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ABSTRACT

This paper presents a geometric analysis of the convergence condition for the Foschini-
Miljanic power control algorithm. The Möbius transform is exploited for the first time
to analyze the convergence conditions of the power control algorithm. A novel MAC
scheme based on the Möbius transform is proposed for the link scheduling problem
and proven to improve spatial reuse by scheduling links in pairs if possible. The peak
power constraint of wireless networks is analyzed theoretically, and applications to random
networks are explored in detail. Observations from the analysis of peak power constraints
are also applied to the design of the MAC scheme to improve the convergence speed and
system performance. Applications to cognitive networks and heterogeneous networks are
discussed. Copyright c© 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

1.1. Motivation and Contribution

The Foschini-Miljanic (FM) power control algorithm in [1] is a distributed and dynamic
power control algorithm to adjust transmit power levels using the instantaneous signal-to-
interference Ratio (SIR) or signal-to-interference-and-noise Ratio (SINR) measured at the
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receiver such that the SNR or SINR converges to a desired value. While the convergence
condition of the FM power control algorithm has been well studied, it has not been analyzed
from a geometric perspective. A geometric analysis can help researchers better understand
the dependencies between the links in a wireless network and provide insight into the design
of MAC schemes with dynamic power control. In this paper, we present such an analysis.
An analytical tool that is novel in this context, the Möbius transform [2], is introduced
to analyze the convergence condition. The analysis of the two-transmitter case illustrates
that link nesting is possible with distributed and dynamic power control, which enables the
design of MAC schemes that schedule link pairs instead of individual links.

A peak power constraint is an important factor that affects the convergence of dynamic
power control algorithms. Existing dynamic power control algorithms with peak power
constraint usually let the transmitters continue to transmit at peak power after the transmit
power hits the power ceiling. However, their receivers’ SINRs cannot achieve the desired
SINR threshold. That is, while the convergence of the transmit powers is guaranteed, not
all the receivers’ SINRs converge to the desired threshold. Therefore, how to quantify the
convergence of the receivers’ SINRs under a peak power constraint is an unsolved problem.
In this paper, a novel metric called convergence probability is defined to show the impact of
the peak power constraint, and the properties and bounds of the convergence probability are
derived theoretically for random networks.

Our main contributions are summarized as follows:

1. Geometric analysis: A novel analytical tool, the Möbius transform, is used for the
geometric analysis of the convergence condition for the FM power control algorithm
without fading.

2. Peak power constraint: The effects of the peak power constraints on the networks are
studied in detail. Random networks are used for the first time to study the convergence
of the dynamic power control algorithm with peak power constraint.

3. Möbius MAC scheme: A novel MAC scheme based on the geometric analysis and
observations from peak power analysis is proposed to schedule link pairs with unequal
link distances. Simulation results show that our MAC scheme is much more efficient
to schedule links than the traditional CSMA scheme and has better quality of service
(QoS) performance in terms of transport density.

1.2. Related Work

Transmission power control plays an important role in the design and operation of wireless
networks. Much of the study on cellular network power control started in the 1990s and
involved minimizing the total power while maintaining a fixed target SIR or SINR at the
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desired receiver [1, 3, 4]. An efficient and distributed power control algorithm for cellular
systems, now commonly referred to as the Foschini-Miljanic algorithm, was provided
in [1]. The authors in [5] have shown the applicability of this algorithm to wireless ad
hoc networks. Joint power control and scheduling algorithms have been proposed in [5, 6].
Different types of power control schemes for cellular systems have been presented in [7] and
references therein. Recently, power control for various new types of wireless networks has
been extensively studied, e.g., [8] for two-tier femtocell networks and [9, 10] for cognitive
radio networks. Moreover, constrained power control has been studied in [11, 12] since
the maximum transmit power of a mobile user or any wireless transmitter is limited. The
convergence of the distributed and dynamic power control algorithm with peak power
constraint has been analyzed in [13, 14] for cellular networks.

A heuristic scheduling scheme is provided in [5] to determine a maximum subset of
concurrently active links by shutting down the link with the minimum SINR until all the
SINR requirements are satisfied. However, it is not distributed since one node needs all
the SINR information from other nodes in order to decide if it can transmit or not. We
propose a fully distributed MAC scheme that includes the peak power constraint in a natural
way and schedules link in pairs. In our MAC scheme, called the Möbius MAC scheme,
the geometric analysis that is derived from the two-transmitter case is utilized to serve as a
criterion to schedule links in pairs.

1.3. Organization of the Paper

The rest of this paper is organized as follows. In Section II, the system model is introduced,
assumptions stated and the metrics used in the paper defined. Section III discusses the
convergence condition of the power control algorithm from a geometric perspective. The
power control algorithm under the peak power constraint is also studied in detail in Section
IV. Section V describes the novel energy-efficient MAC scheme. In Section VI, applications
of our analysis to cognitive networks and heterogeneous networks are discussed. We
conclude our work in Section VII.

2. SYSTEM MODEL

Consider a wireless network where all nodes share the same frequency band. Assume that
the network has n links with each link consisting of a transmitter and its associated receiver.
Thus, there are n transmitters and n receivers, and the sets of transmitting and receiving
nodes are disjoint. An example of such a wireless network is illustrated in Fig. 1.
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Figure 1. An example of the class of wireless networks considered in this paper. Crosses indicate the transmitters, and circles indicate
the receivers.

The channel power gain from transmitter j to receiver i is denoted by hij . Note that fading
is not considered throughout the paper. The QoS is represented by the SINR at the intended
receiver. For a wireless network with n links, the SINR at the ith receiver is given by

ρi =
hiiPi∑

j 6=i hijPj + η
, (1)

where Pi is the power of the ith transmitter, and η is the noise power level.

3. CONVERGENCE CONDITION FOR POWER CONTROL

3.1. Review of Power Control Algorithm

Here we briefly review the power control algorithm proposed in [1]. The goal of the
algorithm is to find the minimal solution of the transmit powers such that the SINR at each
receiver meets a given threshold ρ > 0 required for acceptable performance. This constraint
can be represented in matrix form as

(I − F )P ≥ u, (2)
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where P = (P1, · · · , Pn)T ∈ Rn
+ (denoted as P > 0) is the column vector of transmit

powers,

u =

(
ρη

h11

,
ρη

h22

, . . . ,
ρη

hnn

)T
, (3)

and F is a matrix with

Fij =

{
0, if i = j
ρhij
hii
, if i 6= j

(4)

where i, j ∈ [n] , {1, 2, · · · , n}.
The Perron–Frobenius eigenvalue σF of the matrix F is defined as the maximum

modulus of all eigenvalues of F , i.e., σF = max1≤i≤n {|λi|}, where λ1, λ2, · · · , λn are
the eigenvalues of F . From [1], if and only if σF < 1, (I − F )−1 exists and P ∗ =

(I − F )−1u > 0 is the minimal power solution to (2). That is, if P is any other solution
to (2), P ≥ P ∗ componentwise. Therefore, the total power consumption can be minimized
by allocating the transmit powers P ∗. σF < 1 also guarantees that the iterative distributed
power control algorithm

P (k + 1) = FP (k) + u, (5)

or, equivalently,
Pi(k + 1) =

ρ

ρi(k)
Pi(k) (6)

converges to P ∗, where ρi(k) is the instantaneous SINR for ith receiver at time k, Pi(k) is
the power of the ith transmitter at time k ∈ N, and the initial value P (0) is given.

3.2. Geometric Analysis of the Convergence Condition in the Two-link Case

The path loss is assumed to be proportional to the γth power of the distance between the
transmitter and the receiver. The channel power gain from transmitter j to receiver i without
fading is thus given by

hij =

(
d0

dij

)γ
, (7)

where γ is the path loss exponent, d0 is the normalization distance, and dij is the distance
between transmitter j and receiver i.

For the two-transmitter case, the eigenvalues of the matrix F are ±ρ
√
h12h21/h11h22,

where hij is given in (7). Hence,

σF = ρ
√
h12h21/h11h22 < 1

leads to
d12d21

d11d22

> ρ
2
γ . (8)
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Let ti ∈ R2 be transmitter i’s position, i ∈ {1, 2}, ri ∈ R2 be receiver i’s position, and let

di , ‖ti − ri‖; d̃i , ‖ti − r3−i‖ (9)

be the distances of the desired links and the interfering “links”, respectively. Also, let
ρ̂ , ρ

1
γ . Then the convergence condition in (8) can be rewritten as

d̃1d̃2

d1d2

> ρ̂2, (10)

Our goal is to find out what constraints on their placement the two transmitters (Tx1, Tx2)
have to satisfy in order to guarantee that the distributed power control algorithm converges,
given the locations of the receivers.

First, letting
b(x, y) , ρ̂

x

y
, (11)

the convergence condition is equivalent to

b(d1, d̃1)b(d2, d̃2) < 1, (12)

which shows the symmetry in the two links.
By Apollonius’s definition of a circle [15],

{
ti : b(di, d̃i) = c

}
, where c is a constant,

defines a circle if the ri’s are given. Hence, (12) means that if t1 sits on the circle defined
by b(d1, d̃1) = c, t2 must be in the region

{
t2 : b(d2, d̃2) < c−1

}
which is either inside or

outside the circle b(d2, d̃2) = c−1 depending on the value of c, and vice versa.
Now, assume that r1 = (−a, 0) and r2 = (a, 0) so that the distance between the two

receivers is 2a. Fixing the two receivers at the given locations means

d1 , ‖t1 − (−a, 0)‖, d2 , ‖t2 − (a, 0)‖; d̃1 , ‖t1 − (a, 0)‖, d̃2 , ‖t2 − (−a, 0)‖.
(13)

Note that b(d1, d̃1) = c is equivalent to t1 ∈ C1(c), where C1(c) is the circle

C1(c) = {x, y ∈ R : (x− x1(c))2 + y2 = R2
1(c)}, (14)

with x1(c) = a c
2+ρ̂2

c2−ρ̂2 , R1(c) = 2acρ̂
|ρ̂2−c2| .

Similarly, b(d2, d̃2) = c−1 defines another circle C2(c) given by

C2(c) = {x, y ∈ R : (x− x2(c))2 + y2 = R2
2(c)}, (15)

with x2(c) = a c
2+ρ̂−2

c2−ρ̂−2 , R2(c) = 2acρ̂−1

|ρ̂−2−c2| .
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With the above setup, we have the following lemma, which describes the constraints on
the placement of two transmitters given that the locations of two receivers are known.

Lemma 1. Given r1 and r2, if t1 ∈ C1(c), where c > ρ̂−1, then t2 ∈ D2, whereD2 is the disk
enclosed by C2; conversely, if t1 ∈ C1(c), where c < ρ̂−1, then t2 ∈ Dc

2, where c indicates
set complement, i.e., Dc

2 = R2\D2.

Proof
The proof is straightforward from the definitions of the two circles C1(c) and C2(c) and the
condition in (12). Hence, it is omitted here.

Fig. 2 illustrates Tx2’s location constraint for different u1 = d1/d̃1. For Fig. 2(a), when
Tx1 is on the dashed circle (u1 = 2), the dotted region shows the region of convergence for
the power control algorithm. Here, the region of convergence (ROC) is defined as the set
of Tx2’s locations that guarantee the convergence of the SINRs to the desired threshold for
both receivers when t1 ∈ C1(c). This case is especially interesting because Rx2 is sometimes
closer to Tx1 than Rx1 but can still receive from Tx2 as long as Tx2 is inside the circle C2.
Moreover, Fig. 2(d) shows that the Tx1-Rx1 link can even nest within the Tx2-Rx2 link.

3.3. Möbius Transform

In Section 3.2, we have seen that for every circle C1(c) on which Tx1 is located, there
is a circle C2(c) which serves as the boundary for Tx2’s ROC. That means that there is
one-to-one mapping between the circles. The Möbius transform maps generalized circles
into generalized circles on the complex plane [2]. Hence it is perfectly suited to provide a
connection between the circles in our results. To see this, we first quote a lemma about the
Möbius transform from [2].

Lemma 2. [2] If a Möbius transform f : C→ C, given by ω = f (z) = e1z+e2
e3z+e4

, has two
fixpoints α and φ, i.e. α = f(α), φ = f(φ), f can be written in the normal form

ω − α
ω − φ

= m
z − α
z − φ

, (16)

where m = e1+e4−
√
D

e1+e4+
√
D
, α = e1−e4+

√
D

2e3
, φ = e1−e4−

√
D

2e3
, D = (e1 − e4)2 + 4e2e3.

Applying the Möbius transform to the power control problem and assuming the
equivalence of R2 and C with (x, y) ∈ R2 and (x+ jy) ∈ C denoting the same point, we
have the following result:

Theorem 3. Let 2a denote the distance between Rx1 and Rx2. The relationship between C1

and C2 in (14), (15) can be expressed using a Möbius transform that only depends on the
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Figure 2. Tx2’s ROC for different u1 = d1/d̃1. The other parameters are a = 1, γ = 4, ρ = 12 dB.

desired SINR ρ and a:

f(z) = a
(ρ̂2 + 1)z + (ρ̂2 − 1)a

(ρ̂2 − 1)z + (ρ̂2 + 1)a
. (17)

Proof
First, every point (x, y) in R2 corresponds to a point z = x+ jy ∈ C whose conjugate is
denoted by z̄ = x− jy. The circles C1 and C2 in (14), (15) can be represented as follows:

C1 : A1zz̄ + B̄1z +B1z̄ + C1 = 0, (18)
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C2 : A2zz̄ + B̄2z +B2z̄ + C2 = 0, (19)

where A1 = c2ρ̂−4 − 1, B1 = B̄1 = −a(c2ρ̂−4 + 1), C1 = a2(c2ρ̂−4 − 1); A2 = c2ρ̂4 − 1,

B2 = B̄2 = −a(c2ρ̂4 + 1), C2 = a2(c2ρ̂4 − 1), c > 0.

To obtain the Möbius transform using Lemma 2, we need to identify two fixpoints of the
transform and one pair of points that are mapped to each other. In (18), (19), as c goes to
infinity, C1 and C2 will converge to the same point (a, 0). Similarly, as c goes to zero, C1 and
C2 will converge to the same point (−a, 0). Therefore, (a, 0), (−a, 0) are two fixpoints of
our Möbius transform, which are actually the locations of the two receivers. For ∀c, assume
that z1 =

(
a c+ρ̂
c−ρ̂ , 0

)
∈ C1 is mapped to ω1 =

(
a c+ρ̂

−1

c−ρ̂−1 , 0
)
∈ C2. Inserting z1, ω1 and two

fixpoints into (16), we have

m =
ω1 − a
ω1 + a

· z1 + a

z1 − a
. (20)

Inserting m back into (16), we obtain

ω = f(z) = a
(ρ̂2 + 1)z + (ρ̂2 − 1)a

(ρ̂2 − 1)z + (ρ̂2 + 1)a
. (21)

(21) is the Möbius transform from C2 to C1 and, conversely, z = f−1(w) =

a (ρ̂2+1)ω−(ρ̂2−1)a
(ρ̂2+1)a−(ρ̂2−1)ω

is the corresponding transform from C1 to C2. The Möbius transform
obtained here can be used as a mechanism to select concurrently active links based on the
SINR requirement and the location information of the receivers. Therefore, it is very helpful
for the design of MAC protocols. We will explore this in Section 5.

4. ANALYSIS OF POWER CONTROL WITH PEAK POWER CONSTRAINTS

In the previous section, we only focused on the convergence condition for power control
with the assumption that there are no constraints on the transmit power. However, this is not
realistic due to hardware limitations and regulations. The existing power control algorithms
with peak power constraint only guarantee the convergence of the transmit powers but not
for the receivers’ SINRs. Moreover, the impact that peak power constraints have on wireless
networks is not well understood. For example, is there a metric to quantize the convergence
of the power control algorithm when peak power constraints are present?

To solve these issues, we start with the two-transmitter case where both transmitters and
receivers are restricted to the real line R. Then, we study power control with peak power
constraints for random networks, and define a novel metric to measure the convergence of
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the power control algorithm under the peak power constraint. The properties of this novel
metric are analyzed in detail.

4.1. Analysis of Power Levels in Linear Networks with 2 Links

For this network, the convergence condition remains the same as in (12). As in Section
3.2, if Tx1 sits on b(d1, d̃1) = c, Tx1 is on either point t1 = a c−ρ̂

c+ρ̂
or a c+ρ̂

c−ρ̂ for the linear

network instead of a circle for two-dimensional networks. Similarly, b(d2, d̃2) = c−1

defines another two points a cρ̂−1
cρ̂+1

and a cρ̂+1
cρ̂−1

. If t1 = a c−ρ̂
c+ρ̂

or a c+ρ̂
c−ρ̂ , where c > ρ̂−1,

then t2 ∈ (a cρ̂−1
cρ̂+1

, a cρ̂+1
cρ̂−1

). Conversely, if t1 = a c−ρ̂
c+ρ̂

or a c+ρ̂
c−ρ̂ , where c < ρ̂−1, then t2 ∈

(a cρ̂+1
cρ̂−1

, a cρ̂−1
cρ̂+1

)c. Similar to the ROC, define the Interval of Convergence (IOC) for linear
networks. Here, let b1 = a cρ̂−1

cρ̂+1
and b2 = a cρ̂+1

cρ̂−1
. Therefore, if c > ρ̂−1, the IOC is I1 =

(b1, b2); if c < ρ̂−1, the IOC is I2 = (b2, b1)c. For the latter case, it means that if Tx1 and
Rx1 are close enough, their link can nest inside the Tx2-Rx2 link as long as the transmit
power is large enough similar to the case in Fig. 2(d).

Fig. 3 shows that the optimal power without power constraint depends on Tx2’s locations
given a fixed Tx1 location t1. The IOCs highlighted in Fig. 3 agree with the analytical
intervals I1 and I2 for different scenarios. Note that the flat part of the transmit power is
due to the assumption that hij = min

{
1,
(
d0
dij

)γ}
since no receiver ever gets more power

than is transmitted.
Fig. 3 shows the power allocations with varied Tx2 locations for some specific locations

of Tx1 and given the receivers’ locations. Fig. 3(d) resembles the case in Fig. 2(d) in which
a short link nests within a longer one. However, with a peak power constraint, the SINR
condition may not be satisfiable even if the convergence condition is met. As a result, the
IOC will shrink.

4.2. Analysis of Peak Power Constraints in Random Networks

In this subsection, two different types of networks with random node locations are studied
to illustrate how the peak power constraint affects the convergence of the power control
algorithm, averaged over different network topologies.

First, we define this metric to measure the convergence when there is a peak power
constraint for each node in the wireless network.

Definition 4. (Convergence Probability) The convergence probability under the power
constraint Pmax is defined as the probability that there exists a feasible power vector
P ∗ ≤ Pmax componentwise that satisfies (2) for randomly located nodes in the network.
It is denoted as Pcon(Pmax) or Pcon. For the special case where there is no power constraint,
i.e., Pmax =∞, the convergence probability is denoted as Pcon(∞).
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Figure 3. Optimal power for two transmitters with different Tx2 locations (the grey shadowed region indicates the IOC) for a = 1, γ =

4, ρ = 12 dB, η = −30 dBm and d0 = 0.1.

The convergence probability implies both the convergence of the transmit power and the
receivers’ SINR to the desired threshold. Pcon(Pmax) can be estimated by the fraction of
realizations for which the power control algorithm converges under the power constraint
Pmax in simulation runs. The power update policy with power constraints is [11, 12]

Pi(k + 1) = min

{
ρ

ρi(k)
Pi(k), Pmax

}
. (22)

First, we present two general lemmas about Pcon.
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Lemma 5. The convergence probability Pcon is a non-decreasing function of the power
constraint Pmax, and its maximum is

Pcon(∞) , P (σF < 1) , (23)

where σF is the Perron–Frobenius eigenvalue of the random matrix F defined in (4).

Proof
Let Pmax,1 < Pmax,2, and

Pcon(Pmax,2) = P({∃P ∗ ≤ Pmax,1 s.t. (2) holds} ∪
{∃P ∗ s.t. Pmax,1 ≤ P ∗ ≤ Pmax,2 and (2) holds}) (24)

≥ P ({∃P ∗ ≤ Pmax,1 s.t. (2) holds}) (25)

= Pcon(Pmax,1). (26)

Therefore, it is a non-decreasing function of Pmax. As a result, its maximum isPcon(∞).

Note that the matrix F is a random matrix due to the random node locations. Although
Lemma 5 gives an expression for Pcon(∞), there is no explicit expression for Pcon in
general. However, an upper bound of the convergence probability Pcon can be derived by
omitting the interference in the SINR, which leads to the following lemma.

Lemma 6. Assume that the transmitters ti and/or the receivers ri (i ∈ [n]) are randomly
located within a compact set B ⊆ Rd (d = 1, 2). An upper bound of the convergence
probability is given by

P̄con(Pmax) = E

[
1{

ti,ri∈B and ‖ti−ri‖≤Φ
1
γ , ∀i∈[n]

}
]

(27)

where Φ =
Pmaxd

γ
0

ρη
.

Proof
When the interference term is absent,

ρi =
hiiPi
η

, ∀i ∈ [n] , (28)

with Pi ≤ Pmax. Therefore, ρi,max = hiiPmax

η
. To satisfy the convergence condition, ρi,max

must be greater than or equal to the desired SINR threshold ρ for any i, which leads to(
d0
dii

)γ
Pmax

η
≥ ρ, ∀i ∈ [n] . (29)
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By algebraic deduction, it is easily shown that (29) is equivalent to

dii ≤ Φ
1
γ , ∀i ∈ [n] , (30)

where Φ =
Pmaxd

γ
0

ρη
. With ‖ti − ri‖ = dii and the definition of the convergence probability,

we obtain (27).

To obtain concrete results, we will discuss Pcon, Pcon(∞) and some related bounds in the
following two cases.

4.2.1. One-dimensional Random Networks
Assume that Tx1 is uniformly randomly placed within the interval [−2, 0] and Tx2

within [0, 2], and that the two receivers are fixed in [−1, 0] and [0, 1] respectively. Here,
B = [−2, 2].

The convergence probability without peak power constraints from Lemma 5 is

Pcon(∞) = P (σF < 1) (31)

= P
(
b(d1, d̃1)b(d2, d̃2) < 1

)
(32)

= Ec
[
P
(
b(d2, d̃2) < c−1 | c = b(d1, d̃1)

)]
. (33)

Applying the results from Section 4.1, P
(
b(d2, d̃2) < c−1 | c = b(d1, d̃1)

)
is |I2

⋂
[0,2]|

|[0,2]| for

c < ρ̂−1 or |I1
⋂

[0,2]|
|[0,2]| for c > ρ̂−1. Note that conditioning on c is equivalent to conditioning

on Tx1. Since the location of Tx1 is assumed to be uniformly distributed within [−2, 0],
Pcon(∞) can be expressed as

Pcon(∞) =
1

2

(∫
c<ρ̂−1

|I2

⋂
[0, 2]|

|[0, 2]|
dx+

∫
c>ρ̂−1

|I1

⋂
[0, 2]|

|[0, 2]|
dx

)
. (34)

From Lemma 6, an upper bound of the convergence probability is

P̄con =

1

2

∫
|x+1|≤min

{
1,Φ

1
γ

} dx
 ·

1

2

∫
|x−1|≤min

{
1,Φ

1
γ

} dx
 . (35)

Basic integration results in
P̄con = min

{
1,Φ

2
γ

}
. (36)

Fig. 4 illustrates how the convergence probability Pcon varies with the peak power
constraint Pmax. The theoretical upper bound (36) is also given in Fig. 4(a). It can be
seen that for small Pmax, the convergence probability increases almost quadratically with
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Pmax (in dB). This region can be considered as power-limited or noise-limited since the
power is so low that mainly the noise level limits the convergence. On the other hand,
the convergence probability converges to a maximum asymptotically with increasing power
constraint. That means the noise ceases to be a limiting factor, and the convergence
probability becomes limited only by node locations, or, in other words, the interference.
In this interference-limited regime, only the relative powers matter. By integrating (34)
using the same parameters as in Fig. 4, we obtain Pcon(∞) ≈ 0.93. There is a small gap
between the noise-limited and interference-limited regions as shown in Fig. 4(a), where
both noise and interference play a significant role. Note that in the noise-limited regime,
the upper bound P̄con is a good approximation for Pcon while Pcon coincides with Pcon(∞)

in the interference-limited regime. As a result, min
{
P̄con,Pcon(∞)

}
serves as a tight upper

bound and close approximation of the convergence probability Pcon.
Fig. 4(b) illustrates how the various noise levels affect the convergence probability curves.

The noise-limited curves shift left as the noise level decreases while the convergence
probability curves approach the same maximum Pcon, as expected.
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Figure 4. Estimated convergence probability Pcon vs. power constraint in linear random network with 10000 realizations for
a = 1, γ = 4, ρ = 12 dB.

4.2.2. Two-Dimensional Random Networks
Consider a binomial bipolar network (BBN) where receivers form a binomial point

process (BPP) [16, 17] with n receivers within B = [0, l]2 ⊂ R2, and each receiver has a
dedicated transmitter randomly located around it with deterministic constant link distances
R. Therefore, there are n links in total.

Fig. 5(a) shows the estimated convergence probability from simulation with and without
power constraints in a BBN. It is seen that the convergence probability decreases greatly
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Figure 5. Comparison of estimated convergence probability in binomial bipolar network with 10000 realizations for γ = 4, ρ = 12 dB,
R = 0.5, η = −30 dBm, B = [0, 10]2, d0 = 0.1.

as the number of links n increases. Also, for power constraints greater than 20 dBm, the
convergence probability is almost the same as without power constraint. A reduction in
the peak power may however have a drastic effect on the convergence probability. For
comparison, also plotted are the cases without power control in which all transmitters use
the maximum power. The cases without power control are illustrated in dashed lines. As
seen, the convergence probability for the cases without power control is smaller than those
with power control except for the case in which the power constraint is 10 dBm. Fig. 5(b)
illustrates how the convergence probability varies with different power constraints for a fixed
number of links. The solid lines are for the cases with power control while the dashed lines
without power control. Again, power control can improve the convergence probability as
illustrated. The abrupt transition starting at 10 dBm comes from the assumption of a fixed
transmitter-receiver distance R. Since the convergence requires that ρi = hiiPi∑

i 6=j hijPj+η
≥ ρ,

omitting the interference term in the denominator we have

Pi ≥ ρη/hii = ρη

(
R

d0

)γ
. (37)

Therefore, the minimal power level required depends on the desired SINR, the noise
level, and the channel gain even if the convergence condition is satisfied without power
constraint. By inserting the parameters into the right side of (37), it happens to be around
10 dBm, which explains why there is an abrupt transition of the convergence probability
around 10 dBm. It also explains why the convergence probability curves are the same with or
without power control for the case with power constraint 10 dBm. Besides, the convergence
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probabilities depend on the number of links. More links will cause more mutual interference
and therefore lower the convergence probability.

Their maxima are Pcon(∞), which are computable in theory from (23):

Pcon(∞) = Er1,r2,··· ,rn [P (σF < 1 | r1, r2, · · · , rn)] (38)

= Er1,r2,··· ,rn

∫
R2

· · ·
∫
R2︸ ︷︷ ︸

n

1{σF<1}

n∏
i=1

f(ti | ri)dt1 · · · dtn

 , (39)

= Er1,r2,··· ,rn

( 1

2π

)n ∫ 2π

0

· · ·
∫ 2π

0︸ ︷︷ ︸
n

1{σF<1}dθ1 · · · dθn

 , (40)

where f(ti | ri)∗ is the probability density function (PDF) of the transmitter i conditional
on receiver i and (40) is the result for ti in polar coordinates.

There is no closed-form expression for Pcon(∞) for general n. For n = 2, we have the
following proposition.

Proposition 1. For n = 2, given that ρ > 0 and R0 = R
(

1 + ρ
1
γ

)
< l, Pcon(∞) is lower

bounded by

Pcon(∞) = 1−
(
πR2

0

l2
− 8R3

0

3l3
+
R4

0

2l4

)
. (41)

The proof is given in the appendix. Since R = 0.5 and ρ = 12 dB in simulation, these
conditions ρ > 0 and R0 < l can be guaranteed. Inserting the same parameters as in
simulations, the theoretical value of Pcon(∞) turns out to be 0.94 while the estimated
Pcon(∞) in simulation is about 0.97. Hence, (41) serves as a tight lower bound and close
approximation for Pcon(∞) for n = 2.

Remark.

• The convergence probability is a novel metric defined to describe the influence of the
peak power constraint on the convergence of the power control algorithm and has the
case without peak power constraint as a special case. It has a close connection with the
standard metric outage probability. The convergence probability without peak power
constraint can be considered as the probability that there is no outage for any link in a
wireless system with n interfering links after the power control algorithm converges.

∗For BPP with fixed link distance, the pdf does not exist. However, the integral can be evaluated by assuming that the Tx is located on a thin annulus around the Rx of
width ε, and then letting ε go to zero.
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That is,

Pcon(∞) =
n∏
i=1

(1− pi,outage), (42)

where pi,outage is the outage probability for link i. Hence, the convergence probability
can also be used as a metric for system design.

5. MÖBIUS MAC SCHEME

5.1. Introduction and Model Description

Based on the observations from the Möbius transform and the analysis of the peak power
constraints, we next propose a novel MAC scheme, called Möbius MAC scheme, to schedule
links in pairs instead of individually. To illustrate this concept of scheduling in pairs, we
consider two-tier networks that consist of two type of links, long links with link distance l1
and short links with link distance l2 < l1. For the long links, n points are chosen to form a
BPP within the region B = [0, l]2 ⊂ R2. Each point out of n points serves as the midpoint
of two other points (one for transmitter and the other for receiver) that are separated by
distance l1; the orientation of the axis of the two points is uniformly chosen. The short
links are placed in a similar way but have distance l2. Assume long links have link index
i ∈ {0, 1, · · · , n− 1} and short links have j ∈ {n, n+ 1, · · · , 2n− 1}. Such a network
model can be applied to both heterogeneous networks and cognitive networks as will be
discussed in Section 6. One realization of the links is illustrated in Fig. 6.
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Figure 6. Illustration of a wireless network consisting of long and short links with l1 = 10 and l2 = 2 where the crosses indicate the
transmitters, and the circles the receivers.
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5.2. Description of MAC Scheme

The Möbius MAC scheme operates in two stages: first the long links are scheduled using the
power control algorithm with peak power constraints, and next when the set of scheduled
long links is known, the short links are scheduled to be associated with their "nearest" long
links if the condition developed in the previous sections is satisfied. By doing so, the short
links will team up with the long links and be scheduled to be active concurrently if possible,
which can improve the spatial reuse greatly. The detailed description of the Möbius MAC
scheme is as follows:

Algorithm 1 Möbius MAC scheme

1: The distributed power control algorithm with peak power constraint in (45) for a given
set of n long links with initial power Pi(0) = ρη/hii is run;

2: If long link i’s power Pi(k) ≥ pi,max in (43), link i is shut down immediately; the
algorithm is run until the SINRs for the remaining long links satisfy the condition
‖ρ(k)− ρL‖∞ ≤ ερL (ρL is given in (46)) for a given ε or the number of iterations
k is greater than the maximal number of iterations kmax; j = n.

3: The short link j is paired up with the long link whose receiver is closest to the
transmitter of the short link, i.e., i. If the link pairs (i, j) can satisfy the constraint
from Lemma 1, the short link gets assignment of its transmit power as Pj =

min
(
Pihii
hij

(
1
ρ
− 1

ρL

)
, ρS Pihji+η

hjj

)
, (ρS is given in (51)); else Pj is set to 0; j ← j + 1.

4: if j = 2n end, else go to 3

As specified in Algorithm 1, the long links are scheduled first. Based on the analysis of
Section 4 and in [18], it is beneficial to use an adjusted peak power constraint in the power
control algorithm with peak power constraint with the form in (22). Here, instead of using
a fixed peak power constraint Pmax as in (22), we choose

pi,max =
βρη

hii
, (43)

where pi,max is the peak power constraint for transmitter i and β > 1 is a parameter that
adjusts the dynamic range of the peak power constraint. The reason why the peak power
constraint in (43) is chosen is because under this constraint the interference at the receiver
for a scheduled link can be bounded. To see that, assuming that the transmit power of
transmitter i is pi,max, we have for the SINR at its receiver

ρi =
pi,maxhii
Ii + η

≥ ρ, (44)
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which leads to Ii ≤ (β − 1) η after inserting (43) into (44), where Ii is the interference at
receiver i. In cellular systems, β′ = β − 1 is the upper bound for the Interference over
Thermal (IoT) ratio [19], which is a critical parameter for system design and analysis.
Hence, we can choose the parameter β based on the system requirement. All the scheduled
links are guaranteed that their interference is bounded and therefore achieve the required
performance. In summary, the n long links are first scheduled based on the power control
algorithm with peak power constraint

Pi(k + 1) = min

{
ρL

ρi(k)
Pi(k), pi,max

}
, (45)

with
ρL = ρ

(
1 + δL

)
, (46)

and initial power Pi (0) = ρη/hii, in which hii = l−γ1 from (7) is the channel power gain
between the transmitter and receiver of the long link i. Note that the positive parameter
δL � 1 is used to provide protection for long links from the interference from the short
links that are going to be scheduled next. If any long-link’s transmit power is greater than or
equal to pi,max, that link is shut down immediately. The distributed power control algorithm
is run until the SINRs for the remaining links converge to a small range around ρL or
the number of iterations reaches to the maximal iteration threshold. In other words, the
long links “sacrifice” a little in terms of transmit power (larger SINR needs higher transmit
power) in order to enable the short links to be scheduled.

Let m ≤ n denote the number of scheduled long links out of n from the first stage. Next,
we want to know how many short links out of n can be scheduled together since it has been
illustrated that link nesting is possible in Section 3. The short link is made to pair up with
the long link whose receiver is nearest to the transmitter of the short link. Also, assume that
all receivers have the location information of their associated transmitter. In this stage, if the
transmitter of the short link is within the region given in Lemma 1, a proper transmit power
for the short link is assigned in a way that (1) the SINR of the long link will not decrease
from around ρL to being below the desired SINR threshold ρ; (2) the SINR of the short link
should be above the SINR threshold ρ if possible.

Now, a suboptimal transmit power for the short links is derived in the following way.
Ideally, any scheduled long link is supposed to satisfy

Pihii
Ii + η

= ρL, (47)
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where Pi is the transmit power for transmitter i in the long link, and Ii is the interference
at the receiver i of the long link from other scheduled long links. After the short links are
scheduled, we need to guarantee that

Pihii

Ii + η + Pjhij + Ĩi
≥ ρ, (48)

where Pj is the transmit power for the transmitter j in the short link that is paired up with
the long link i, hij is the channel power gain from short-link’s transmitter j to long-link’s
receiver i, and Ĩi is the interference at the long link’s receiver i caused by other short-link’s
transmitters except short-link’s transmitter j. Note that there can be multiple short links that
pair up with one long link. Omitting Ĩi in (48) and combining (47) and (48), an upper bound
of Pj is obtained:

Pj ≤
Pihii
hij

(
1

ρ
− 1

ρL

)
. (49)

On the other hand, in order to guarantee the SINR of the scheduled short links, we need

Pjhjj
Pihji + η + Ij

≥ ρS, (50)

where
ρS = ρ

(
1 + δS

)
, (51)

in which 0 < δS � 1 is the margin used to protect short links from falling below the SINR
threshold ρ, and hji is the channel power gain from long-link’s transmitter i to short-link’s
receiver j, hjj = l−γ2 is the channel power gain between the transmitter and receiver of the
short link, and Ij is the total interference at the short link’s receiver j from other links except
the long-link’s transmitter i. Omitting Ij , (50) leads to a lower bound of Pj:

Pj ≥ ρSPihji + η

hjj
. (52)

Hence, if ρS Pihji+η

hjj
≤ Pihii

hij

(
1
ρ
− 1

ρL

)
, set Pj = ρS Pihji+η

hjj
and both SINRs for the long

and short links can be above the threshold; if ρS Pihji+η

hjj
> Pihii

hij

(
1
ρ
− 1

ρL

)
, set Pj =

Pihii
hij

(
1
ρ
− 1

ρL

)
and the SINR of the long link can be guaranteed while the SINR of the

short link may be below the threshold but make the "best effort".

5.3. Performance Evaluation

For the purpose of comparison, we use the CSMA scheme implemented as follows: if a
receiver’s interference power level is smaller than a threshold, the receiver sends a feedback
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signal to its transmitter to set the transmit power to be

Pi =
(1 + δ) ρη

hii
, (53)

where 0 < δ � 1 serves as a marginal protection to tolerate interference from other links;
otherwise, it is impossible to satisfy the receiver i’s SINR. The CSMA scheme is described
in detail in Algorithm 2.

Algorithm 2 CSMA

1: A random timer for each link among a total of n short links and n long links is assigned;
k = 0

2: if transmitter i’s timer expires, receiver i calculates its received power Pr,i. If the power
level Pr,i < P0, where P0 = (1 + δ) η, link i can transmit with power given by (53).
Link i is then admitted into the subset of links scheduled. k = k + 1

3: Wait for next timer expiration and if k < n go to 2

4: if k = n end

The key metrics for the MAC scheme are (1) how many links can be scheduled
successfully in total? (2) how many long and short links can be scheduled, respectively?
In order to quantify the performance of the MAC schemes, we use the transport density
as the performance metric as used in [18] to merge the link distance and the number of
scheduled links into one metric. For clarity, we restate the definition of transport density as
follows:

Definition 7. (Transport Density) The transport density is defined as the sum of the products
of bits and the distances of all scheduled links whose SINR satisfies ‖ρ(k)− ρ‖∞ ≤ ε,
averaged over the network realizations. It is denoted as T . Assume that all n links in a
wireless network are located within a l × l region and within a time slot, a link will carry the
same number of bits (W ) regardless of its length as long as it can be scheduled successfully,
i.e., its SINR requirement can be satisfied. Then, the transport density is

T =
W

l2
E

[
n∑
i=1

dii1{|ρi(k)−ρ|≤ε}

]
,

where 1A is the indicator function and dii is the link distance of link i.
Its unit is bits ·m/m2. Note that ρ(k)→ ρ can only be achieved in the limit as k →∞.

Therefore, it is reasonable to loosen the convergence condition to be that the error of SINRs
is within some range 0 < ε� 1 of the target SINR.
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This metric is a precise indicator of a network’s capacity. For link scheduling, maximizing
the transport density is more meaningful than maximizing the number of successfully
scheduled links as in [20] since a longer link contributes more to the transport density than
a shorter link.
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Figure 7. Transport density of scheduled links vs the total number of candidate long/short link with different long link distances:
l1 = 15, 20, 30, l2 = 1, B = [0, 200]2, γ = 4, ρ = 11 dB, δ = δS = 0.09, δL = 0.009, β = 50, η = −60 dBm, ε = 1%, kmax = 30.

Fig. 7 shows the transport density of the scheduled links as a function of the total number
of candidate long/short link number for the different long/short link distance ratios. As
seen, the transport density for Möbius MAC is roughly twice as that of CSMA. In general,
Möbius MAC always has better performance than CSMA in terms of transport density. The
reason is that Möbius MAC schedules long links first and then short links while CSMA
implicitly gives preference to the short links. The reason is that the long links are easily
prohibited from transmitting since they would cause strong interference to others or getting
interferenced by others. This disparity could lead to a fairness problem in scheduling. Also,
as the long/short link distance ratio decreases, the transport density using Möbius MAC is
getting larger. On the other hand, the transport density of CSMA does not change with
the long/short link distance ratio due to the fact that all the long links are prohibited from
transmitting by CSMA.

In general, Möbius MAC scheme can provide relatively fair scheduling or sometimes
gives preference to long links while CSMA has difficulty in scheduling long links since they
are easily prohibited from transmitting by short links. Moreover, the QoS performance of
the scheduled links in terms of transport density by the Möbius MAC scheme is also much
better than that by CSMA.
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6. APPLICATIONS

In this section, we will highlight two applications of our analysis and MAC scheme. One is
for cognitive radio networks while the other for heterogeneous networks.

6.1. Application to Cognitive Radio Networks

The analysis of power levels in linear networks with two transmitters in Section 4.1 provides
a new perspective on the spatial reuse of cognitive radios that share the spectrum with the
primary users through spatial separation [21, 22].
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Figure 8. Illustrations of spectrum sharing of a cognitive radio network with a TV broadcast system.

One example is a cognitive radio network sharing spectrum with a TV broadcast system.
Usually, the secondary users’ locations are assumed to be outside the coverage of the TV
station as illustrated in Fig. 8(a). However, as analyzed in Sections 3.2 and 4.1, this does not
have to be the case. Assume that the power constraint for the TV station is PTV,max = 50

dBm and that for the secondary users is PS,max = 20 dBm. Fig. 9 shows the IOC of the TV
station. The IOC bounded by the grey rectangle is the case with power constraints. Although
the IOC is decreased due to the power constraints, the cognitive radio network can still find
a feasible power allocation as long as the TV station is located within the power-constrained
IOC. Therefore, the secondary users can still be located within the coverage of the TV
station while maintaining their SINR above the threshold. Fig. 8(b) illustrates how this case
looks in contrast to the traditional layout in Fig. 8(a). As shown, only the secondary users
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Figure 9. The IOC for TV station with or without power constraints (the grey shadowed region indicates the IOC with power constraints)
for a = 1, γ = 4, ρ = 12 dB, PTV,max = 50dBm, PS,max = 20dBm.

with small link distances can be tolerated within the coverage of the TV station. Short links
offer the dual benefits of higher quality links and improved spatial reuse.

The Möbius MAC scheme can readily be applied to cognitive radio networks. The
primary users are scheduled first as the long links while the secondary users pair up with
the "nearest" primary user and are scheduled jointly according to the criterion. The primary
users’ performance is always guaranteed while the secondary users “squeeze” in and make
best-effort delivery whenever possible.

6.2. Application to Heterogeneous Cellular Networks

Another example is the concept of femtocells [23]. Femtocell deployment can improve
indoor voice and data reception with the advantages of short range, low cost and low power.
In this subsection, we focus on macro-femto heterogeneous networks. As illustrated in
Figure 10, this is the scenario considered where there is a femto-cell inside a home to which
only the owner has access while the user outside is barred from accessing the femto base
station even if he/she is close to it. As a result, the interference caused by the femto base
stations to the outside user can be severe. On the other hand, the user inside the home
may experience interference from the macro base station due to its strong downlink signal
strength. In general, femto networks need interference coordination via resource partitioning
across base stations to manage inter-cell interference [24]. Such resource partitioning can
be performed in the time domain, frequency domain, or spatial domain. However, with the
geometric analysis in our paper, it is possible to use the resources in a more aggressive way,
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i.e., the links between macro base station and the outside user and between the femto base
station and its owner can share the same spectrum at the same time without having to resort
to spatial partitioning. Lemma 1 can serve as criterion for the macro-femto networks to see
if they can coexist. If the geometric conditions in Lemma 1 are satisfied, the macro base
station can serve as a centralized controller and choose the transmit powers for itself and
femto base station that can satisfy their SINR conditions ρL and ρS respectively without
going through the distributed power control algorithm. If the transmit powers exceed the
peak power constraint for macro base station or femto base station, they needs to be allocated
to different resources and cannot share the spectrum with each other even if the geometric
condition is satisfied in Lemma 1.

Figure 10. A heterogeneous network consisting of a macro and a femto base station with two mobile users where the solid lines
indicate the communication links and the dashed lines the interference.

7. CONCLUDING REMARKS

In this paper, we first presented a geometric analysis of the power control convergence
condition. A novel analytical tool, the Möbius transform, was used to analyze the
convergence conditions. The effect of peak power constraints was analyzed in detail to
illustrate its influence on random networks. A novel metric, the convergence probability,
has been used to study the impact of the peak power constraints.

In general, the power constraint makes the power control problem more complex. Our
research provides insight into the design of MAC protocols with dynamic power control
under peak power constraints. A novel MAC scheme based on Möbius transform and peak
power constraints has been proposed to show that link nesting is possible under peak power
constraints. It works well especially in wireless networks with unequal link distances. This
is important for the design and analysis of cognitive radio networks, where the secondary
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users can be placed near the primary transmitter as long as the link distance of the secondary
users is short enough and its transmit power is not too high, and heterogeneous networks,
where the macro base stations and femto base stations are coexisting. Simulations showed
that the performance of our novel MAC is twice as good as that of CSMA in terms of
transport density. In summary, the MAC design combining with power control from physical
layer takes full advantage of the scarce spectrum and provides new perspective on the cross-
layer design in wireless network.
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APPENDIX

Proof of Proposition 1

Proof
For n = 2,

Pcon(∞) = Er1,r2

[∫ ∫
1{‖t1−r2‖·‖t2−r1‖>R2ρ2/γ}f(t1 | r1)f(t2 | r2)dt1dt2

]
(54)

= Er1,r2

[(
1

2π

)2 ∫ 2π

0

∫ 2π

0

1{‖Rejθ1+r1−r2‖·‖Rejθ2+r2−r1‖>R2ρ2/γ}dθ1dθ2

]
(55)

= Er1,r2

[(
1

2π

)2 ∫ 2π

0

∫ 2π

0

1{‖ejθ1+
r1−r2
R
‖·‖ejθ2+

r2−r1
R
‖>ρ2/γ}dθ1dθ2

]
(56)

(a)
≥ Er1,r2

[(
1

2π

)2 ∫ 2π

0

∫ 2π

0

1{|‖ r1−r2
R
‖−1|·|‖ r2−r1

R
‖−1|>ρ2/γ}dθ1dθ2

]
(57)

= Er1,r2

[
1{

(‖ r1−r2
R
‖−1)

2
>ρ2/γ

}] , (58)

where (a) results from the triangle inequality. Hence, a lower bound of Pcon(∞) (denoted
as Pcon(∞)) is

Pcon(∞) = Er1,r2

[
1{

(‖ r1−r2
R
‖−1)

2
>ρ2/γ

}] . (59)

Letting D = ‖r1 − r2‖,

Pcon(∞) = ED
[
1{

(DR−1)
2
>ρ2/γ

}] . (60)
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Note that r1 and r2 are two points that are independently and uniformly distributed over
B = [0, l]2. From Theorem 2.4.4 in [25], we can derive the PDF of their distance D as

f(d) =


2πd
l2
− 8d2

l3
+ 2d3

l4
, 0 ≤ d ≤ l

4d
l2

[
sin−1

(
l
d

)
− cos−1

(
l
d

)
− d2

2l2
− 2

√
d2−l2
l
− 1
]
, l ≤ d ≤

√
2l

0, otherwise.

(61)

Given ρ > 0 dB and R0 = R
(

1 + ρ
1
γ

)
< l,

Pcon(∞) = ED
[
1{

(DR−1)
2
>ρ2/γ

}] (62)

=

∫ ∞
R0

f(x)dx (63)

=

∫ l

R0

(
2πx

l2
− 8x2

l3
+

2x3

l4

)
dx (64)

+

∫ √2l

l

4x

l2

[
sin−1

(
l

x

)
− cos−1

(
l

x

)
− x2

2l2
− 2
√
x2 − l2
l

− 1

]
dx(65)

= π − 3−
(
πR2

0

l2
− 8R3

0

3l3
+
R4

0

2l4

)
+ I0 − I1, (66)

where I0 =
∫ √2l

l
4x
l2

[
sin−1

(
l
x

)]
dx, and I1 =

∫ √2l

l
4x
l2

[
cos−1

(
l
x

)]
dx. From [25], I0 and I1

can be calculated in terms of Gauss’ hypergeometric function. By some basic calculations,
we can obtain that I0 = 2 and I1 = 2− π. Inserting I0 and I1 into (66), we obtain (41).
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