‘l/[:_()1 in a recursive manner, which is
still tedious. Next, we derive more explicit expressions for

{pn}M!, assuming that we have obtained {t}1";". To this
end, we define the two power series
o0 o0
= Z tn2", = anz" (12)
n=0 n=0

Lemma 2. The power series P(z) is related to T'(z) as

P(z) = T®,

13)

Proof: Tt is straightforward to show that T(1)(z) =

S o+ Dtyp12™ and PY(2) = 307 np,2"~ L. We then
have the following equality
oo n—1
T(l) Z Z n—i)ty_ipiz" L. (14)
n=0 i=0
Combined with , we obtain the differential equation
PW(z) =TM(2)P(2), (15)
whose solution is given by (T3). [

Based on Lemma 2] an explicit expression for the coverage
probability is given in the following theorem, which is more
tractable than the result in Theorem [1}

Theorem 2. (¢1-Toeplitz Matrix Representation of the
Coverage Probability) The coverage probability @) is given
by

pe(r) = Er, [[|e™]], ]

where Ty is the following M x M lower triangular Toeplitz
matrix

(16)

to
tq to

Ty=| 2 ht (17)
tap—1 - ta t1 to

and its non-zero entries are determined by (B).

Proof: According to (TI), (I2), and (13), the coverage
probability is given by

M—-1 M—-1 1
pe(7) = By, Z pn| =B Z - P () 2_0]
n=0 n=0 (18)
M—-1 1 d» )
=E, — TG .
© 7;) nldan © 2=0

In the last expression of (I8)), the n-th term in the sum is
determined by the n-th coefficient of the power series e’ ().
From [37} pp. 14], the first M coefficients of the power series
eT(®) form the first column of the matrix exponential eT™
whose exponent is given in (7). The sum of these coefficients
can be written as an ¢;-induced matrix norm as in (I6). M

Compared with the approximations in [12], [[13[], [15]], [[16]],
[18] and complicated expressions in [[19]-[24], the ¢;-Toeplitz
matrix representation in (I6) provides a more compact form



TABLE III
THE USE OF THEOREMS [TIAND[2]IN SEcTIONS [[ITlAND [[V]

Corollary H

Corollaries 1 andl Corollary
Propositions I and H Propositions H E and H
Theorem |1 v v
Theorem [2 v v

for the coverage probability. More importantly, it enables us to
leverage various powerful tools from linear algebra, especially
some nice properties of lower triangular Toeplitz matrices, to
provide insightful design guidelines for network optimization.
Such properties can be found in [25], where they were used
for small-cell networks.

Remark 3: A more general form of the pdf of g, that may
be encountered in multi-antenna wireless networks is given in

[24] eq. (10)] as
Z —Ppu Z ‘Pp,quqv

Fou, (1 (19)
peEP qeQ

where P, Q C Ny and ¢,, ¢, o € R are model parameters. In
addition, various special cases of this pdf with different MIMO
transmission techniques, e.g., transmit antenna selection with
ZF receivers and open-loop spatial multiplexing with ZF
receivers, are specified in [24, Table I]. According to @]),
the ccdf of g, is given by

c _ @p’qq
ngo (u) =1- Z ¢q+1
pEP qEQ
Pp.qq! (¢pu)* 20
P,q —pqu \Pp
Ly sty ST

pEP qgeQ TP k=0

The proposed framework is also applicable to this general form
of pdf, resulting in the coverage probability

pc(T):l_Z +Z

pEP qeQ pEP qeQ

@Pﬂlq
¢Q+l

®p,q4!
¢Q+l

Er, [[|le ],

(2D
where T((Iﬁ)l in the p-th term in the sum denotes a (¢ +
1) x (¢ + 1) lower triangular Toeplitz matrix similar to (T7).
Furthermore, the non-zero entries in Tt(zi)l are given by

(*Sp)k

tpk = Tn('“)(

$p), 0<k<q, (22)
where s, = 7r{¢,. Note that the result in Theorem
corresponding to the gamma distribution Gamma(M, 0) is a
special case of with P = {0}, Q = {M — 1}, ¢ = 3,
and @, pr—1 = W(M). In this paper, to keep the presentation
concise and easy to follow, we use the gamma distribution to
present the main context, but all the results in this paper are
applicable for the general pdf in (19).

Remark 4: When applying Theorem [2] to specific multi-
antenna networks, the only parameters to be determined are
the non-zero entries {t,,}2*°;! in the matrix T}, and the main
steps for applying the proposed framework are summarized
as Methodology 1. As mentioned before, Theorem [2| is a

generalization of our previous results in [25]-[27].

Methodology 1 Main Steps to Apply the Proposed Framework

1: Derive the conditional Laplace transform L£(s) according
to () for the given distributions of {g;}7_, and the
speciﬁc point processes for the interfering transmitters
{q)/ Jj= 15

2: Calculate the n-th (1 < n < M —1) derivatives of n(s) to
populate the entries {¢,, } i”:_ol in the matrix T, according
to (8);

3: Express the coverage probability p.(7) with Theorem

Although an additional expectation over 7 is needed when
the distance between the typical receiver and its associated
transmitter is a random variable, e.g., in cellular networks, in
the next section we will show that closed-form expressions
are available via the proposed framework. As listed in Table
in the remainder of this paper, Theorems [1] and 2] will be
utilized to analyze multi-antenna networks in specific settings.

C. Single-Antenna vs. Multi-Antenna Networks

Here we show that our proposed framework incorporates the
single-antenna network as a special case. Assuming Rayleigh
fading, the signal power gain is exponentially distributed in the
single-antenna case, i.e., M = 6 = 1. In this way, expression
in Theorem [2] (or in Theorem 1) simplifies to

_ / () L(s)dr,
0

which is exactly the classic result in [6, Prop. 7.3.1]. Note
that, for single-antenna networks, the main task to derive
the coverage probability is to derive the conditional Laplace
transform L(s). It has been shown in [[6] that, under various
assumptions for the interferers’ power gain, £(s) (equivalently
7(s)) can be derived in closed form. This in turn makes it
possible to express the coverage probability in a closed form.

When it comes to multi-antenna networks, Theorem [2| is
compatible with any forms of 7(s). Furthermore, with the
gamma distributed signal power gain, according to Remark
4, the only additional task compared with single-antenna
networks is to calculate M — 1 derivatives of 7(s), which
does not introduce much computational complexity and thus
preserves the tractability. This means that many manipulation
tricks and steps developed for single-antenna networks, e.g.,
derivation techniques listed in [38] Sec. III], can be adopted
to the multi-antenna case. The tractability and effectiveness of
the proposed framework will be illustrated in the next section
by developing new analytical results for general ad hoc and
cellular networks.

(23)



IIT. COVERAGE ANALYSIS FOR MULTI-ANTENNA
NETWORKS

In this section, based on the general framework, we specify
the analytical results for cellular and ad hoc networks. By
leveraging the ¢;-Toeplitz matrix representation in Theorem [2}
tractable expressions for the coverage probability are provided.
Single-tier networks are considered to keep the presentation
neat, but the derivation can be easily extended to general
HetNets by calculating the Laplace transform according to (6).
Furthermore, since wireless networks are interference-limited,
we focus on the SIR distribution instead of SINR.

A. Coverage Analysis in Cellular Networks

In the cellular network model considered in this paper, the
typical user is associated with the nearest BS. Thus, the pdf
of the distance r between the typical user and the serving BS
is given by [39]

Jra(r) = 2mAre™ ™, (24)
and the SIR is expressed as
SIR = IroTo (25)

D wed\ {ao} Iullll T

Since the nearest BS is part of the PPP ® consisting of all the
transmitters, the set of interfering BSs ® = ®\{z(} forms
a PPP on R?\b(0,7) conditioned on xy € ®. Recall that in
Assumption 1 we assumed that g, is a gamma distributed
random variable, i.e., g, ~ Gamma(M, ). We define § £ 2
and let g be a random variable identically distributed as all
the (g.)zea’, which are two notations that shall be frequently
used in this paper.

Proposition 1. When the locations of BSs are modeled as a
PPP, and the nearest-BS association is adopted in the cellular
network, the SIR coverage probability is given by

pe(7) = ||Cy

with the non-zero entries in the lower triangular Toeplitz
matrix Cys as

5 (r/0)"

" 5—n nl

s (26)

E, {g”lFl (nf on+1 fé;fgg)] ,
(27
for0<n<M-—1

Proof: A detailed proof is provided here to illustrate
the main steps in applying the proposed framework for the
coverage analysis. The proofs for the remaining results follow
similar steps and are therefore diverted to the appendix.

We first simplify the expression in Theorem [2[ under the
cellular network model. According to the two-step approach
of applying Theorem [2] as presented in Remark 4, first we
calculate the log-Laplace transform as

n(s) = 727r/\/ (1 = Eg[exp(—sgv™®)])vdv
@ TATE + 77)\(555E g J (28)

© TArE —

(_6’ 57“6&9)]

TArSE, [1Fy (=051 — 8, —sr5%g)]

where (a) can be derived from [7, eq. (4)] by changing
variables v~* — y, and step (b) applies the identity (s, z) =
%SlFl(s,s + 1,—2) [29, Sec. 6.45]. Then, by utilizing the
derivatives

n—1
n . a +
d7n1F1 (a;0;2) = WIFI (a+nib+mn;2),
dZ Hp:() (b + p)
(29)
the non-zero entries in T/ in are determined by (§)), i.e.,
_ (=9
tn = n! ()
5 (r/0)"
2
= ATy 0—n nl
n _ 5 5T = —
X {Eg {g 1Fy (n on+1-24; eg)} 1(n O)}
= —m\rg e, — 1(n = 0)], (30)

where {c, }M ! are given in and 1(-) denotes the indica-
tor function. The coverage probability is evaluated following

(T6) as

pe(r) = / 2mAre” ™ || || dr. 31)
0

This formula can be further simplified into a closed form
by defining a power series similar to (12), ie., C(z) =
Yoo o cnz™. According to (30), we have

th —77)\7"0 (1—00—ch ) (32)

n=0

=g [1 - C(2)].

To help the derivation, another power series P(z) =

ZZO:O Prz™ is defined as
P(z) £ E,, [P(2)]. (33)

Hence, the power series P(z) is written as
P(2) = E,, [P(2)] 2K, [7®)] =
(2) = Ep, [P(2)] = Ep, || = ;

e 1
= 2mAre ™A gy = —_—,
/0 C(z)

where (c) is due to Lemma 2} Applying Theorem [T] and (34),
we have

271')\7’6770\7"2 eI qr

(34)

M—1 M-l
n — P(n)
Z j2 7;) )] _,
M 1
1 d» 1
= — . (35)
Z nldzn .20

Similar to what we exploited in @I), from [37} pp. 14], the first
M coefficients of the power series ﬁ form the first column

of the matrix inversion C;/Il, and their sum is the ¢;-induced
matrix norm of C}; as given in (26). u

Remark 5: This result expresses the coverage probability
of cellular networks in a very compact form, where only an
inverse of a lower triangular Toeplitz matrix is needed. There
exist many fast algorithms to calculate this inverse [40]], which
makes (26) more efficient than existing analytical results, e.g.,
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Fig. 1. The SI(N)R coverage probability of cellular networks when o = 4,
and 02 = —97.5 dBm.

[21]], [22]). In addition, the class of models for which this result
applies is also more general.

While general in the interferers’ power gain, Proposition
[[] loses some tractability due to the expectation over g when
calculation {cn}fy:_ol. The following corollary presents a more
tractable expression for a specific distribution for the interfer-
ers’ power gain, i.e., ¢ ~ Gamma(k, ). Note that this is a
commonly encountered distribution for the interferers’ power
gain in multi-antenna networks, as previously shown in [12],
(L3]I, (15[, [16], [T9]-[24].

Corollary 1. Under Assumption 1, when the interferers’
power gain is gamma distributed as g ~ Gamma(k, (), the
SIR coverage probability of cellular networks is given by

pe(r) = [|Cos I, (36)
with the non-zero entries in Cyy as
. I'(k+n) 1) <Tﬂ>n
" T(k)T(n+1)6—n \ 0 37)

XoFy (n+m,n—5;n+l—6;—7-é@>,

for0 <n < M—1.

Proof: See Appendix [ |
Remark 6: This result is a generalization of our previous
works [25]-[27] where the parameters « and (3 are specified
for different network settings. The non-zero entries ¢y and
{cn}fy;ll were obtained by two different expressions in [25],
[26], and they are now unified in Corollary
Fig. |1| plots the SIR coverage probability of cellular net-
works with (36). In addition, our analytical results are shown
to be accurate even if noise is included, which verifies the
interference dominance assumption.

B. Coverage Analysis in Ad Hoc Networks

In ad hoc networks, a dipole model is adopted. Specifically,
a dipolar pair is added with its receiver at the origin, which
becomes the typical pair under expectation over the point
process, and therefore & = ®. The communication distance

ro between the typical receiver and its associated transmitter is
assumed to be fixed as the dipole distance [5], and the nearest
interferer can be arbitrarily close to the typical receiver. This
means that, in ad hoc networks, there is no need to calculate
the integral over r( in (I6). The resulting SIR is

9o "
Ezetb gmeH_a’

where the signal power gain g, is gamma distributed per
Assumption 1. Correspondingly, the coverage probability in
ad hoc networks is given by the following proposition.

SIR = (38)

Proposition 2. Under Assumption 1, the SIR coverage prob-
ability of ad hoc networks is given byE]

A (39)

pe(r) = [l

where A, is the lower triangular Toeplitz matrix with the
non-zero entries as

an =~ ) mir -0 (3)'B, [ @0

n! 0
for0 <n < M—1.

Proof: See Appendix [B] [ |
Remark 7: In the ad hoc network model, even if the
noise is included, it is still feasible to derive a closed-form
expression for the coverage probability. Specifically, the log-
Laplace transform is given by

n(s) = —so2 — TAL(1 — 6)s°E, [g‘s] . (41)
Hence, the non-zero entries {a, }** ;' in (@0) are
(_s)n n
an = 00
_ G 5
=~ ln=s1)—~oy (42)

—7Ar2D(1 — 6)(8)n (%)SEQ 4] }

Remark 8: Proposition 2 expresses the coverage probability
of ad hoc networks by an /;-induced norm of a matrix expo-
nential. In particular, once the distribution of the interferers’
power gain g is given, the non-zero entries {a, ﬁi’ol in
the lower triangular matrix Aj; can be obtained according
to or (@2). Finally, a matrix exponential is the only
operation needed in the calculation. Efficient techniques exist
for computing the matrix exponential of lower triangular
Toeplitz matrices [41].

Similar to cellular networks, next we present a special case
with closed-form expressions where the interferers’ power gain
is gamma distributed as g ~ Gamma(k, 3).

Corollary 2. Under Assumption 1, when the interferers’
power gain is gamma distributed as g ~ Gamma(k, 3), the
SINR coverage probability of ad hoc networks is given by

s (43)

pe(r) = |le

4The matrix A »; has the same expression as T in (T6). The change of

notation here is mainly to distinguish the results in ad hoc networks from
those under general network settings.



with the non-zero entries in A,y as
(=" G o
o T leslmren
2 (T8 Y T(6 + K)D(1 — 8)(1 + 6)
o\ 6 D(k)T(6+1—n) ’
for0 <n< M-—1.

Proof: The result follows by inserting E [g‘s] = BT(6 +
k)/T (k) in @2). |

IV. UNIQUE PROPERTIES IN CELLULAR AND AD HoC
NETWORKS

Qp =

(44)

In the previous section, the ¢;-Toeplitz matrix representation
in Theorem [2| has been applied to derive tractable expressions
for the coverage in cellular and ad hoc networks. In this
section, the finite sum representation in Theorem El, assisted
by Theorem [2] is applied to reveal unique properties in both
types of networks. We investigate the effects of the transmitter
density and the transmitter antenna size on the coverage
probability as examples.

A. The Effect of Network Density

For cellular networks modeled by stationary point processes,
scaling the plane by any factor does not change the SIR if
nearest-BS association is adopted with the homogeneous path
loss law. For instance, taking c¢® (c > 0) instead of ®, which
equivalently scales the network density by c¢~2, does not affect
the coverage probability. In other words, very generally, the
coverage probability in cellular networks is invariant to the BS
density A. This SIR invariance property has been revealed in
some specific settings, e.g., [6], [[7].

On the other hand, in ad hoc networks, since the distance
between the typical receiver and the associated transmitter is
fixed, the coverage probability monotonically decreases when
the transmitter density increases, as the densification implies
more interferers per unit area. However, there is no existing
works that quantified such effect, which is pursued in the
following result.

Corollary 3. The SIR coverage probability is a mono-
tonically decreasing convex function of the transmitter density,
and it can be rewritten as

M—-1
pe(X) = "X Y~ BT,

(45)
n=0
where A Loy
B, = H( M_a'O M) Hl7 (46)
n!
and
, a, —1)" T\ 90
ay =2 = C Gmrir ) () B o). @)

Correspondingly, the derivative of the coverage probability
with respect to the transmitter density is given by

0 /
ﬁpc()\) = e {a65M1)\M_1

M—2 (48)
+ 3" (@B + (0 + 1)Bord] An},
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Fig. 2. The impact of the transmitter density on the SIR coverage probability
in ad hoc networks when o = 4 and T = 0 dB, according to (#3).

Proof: See Appendix [ ]
From Corollary [3| we have p.(A) — 1 as A — 0, which
is independent of all the other network parameters. Hence,
for any coverage requirement 1 — € at the typical receiver,
there exists a maximum transmitter density A that can satisfy
it regardless of the other network parameters, and this density
can be numerically determined. Furthermore, this result fully
characterizes how the transmitter density affects the coverage
probability, which is shown in Fig. [2| In particular, we prove
that increasing the transmitter density degrades the coverage
probability in ad hoc networks, and the coverage probability is
a product of an exponential function and a polynomial function
of order M —1 of the transmitter density A. For the special case
of M =1, i.e., single-antenna networks with Rayleigh fading
channel, the coverage probability reduces to an exponential
one. In other words, the multi-antenna setting increases the
coverage probability by the additional polynomial term. In
addition, the derivative given in (48)) reflects the sensitivity of
the coverage probability with respect to the transmitter density.
Remark 9: A related result on the impact of the dipole
distance 7y can be readily obtained from Corollary (3] Since
r2 and X are interchangeable in (@3), there exists a duality
between A and 7, 2, where the former affects the interference
power while the latter only affects the signal power. The
impact of the dipole distance r( is then given by

M-1

pelro) = ™70 3" B2, (49)
n=0

A An—aoIy )"
where 3, = M and a, = a,/r3. Similar to

Corollary [3] it can be proved that the coverage probability
is a monotonically decreasing convex function of the dipole
distance.

Remark 10: The monotonicity and convexity in Corollary
are also applicable to the SINR coverage probability where
the noise is also taken into consideration, and the proof can
be found in Appendix [C]

Remark 11: As shown in Appendix Corollary [3 is
obtained based on the proposed analytical framework in Sec-
tion |lIl Particularly, its derivation is greatly simplified by the



delicate tackling of the gamma distributed signal power, via
the representations derived. If the analytical results in existing
works [13]], [22], [23]] were used instead, we would not be
able to explicitly disclose the impact of the transmitter density,
which, from another perspective, confirms the advantages of
the proposed analytical framework.

B. The Effect of the Antenna Size

As discussed in Section our proposed framework
generalizes our ability in analyzing the single-antenna network
to the multi-antenna one. Hence, it is intriguing to apply it to
investigate how multi-antenna techniques affect the coverage
probability. In the following, we shall perform such an inves-
tigation by taking a MISO network with MRT beamforming
as an example. In this case, the signal power gain gg, is
gamma distributed as Gamma(M, #), where M is the number
of transmit antennas.

Remark 12: As shown in Table the number of anten-
nas is typically related to the shape parameter M in the
gamma distribution of the signal power gain ¢,,. Hence,
the derivations and conclusions in the following are also
applicable to other network parameters related to the shape
parameter M, e.g., the user number U, in MIMO HetNets
[27]], the number of coordination requests K, in user-centric
interference coordination [26], and the number of transmitted
streams N, in physical layer security-aware networks [[1].

We first present a general lemma that will be used in the
following derivation. We define the coverage improvement for
the n-th antenna as the increment of the coverage probability
when the antenna size is enlarged from n — 1 to n.

Lemma 3. For both ad hoc and cellular networks, the
coverage improvement due to the M + 1-th antenna is

pc(M + 1) - pc(M) =DPMm- (50)

For ad hoc networks, p,, = py, while for cellular p,, = E,,[px),
with {pn}22, given in Lemma

Proof: The result follows directly from Theorem ]
Intuitively, enlarging the antenna size increases both the
information signal power as well as the interference power,
hence an explicit analysis is needed to reveal the overall effect.
Based on Lemma [3] we have the following result.

Proposition 3. For both ad hoc and cellular networks,
increasing the antenna size always improves the coverage
probability, i.e., p, > 0 for n > 0.

Proof: According to and (71)), we have
pe =Ery [[le™]],]

M—1
0 I(Tar — tolnr)" || (51)
(o mesgps))

Hence, p,, can be rewritten as

T — toln)"||,
n! '

= E’I‘o

(52)

=, el

Similar to (68)), it can be proved that ¢, < 0 while ¢, > 0 for
n > 0. In this way, all the entries in the strict lower triangular
matrix Tps — toIps are non-negative, and so are {p, }5>,. W
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Fig. 3. The SIR outage probability of cellular networks when 7 = 0 dB and
a = 4, according to (36).

Note that Proposition [3] applies to very general network
settings, as long as the signal power gain is gamma distributed,
as stated in Assumption 1, and the assumption that the shape
parameter M is the only parameter related to the number of
antennas. In the following, we apply this result to different
network models.

Proposition 4. Denoting the outage probability in multi-
antenna cellular networks by p,(M), we have
Po(M) _ Pn

= lim — =7rc> 1,
’fL—}OOpn+1

lim

NS NiTESY 3

where 1. is the radius of convergence of the power series P(z)
in (34), given by the solution to the equation

g [ (-5 0507, )] o

Proof: See Appendix [D} [ ]
A corollary of this result is given next when the interferers’
power gain is gamma distributed as g ~ Gamma(k, 3).

(54)

Corollary 4. When the interferers’ power gain in multi-
antenna cellular networks is gamma distributed, we have

Mosopo(M +1) @ (>3)
where 7. € (1, 1+ %) is the solution to the equation
o Fy (K,, —6;1—96,(rc — l)Tf) =0. (56)

Proof: It is proved by plugging the pdf of g, ie.,
folu) = % into (54)), and the upper bound of r. can be
easily obtained from the radius of convergence of the Gaussian
hypergeometric function. [ ]

Remark 13: Proposition E] indicates that, when M is large,
the coverage improvement of adding the n-th antenna is 7.
times larger than that of adding the (n + 1)-th antenna.
Furthermore, the outage probability of cellular networks in
the logarithmic scale decreases linearly in M with slope
—logg re.



Fig.[3] shows the SIR outage probability of cellular networks
versus the antenna size. While Proposition ] is an asymptotic
result, it is quite accurate also when the number of antennas
is small. In addition, as r. is larger than 1 in Proposition
[ it demonstrates that increasing the antenna size definitely
benefits the coverage probability, and it also shows that
the coverage improvement p, diminishes as the number of
antennas grows large. However, this may not be the case in
ad hoc networks, as shown next.

Analyzing the coverage improvement in ad hoc networks for
general network settings is more challenging, so we start from
the special case o = 4, which is usually used in existing works
[7], 18] for analytical tractability. Particularly, we focus on
finding the antenna index, denoted by n* + 1, that contributes
the most significant coverage improvement in ad hoc networks.

Proposition 5. When the path loss exponent a = 4, the SIR
coverage improvement due to adding the n + 1-th antenna in
ad hoc multi-antenna networks monotonically decreases in the

interval )

I
— -1 57
n> : (57)
where 11 > 0 is given by
0
p=mAral(1 - 0) (5) E, [g‘s] . (58)
Proof: See Appendix [

Remark 14: Proposition [3] indicates that the largest coverage
improvement occurs when adding one of the first P‘; - 1} +1
antennas, i.e., 1 <n* < [“72 — 1—‘. Furthermore, the condition
that the coverage improvement is always monotonically de-
creasing can be derived via Proposition (5| given by ‘2—2 -1 <0,
ie., u < 2.

The SIR coverage improvement of ad hoc networks when
a = 4 is presented in Fig. The situations when the
coverage improvement has a peak value, i.e., u > 2, are of
particular interest. It can be discovered that the denser the
network (or, equivalently, the longer the dipole distance), the
larger the index of the antenna that provides the maximum
coverage improvement. Note that we exploit an upper bound
in (BT)), and therefore [%2 — 1| 41 is an upper bound for the
antenna index n* + 1 with the most significant contribution
in terms of the coverage improvement. In Fig. we see
that this upper bound is very tight, which demonstrates the
effectiveness of the result in Proposition [5] and the proposed
analytical framework.

For the general case o > 2, although it is difficult to obtain
similar analytical results as Proposition [5] on the monotonicity
of the coverage improvement, a closed-form expression for the
coverage improvement is given in the following proposition,
which can be used to numerically test the monotonicity

property.

Proposition 6. The SIR coverage improvement of the n—+ 1-th
antenna in ad hoc networks is given by
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Fig. 4. The coverage improvement in ad hoc networks. When 1 — ud > 0, the
coverage improvement monotonically deceases with the antenna index, while
there exists a peak value of the coverage improvement when 1 — 6 < 0.

where p(n, k) are the Stirling numbers of the first kind, and
Ty (x) denotes the Touchard polynomial [29)].

Proof: See Appendix [ [ ]
Remark 15: The Touchard polynomial of order n is obtained
when calculating the n-th moment of a Poisson distributed
random variable. The appearance of such polynomial in (59)
is related to the falling factorial and the Taylor expansion of
the exponential function.

Fig. [(b)| plots the SIR coverage improvement as the number
of antennas increases. It is numerically found that the cov-
erage improvement has two totally different behaviors when
the number of antennas increases: 1) When pg > p, ie.,
1 — wpd > 0, the coverage improvement is monotonically
decreasing with the antenna size, which is similar to that in
cellular networks. In other words, the coverage improvement
would never increase once it decreases at the beginning; 2)
When 1 — pué < 0, the coverage improvement has a peak
value p,~ when the antenna size is enlarged, and the optimal
value n* can be numerically determined by the closed forms in



Proposition [6] This means that adding the (n* + 1)-th antenna
is the most effective in terms of the coverage improvement.
Note that, for the special case that « = 4, we have derived
in Proposition [3] that the coverage improvement monotonically
decreases when o < 2. This is a special case of the condition
1—pdé >0 when § = %, which verifies both the effectiveness
of the analytical results in Proposition [5] and the reasoning of
the conclusion drawn from the simulations results for general
cases.

V. SUMMARY

This paper proposed a unified analytical framework for
coverage analysis of multi-antenna networks. Various tractable
analytical results for the coverage probability were demon-
strated. In particular, expressions for a general network model
was firstly derived. Two typical network models, i.e., cellular
and ad hoc networks, were then investigated to demonstrate
the generality and effectiveness of the proposed framework.
More importantly, system insights, i.e., the impacts of the
transmitter density and the antenna size, were analytically
revealed via the proposed framework in different multi-antenna
networks. Overall, this paper provides a powerful toolbox for
the evaluation and design of various multi-antenna wireless
networks, which shall find ample applications.

APPENDIX A
wt—le™ B

Since g ~ Gamma(k, §), i.e., fq(u) = Y5 according

to 27), 28), and (B0), we have

G A O PR (C)
"opl dsm [1 m\r%] 60)
—s)" d” —a —o
. ;!) T 100576 ") Eg [9°1(=0, 575 9)] }
—5)" d» 00 e e
@ ! rf') @/1 Eg [exp (—srg®v™2g)] dv
_ L /oo d* L 1
a nlJy [3" (1 —&-ﬁroavgs)'{] dv 1)

~ I(k+n) ) (Tﬁ)n
Tﬁ)
6 Y

CI(k)I(n+1)6—n\ 0
where (d) follows from the definition of the lower incomplete
Gamma function (s, ), and the last equality follows from
the integral representation of the hypergeometric function [29,
Sec. 9.14], which completes the proof.

(62)

XoF <n+/<;,n5;n+15;

APPENDIX B

According to the two steps of applying Theorem [2] present-
ed in Remark 4, first we calculate the conditional Laplace
transform, expressed as

£(s) = exp {—zm /0 T -k, [exp(—sgva)])vdv}@)

To obtain a coverage probability expression for arbitrarily
distributed interferers’ power gains, we propose to swap the
order of the integral and the expectation. In this way, part of
the exponent is given by

2E, {/OOO [1- exp(—sgv_“)]vdv}

22 (1w 2 (64)
=E o — —In(1 — o
0?2 [ e na- ol
=E, {(s9)°T(1 - ¢)}.
Therefore, the log-Laplace transform can be written as
n(s) = —mAL(1 — 6)s°E, [¢°] , (65)
and the non-zero entries of A, are determined by
—S n
an = E 00 s -
(=D" T\°
= - D= 9)(0)n (5) Eq o]

Since there is no need to take an expectation over 7y in the
ad hoc network model, the derivation steps similar to (34) and
(33) are unnecessary, and the proof is complete.

APPENDIX C

According to (4I), the Laplace transform of noise and
interference is

L(s) =po = e"®) = exp (—sof — AT (1 — 8)s°E, [95]) .
(67)
Note that I'(1 — ) is a positive term due to the fact that
0 < § < 1. Hence, the Laplace transform pgy is a convex
and monotonically decreasing function with respect to the
transmitter density .
Furthermore, according to (@2)), the signs of {a,}
critical, i.e.,

(-1)"

n!

M-1

n=1 4are

(0)nmAL (1 — 8)s°Ey [¢°] + so21(n = 1).
(63)

Since (—1)"(0), = (—0)™ < 0 with ()™ denoting the

rising factorial, we have a,, > 0 for 1 < n < M. Recall that

p = —

the recursive relations between {p, }2 7' are
n—i
Pn = 2; —anipi (69)
i=

Since the term “=‘q,_; are positive, it turns out that all

{pn}M=! have the same monotonicity and convexity with re-
spect to \. Recalling that p.(7) = Zﬁ/[:_ol Dn, the monotonicity
and concavity in Corollary [3| has been proved. Next, we prove
the expression (@53).

We first write Ay, in the form

Ay = aplyr + (Al — apu). (70)

Since Ay, is a lower triangular Toeplitz matrix, the second part
is a nilpotent matrix, i.e., (A}, — agIn)™ = 0 for n > M.



Hence, according to the properties of matrix exponential, we
have
eAJVI — 6 Z\l —

—apIa)]” . (D)

ao)\

Z i
Since it has been shown that a], > 0 for n > 1, A}, — a(In
is a strictly lower triangular Toeplitz matrix with all positive
entries, and so are the matrices (A, — a(Iy)™. Therefore,
M-1

a' 1 n n
| = e nz::O — [ flah = e ] 2

He,\A’M

which completes the proof of Corollary [3]

APPENDIX D

According to Theorem ] I the outage probability is p,(7) =
M—1
1-5 n—0 Dn, then

lim (M +1) =1—- lim P
M—co  po(M) M—>ool_an:*01ﬁn 7
o 1 (73)
= 1— 1l1m T~ P
M_“X’l_Zn:ng

Since r. is the radius of convergence of the power series
P(2), i.e., r. = lim =E2— the above equation can be further
X . n—ooPn+1

simplified as

Po(M +1) : 1
———=1- lim ——5 = —.
M—o00 pO(M) M*)OOZ»ZO:O (%) Tc
According to (60), the coefficients in the power series C(z)
are given by
(=9)"

RCRIOF
where co(s) = —6(srg “)°Eq [¢°v(—6, srg *g)]. By reversely

applying the Taylor expansion, the power series C'(z) can be
written as

(74)

(75)

Cp =

Z CnZ cén)(s) =co((1 — 2)s).
(76)
Recalling that in (34) we proved that P(z) = 5, thus the
radius of convergence of P(z) is the solution of the equation
C(rc) = co((1 —rc)s) = 0, which is equivalent to (54).
Next, we prove that the solution 7. to equation (54) is larger
than 1. The left hand side of (54) can be rewritten as

g, i (15 050,

(re—1)T
do| .

ey 0

n=0

1o 77
v [ [ e
Since 0 <d < 1,7 >0, >0, and g is assumed as a non-
negative random variable with arbitrary distributions, it is seen
from that C'(r.) is a monotonically decreasing function
of r.. Furthermore, it is easy to check that, when r. = 1, we
have C'(1) = 1. Following the monotonicity of C(r.) and the
fact that C(1) > 0, we conclude that there exists only one
solution of (54) that is larger than 1.

APPENDIX E

According to (66), we have

46 = Szt = 3 CE 006 = 1 - 23
n=0
T
(78)

Therefore, with the formulas and (34), we have the
closed-form expression

P(z) = P(z) = A) = e r(1=2)", (79)
When a = 4, i.e., § = 1/2, the power series P(z) is given by
P(z) =30  Pnz" = e #1172 According to the definition
of the modified Bessel function of the second kind K, () [42,

pp- 39], we have

n= T e 0
Then, define the ratio to test the monotonicity as
= K, 1 (e) 2 2
Pnt1 _ I +;(M)§n+ n +u7 &1
P 2+ DK,y © 20+ D)

where the inequality adopted in (e) comes from [43, Th. 1].
nt/n2+u?
, 2(n+1)
£ — 1, which completes the proof.

Finally, it can be checked that < 1 when n >

APPENDIX F

By performing coefficient extraction to (79),

,u(lfz)‘s _ i :U’k(l - Z)Jk
k!

5k Jnz

P(z) =

pqu
=R
Mg

(82)

we have

(83)

where steps (f) and (g) reversely apply the definition of the
Stirling numbers of the first kind and the Touchard polynomial,
respectively.
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