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Abstract—A comprehensive vehicular network analysis re-
quires modeling the street system and vehicle locations. Even
when Poisson point processes (PPPs) are used to model the vehicle
locations on each street, the analysis is barely tractable. That
holds for even a simple average-based performance metric—the
success probability, which is a special case of the fine-grained
metric, the meta distribution (MD) of the signal-to-interference
ratio (SIR). To address this issue, we propose the transdimen-
sional approach as an alternative. Here, the union of 1D PPPs
on the streets is simplified to the transdimensional PPP (TPPP),
a superposition of 1D and 2D PPPs. The TPPP includes the 1D
PPPs on the streets passing through the receiving vehicle and
models the remaining vehicles as a 2D PPP ignoring their street
geometry. Through the SIR MD analysis, we show that the TPPP
provides good approximations to the more cumbrous models
with streets characterized by Poisson line/stick processes; and
we prove that the accuracy of the TPPP further improves under
shadowing. Lastly, we use the MD results to control network
congestion by adjusting the transmit rate while maintaining a
target fraction of reliable links. A key insight is that the success
probability is an inadequate measure of congestion as it does not
capture the reliabilities of the individual links.

Index Terms—Meta distribution, Poisson line process, Poisson
point process, stochastic geometry, vehicular networks.

I. INTRODUCTION

A. Background

The key objective of vehicular networks is to increase
traffic safety by enabling vehicles and infrastructure nodes to
broadcast safety messages. The messages contain individual
vehicle-related information such as a vehicle’s speed, position,
orientation, etc., and general traffic-related information on
danger zones, weather hazards, etc. The success probability or
packet reception rate is the commonly used metric to analyze
the performance of vehicular communication. It is defined
as the probability that a vehicle can successfully receive
a packet from a broadcasting entity at a certain distance.
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Stochastic geometry [2] provides the mathematical tools to
model vehicular networks by characterizing different street
patterns and uncertainties in the vehicle locations on the streets
and analyze the performance metrics of interest.

There exist many possibilities to model streets for different
geographical regions. A prominent line-based street model is
the Poisson line process (PLP) [3]–[6], which represents the
street system as a countable collection of lines. PLPs allow
modeling streets with different orientations, making them rel-
evant in characterizing regular and irregular street patterns [7].
For example, a part of the Manhattan city can be modeled by
setting the orientations of the lines to {0, π/2}. For a city
that has streets of different lengths, line segments/sticks can
better characterize the streets than infinitely long lines. One
such stick-based model is the Poisson stick process (PSP) [8],
which is a countable collection of sticks with the lengths
and orientations of the sticks following some distributions.
Another notable stick-based model is the Poisson lilypond
model (PLM). In the PLM, the sticks grow at a constant rate
until they hit another stick like lilies in a pond. Such a touch-
and-stop growth mechanism forms T-junctions, in contrast to
the PLP and PSP, which form intersections. The PSP is a
versatile model whose parameters can be modified to either
accurately or approximately characterize the PLP, PLM, and
their rotational variants [8]. In this work, we limit our focus
to the well-known PLP and the PSP.

When it comes to modeling the vehicles on streets, the use
of Poisson point processes (PPPs) is well established, where
a street system is formed by PLP or PSP and independent
1D PPPs are placed on each street, forming Cox vehicular
networks. We refer to the PLP-based and PSP-based vehicular
point processes as the PLP-PPP and PSP-PPP, respectively.
The selection of transmitters is governed by the channel access
schemes used in vehicular networks. Ideally, the transmitting
vehicles should be distributed such that no other transmitting
vehicle is in its vicinity, mimicking a hard-core point process.
However, the analysis of hard-core models is less tractable [9].
In this work, we assume that the vehicles transmit with a
certain probability in each slot following slotted ALOHA, i.e.,
the transmitting vehicles on each street form independently
thinned 1D PPPs. The PPP-based models essentially provide
lower bounds on the performance of hard-core models [10].

B. Motivation

Although the PPPs are tractable, coupling them with
PLPs/PSPs turns them into Cox models that lead to unwieldy
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analytical expressions for the success probability [8], [11]. On
the other hand, vehicle locations cannot be simply modeled
as random points as in a 2D PPP neglecting the street geom-
etry [12]. The random locations of points in a PPP defy the
certainty of vehicles to be located on a line/stick. Hence there
is a need for an intermediate model that is not as complicated
as the Cox vehicular networks but not oversimplified as a
2D PPP, i.e., a model that provides high tractability and
good accuracy. Such a model should be effective not only
to evaluate the success probability but also to evaluate more
refined metrics such as the SIR meta distribution (MD), where
SIR is the signal-to-interference ratio.

The SIR MD naturally includes a reliability constraint on
the individual transmitter-receiver links [13]–[15]. It answers
questions like what fraction of the links support a target data
rate of 10 Kbps with a probability of at least 0.99?, whereas
the success probability answers questions like what fraction of
the links support a target data rate of 10 Kbps?, focusing on
the average performance without reliability constraint. Note
that the success probability is a special case of the SIR MD,
in a precise sense defined later.

C. Related Work
The success probability of the typical general vehicle re-

ceiving from a transmitter at a certain distance is analyzed
for the case of the PLP-PPP in [8], [11], and the PSP-
PPP in [8]. The typical general vehicle reflects the average
performance of all the vehicles. For the same setup in [11],
a more comprehensive expression is derived in [8] that also
comprises the success probability of the typical intersection
vehicle, which corresponds to the average performance of
the vehicles that are at intersections. Another line of work
involving the PLP-PPP focuses on the typical general vehicle
successfully receiving a message from its nearest neighbor,
which can be either another vehicle or an infrastructure node
such as a roadside unit or a cellular base station [16]–[20]. The
transmitting and receiving vehicles on each street are modeled
as independent 1D PPPs. The roadside units are placed on
the streets following a 1D PPP. The base stations form an
independent 2D PPP.

The SIR MD, the main metric used in this paper, was first
introduced in [13] and was evaluated for Poisson bipolar and
cellular networks. Further, it was extended to carry out a fine-
grained analysis of the base station cooperation, power control,
and device-to-device (D2D) underlays in cellular networks.
Apart from the SIR, the MD can also be defined for the data
rate, energy harvested, etc. (see [21] and references therein).
The SIR MD for a vehicular network formed around an
intersection is studied through simulations in [22]. The in-
tersection is formed by two finite road segments with vehicles
forming a PPP on each segment. It is shown that the MD
is bimodal, i.e., the individual link success probabilities are
either low or high, not concentrated near their average. The
MD of the SIR in linear motorways is analyzed in [23] using
a model where the inter-vehicle distances follow the shifted-
exponential probability density function.

Furthermore, using the SIR MD, we can find the maximum
density of concurrently active links that satisfy a certain

reliability constraint, referred to as the spatial outage capacity
(SOC) [24]. The SOC captures the trade-off between the
density of active links and the fraction of the reliable links.
Also, we can find insights on how to adapt the transmission
parameters at a given vehicle density to avoid network con-
gestion. When the channel load increases beyond a certain
threshold, the number of packet collisions sharply increases,
and the channel is said to be congested. The common methods
to combat congestion include controlling the transmit i) rate,
ii) power, and iii) data rate, and their combinations [25]. In
this work, we show how to handle congestion using the SIR
MD by exploring the trade-off between the transmit rate and
the fraction of reliable links.

D. Contributions

We take the middle route between the complicated Cox
vehicular network models and the oversimplified 2D PPP and
introduce a model that provides a good trade-off between accu-
racy and tractability. The model, termed the transdimensional
Poisson point process (TPPP), is the superposition of one or
two 1D PPPs and a 2D PPP. By such superposition, we account
for the geometry of the street(s) passing through the receiver,
and, at the same time, we obviate the need to incorporate the
geometry of the remaining streets. The main contributions are:

1. We derive the SIR meta distribution for the PLP-PPP,
and we show that it can be well approximated by that
for the TPPP. In particular, the approximation is tight in
the asymptotic regimes of data rate and reliability. We
establish that the TPPP is also sufficient to capture the
complex characteristics of the PSP-PPP.

2. We prove that shadowing further improves the accuracy
of the TPPP. Precisely, the performance gap between the
Cox vehicular networks and their TPPPs is the highest
when there is no shadowing and vanishes as the shadow-
ing variance increases. Notably, the maximum difference
between the success probabilities in the PLP-PPP and
TPPP in the case of no shadowing is about -14 dB.

3. Lastly, we introduce an SIR MD-based congestion control
scheme that provides insights into adapting the transmit
rate to guarantee a target fraction of reliable links. The
advantage of the SIR MD is that it ensures each link is
reliable with at least a probability of x thus achieving
fairness among the vehicles. In contrast, the success
probability, which is the average reliability of the links,
is not a suitable metric for network congestion since it
cannot ensure the per-link performance. To the best of
our knowledge, this is the first paper that uses the SIR
MD as the target metric for adapting the transmit rate.

II. VEHICULAR NETWORK MODELING AND SIR META
DISTRIBUTION

We will use the definitions and notations presented in this
section throughout the paper unless otherwise stated. Let o ,
(0, 0) indicate the origin. Let b(x, r) refer to a disk of radius
r centered at x and | · |d denote the Lebesgue measure in d
dimensions.
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(a) (b)

Figure 1: Snapshots of the (a) PLP-PPP and (b) PSP-PPP. Lines or sticks denote the streets, and ‘◦’ denote the vehicles. µ = 0.1, λ = 0.1,
and fH(h) = 2ch exp(−ch2) with c = 0.1.

A. Modeling Streets and Vehicle Locations

A street system S is defined as the union of 1D subsets
such as lines, line segments/sticks, etc., with no singletons or
isolated points [8]. Here we present the formulations of PLP-
based and PSP-based street systems.

A line (i.e., an infinitely long street) L in R2 is denoted as

L(t, ϕt) = {(x, y) ∈ R2 : x cosϕt + y sinϕt = t}, (1)

where |t| is the distance of the perpendicular from the origin
o to the line, and ϕt is the angle the perpendicular makes with
the positive x−axis. Let P denote a 1D PPP of intensity µ
and ϕt be i.i.d. on [0, π). The random countable collection
of lines ΞL = {L(t, ϕt) : t ∈ P, ϕt ∈ [0, π)} forms the
PLP. The PLP-based street system is the union of lines, i.e.,
S =

⋃
L∈ΞL

L.
A stick S(y, ϕy, hy) of orientation ϕy and half-length hy ,

centered at the midpoint y is formally defined as

S(y, ϕy, hy) = y + rotϕ([−hy, hy]), (2)

where y follows a 2D PPP of intensity µ, ϕy is i.i.d. on [0, π),
and hy is i.i.d. with some density function fH(h). rotϕ denotes
the rotation of stick by ϕy around o. Let ΞS = {S(y, ϕy, hy)}
denote the collection of sticks that forms the PSP. Then S =⋃
S∈ΞS

S denotes the PSP-based street system. We alternately
write y in polar coordinates as (γ, φy). Now, we are ready to
define the vehicular point processes with respect to S.

A vehicular point process V ⊂ R2 is a Cox process with
random intensity measure Υ(B) = λ|S ∩ B|1. This implies
that the vehicles on each street form independent 1D PPPs of
intensity λ. For a stationary S, we have

E[|S ∩ B|1] = τ |B|2 for Borel sets B ⊂ R2, (3)

where τ is the mean total street length per unit area. Then,
the 2D intensity measure of V is E[Υ(B)] = λE[|S ∩ B|1] =
λτ |B|2. The vehicular point processes based on the PLP and
PSP are referred to as the PLP-PPP and PSP-PPP, respectively.
Fig. 1 depicts their sample realizations.

The PLP and PSP inherently form intersections. A vehicle
at z ∈ R2 is of order m if

|S ∩ b(z, r)|1 ∼ mr, r → 0. (4)

This implies that the vehicles at endpoints are of order 1, those
at intersections are of order 4, and those at all other locations
are of order 2.

B. Properties

Below, we list a few properties of the PLP-PPP and PSP-
PPP, and PPPs that we will need in the rest of the paper. Let
Φd denote a homogeneous d-dimensional PPP of intensity λd.
Let cd denote the volume of the unit d−dimensional ball, i.e.,
c1 = 2 and c2 = π.

FΦd
R (r) = 1− exp(−cdλdrd). (5)

FPLP−PPP
R (r) = 1− exp(−λmr − 2µ

∫ r
0

(1− exp(−2λ
√
r2 − u2 )du). (6)

FPSP−PPP
R (r) = 1−

[ ∞∫
0

1

h

h∫
0

exp(−λ`(r, γ, 0, 0, h))f̃H(h)dγdh

]m/2

× exp

(
− µ

π

∞∫
0

π∫
0

2π∫
0

r+h∫
0

exp(−λ`(r, γ, φ, ϕ, h))γfH(h)dγdφdϕdh

)
. (7)
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Lemma 1 ([8]). The mean total street length per unit area in
the PLP-PPP is τ = µ. In the PSP-PPP, it is τ = 2µE[H].

Lemma 2 ([2], [8]). The nearest-neighbor distance distribu-
tions for the PPP FΦd

R (r), PLP-PPP FPLP−PPP
R (r), and PSP-

PPP FPSP−PPP
R (r) are given by (5), (6), and (7), shown at

the bottom of the previous page, respectively.
The term `(r, γ, φ, ϕ, h) in (7) equals `1(γ, φ, ϕ, h)1γ≤r +

`2(r, γ, φ, ϕ, h)1γ>r, where `k(r, γ, φ, ϕ, h) = min(uk(r, γ,
φ, ϕ), h)− (−1)k min(uk(r, γ, φ, ϕ), h) with uk(r, γ, φ, ϕ) =

|−γ cos(φ−ϕ)−(−1)k
√
r2 − γ2 sin2(φ− ϕ)| for k ∈ {1, 2},

and m ∈ {2, 4}.

C. Communication Model

Each vehicle broadcasts with probability p in each time slot
following slotted ALOHA. Thus the intensity of active trans-
mitters on each street is λp. We focus on the probability that a
vehicle successfully receives the message from a transmitter at
distance D. If a vehicle can successfully receive the message
over a distance D, then all the other receivers within distance
D are likely to receive the message, too. This model can be
extended to analyze any form of vehicle-to-everything (V2X)
communication since the transmitter is only specified by its
distance D to the typical vehicle at the origin. The transmitter
can be a vehicle, a roadside unit, a pedestrian, or any other
infrastructure node, i.e., the transmitter is the ‘X’ in V2X.

The performance metrics are calculated with respect to the
typical vehicle. We condition a vehicle (receiver) to be at the
origin o. On averaging over the point process, this vehicle
becomes the typical vehicle. For a stationary street system S,
we can condition the vehicle to be at an arbitrary location.
As vehicles are located on the streets, having a vehicle at o
implies that at least one street passes through o. The typical
vehicle of order m has m/2 streets passing through o. The
typical vehicle of order 2 is referred to as the typical general
vehicle, and that of order 4 is the typical intersection vehicle.
The term ‘typical vehicle’ without qualification refers to both
kinds of vehicles.

The typical vehicle’s transmitter is assumed to be active and
located at a distance D from the origin. The SIR at the typical
vehicle at the origin is given by

SIR =
gD−α∑

z∈V gz‖z‖−αBz
. (8)

The denominator in (8), I =
∑
z∈V gz‖z‖−α, is the total

interference power at the origin. The channel power gain g
is exponentially distributed with mean 1 (Rayleigh fading),
α is the path-loss exponent, and the Bz’s are i.i.d. Bernoulli
random variables with mean p.

We partition the vehicular point process V as V = Vmo ∪V!,
where Vmo and V! are the point processes of the vehicles on the
streets that pass through the typical vehicle of order m and on
the remaining streets, respectively. Accordingly, we can write
the total interference I as I = Imo +I!, where Imo and I! denote
the interference from the transmitting vehicles on the typical
vehicle’s streets and remaining streets, respectively. Further,
let δ = 2/α. Table I lists the frequently used acronyms and
notations in the paper.

Table I: Acronyms and Notations

PPP Poisson point process
PLP Poisson line process
PSP Poisson stick process

TPPP Transdimensional Poisson point process
SIR Signal-to-interference ratio
MD Meta distribution
S Street system
µ Street intensity
λ Vehicle intensity on each street
H Half-length of the street in the PSP
D Distance between the typical vehicle and its transmitter
m Order of the typical vehicle
p Transmit probability
θ SIR threshold

Pm Conditional success probability
pm Success probability

Mb,m bth moment of Pm
F̄Pm SIR MD

x SIR MD reliability threshold
α Path-loss exponent
V Vehicular point process
Vmo Vehicular point process on the typical vehicle’s streets
I Total interference

Imo Interference with respect to Vmo
Φd d−dimensional PPP
λd Intensity of Φd

D. SIR Meta Distribution

The conditional success probability of the typical vehicle of
order m is

Pm(θ) = P(SIR > θ | V), (9)

where θ is the SIR threshold that parametrizes the data rate.
Conditioning on V in (9) implies that we average only over
the fading and slotted ALOHA. The meta distribution of the
SIR is given by [13], [14]

F̄Pm(θ, x) = P(Pm(θ) > x), x ∈ [0, 1], (10)

where x is the reliability threshold. By the Gil-Pelaez theorem,
the SIR meta distribution can be expressed as

F̄Pm(θ, x) =
1

2
+

1

π

∫ ∞
0

=(e−jt log xMjt,m)

t
dt, (11)

where
Mb,m(θ) = E[Pm(θ)b], b ∈ C. (12)

The average of the conditional success probabilities is the
success probability pm, i.e.,

pm = E[Pm(θ)] = P(SIR > θ). (13)

Since pm = M1,m(θ), the terms ‘first moment’ and ‘success
probability’ can and will be used interchangeably.

III. THE TRANSDIMENSIONAL POISSON POINT PROCESS

We propose a transdimensional model that includes the
vehicles on the street(s) passing through the typical vehicle
of order m at the origin and models the remaining vehicles
on the plane as a 2D PPP neglecting the geometry of the other
streets. The formal definition follows.

Definition 1. Let Ψk = {(t1, 0), (t2, 0), . . . } where {ti}, i ∈
N, is a 1D PPP of intensity λ on Rk ⊆ R, 1 ≤ k ≤ m/2,
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(a) (b) (c)

Figure 2: Snapshot of the TPPP with respect to the typical vehicle in the PLP-PPP is shown in (a), where mλ/2 = λ2 = 0.1. Snapshots of
the TPPP with respect to the typical general and intersection vehicles in the PSP-PPP are shown in (b) and (c), respectively, where λ = 0.3,
µ = 0.01, fH(h) = 2ch exp(−ch2) with c = 0.01, and λ2 = 2λµE[H]. Line/stick denotes a street and ‘o’ denotes a vehicle.

and m ∈ {2, 4}. Let Ψm
o =

m/2⋃
k=1

Ψk denote the point process

on m/2 streets that pass through the typical vehicle of order
m. The transdimensional Poisson point process (TPPP) with
respect to the typical vehicle of order m is the superposition
of Ψm

o and a 2D PPP Φ2 of intensity λ2, i.e., T , Ψm
o ∪Φ2.

Ψm
o is equivalent in distribution to Vmo as the 1D PPPs on

m/2 streets are independent, and their orientations are i.i.d.
Rk is an infinite or a finite interval that contains the origin.
Rk = R if the street is a line, and Rk ⊂ R if the street
is a stick. By the superposition property of the PPP, Ψm

o —
the union of 1D PPPs of intensity λ on m/2 lines passing
through the typical vehicle of order m—is equivalent to a 1D
PPP of intensity mλ/2. By Lemma 1, λ2 = λµ. Fig. 2a shows
a realization of the TPPP corresponding to the PLP-PPP.

The superposition property does not extend to the PSP-PPP
even if the sticks are of the same finite length. The reason is
that the origin can be located at a distance w ∈ (0, hy) from
the midpoint y of the stick. The lengths of the sticks on both
sides of the origin need not be the same. In other words, the
interference measured at the origin with respect to the two
streets may differ. The streets passing through the origin form
a Cox process as they are stochastic with respect to the length
of the stick as well as their starting or ending points. Figs. 2b
and 2c show the snapshots of the TPPP with respect to the
typical general and intersection vehicles in the PSP-PPP, where
the half-length of a stick follows the Rayleigh distribution. For
the sake of visualization, we show the streets to be orthogonal
in Fig. 2c rather than being on top of each other as given in
Definition 1. We have λ2 = 2λµE[H] by Lemma 1.

The TPPP T is non-stationary as the neighborhood seen by
a point in Ψm

o is different from that in Φ2 as at least one street
passes through the typical vehicle.

Next, we analyze the SIR meta distributions for the PLP-
PPP, PSP-PPP, and their respective TPPPs, and discuss the
logic behind using the TPPP for vehicular network analysis.
To this end, we derive the moments (12) required to calculate
the SIR meta distribution (11) for the PLP-PPP and the

corresponding TPPP; then, we perform a comparative analysis
of the moments of different orders in the PLP-PPP and TPPP
followed by that of their respective SIR meta distributions.

IV. THE TRANSDIMENSIONAL APPROACH
TO THE PLP-PPP

A. Derivation of Moments

Theorem 1. The b-th moment of the conditional success
probability PPLP−PPP

m (θ) of the typical vehicle of order
m ∈ {2, 4} in the PLP-PPP is given by

MPLP−PPP
b,m = exp(−mλDθδ/2Γ(1 + δ/2)Γ(1− δ/2)

Db(p, δ/2)− 2µ
∫∞

0
(1−Gb(t))dt),

(14)

where Db(p, δ/2) = pb 2F1(1 − b, 1 − δ/2; 2; p), δ = 2/α,

Gb(t) = exp

(
−λδ

∫ ∞
t2/δ

[
1−
(

1− ps

v + s

)b]
vδ−1

√
vδ − t2

dv

)
,

and s = θDα.

Proof: See Appendix A.

Corollary 1. The first moment MPLP−PPP
1,m or, equivalently,

the success probability pPLP−PPP
m is

MPLP−PPP
1,m = exp(−mλpDθδ/2Γ(1 + δ/2)Γ(1− δ/2)

− 2µ
∫∞

0
(1− LIt(θDα))dt), (15)

where LIt(s) = exp
(
− λpsδ/2

∫∞
ut

1

(1+u1/δ)
√
u−ut

du
)

with

ut = t2s−δ .

Proof: It directly follows from (14) by noting that
D1(p, δ/2) = p and the change of variable u = vδ in Gb(t)
with b = 1.

See [8] and [11] for alternative proofs.

Corollary 2. For a given transmitter density λp = C, as
p→ 0, we have

lim
p→0
λp=C

PPLP−PPP
m = MPLP−PPP

1,m
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in mean square (and probability and distribution).

Proof: See Appendix B.
The conditional success probabilities converge to their aver-

age only when p→ 0. Generally, the average gives very little
information on the individual links.

Theorem 2. The b-th moment of PTPPP
m (θ) of the typical

vehicle in the TPPP is given by

MTPPP
b,m = exp(−mλDθδ/2Γ(1 + δ/2)Γ(1− δ/2)Db(p, δ/2)

− λµπD2θδΓ(1 + δ)Γ(1− δ)Db(p, δ)),
(16)

where δ = 2/α and Db(p, q) = pb 2F1(1− b, 1− q; 2; p).

Proof: In a d−dimensional PPP Φd of intensity λd, the
b-th moment of the conditional success probability for a link
distance D is [13, Eqn. (4)]

MΦd
b = exp(−λdcdDdθδ

′
Γ(1 + δ′)Γ(1− δ′)Db(p, δ

′)), (17)

where δ′ = d/α. By the independence of the point processes
Ψm
o and Φ2 ⊂ T , MTPPP

b,m is the product of the moments
of the conditional success probabilities in Ψm

o and Φ2 given
by (17) with λ1 = (m/2)λ and λ2 = λµ.

The success probability pTPPP
m of the typical vehicle is the

first moment MTPPP
1,m . It is obtained by setting b = 1 in (16),

i.e.,

MTPPP
1,m = exp(−mλpDθδ/2Γ(1 + δ/2)Γ(1− δ/2)

− λpµπD2θδΓ(1 + δ)Γ(1− δ)). (18)

The second term in the exponential in (14) has two nested
integrals over infinite ranges, while that in (16) has none. The
numerical evaluation of (14), in particular when used in (11),
is tedious since it involves three layers of complex-valued
integrals. Note that it takes about 100,000 times longer to
numerically evaluate the first moment for the PLP-PPP (15)
than that for the TPPP (18). To demonstrate that the TPPP is
an accurate yet simple model, we compare the SIR MDs of
the PLP-PPP and the corresponding TPPP, starting with the
first moment.

B. First-Order Moment Analysis for the PLP-PPP

The moments of the conditional success probability for the
PLP-PPP (14) do not have closed-form expressions. To gain
insights into MPLP−PPP

1,m or pPLP−PPP
m , we begin with the

asymptotic analysis with respect to θ.

Theorem 3 ([1], Th. 4). The success probability of the typical
vehicle tends to that in a 1D PPP as θ → 0, i.e.,

1−pPLP−PPP
m (θ) ∼ mλpDθδ/2Γ(1+δ/2)Γ(1−δ/2), θ → 0.

(19)

Intuitively, as θ → 0, for SIR > θ to hold, it suffices not
to have any interferers within a small disk around the typical
vehicle. With high probability, the small disk intersects only
the street(s) passing through the typical vehicle. Consequently,
as θ → 0, the success probability of the typical vehicle in the
PLP-PPP converges to that in the network formed only by the
typical vehicle’s streets.

(a)

(b)

Figure 3: Comparison of success probabilities of the (a) typical
general vehicle and (b) typical intersection vehicle in the PLP-PPP
to that of the typical vehicle in 1D and 2D PPPs. µ = 2, λ = 1,
p = 0.3, D = 0.25, and α = 4. The equation numbers are given in
the parentheses in the legends.

Theorem 4 ([1], Th. 5). The success probability of the typical
vehicle tends to that in a 2D PPP as θ →∞, i.e.,

pPLP−PPP
m (θ) ∼ exp(−πλpµD2θδΓ(1+δ)Γ(1−δ)), θ →∞.

(20)

Here the intuition is that as θ → ∞, for SIR > θ, a large
disk around the typical vehicle must be devoid of interferers.
The fact that pPLP−PPP

m tends to the success probability of
the typical vehicle in a 2D PPP as θ → ∞ signifies that the
geometry of the vehicle locations outside the large disk does
not matter. This is further corroborated by the nature of the
pair correlation function of the PLP-PPP given by [5, Ch. 8]

gPLP−PPP(r) = 1 +
1

µr
. (21)

It tends to 1 as r → ∞ implying that the locations of the
vehicles separated by larger distances are independent as in a
PPP [2].

Fig. 3 compares the success probability in the PLP-PPP to
that in the 1D and 2D PPPs. We observe from Fig. 3 that the
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Figure 4: Comparison of normalized mean squared distances to the
n-th nearest neighbor from the typical general vehicle at the origin
in the PLP-PPP and TPPP. λ = µ = 1.

success probability of the typical vehicle is upper bounded by
the minimum of the success probabilities of the typical vehicle
in 1D and 2D PPPs. This implies that either a 1D PPP or a 2D
PPP alone is insufficient to characterize the vehicular network.
We also see that the success probabilities of the typical vehicle
in the PLP-PPP tend to that in the 1D and 2D PPPs in the
asymptotic regimes as established in Theorems 3 and 4. This
hints at the possibility of using a simpler, purely PPP-based
model that has the properties of both the 1D and 2D PPPs
for vehicular network analysis. In the next subsection, we
show that the TPPP model indeed results in a highly accurate
approximation of the PLP-PPP.

C. Comparison of First-Order Moments

We remark that the TPPP, by its inherent nature, behaves
like a 1D PPP as θ → 0 and a 2D PPP as θ → ∞. By
Theorems 3 and 4, the PLP-PPP exhibit the same behavior as
the TPPP in the asymptotic regimes of θ. Here, we analyze
the non-asymptotic behavior of MPLP−PPP

1,m and MTPPP
1,m .

Theorem 5. The nearest-neighbor distance in the PLP-PPP
is stochastically dominated by the distance from the typical
vehicle at the origin in the TPPP to its nearest neighbor.

Proof: Using e−x ≥ 1 − x, we can bound the nearest-
neighbor distance distribution in the PLP-PPP given in
Lemma 2 as

FPLP−PPP
R (r) ≤ 1− exp(−λmr − 4πµλ

∫ r
0

√
r2 − u2 du)

= 1− exp(−λmr − λµπr2),

(a)
= F

Ψmo ∪Φ2

R (r)
(b)
≡ FTPPP

R (r), (22)

where (a) follows from the nearest-neighbor distance distribu-
tions of the 1D and 2D PPPs given in (5) with λ1 = (m/2)λ
and λ2 = λµ, and (b) follows from Definition 1.

Conjecture 1. The distance from the typical vehicle at the
origin to the n-th nearest neighbor in the TPPP stochastically
dominates that in the PLP-PPP for all n ∈ N.

Figure 5: Difference between the success probabilities of the typical
general vehicle in the PLP-PPP (15) and TPPP (18) as a function
of λp and D2θδ . µ = 0.204, δ = 2/α, and α = 4. The
maximum difference of 0.0404 corresponding to the pair (0.12, 10.1)
is highlighted using a red filled circle.

An important consequence of Conjecture 1 is that the
success probability of the typical vehicle at the origin in the
PLP-PPP is lower bounded by that in the TPPP. Here, we give
a heuristic argument for Conjecture 1. The 2D density of the
vehicles in the TPPP is the same as that in the PLP-PPP. Then
the comparison of the distances to the n-th nearest neighbor
rn can be based only on the vehicle placement with respect
to the typical vehicle.

Fig. 4 compares the simulated values of E[r2
n]/n in the PLP-

PPP and TPPP. We observe that the mean squared distance
from the typical general vehicle to the n-th nearest neighbor
is higher for the PLP-PPP than the TPPP. The case of n = 1
follows from Theorem 5. We presume that this observation can
be extended to higher values of n. Since the TPPP includes
points at random independent locations compared to the PLP-
PPP with points only concentrated on the lines, the probability
that the n-th nearest neighbor is at a distance rn is higher
for the TPPP. It follows that the average distance to the n-th
nearest interferer from the origin is higher for the PLP-PPP,
which in turn, leads to a higher success probability than for
the TPPP.

Fig. 5 plots the difference in the success probabilities
of the typical general vehicle in the PLP-PPP and TPPP.
Letting x = λp and y = D2θδ , the integrated difference∫∞

0

∫∞
0

(pPLP−PPP
2 (x, y) − pTPPP

2 (x, y))dxdy is maximized
at µ = 0.204, which is the value we choose to plot the
difference in Fig. 5. The maximum difference between the
success probabilities of the PLP-PPP and TPPP is about −14
dB (0.0404). Therefore, the success probability in the TPPP
is a tight lower bound to that in the PLP-PPP. Note that the
inferences obtained from Figs. 4 and 5 also apply to the typical
intersection vehicle as the characterization of the streets that
pass through the typical vehicle is the same in both the PLP-
PPP and TPPP.

Fig. 6 compares the outage probabilities of the typical
general vehicle in the PLP-PPP and TPPP to that of the
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Figure 6: Outage probabilities of the typical general vehicle in the
PLP-PPP, TPPP, and that of the typical vehicle in a 1D PPP. µ =
1 and α = 4. The equation numbers corresponding to the success
probability are given in the parentheses in the legend.

typical vehicle in a 1D PPP. We observe that the TPPP better
approximates the PLP-PPP for small θ than just a 1D PPP. As
θ → 0, for SIR > θ, there should not be any interferers in
a small disk b(o, r) of some radius r centered at the origin.
The pair correlation function for the PLP-PPP (21) diverges
as r → 0, which indicates there definitely exists at least
one line with vehicles of intensity λ intersecting b(o, r). For
infinitesimally small θ, only the typical street intersects b(o, r).
However, for non-vanishing values of θ, there may be more
than one line intersecting b(o, r), and the 1D PPP is not
sufficient to capture the effect of the streets other than the
typical street intersecting b(o, r).

Remark 1. The success probability of the typical vehicle in
the PLP-PPP can be tightly approximated by that in the TPPP.
In particular, the approximations are asymptotically exact at
the upper and lower tails of the success probability.

Next, we compare the moments of order b > 1 in the
PLP-PPP and TPPP followed by their respective SIR meta
distributions.

D. Comparison of Higher-Order Moments and SIR Meta
Distributions

Fig. 7 compares the moments of Pm in the PLP-PPP, TPPP,
1D PPP, and 2D PPP. We observe that the moments in the
PLP-PPP are lower bounded by that in the TPPP. Through
Conjecture 1, we heuristically showed that the success proba-
bility of the typical vehicle in the PLP-PPP is lower bounded
by that in the TPPP. The argument based on the stochastic
dominance of the nearest-neighbor distance in the TPPP to
the PLP-PPP in Conjecture 1 extends to the moments of order
b > 1 as well. Also, we observe that the difference between
the moments in the PLP-PPP and 2D PPP decreases with SIR
threshold as in the case for M1(θ) established in Theorem 4.

Fig. 8 plots the SIR meta distributions for the PLP-PPP,
TPPP, 1D PPP, and 2D PPP. For an SIR threshold θ of 0 dB,
80% of the links are at least 60% reliable, whereas only 20%
of the links are at least 95% reliable. To make 80% of the links

at least 95% reliable, we need to reduce θ to −24 dB. Using
the SIR MD, we can obtain the trade-offs between data rate
(parametrized by θ) and reliability. Also, we can find how to
change the transmit probability p to maintain a certain value
of the MD, which we will discuss in detail in Section VI.
In terms of comparison with the TPPP, we observe that the
SIR MDs for the TPPP and PLP-PPP are asymptotically exact
with the gap being slightly larger in the middle ranges of θ
than observed between their success probabilities (Fig. 5). As
the exact expression (11) also involves the moments of order
b > 1, the differences between the moments MPLP−PPP

b,m and
MTPPP
b,m combined produces a slightly larger gap than for the

success probability (first moment). The PLP-PPP behaves like
a 1D PPP as θ → 0 and 2D PPP as θ → ∞ as given in
Theorems 3 and 4.

E. Presence of Shadowing

Now, let us assume that the channels are also subject to
shadowing in addition to Rayleigh fading in the PLP-PPP and
TPPP. Using (8), the SIR expression including shadowing can
be written as

SIR =
gνD−α∑

z∈χ gzνz‖z‖−αBz
, (23)

where ν, νz are i.i.d. shadowing random variables with mean
1 and variance σ2. χ = V in the PLP-PPP, while χ = T in
the TPPP.

Theorem 6. Fix λ′ > 0 and let the density of vehicles on each
street be λ = λ′/E[νδ]. Then, as σ →∞,

F̄PLP−PPP
Pm

(θ, x) ∼ F̄TPPP
Pm (θ, x), θ ∈ R+, x ∈ [0, 1].

Proof: The PLP-PPP and TPPP differ only in the dis-
tribution of the vehicles that do not lie on the typical ve-
hicle’s streets. Hence we need to show that the interference
distributions from the rest of the vehicles that form the point
processes V ! in the PLP-PPP and Φ2 in the TPPP are identical
as σ → ∞. To this end, we focus on the propagation loss
processes Υχ , {‖z‖α/νz : z ∈ χ} for χ = Φ2 and
χ = V !. By [26, Lemma 1], ΥΦ2 is a PPP on R+ with
intensity function λ(r) = λ′µπδrδ−1. By [27, Theorem 7],
ΥV! converges in distribution to a PPP with the same intensity
function as σ →∞.

The scaling of the density by E[νδ] in Theorem 6 is
necessary since without it, the intensity function of the one-
dimensional point processes Υχ would go to 0 or approach∞
as σ increases. While the convergence result would still hold,
it would be trivial since in both models, there would either be
no interference or infinite interference.

A simple approximation to the SIR MD is obtained by
just using the first two moments of the conditional success
probability. As it varies between 0 and 1, the beta distribution
characterized by the first two moments is a natural choice. It
is shown that the beta distribution can tightly approximate
the SIR meta distribution in Poisson bipolar and cellular
networks [13]. In the next subsection, we explore whether the
beta approximation works for vehicular networks.
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(a) θ = −20 dB (b) θ = 0 dB (c) θ = 10 dB

Figure 7: Moments of the conditional success probabilities for different SIR thresholds. µ = 1, λ = 1, p = 0.3, D = 0.25, and α = 4.
The equation numbers of the moments Mb are given in the parentheses in the legends.

(a) x = 0.6 (b) x = 0.95

Figure 8: SIR meta distributions for different reliabilities. µ = 1, λ = 1, p = 0.3, and D = 0.25. The equation numbers of the moments
required to evaluate F̄P2(θ, x) are given in the parentheses in the legends.

F. Beta Approximation of the SIR Meta Distribution

The probability density function (pdf) of a beta distributed
random variable X with parameters α and β is given by

fX(x) =
xα−1(1− x)β−1

B(α, β)
, (24)

where B(a, b) = Γ(a)Γ(b)
Γ(a+b) . The first and second order moments

of X are

E[X] =
α

α+ β
, and E[X2] =

α+ 1

α+ β + 1
E[X], (25)

respectively. We obtain α and β by equating E[X] = M1,m(θ)
and E[X2] = M2,m(θ). The complementary cumulative dis-
tribution function of X is the beta approximation of the SIR
meta distribution, i.e.,

F̄Pm(x) ≈ 1− Ix(α, β), (26)

where Ix(α, β) is the regularized incomplete beta function.
Fig. 9 shows a different cross-section of the SIR MD of the

typical general vehicle in the PLP-PPP and compares it to that
in the TPPP and the beta approximations for the PLP-PPP and
TPPP. The SIR MD for the PLP-PPP tightly approximates that

for the TPPP in the asymptotic regimes of θ as in Fig. 8, and
in that of x. At x = 1 − p, which is 0.7 in the considered
network setting, there is a transition in the meta distribution
curves, particularly noticeable at lower SIR thresholds. The
reason is that as θ → 0, there should not be any interferers in
a small disk around the typical vehicle. If the nearest interferer
is absent with probability 1 − p, then there exists a non-zero
fraction of links that can satisfy a reliability of 1 − p. We
can neglect the case of two or more interferers present within
that small distance to the typical vehicle, as the probability
of such an event vanishes asymptotically. We observe that the
beta approximation is tight at higher SIR thresholds, whereas
at lower SIR thresholds, the first two moments that define the
beta approximation are not sufficient to tightly characterize
the transition at x = 1− p in both the PLP-PPP (Fig. 9a) and
TPPP (Fig. 9b). Instead, the beta approximation smoothes out
the meta distribution. Furthermore, we can doubly approximate
the SIR MD for the PLP-PPP by the beta approximation of
the SIR MD for the TPPP (Fig. 9b), which is tight in the
asymptotic regimes of θ and x.

Remark 2.
1. The maximum difference between the success probabili-
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(a) (b)

Figure 9: SIR meta distributions for the PLP-PPP, TPPP and their beta approximations. µ = 1, λ = 1, p = 0.3, α = 4, and D = 0.25.
The transition at x = 1 − p is highlighted by the dashed line. The equation numbers in the parentheses in the legends either refer to the
moments or expression of F̄P2(θ, x).

ties MPLP−PPP
1,m and MTPPP

1,m is about −14 dB over the
entire parameter space (Fig. 5).

2. Fig. 9a suggests that there exists some θ̂ such that the SIR
MD for the PLP-PPP tends to its beta approximation
for θ > θ̂ and to that for the TPPP for θ ≤ θ̂, ∀x.
Hence, it is not always necessary to evaluate all the b−th
(b ∈ N) moments of the conditional success probability
to evaluate the SIR MD.

3. The beta approximation of the SIR MD for the TPPP is
fairly accurate ∀θ and ∀x and becomes increasingly tight
as θ → 0 or ∞ and x→ 0 or 1 (Fig. 9b).

4. The accuracy of the TPPP further improves under shad-
owing. The SIR MD for the TPPP approaches that for
the PLP-PPP as the variance of the shadowing increases.
This implies that the worst-case TPPP approximation is
the case of no shadowing.

V. THE TRANSDIMENSIONAL APPROACH TO THE PSP-PPP

First, we analyze the first moment of the conditional success
probability, and then the SIR MDs for the PSP-PPP and
corresponding TPPP as in Section IV.

A. First-Order Moments: PSP-PPP vs. TPPP

By (31), the moment Mb,m can be expressed as Mb,m =
Mo
b,mM

!
b,m, where Mo

b,m considers only the interference from
the vehicles on the typical vehicle’s streets, and M !

b,m takes

into account the interference from the vehicles on the rest of
the streets.

Lemma 3 ([8], Prop. 2). For the PSP-PPP with half-length
density function fH(h), we have Mo

b,m given by (27), shown
at the bottom of the page, where s = θDα, m ∈ {2, 4}, and
f̃H(h) = hfH(h)/E[H].

Lemma 4 ([8], Eqn. (18)). The success probability pPSP−PPP
m ,

or the first moment of the conditional success probability
MPSP−PPP

1,m is given by (28), shown at the bottom of the page,
where Mo

1,m(θDα) is given by Lemma 3, m ∈ {2, 4}, and
LIa(s) = exp

(
− λp

∫ h
−h
(
1 + f(γ, φ, ϕ, u)1/δ

)−1
du
)

with
f(γ, φ, ϕ, u) = (γ2 + u2 + 2γu cos(φ− ϕ))s−δ .

The success probability (28) tends to that in a point process
formed only on the typical vehicle’s streets as θ → 0 and a
2D PPP as θ →∞ [8, Lemmas 8 and 9]. Next, we derive the
first moment for the transdimensional model of the PSP-PPP
formed by the superposition of the point process on the typical
vehicle’s streets and a 2D PPP.

Lemma 5. The success probability of the typical vehicle of
order m ∈ {2, 4} at the origin in the TPPP corresponding to
the PSP-PPP is given by

pTPPP
m = Mo

1,m(θDα) exp(−2λpµπE[H]D2θδ

Γ(1 + δ)Γ(1− δ)), (29)

where Mo
1,m(θDα) is given by (27), and δ = 2/α.

Mo
1,m(s) =

( ∞∫
0

(
1

2h

h∫
−h

exp

(
− λpsδ/2

(−w+h)s−δ/2∫
(−w−h)s−δ/2

1

1 + v2/δ
dv

)
dw

)
f̃H(h)dh

)m/2
. (27)

pPSP−PPP
m =Mo

1,m(θDα) exp

(
− µ

π

∞∫
0

π∫
0

2π∫
0

∞∫
0

(1− LIa(θDα))γfH(h)dγdφdϕdh

)
. (28)
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(a) µ = 0.01 (b) µ = 1

(c) µ = 0.01 (d) µ = 1

Figure 10: Success probabilities of the typical general ((a) and (b)) and intersection ((c) and (d)) vehicles in the PSP-PPP and the corresponding
TPPP. fH(h) = 2ch exp(−ch2) with c = µ, D = 0.25, and α = 4.

Proof: The point processes Ψm
o and Φ2 forming the TPPP

are independent. It follows that the success probability of the
typical vehicle at the origin in the TPPP corresponding to
the PSP-PPP is the product of Mo

1,m(θDα) given by (27)
and the success probability of the typical vehicle in Φ2 given
by (17) with b = 1. The intensity of active transmitters in Φ2

is 2λpµE[H] by Lemma 1.
Fig. 10 compares the success probabilities of the typical

vehicle in the PSP-PPP and the corresponding TPPP for
different values of λ and µ. We observe that the success
probability of the typical vehicle in the TPPP tightly lower
bounds that in the PSP-PPP. The reason is that the probability
of finding the n-th nearest neighbor within a distance r is
higher in the TPPP than in the PSP-PPP as the vehicles are
randomly placed on the plane without clustering to the streets.
We presume that Conjecture 1 that focuses on the stochastic
dominance of the n-th nearest neighbor holds for the PSP-
PPP as well. The case of n = 1 can be proved similarly to
Theorem 5 using (5) and (7).

B. SIR Meta Distribution: PSP-PPP vs. TPPP

We observe from Lemmas 3 and 4 that the first moment of
the conditional success probability for the PSP-PPP involves
multiple nested integrals. The moments of order b > 1 are

Figure 11: Comparison of exact SIR meta distribution for the PSP-
PPP and its approximations. fH(h) = 2ch exp(−ch2) with c = 1,
µ = 1, λ = 1, p = 0.3, α = 4, and D = 0.25. The transition at
x = 1 − p is highlighted by the dotted line. The beta approximation
to F̄P2(θ, x) is given by (26).

even more complicated and hence omitted. We analyze the
SIR meta distributions for the PSP-PPP through simulations.
Fig. 11 compares the SIR meta distributions for the PSP-PPP,
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(a) (b)

Figure 12: (a) Pairs of (1/λ, p) such that p2(λ, p) = q for q = 0.1, 0.5, 0.8, 0.9 in the TPPP. θ = 0 dB, D = 0.25, µ = 1, and α = 4. The
equation numbers of p2 are given in the parentheses in the legends. (b) Histograms of conditional link success probabilities for different
combinations of (1/λ, p) that yield p2 = 0.9 in (a).

the TPPP, and the beta approximation. The behavior is the
same as observed in Fig. 9 for the PLP-PPP, and thus Remark
2 also holds for the PSP-PPP.

Remark 3. The success probability expression of the PSP-
PPP (28) involving multiple integrals can be approximated
by a much simpler expression (29) obtained by its transdi-
mensional model. In the case of the SIR meta distribution,
the transdimensional model well approximates the PSP-PPP,
especially, in the asymptotic regimes of θ and x (Fig. 11).

VI. APPLICATION TO CONGESTION CONTROL

We have established that the TPPP is sufficient to analyze
the complicated PLP-PPP and PSP-PPP. Particularly, the beta
approximation of the SIR MD for the TPPP provides tight
approximations to the SIR MD for the PLP-PPP and PSP-
PPP in the asymptotic regimes of x and θ. In this section, we
introduce the transmit rate control in the PLP-PPP using the
beta approximation of the SIR MD of the TPPP. The insights
presented in this section also hold for the PSP-PPP. First,
we begin with success probability-based congestion control to
demonstrate the need for SIR MD-based congestion control.

A. Success Probability-Based Congestion Control

Fig. 12a plots the pairs (1/λ, p) that satisfy the target
success probability of the typical general vehicle p2(λ, p) = q
for different values of q. It is convenient to plot 1/λ vs. p
rather than λ vs. p to illustrate the difference between success
probability-based and beta approximation-based congestion
control methods. It follows from (18) that p is a linear function
of 1/λ, and each line follows a equation of the form λp = C,
where C is a constant. For a given target p2, as λ scales by
a, p is scaled by 1/a. Further, we observe that for the same
λ, we have to more aggressively reduce p at higher target p2

than in the lower target values.

Fig. 12b shows the histograms of conditional success prob-
abilities for different combinations of (1/λ, p) picked from the
line corresponding to p2 = 0.9 in Fig. 12a. We see that for a
given λp, the conditional success probabilities exhibit higher
variance for p = 0.9 than for p = 0.1. This implies that the
fraction of links that are reliable with a probability of at least x
varies for different (1/λ, p) even though they yield the same
success probability. Therefore, to maintain certain link-level
reliability, we need to use the SIR MD for congestion control.

B. Beta Approximation-Based Congestion Control

To make the dependence of the MD on λ and p explicit,
we are adding these two parameters as arguments to the MD
as F̄P2

(θ, x, λ, p). Fig. 13 plots the pairs (1/λ, p) such that
F̄P2

(1, x, λ, p) = q for different values of q and x. We observe
that the (1/λ, p) contours transition from concave to linear to
convex as we increase x for all values of F̄P2

. For example,
as λ → ∞ (1/λ → 0), we can more aggressively vary p at
lower values of x than at higher values of x. The converse is
observed as λ→ 0 (1/λ→∞). This implies that we have to
change p differently with respect to the reliability constraint
rather than simply changing p such that λp = C as in the
success probability-based congestion control. In other words,
to maintain a certain target fraction of reliable links, λp, and,
in turn, the success probability, cannot be kept constant.

Fig. 14 presents a different cross-section of Fig. 13 that
helps us compare the success probability-based and beta
approximation-based congestion control schemes. We observe
that the transmit probability p that achieves p2 = 0.9 (solid
line) is higher than the p that guarantees 90% of links to be
at least 80% reliable (dotted curve), especially, at lower λ.
To guarantee a minimum of 80% reliability, we shall vary p
based on the dotted curve rather than the solid line that yields
p2 = 0.9. This would lower the success probability to as low
as 0.85, implying that we can sacrifice the success probability
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(a) x = 0.1 (b) x = 0.5 (c) x = 0.9

Figure 13: Pairs (1/λ, p) such that F̄P2(1, x, λ, p) = q for q = 0.1, 0.4, 0.7, and 0.9. D = 0.25, µ = 1, and α = 4.

Figure 14: Pairs of (1/λ, p) that satisfy the target performance given
in the legends. The range of p2 listed for each combination (F̄P2 , x)
is obtained by finding the success probabilities for different values of
(1/λ, p) sampled along the contour that satisfies F̄P2(1, x, λ, p) =
0.9 for a given x. D = 0.25, µ = 1, and α = 4.

p2 to maintain a certain reliability at each link. Therefore, the
success probability is not an adequate measure of congestion
when the conditional success probabilities exhibit significant
variance, i.e., when vehicles form a non-regular point process.
In contrast, if vehicles form a lattice, the conditional success
probabilities are concentrated around the success probability,
because the distances to the interferers are the same at each
receiver.

Next, we see whether the inference obtained for congestion
control using the beta approximation-based scheme holds for
the PLP-PPP. In Fig. 15, we plot the exact SIR MDs for the
PLP-PPP for different values of λ, with the corresponding
p values chosen according to the beta approximation-based
congestion control scheme. These (λ, p) pairs yield an SIR
MD of 0.9 for the TPPP for x = 0.5 and 0.9 (Figs. 13b and
13c). We observe in Fig. 15 that the SIR MDs for the PLP-
PPP are highly concentrated around 0.9 with small deviations.
This validates that the beta approximation of the SIR MD for
the TPPP is sufficient for congestion control. In fact, using the
exact SIR MD of the PLP-PPP for congestion control would be

Figure 15: Comparison of exact SIR MD for the PLP-PPP and
beta-approximated SIR MD for the TPPP. For each λ, p is chosen
according to the beta approximation-based congestion control scheme
such that the SIR MD for the TPPP equals 0.9. µ = 1, D = 0.25,
and α = 4. The equation numbers in the parentheses in the legends
either refer to the moments or expression of F̄P2 .

prohibitively complicated due to the infinitely many moments
involved and their unwieldy expression (14).

VII. CONCLUSIONS

We introduced a simple transdimensional approach to ana-
lyze complicated vehicular network models such as the PLP-
PPP or PSP-PPP, where the streets are characterized by the
PLP or PSP and vehicles on each street form a 1D PPP.
The TPPP accounts for only the geometry of the vehicle
locations on the street(s) passing through the typical vehicle
and models the rest of the vehicles as random points on the 2D
plane ignoring their street geometry. Such a transdimensional
approach leads to a much simpler and more tractable analysis
of the PLP-PPP and PSP-PPP with good accuracy. We showed
that under no shadowing, the SIR meta distribution for the
TPPP well approximates that for the PLP-PPP and PSP-PPP,
and particularly, the approximations are tight in the asymptotic
regimes of data rate and reliability. We proved that the SIR
meta distribution for the TPPP becomes exact as the variance
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of the shadowing increases. Hence, it is not essential to
account for the geometry of every single street for vehicular
network analysis. From the perspective of network simulation,
the TPPP model enables us to focus on simpler simulation
setups, thus saving computational costs and time.

We conjecture that the TPPP is sufficient even if the streets
are curved segments or circles, etc., rather than lines as in
the PLP or sticks as in the PSP. The reason is that any PPP-
based vehicular network interloops both the properties of both
1D and 2D PPPs, which indeed is the fundamental principle
behind the construction of the TPPP.

Further, the SIR meta distribution enables network conges-
tion control while ensuring fairness among the links, by guid-
ing the choice of the transmit rate such that each transmitter-
receiver link is reliable with a probability of at least x. We
showed that the success probability or packet reception rate, a
measure of the average reliability of the links, is inadequate to
understand and alleviate congestion in a network with irregular
vehicle spacing since it cannot guarantee that a certain fraction
of links achieves the required reliability.

APPENDIX

A. Proof of Theorem 1

By (8) and (9), the conditional success probability can be
expressed as

PPLP−PPP
m (θ) = P(g > θDαI | I,V)

= EI [exp(−θDαI) | V]

(a)
=
∏
z∈V

(
p

1 + s‖z‖−α
+ 1− p

)b
, (30)

where s = θDα, and (a) is obtained by averaging over
ALOHA and fading. Then

MPLP−PPP
b,m = E[Pm(θ)b]

= E
[ ∏
z∈V

(
p

1 + s‖z‖−α
+ 1− p

)b]
(b)
= E

[ ∏
z∈Vmo

(
p

1 + s‖z‖−α
+ 1− p

)b]
︸ ︷︷ ︸

Mo
b,m

× E
[ ∏
z∈V!

(
p

1 + s‖z‖−α
+ 1− p

)b]
︸ ︷︷ ︸

M !
b,m

, (31)

where (b) follows from the independence of the 1D PPPs.
Mo
b,m and M !

b,m are the b-th moments with respect to the
point processes Vmo and V!. We have

Mo
b,m

(c)
= exp

(
− 2λ

∫ ∞
0

[
1−

(
p

1 + su−α
+ 1− p

)b]
du

)
= exp

(
− 2λ

∫ ∞
0

[
1−

(
1− ps

uα + s

)b]
du

)
(d)
= exp

(
− λδ

∫ ∞
0

[
1−

(
1− ps

v + s

)b]
vδ/2−1dv

)
,

(32)

where (c) applies ‖z‖ = |(−u sinϕ, u cosϕ)|2, and the
probability generating functional (PGFL) of the PPP and (d)
is the result of substituting v = uα. Similarly, we can derive
M !
b,m as

M !
b,m

= E
[ ∏
z∈V!

(
p

1 + s‖z‖−α
+ 1− p

)b]
(e)
= E

[
exp

(
− λ

∫
R

[
1−

(
p

1 + sg(t, u)−α
+ 1− p

)b]
du

)]
(f)
= exp

(
− 2µ

∫ ∞
0

(1−Gb(t))dt

)
, (33)

where g(t, u) = t2 + u2, ‖z‖ = ‖(t cosϕ − u sinϕ, t sinϕ +
u cosϕ)‖2 in (e), (f) follows from the PGFL of the PPP, and

Gb(t)

= exp

(
− 2λ

∫ ∞
0

[
1−

(
p

1 + s(t2 + u2)−α
+ 1− p

)b]
du

)
= exp

(
− 2λ

∫ ∞
0

[
1−

(
1− ps

(t2 + u2)1/δ + s

)b]
du

)
(g)
= exp

(
− λδ

∫ ∞
t2/δ

[
1−

(
1− ps

v + s

)b]
vδ−1

√
vδ − t2

dv

)
(34)

= exp(−λδFb(t)), (35)

where (g) follows from the change of the variable v2 = t2+u2.
Note that Gb(0) = Mo

b,m. Using the binomial expansion, Fb(t)
can be expanded as [13]

Fb(t) =

∞∑
k=1

(
b

k

)
(ps)k(−1)k+1

∫ ∞
t2/δ

vδ−1

(v + s)k
√
vδ − t2

dv.

(36)

For t = 0, (35) reduces to

Gb(0) = exp

(
− 2λθδ/2D

πδ/2

sin(πδ/2)

∞∑
k=1

(
b

k

)(
δ/2− 1

k − 1

)
pk
)

= exp

(
− 2λDθδ/2Γ(1 + δ/2)Γ(1− δ/2)Db(p, δ/2)

)
,

(37)

where Db(p, δ/2) =
∑∞
k=1

(
b
k

)(
δ/2−1
k−1

)
pk = pb 2F1(1− b, 1−

δ/2; 2; p). Substituting (37) for Mo
b,m and (33) in (31), we

obtain the result in Theorem 1.

B. Proof of Corollary 2
Corollary 2 states that the variance of the conditional

success probabilities tends to zero as p → 0 while λp is
set to a constant C. By (31), the moment Mb,m can be
expressed as Mb,m = Mo

b,mM
!
b,m. The first term inside the

exponential function in (14) refers to Mo
b,m and the second

term is M !
b,m. Db(p, δ/2) = p for b = 1 and 2p+ (δ/2−1)p2

for b = 2. Thus Mo
2,m = (Mo

1,m)2+(δ/2−1)p. By (33),
M !

2,m = exp(−2µ
∫∞

0
(1−G2(t)dt), where

G2(t) = exp

(
− λδ

∫ ∞
t2/δ

[
1−

(
1− ps

v + s

)2]
vδ−1

√
vδ − t2

dv

)
.

(38)
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As p→ 0 with λp = C, we have

lim
p→0
λp=C

M !
2,m = exp

(
− 2µ lim

p→0
λp=C

∫ ∞
0

(1−G2(t))dt

)
(a)
= exp

(
− 4µλδps

∫ ∞
t2/δ

vδ−1

(v + s)
√
vδ − t2

dv

+ o(p2)

)
(b)
≈ exp

(
− 4µ lim

p→0
λp=C

∫ ∞
0

(1−G1(t))dt

)
= (M !

1,m)2, (39)

where (a) applies Taylor’s series and (b) follows from (34).
Now, we are ready to evaluate the variance M2,m −M2

1,m of
the conditional success probability.

M2,m −M2
1,m = (Mo

1,m)2+(δ/2−1)pM !
2,m − (Mo

1,mM
!
1,m)2

= (Mo
1,m)2((Mo

1,m)(δ/2−1)pM !
2,m − (M !

1,m)2).
(40)

By (39), as p→ 0 with λp = C, (40) reduces to

lim
p→0
λp=C

(Mo
1,mM

!
1,m)2((Mo

1,m)(δ/2−1)p − 1) = 0.
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