On the Location-Dependent SIR Gain in Cellular Networks

Ke Feng, Martin Haenggi, Fellow, IEEE

Abstract—In wireless networks, the distances from a user to its desired transmitters and undesired interferers play a critical role in its channel quality. In this paper, we study this location-dependence in a cellular network, where a user is always served by its nearest base station. For any stationary and ergodic base station process, we partition its associated Voronoi cells into the cell centers and the cell boundaries. We show that in Poisson networks, the top fraction x of users enjoy a signal-to-interference ratio (SIR) gain of $-5\alpha \log_{10} x$ dB relative to the typical user for Rayleigh fading and the power-law path loss with the exponent α. For the cell boundary users, we give both the exact and asymptotic form of the SIR distribution. As such, this paper permits the grouping of users and the analysis of different groups of users.

Index Terms—Cellular networks, location-dependence, SIR gain, Poisson networks, stochastic geometry.

I. INTRODUCTION

In the downlink orthogonal frequency-division multiplexing (OFDM) systems, each base station (BS) serves users within its cell while causing interference to users in other cells using the same resource block. The distances between a user to its transmitting/interfering BSs shape the link quality in the long term [1]. In the literature, “the cell boundary users” typically refers to users who are almost equally close to the serving and nearest interfering BS and “the cell center users” refers to those who are much closer to the serving BS than to interfering ones. The former type is often the bottleneck of the network while the latter type benefits from good locations. To optimize resource allocation and improve the fairness, it is important to distinguish these two types of users and study their gain/loss relative to the typical user.

We define the region of a location u by how much closer u is to its serving BS than to its nearest interfering BS following [1], [2]. Let $\Phi \subseteq \mathbb{R}^2$ be an ergodic and stationary BS point process and $x_i(u)$ be the i-th nearest BS to u. For $\gamma \in [0,1]$ and $\rho \triangleq 1 - \gamma$ we define

$$C_1 \triangleq \{ u \in \mathbb{R}^2 : \| u - x_1(u) \| \leq \rho \| u - x_2(u) \| \}$$

$$C_2 \triangleq \{ u \in \mathbb{R}^2 : \rho \| u - x_2(u) \| < \| u - x_1(u) \| \}. \tag{1}$$

γ controls the area fraction of each region.

In the case when Φ is a homogeneous Poisson point process (PPP) with intensity λ, the area fraction of each region equals the probability that the origin falls into each region [2]:

$$\mathbb{P}(o \in C_1) = \rho^2, \quad \mathbb{P}(o \in C_2) = 1 - \rho^2. \tag{2}$$

In the case when Φ is a lattice network, the calculation of the area fractions is straightforward but the result is unwieldy. Fig. 1 shows the area fraction of each region in Poisson networks and triangular networks as γ increases from 0 to 1.

II. POISSON NETWORKS

The success probability is defined as the probability of the SIR exceeding a threshold θ

$$\bar{F}(\theta) \triangleq \mathbb{P}(\text{SIR} > \theta). \tag{3}$$

When BSs forms a PPP $\Phi \subseteq \mathbb{R}^2$, the success probability of the typical user is [3]

$$\bar{F}_{\text{PPP}}(\theta) = \frac{1}{2F_1(1,-\delta; 1-\delta; -\theta)} \tag{4}$$

with $\delta \triangleq 2/\alpha$. $2F_1(a,b;c;z)$ is the Gauss hypergeometric function.

Using the geometric partition, we can express the success probability as

$$\bar{F}_{\text{PPP}}(\theta) = \sum_{i=1}^{2} \mathbb{P}(\text{SIR} > \theta \mid o \in C_i) \mathbb{P}(o \in C_i). \tag{5}$$

In the next two subsections, we will study the success probability conditioned on the typical user being in the two regions. $r_i = \| x_i(o) \|$ denotes the distance of the i-th nearest BS to o.

A. The Cell Center Region

Theorem 1. The success probability conditioned on the typical user lying in C_1 is

$$\mathbb{P}(\text{SIR} > \theta \mid o \in C_1) = \bar{F}_{\text{PPP}}(\theta \rho^\alpha) \tag{6}$$

$$= \frac{1}{2F_1(1,-\delta; 1-\delta; -\rho^\alpha \theta)}.$$
In particular, for $\alpha = 4$, we have

$$P(\text{SIR} > \theta \mid o \in C_1) = \frac{1}{1 + \rho^2 \sqrt{\theta} \arctan(\rho^2 \sqrt{\theta})}. \quad (7)$$

Proof.

$$P(\text{SIR} > \theta \mid o \in C_1) = P(S > \theta I \mid o \in C_1)$$

$$= \mathbb{E} \left[\prod_{i=2}^{\infty} \frac{1}{1 + \theta \left(\frac{r_i}{r_1} \right)^{\alpha}} \mid o \in C_1 \right]$$

$$= \mathbb{E} \left[\prod_{i=2}^{\infty} \frac{1}{1 + \theta \rho^\alpha \left(\frac{r_i}{r_1} \right)^{\alpha}} \mid o \in C_1 \right]$$

$$= \mathbb{E} \left[\prod_{i=2}^{\infty} \frac{1}{1 + \theta \rho^\alpha \left(\frac{t_i}{t_1} \right)^{\alpha}} \right]$$

$$= \mathbb{E}_{\text{PPP}}(\theta \rho^\alpha),$$

where (a) is due to the fact that the region C_1 is equivalent to $\{r_1/r_2 \leq \rho\} = \{r_1/r \leq r_2\}$. Put differently, the probability law of $r_1/r, r_2, \ldots$ conditioned on $r_1/r_2 \leq \rho$ is the same as the law of r_1, r_2, \ldots without conditioning. This can be shown by establishing that $f_{C_1}(x \mid r_1/r_2 \leq \rho) = f_{C_1}(x)$ in the following derivation and using the independence property of the PPP:

$$P\left(r_1 \leq x \mid \frac{r_1}{r_2} \leq \rho \right) = \frac{P(r_1 \leq x, r_1/r_2 \leq \rho)}{P(r_1/r_2 \leq \rho)}$$

$$= \frac{\int_0^{\infty} \int_0^{\infty} (2\pi \lambda)^2 u v \exp(-\lambda \pi u^2) \exp(-\lambda \pi v^2) dv du}{\rho^2}$$

$$= 1 - \exp\left(-\lambda \pi \frac{x^2}{\rho^2}\right), \quad (8)$$

and the pdf

$$f_{r_1}(x \mid \frac{r_1}{r_2} \leq \rho) = \frac{2\lambda \pi x}{\rho^2} \exp\left(-\lambda \pi \frac{x^2}{\rho^2}\right). \quad (9)$$

Now

$$f_{C_1}(x \mid r_1/r_2 \leq \rho) = 2\pi \lambda x \exp(-\lambda \pi x^2) = f_{r_1}(x).$$

Remark 1 Theorem 1 shows the SIR gain (in dB) conditioned on the typical user being in C_1 is

$$G_1 = -10 \log_{10} \rho^\alpha. \quad (10)$$

is remarkably simple and directly shows that the top fraction $x = \rho^2$ of users enjoy an SIR gain of $-5\alpha \log_{10} x$ dB relative to the typical user. Here, the “top” users are those with the highest distance ratio of the nearest interferer and the serving BS. Fig. 2 shows the SIR gain G_1 as a function of the area fraction of users in C_1. For instance, there are 31.5% of the users that enjoy an average gain of 10 dB over the typical user, and 10% achieve a gain of 20 dB.

Remark 2 It is interesting to compare this result with the success probability of a BS silencing scheme that mutes all the BSs within r_1/ρ for the typical user. We have

$$P(\text{SIR} > \theta) = \int_0^{\infty} 2\pi \lambda x \exp\left(-\pi \lambda x^2 - \int_\frac{1}{\rho}^{\infty} \frac{1}{1 + \theta \left(\frac{x}{\rho} \right)^{\alpha}} \right) 2\pi \lambda x dx$$

$$= \frac{1}{1 - \rho^{\alpha - 2} + \rho^{\alpha - 2} \cdot \frac{1}{\pi} \cdot F_1(1, -\delta; 1 - \delta; -\rho^\alpha \theta)^2 \cdot \frac{1}{\pi}.} \quad (11)$$

It is easy to show that (11) is smaller than (6) for any $\theta > 0$ and $\rho \in [0, 1]$. This is expected since muting the interfering BSs in r_1/ρ does not affect the ratio of r_1/r_i for $r_i > r_1/\rho$.

Corollary 1. The gain of the typical user being in C_1 is the same as the gain when all interferers are $1/\rho$ times more distant

$$r_i' = r_i/\rho, \quad i > 1,$$

or, equivalently, the interference power is ρ times smaller, i.e., $I' = I\rho^\alpha$.

Proof. Trivial. \hfill \Box

Theorem 1 leads to the evaluation of the conditional success probability, denoted by $P_s(\theta)$, and the SIR meta distribution [4] conditioned on the typical user being in C_1.

Corollary 2. The b-th moment of the conditional success probability conditioned on the typical user lying in C_1 is

$$\mathbb{E}[P_s(\theta)^b \mid o \in C_1] = \frac{1}{2F_1(b, -\delta; 1 - \delta; -\rho^\alpha \theta)^2 \cdot \pi}, \quad b \in \mathbb{C}. \quad (13)$$

and the SIR meta distribution conditioned on the typical user lying in C_1 satisfies

$$P_s(\theta) > x \mid o \in C_1) = P_s(\rho^\alpha \theta) > x), \quad x \in [0, 1]. \quad (14)$$

Proof.

$$\mathbb{E}[P_s(\theta)^b \mid o \in C_1] = \mathbb{E} \left[\prod_{i=2}^{\infty} \frac{1}{1 + \theta \left(r_i/r_1 \right)^{\alpha}} \mid \Phi, o \in C_1 \right]$$

$$= \mathbb{E} \left[\prod_{i=2}^{\infty} \frac{1}{1 + \rho^\alpha \theta \left(r_i/r_1 \right)^{\alpha}} \mid \Phi \right]$$

$$= \frac{1}{2F_1(b, -\delta; 1 - \delta; -\rho^\alpha \theta)^2 \cdot \pi}. \quad (15)$$

Since this holds for any $b \in \mathbb{C}$, it holds for the SIR meta distribution [5]. \hfill \Box

Remark 3 (14) shows that for the same target reliability and percentile, the typical user in C_1 achieves an SIR that is $\rho^{-\alpha}$ times higher than that of the typical user.
B. The Cell Boundary Region

Corollary 3. The success probability conditioned on the typical user being in C_2 is

$$P(\text{SIR} > \theta \mid o \in C_2) = \frac{F_{\text{PPP}}(\theta) - \rho^2 F_{\text{PPP}}(\theta \rho^2)}{1 - \rho^2}$$ \hfill (15)

Proof. Combining (5), $P(o \in C_2) = 1 - \rho^2$ and the result in Theorem 1, we obtain Corollary 3. \hfill \square

From (15) we notice that the horizontal gain within C_2 is not constant but depends on θ. Fig. 3 shows the success probability in the two regions plotted using (6) and (15). The success probability of the typical user is the weighted average of them.

Taking the limit $\rho \to 1$ of (15) we obtain the success probability for the typical edge user, *i.e.*, the typical user that lies on the edges of the Voronoi cells,

$$P(\text{SIR} > \theta \mid x_1(o) = x_2(o)) = \frac{1}{2 F_1(1,-\delta;1-\delta;\theta)} - \frac{\theta}{1 - \delta} \frac{2 F_1(2,1-\delta;2-\delta;\theta)}{2 F_1(1,-\delta;1-\delta;\theta)^2}$$

$$= \frac{(1 + \theta)}{2 F_1(1,-\delta;1-\delta;\theta)^2} = \frac{F_{\text{PPP}}(\theta)}{1 + \theta}. \hfill (16)$$

In contrast, for the typical vertex user, *i.e.*, the user lying on the vertex of the Voronoi cells,

$$P(\text{SIR} > \theta \mid x_1(o) = x_2(o) = x_3(o)) = \frac{F_{\text{PPP}}(\theta)^2}{(1 + \theta)^2}. \hfill (17)$$

There is an extra factor $1 + \theta$ in the denominator due to the third equidistant BS.

We now calculate the asymptotic SIR gain (the SIR gain as $\theta \to 0$) of the users in C_2. Denote by G_2 the asymptotic SIR gain of the users in C_2 relative to the typical user. Note that $G_2 \leq 1$. We can write the asymptotic form of the success probability of the users in C_2 as [7]

$$P(\text{SIR} > \theta \mid o \in C_2) \sim \frac{F_{\text{PPP}}(\theta / G_2)}{1 + \theta}, \quad \theta \to 0. \hfill (18)$$

where

$$G_2 = \frac{\text{MISR}_{\text{PPP}}(C_2)}{\text{MISR}_{C_2}} = \frac{1 - \rho^2}{1 - \rho^2 + \rho^2 \theta}. \hfill (19)$$

C. Spectral Efficiency

We determine the spectral efficiency in units of nats/s/Hz in an interference-limited scenario assuming rate adaptation. Letting $R_i = E[\ln(1 + \text{SIR})] \mid o \in C_i$, $i = 1, 2$, we have

$$R = E[\ln(1 + \text{SIR})] = R_1 \Pr(o \in C_1) + R_2 \Pr(o \in C_2). \hfill (20)$$

Corollary 4. The spectral efficiencies conditioned on the typical user being in C_1 and C_2 are

$$R_1 = \int_{0}^{\infty} \frac{1}{2 F_1(1,-\delta;1-\delta;\rho^2 (e^t - 1))} dt. \hfill (21)$$
and

\[R_2 = \frac{1}{1 - \rho^2} \left(R - \rho^2 R_1 \right). \]

(21)

Proof.

\[R_1 = \mathbb{E} \left[\log(1 + \text{SIR}) \mid o \in C_1 \right] \]

\[= \int_0^\infty \mathbb{P} (\log(1 + \text{SIR}) > t \mid o \in C_1) dt \]

\[= \int_0^\infty \mathbb{P} (\text{SIR} > e^t - 1 \mid o \in C_1) dt \]

\[= \int_0^\infty \frac{1}{2} \text{F}_1 (1, -\delta; 1 - \delta; -\rho^2 (e^t - 1)) dt. \]

The second part is trivial.

Fig. 5 shows the spectral efficiency conditioned on the typical user being in the two regions in comparison with that of the typical user \(R = 2.163 \text{ bits/s/Hz} \) (the black line), \(\alpha = 4 \).

Fig. 6 shows the success probability in \(C_1 \) in triangular lattice networks for \(\gamma = 0, 0.1, ..., 0.9 \).

Fig. 7 shows the asymptotic SIR gain in Poisson networks and lattice networks.

III. Lattice Networks

In this section, we study the success probability and the asymptotic SIR gain of the cell center region defined in (1) in triangular lattice networks. Fig. 6 shows the simulated result of the success probability in \(C_1 \) with different \(\gamma \). Fig. 7 shows the asymptotic SIR gain \(G_1 \) in Poisson networks and triangular lattice networks. The former is plotted using (10), and the latter using simulation results evaluated at \(p_0(\theta) = 0.95 \) with the success probability of the typical user in triangular lattices as the baseline. The latter is smaller since a user is more likely to have other nearby interfering BSs when fixing the distance ratio between the nearest two BSs.

IV. Conclusions

This paper compares the SIR distribution and the related performance metrics for the cell center users and the cell boundary users in cellular networks. We show a surprisingly simple relationship between the SIR performance of the cell center users and the typical user in Poisson networks. The idea of grouping users and analyzing the corresponding performance applies to general networks.

References

