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Abstract

We employ discrete-time queueing theory to analyze wireless multihop networks and derive an

explicit end-to-end (e2e) delay distribution. The analysis takes into account the scheduling scheme,

which is a two-level problem including both the (global) channel access scheduler (MAC) and the (local)

packet scheduler at each node. Two MAC schemes, TDMA and ALOHA, are considered. Queueing

models are established in such a way that the access delay can be incorporated into the service process.

Characterizing the wireless channel by a capture model, the individual nodes are modeled as GI/Geom/1

queueing systems. However, in TDMA with constant bit rate (CBR) traffic, the corresponding D/Geom/1

system has a non-integer interarrival time and thus cannot be analyzed as usual. We use an eigenvalue

approach to derive closed-form queue length and delay distributions of such D/Geom/1 systems. The

error-prone wireless channel transforms the smooth and deterministic CBR traffic to bursty and correlated

on-off, causing correlations in the delays at different nodes. We propose an approximative approach that

includes the long-distance correlations in the correlation between the neighboring nodes. Based on a set

of simulation results, an empirical model for the correlation coefficient is established. Then the network

is modeled as a series of independent servers, but the delay variances are scaled by the correlation

coefficient. Finally, TDMA and ALOHA are quantitatively compared in terms of the delay and the

delay outage probability.
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I. INTRODUCTION

With the growing demand for real-time applications over wireless networks, increasing at-

tention is paid to the delay analysis over error-prone channels. In multihop networks, like ad

hoc, mesh, and multihop cellular networks, the analysis is more challenging due to the delay

accumulation at each hop. Many factors interact with each other, including the routing algorithm,

the scheduling algorithm, the wireless channel and the resulting interference (e.g., in Fig. 1(a),

two types of interference exist, inter-flow interference caused by cross-traffic flows and intra-

flow interference caused by multiple nodes of a single flow [1]). The analysis is unlikely to be

tractable if all these factors are considered together.

Our focus is on scheduling, which is a two-level problem, including the global MAC scheme

and the local packet scheduling algorithm. We assume a single flow so that the routing algorithm

and the inter-flow interference can be neglected. This is a common scenario, e.g., in sensor

networks with a single phenomenon to be detected. In Fig. 1(a), a set of nodes around the

phenomenon periodically detect, collect, and then forward the sensed data to a cluster head (node�
). A path is established from the cluster head to the base station (BS). Then, the two-dimensional

(2-D) topology is reduced to one-dimensional (1-D), which can be further simplified to a regular

line network (Fig. 1(b)). Due to the zero inter-flow interference assumption, the analysis of the

regular line network provides an upper performance bound for general 2-D networks.

For a single flow case, FIFO is sufficient for local scheduling, but the MAC scheme needs

to be carefully designed. Wireless MAC schemes are designed to combat interference and take

advantage of spatial reuse to enhance the throughput. Doing so, extra access delays may be

accumulated. It is intriguing to study how the improved throughput affects the delay. Since

the delay analysis involves queueing theory, it might be intractable if the MAC scheme is too

complicated. For a tractable analysis, we consider two simple but typical MAC schemes, � -

phase spatial TDMA [2] and slotted ALOHA. In TDMA, a node is scheduled to transmit once

in � time slots, and nodes � hops apart can transmit simultaneously. In ALOHA, every node
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Fig. 1. Wireless multihop networks

independently transmits with probability ��� whenever it has packets. TDMA (with nodes fully

cooperative) and ALOHA (with nodes completely independent) represent two extremes in terms

of the level of the node coordination and thus provide an upper and lower performance bound

for other meaningful MAC schemes.

A. Previous work

The throughput and single-hop delay of many MAC schemes have been comprehensively

studied in the literature [2], [3]. However, little work has been done on their multihop delay.

Moreover, the study of MAC schemes usually focuses on the access delay without considering

local scheduling by assuming that traffic is generated in a way that there is no queueing delay.

For example, in an “infinite population model”, a new node is generated to represent the newly

generated packet; or new packets are generated only when the buffer is empty [3]–[7]. These

models are simplified and unrealistic. In practice, the number of nodes is finite, and new packets

may be generated when the buffer is non-empty and then be queued. Local scheduling is required

to determine the transmission order of queued packets.

The impact of the wireless channel is another important MAC-related issue [3]–[5], [7]. With
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the “capture” property of the radio receiver, the throughput of slotted ALOHA is improved [3],

[4], [8]. In some MAC schemes, using the channel characteristics to control the backoff timer

or the transmit power, the delay and throughput can be changed [6], [7]. Therefore, the channel

model is critical for the analysis. The “disk model” [9], assuming a fixed transmission range, has

been very popular because of its simplicity. In � -phase TDMA with � chosen appropriately

(e.g., � � � in [10]), the disk model results in error-free channels since the simultaneous

transmissions of nodes � hops apart cause no interference or collisions [10], [11]. In reality,

the transmission success depends on the received signal-to-noise-and-interference ratio (SNIR).

So TDMA does not completely eliminate the interference unless spatial reuse is completely

foregone. The “capture model” [12] is more appropriate, in which packet transmissions fail if the

received SNIR is too low. The failed packets have to wait for the next transmission opportunity.

The packets behind them need a local scheduler to solve the competition for the transmission

opportunities.

With practical traffic and channel models, combining scheduling with MAC schemes is non-

trivial. However, from the perspective of queueing theory, the joint queueing analysis might be

difficult. For instance, the queueing analysis of multihop networks usually neglects the MAC-

dependent access delay [10], [13]–[15]. Closed-form solutions for the delay of the regular line

network with a single source (like Fig. 1(b)) are provided when the traffic is geometric [14] or

the channel is error-free [15]. For other traffic models and error-prone wireless channels, some

approximations are needed, e.g., the “independence” assumption: In [16], the delay variance of a

two-node tandem network is derived by assuming that the two nodes are independent. Similarly,

in [17], an IEEE 802.11 wireless ad hoc network is modeled as a series of independent M/G/1

systems to obtain a product-form delay distribution. However, in most cases the “independence”

assumption does not hold and would lead to a very loose performance expression.
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B. Our contributions

This paper aims to derive explicit e2e delay distribution of a wireless regular line network

(Fig. 1(b)) with its two-level scheduling problem. Local packet scheduling causes a queueing

delay, while the global MAC scheme results in an access delay. Our contributions are two-

fold. First, we use discrete-time queueing theory to analyze the delay of the individual nodes,

accounting for both the queueing delay and the access delay. The channel is characterized by

a capture model. Traffic is CBR, which covers many real-time applications, e.g., voice data

[18] and periodic traffic in sensor networks. Unlike previous work, the traffic generation is not

controlled by the node buffer and the network stability is guaranteed, i.e., the nodes are not

always busy. The queueing model is established in such a way that the MAC-dependent access

delay can be directly incorporated into the service process. Then, the nodes can be modeled as

GI/Geom/1 systems.

With CBR traffic, the source node is modeled as D/Geom/1. In TDMA, in order to establish a

D/Geom/1 model, the interarrival time becomes a non-integer constant, a case that has not been

considered in conventional discrete-time queueing theory. We establish a 2-D Markov chain and

employ an eigenvalue approach to derive a closed-form queue length and delay distribution of

such D/Geom/1 systems, thereby generalizing the analysis of the conventional D/Geom/1 system

with integer interarrival time. Then we characterize the output by an on-off process. For very

heavy traffic, where the interarrival time and the intertransmission time (frame length � ) differs

only by one time slot, a 1-D delay model is used for the delay analysis.

For CBR traffic, correlations exist between the delays experienced at different nodes, indi-

cating that the “independence” assumption does not hold. Hence our second contribution is an

approximative approach to simplify the correlation analysis. Based on the simulation results, an

empirical model for the correlation coefficient is established. Then, the line network is treated

like a series of independent GI/Geom/1 systems, but the delay variances are scaled by this

correlation coefficient. With the complete e2e delay distribution, we calculate the delay outage
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probability (the probability that the e2e delay exceeds a predetermined threshold) for delay-

sensitive applications. As a complement to previous work focusing on the throughput, this paper

compares TDMA and ALOHA in terms of the e2e delay and the outage probability.

The rest of the paper is organized as follows. The approximative approach is introduced in

Section II. Then, the TDMA and ALOHA networks are analyzed individually in Sections III and

IV, including the derivation of the delays at the individual nodes and the correlation coefficient.

In Section V, TDMA and ALOHA are compared in terms of the e2e delay and delay outage

probability. Section VI concludes the paper.

II. SYSTEM MODEL

The regular line network under consideration (Fig. 1(b)) is composed of 	�

� transmitting

nodes. Denote node � by ��� and the delay experienced at ��� by ��� . More precisely, ��� is the

interval between the instant that the packet is successfully received by ��� and the instant that

the packet is successfully transmitted and thus received by ������� . The e2e delay is the sum of the

��� ’s. A FIFO discipline is used at the nodes. A CBR flow of fixed-length packets is generated at

the source ��� , and all remaining nodes except the BS are pure relays. The time is slotted to one

packet transmission duration, and the network is modeled as a discrete-time tandem queueing

network. The traffic interarrival time is � slots ( ����� ). The channels are assumed to be subject

to independent errors with capture probability �� (e.g., AWGN or block fading channels). The

network is � �!�#" reliable, i.e., the failed packets will be retransmitted at each link until received

successfully.

In queueing theory, the delay �$� is composed of two parts, the waiting time (from the arriving

instant to the instant that the packet is about to be served) and the service time, as shown in Fig. 2.

In TDMA, the node is given a transmission opportunity once in � time slots. When dividing

the time into frames of � slots and setting the beginning of a frame as the slot allocated to the

node, the service time is geometric with �� , denoted by %'&)( . The access delay is hidden in the

frame so that each node can be modeled as a GI/Geom/1 system at the frame level. In ALOHA,
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busy nodes make a transmission decision at every time slot. A packet is correctly received if

and only if the node attempts to transmit and the transmission is successful, with probability*,+ �� -�.� (given that the arrival and the channel state are independent1). Overall, the service time

is %� . This way, it is not necessary to distinguish the access delay from the failed transmission

attempts. Then each node can be modeled as a GI/Geom/1 at the slot level.
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Fig. 2. Packet transmission procedure in TDMA and ALOHA

The individual nodes can be analyzed based on the established GI/Geom/1 models, deriving

the complete distribution of ��� , with the mean denoted by @�� and the variance by A�B� . The e2e

analysis requires the output characterization of each node. It is known that except for memoryless

Poisson and geometric traffic, the output of node ��� , or the input to the following node ������� ,
depends on the input and service process of ��� [14]. Therefore, the delay ������� is correlated with

the delay �C� . In a tandem network, simulation results reveal that the delay �$����� is correlated

with all �ED for FHGI� .
It is hardly feasible to explicitly derive the e2e delay distribution if all correlations are

considered. Instead, we propose an approximative approach that includes the long-distance

correlations in the correlation between neighboring nodes. Then the line network can be modeled

as a series of queueing systems which are correlated only with their neighbors. Since all nodes

have an identical channel and all nodes except for the source node are pure relays, we further

1To account for the half-duplex restriction, here J ( is the conditional capture probability given that the receiver is listening.
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assume that the correlation coefficient K + cor LM���ONP�������RQ is independent of � . Based on the

analysis of �C� , the e2e delay mean and variance are:

@�� ST ��U.� @��ON A B � ST ��U.� A B� 

SWV �T ��U.� KXA.�YA.�����)Z (1)

Since the correlation does not affect the mean, the e2e delay mean is simply the sum of the @[� ’s
(Fig. 3(a)). For the variance, if the ��� ’s were independent ( K\� � ), then A B would be the sum of

A�B� , like in previous work [16], [17]. However, the �$� ’s are not independent ( K�]� � ), and a gap

appears between the real e2e delay variance (the “simulation” line in Fig. 3(b)) and the sum of

A�B� (the “independence” line). The variance A^B is either greater or smaller than the sum of A^B� ,
depending on whether the correlation is positive or negative.

Intuitively, for bursty traffic, if the packet experiences a long delay at ��� because of a bad

channel or the long accumulated queue, node ������� probably has cleared its buffer during this

period so that when the packet arrives at ������� , it is likely to experience a short delay, and vice

versa. In other words, the correlation is expected to be negative ( K$_ �
), hence the e2e delay

variance A�B is smaller than the sum of A^B� . This effect becomes more prominent as the traffic

intensity increases. So, it is reasonable to conclude that the correlation is a function of the

intensity. The detailed derivation of the correlation coefficient K will be given in the following

sections for TDMA and ALOHA separately.

III. ANALYSIS OF THE M-PHASE TDMA NETWORK

In � -phase TDMA networks, each node can be modeled as a GI/Geom/1 system with service

rate �� at the frame level. The average arrival rate is �E`a� ( �E`b� is a reduced fraction). We further

assume �c_edb� for heavy traffic. Define the traffic intensity as f + �E`.Lg�)�� hQ and constrain it to

fH_
� for stability. Note that previous MAC-related work implicitly assumed f��i� .
A. Delay analysis of the source node ���

The source ��� is fed with a CBR flow of interarrival time � . At the frame level, ��� is modeled

as a D/Geom/1 but the interarrivel time �j`b� is an integer for � _k��_ldb� . The number of
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Fig. 3. Comparison of the e2e delay performance in the TDMA network with m�n�o)p�J ( n�q)r s)put$nHvOw)pgx�ncwyp{z
arrivals in one frame jumps between

�
and � , depending on the arrival patterns of all previous

�,|I� frames. Such a D/Geom/1 system has not been studied by conventional queueing theory,

where it is assumed that the interarrival times are all integer and independent.

We establish a 2-D Markov chain L{}~L-�RQ)Ny�cLg�RQRQ to characterize the system state at the beginning

of frame � , where }~Lg�RQ���� is the queue length, and �cLg�RQ��e�6�!N�Z�Z�Z)N��6� is the number of time

slots till the next packet arrival. All state transitions occur at the frame boundaries. Define� + ��|�� . If ��G���L-�RQ�G�� , a packet will arrive during frame � . At frame �[
�� , �cLg�RQ will

evolve to �cLg�X
���Q����cLg�RQ'
���|������cLg�RQ'
 ���I�
. If ��_��cL-�RQ�GI� , no packet arrives during

frame � , and ��L-��
���QW���cLg�RQ^|���GI��|���� � . Divide the state space �6�!N�Z�Z�ZyN��6� of �cL-��
���Q
into two subspaces,  ��¡�¢�6�!N£dXN�Z�Z�Z)N � � and  ¤���¢� � 

�jN � 
edXN�Z�Z�Z)N��¥� , where the subscripts

represent the number of packets arriving prior to the beginning of frame ��
�� (or during frame

� ). The equilibrium state probability is defined as ¦¡§MLg¨�Q +ª©Y«­¬c®°¯�±$²´³ �a}µL-�RQ��ª¶·Ny�cL-�RQH��¨�� ,
which is calculated in Theorem 3.1.

Theorem 3.1: Consider a D/Geom/1 system with interarrival time �j`b� ( ��N������ and �!`b� is
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a reduce fraction) and service rate �� . The equilibrium probability ¦¸§MLg¨�Q for ¶º¹�� is

¦�§{Lu¨�Q´»
f¥¼ §�P½#¾ V � L ½ |e��QPN where ½ ��¼ V �{¿MÀ� N (2)

and ¼Á� is a real positive eigenvalue of the matrix ÂlLM¼ÃQ
ÂlL{¼�QW�ÄÂ�ÅÆ
�Â¢Ç�¼c
�Â�È�¼ B N (3)

with

Â�Å,�
ÉÊ
Ë�Ì Lh��|��� hQhÍP�
Ì Ì

ÎÐÏ
Ñ N Â¢Ç��

ÉÊ
Ë Ì �� ·Í)�
Lh��|Ò�� RQhÍ)Ó Ì

ÎÐÏ
Ñ |�ÍaN Â�ÈÔ�

ÉÊ
Ë Ì Ì�� ÕÍyÓ Ì

ÎÐÏ
Ñ Z (4)

Proof: Following the evolution of the system states, we have the state transitions

For ¨��Ò ��¡Ö ¦�§{Lu¨�Q×�
ØÙÚ ÙÛ LÕ�~|��� ÜQh¦�§{Lg¨�
��EQ�
C�� h¦�§Ý���yLu¨c
��EQÞ¶ � �
�� Õ¦c��Lu¨c
��EQ ¶�� �

For ¨��Ò ¤��Ö ¦�§{Lu¨�Q×�
ØÙÚ ÙÛ LÕ�~|��� ÜQh¦�§ V �yLg¨H| � Q�
��� h¦�§MLg¨�| � QÞ¶ � �
¦���Lu¨�| � Q�
��� h¦��)Lu¨H| � Q ¶��i�jZ (5)

Note that ¦��ßLu¨�QÔ� �
for all ¨à�á �� . Define â�§WÖã�ä�a¦�§MLÕ��Q)N�¦�§uL{d!Q)N�Z�Z�Z�N£¦�§{Lu�jQP� as a state vector.

Since it is a probability distribution,

±T §åU.� L-â�§�æ!çXQ���� , where ç is a column vector with all its

entries equal to � . For ¶º¹�� , rewrite (5) in matrix form,

â�§°Â��è
áâ�§Ý���hÂ¢�^
áâ�§å� B Â B � � N (6)

which can be solved by an eigenvalue approach [19]. First solve é,LM¼ÃQRÂlLM¼ÃQ�� � , where ÂlLM¼ÃQ
is given in (3) and é,LM¼ÃQ��¢�bê ¾ LM¼ÃQ�ë ¨E���!N�Z�Z�Z)N��¥� and ¼ are the left eigenvector and eigenvalue

of ÂìL{¼�Q . Second, given í�� degree ��î.ï)ðañòÂlL{¼�Q·ó{� distinct eigenvalues �b¼Ã��ëj�º� � N��!N�Z�Z�Z�N�íô|C�j� ,
â�§���õ V �T �ÐU.�Æö �{é,LM¼.�gQR¼ §� N ¶º¹��jN (7)

where ö � is any constant. To form a probability distribution, only the eigenvalues inside the unit

circle ( ë÷¼Á�hë�_k� ) are included. Therefore, set ö �è� �
for ëø¼Á�hë�¹l� . In view of the matrices Â�� ,
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Â¢� , and Â B , the expansion of é,LM¼ÃQ£ù�L{¼�Q´� � gives

ê ¾ LM¼ÃQ´�
ØÙÚ ÙÛáú ê ¾ �'� ¨ÒG �
ú ¼ V � ê ¾ V Ó ¨ �I� Z where ú �i��|Ò�� �
C�� R¼^Z (8)

Multiplying ê��yL{¼�QRê B L{¼�Q�æßæßæÜê�ÀßLM¼ÃQ in (8) yields

¼û�iLh��|��� �
C�� R¼�Q ÀÕ¿M� � ú ÀÕ¿M� Z (9)

Set üý��¼ �{¿MÀ and rewrite (9) in a polynomial form,

�� Õü À |�ü � 
���|Ò�� W� � N (10)

with roots �ßü��{� corresponding to the eigenvalues as in ¼Ã�,��ü À� . As pointed out in [20] and

Descartes’ Sign Rule, the polynomial (10) has � roots inside the unit circle, among which only

one is real positive, denoted by ü�� , and all others are complex or negative. With the involvement

of complex and negative eigenvalues, âþ§ becomes complicated. Since the real positive root ü�� is

the largest among these � roots2, we simplify â�§ to

â�§�» ö �yé,LM¼Á�)QÜ¼ §� Z (11)

The simplification gets tight when �� cÿ � and ¼Á� is much larger than other eigenvalues. To

solve the corresponding eigenvector é�L{¼��)Q , exploring (8) gives

ê ¾ ���yLM¼Á�PQW� ½ ê ¾ L{¼��£Q ��� ê ¾ LM¼Á�PQW� ½ ¾ V � ê��yL{¼��£Q)N ¨�¹��!N (12)

where

½ �
ØÙÚ ÙÛáú ���� ¼ ��� V ���� N if

� �¢L ½ B � 
���QR` ½ �
ú V ���� ¼ ��� V ���� N if

� �¢L ½ B �µ|I��QÜ` ½ �PZ ½ �)N ½ B ����N ú �Æ�i��|Ò�� �
C�� Ü¼Á��Z (13)

Combining (9) and (13) leads to several equations on ½ ,
½ ��¼ V �{¿MÀ� � �ü�� N ½ Ó � ú �¼Á� N ½ � � �ú � Z (14)

2This is confirmed by extensive numerical results. Also, in Proposition 3.3, 	�
 is shown to be very close to v .
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Based on (11), (12), and (14), the equilibrium state probability ¦c§MLg¨�Q is

¦�§{Lu¨�Q´»
fÃLÕ�~|�¼Á�PQR¼ § V �� ½ ¾ V � ��| ½�~| ½ À N (15)

which is further simplified to (2).

To validate the analysis, consider �×�ä� (which is not practical for wireless TDMA due to

the half-duplex restriction), when the interarrival time is an integer � and the system reduces to

a conventional D/Geom/1 system Note that ���i� . According to Theorem 3.1, there is exactly

one eigenvalue inside the unit circle. Then, the calculation of ¦c§{Lu¨�Q is exact. Plugging �ª�ì�
into (2), we deduce the queue length probability ��§�Öå� ÀT

¾ U�� ¦�§OLg¨�Q as follows

��§�� ØÙÚ ÙÛ fÃLh��|�¼��£QÜ¼ § V �� ¶ � �
�~|ôf ¶�� � N (16)

where ¼�� is a solution to ¼$��L��� Ü¼\
��,|��� ÜQ À . This is consistent with the well-known results

for conventional D/Geom/1 queues [21], [22]. Therefore, Theorem 3.1 provides a generalized

queueing analysis of D/Geom/1 systems even if the interarrival time is not integer. With ¦�§OLg¨�Q ,
the generalized delay distribution of D/Geom/1 systems is given in the following theorem.

Theorem 3.2: Consider a general D/Geom/1 queueing system with interarrival time �j`b� and

service rate �� . Then, the probability generating function (pgf) of the delay distribution is
�� 
 L��#Q�» L ½ |I�ßQ�L ½ � |�� � Q ú ��� �L ½ |��#QyLh��| ú ��� � Q N (17)

where ½ and ú � are given in (13).

Proof: Divide the time unit into � sub-time units and use these sub-time units to measure

the delay. The delay is composed of three independent parts, the access delay ¨ � �ô� � N�Z�Z�ZyN��C|��j� ,
the queueing delay ��� , and the service time � . At the packet arriving instant, an access delay

¨ � implies �cLg�RQ¤����|à¨ � . The probability that the newly arriving packet with an access delay

¨ � sees ¶�|I� packets in the system is

¦��§ Lu¨ � QW� ¦�§{Lu�,|á¨ � Q±T §åU�� T¾�� � � ¦�§{Lu¨�Q
� �� ¦�§{Lu�,|á¨ � Q´» ¼ §��� ½ À V � V ¾�� L ½ |I��Q)N (18)
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where

±T §åU�� T¾�� � � ¦�§{Lu¨�Q´�Ä�E`b� is the probability that an arrival is about to occur [22]. The packet

service time is geometric as follows (where ���Ü� +�²´³ ���ô�! X��� )
�"�Ü� � �� yLh��|Ò�� RQ � V � N  û¹�� �#�
�$ L��#Q � ±T �£U�� �� yLh��|��� hQ � V � � �Ü� � �� %� ���|�LÕ�~|��� ÜQ&� � Z (19)

��� is the sum of ¶.|à� such independent service times. So the pgf is

'$)( L*�#QW��ñ 
�$ L��#QÕó § V � . The

total delay ���Æ��¨ � 
+����
+� has a pgf
�� 
 L*�#Q�� ±T §ÝU��
� V �T
¾�� U.� ¦ �§ Lu¨ � Q 
�$)( L*�#Q 
�$ L*�!Q�� ¾�� N (20)

which is simplified to (17) using the approximation in (18).

Note that in TDMA, because of the shift of the frame beginnings, the pmf and pgf of the service

time of the newly arriving packet must be modified to

�"�Ü�º���Þ� �� yLh��|Ò�� RQ � N  û¹ � �#�
�$ L��#Q � ±T �£U.� �� yLh��|��� hQ � � �Ü�º��� � �� &���|�LÕ�~|��� ÜQ&� � Z (21)

The pgf of the delay �$� is thus
�� 
 L��#QW» L ½ |e�ßQ�L ½ � |�� � Q ú ���L ½ |��#Q�LÕ��| ú ���#Q N ½ ����`aü���N ú �Æ� ½ � Z (22)

This pgf is determined by ü�� , the real positive root of the polynomial (10) inside the unit circle.

Usually ü�� has only numerical solutions for large � and � . We derive a closed-form expression

for ü�� in Proposition 3.3.

Proposition 3.3: Consider the polynomial �� Õü À |�ü � 
 �~|��Á ´� � . The real positive root üÃ�
inside the unit circle can be well approximated by

ü��Æ»���| d.Lh��|�f¥Q� f N f�� �E`.Lu�P�� RQ)N � �Ä�Ô|á��_e�CZ (23)

Proof: Based on Descartes’ Sign Rule, there are exactly two real positive roots, one of

which is � and the other is üÃ����L � N��ßQ . A single local minimum üÃ�þ�-,H��f �. _¢� lies between
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ü�� and � . Using two inequalities [23]

| ��|áff _ ©0/ fHG � Luf �. |I��QPN fH_Ä� and
� ����N (24)

üÁ�þ�-, is lower bounded as ü��þ�-,21��Ô|�Lh�,|�f¥QÜ`.L � f¥Q . Assume an equal distance from üÃ�þ�-, to

these two roots, i.e., �´|�ü��[�3,c»ÄüÁ�þ�-,Æ|�ü��¤�#� ü��Æ»�daüÁ�[�3,¤|ô� . Then ü�� is solved as in (23).

The approximation (23) is tight when
�

is large and/or f is close to � , both of which also

guarantee ü��54¢� . The delay mean and variance can be directly calculated from

6� 
 L��#Q (22),

@�� » ½½ |e� »
� fd.Lh��|�f¥Q N (25)

A B� » ½ LMd�| ½ QL ½ |e�ßQ B »87 � fd'Lh�¤|áf¥Q�9 B | � f��|�f �Ä@���Lg@��W|�d!Q)Z (26)

Since the approximation (23) is more accurate for large
�

, the special case
� ��� will be

studied separately. Instead of the 2-D Markov chain �a}µL-�RQ)Ny�cL-�RQP� , we use a 1-D delay model in

Theorem 3.4 to directly track the delay evolution of the Head of Line (HOL) packet.

Theorem 3.4: Consider a D/Geom/1 queueing system with interarrival time Lu�k

��QÜ`b� and

service rate �� . Then, the pgf and the mean and variance of the delay ��� are
�� 
 L*�!Q � L*� � |e�ßQ���ÁLh�~|:� � Qº|Ò�� yLh��|�� �º��� Q æ �~|ôff (27)

@�� � �d.Lh��|�f¥Q N fc� ��)�� (28)

A B� � �; Lh��|�f¥Q B | ��
�d< LÕ�¤|áf¥Q Z (29)

Proof: Using the delay model [24], the system state is denoted by the delay of the HOL

packet in terms of time slots. But state transitions occur at the frame boundaries. The transition

probabilities =þD�� are

=þD&�~�
ØÙÙÙÙÚ ÙÙÙÙÛ
�� F�¹ � N  \��F¸|e�!N
��|��� �F�¹ � N  \��F,
��CN
� Fc��|¸�!N> \���ì|I�!N

(30)

The negative state |�� indicates that the buffer is empty and the remaining time prior to the next

arrival is one slot. Let the steady-state probabilities be �?�yD!ë FC¹l|¸�b� and the delay probability
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be ���¥D#ë F\¹��j� . Then, �¥D�� �£D V �-�� ±T �£U.� �@�R�� �
�£D V �±T �£U.� �@� N (31)

where A ±�£U.� �@�h�� is the normalization constant. The factor �� is needed since the erroneous

packets are not included to calculate the delay distribution. (30) gives a set of balance equations

�¥D¤�
ØÙÙÙÙÚ ÙÙÙÙÛ
�Á B�¥DR��� ��G�F�_e�
�Á B�Á�º���þ
C�� C��� F�� �
�Á B�¥DR���^
ÄLh�¤|��� RQ%�¥D V � F � �CN

(32)

which leads to the pgf

�� 
 L��#Q with an unknown parameter ��� . Based on


�� 
 LÕ��Q¸��� , ��� is

deduced to �����ªLh��|�f¥QÜ`.LÐ�� hf¥Q . Note that the number of unknown parameters involved is
�

.

That is why this approach is applied to
� �i� only. The mean (28), variance (29), and the pmf

of ��� can be derived from the pgf (27) in a straightforward manner.

Comparing the approximate delay analysis (25), (26) (setting
� �i� ) and the accurate analysis

(28), (29), we find that even for small
�

, the approximation is tight if fcÿ � .
B. Delay analysis of the relay nodes

The relay nodes are fed with the output of the source node �^� . Since the packet departure

occurs only at the frame boundaries, the interarrival time is integer for relay nodes �^� ( ��GI��G 	 )

that are modeled as GI/Geom/1 and analyzed conventionally. We first analyze their input, or the

output of ��� in Theorem 3.5.

Theorem 3.5: Consider a D/Geom/1 queueing system with service rate �� and interarrival time

�j`b� ( ��_e�c_ da� ). Then the output process is a correlated on-off with transition probabilities

½ �Ü���á�� and ½ �u�¤� � �� R`b� , where
� ���Ô|á� .

Proof: Assume that the HOL packet  departs the system at frame � . If the queue is

non-empty, the next HOL packet  �
�� is served immediately, and the interdeparture time D is
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exactly the service time of packet  ¤
á� , denoted by �FE�%�& ( ; otherwise, the interdeparture time

is � plus the system idle time, which is one frame for �c_ db� , i.e.,

D � ØÙÚ ÙÛ ��
G� with probability HJI� with probability HLK´N (33)

where HJI and HLKC�¢��|�HMI are the conditional node idle and busy probabilities given a packet

departure event. The pmf �ß�MD!ë FH¹��j� of the interdeparture time D is

�uD¤�
ØÙÚ ÙÛ HJK'�� F����
�Á yLÕ��|��� ÜQ D V B�Lh��|�HLK'�� RQ�F � �jN (34)

corresponding to a correlated on-off process [24, (1),(2)]. Based on the stability condition, the

average interdeparture time D is equal to the interarrival time �j`b� , i.e.,DI�i��
 ��Á |�HLKÒ� �� �#� HJKÁ�Á ´�i��
��� [| �f �i��| � �� � Z (35)

So the transition probabilities are ½ �u� �i��|:HLK.�� è� � �� Ü`a� and ½ �Ü�����Á .
Therefore, the first relay node �[� is GI/Geom/1 system with on-off input. The queue length

distribution is derived in [25], and the packet delay is shown to be geometric in [26] without

calculating the parameter of the geometric distribution, which is derived in Lemma 3.6.

Lemma 3.6: Consider a discrete-time GI/Geom/1 queueing system with service rate �� and

on-off arrival, whose transition probabilities are ½ �Ü� and ½ �u� . Then, the delay is geometrically

distributed with parameter N
� ��|Ò�Á �Á ½ �u�º

LÕ�~|��Á ÜQyLh�¤| ½ �Ü�ÜQ Z (36)

Proof: Using the delay model [24], denote the system state by the delay of the HOL

packet. Negative states indicates an idle server. All probabilities of going beyond a delay |��
are included in the state |�� . The transition probability =ºD�� is

=^D��¤�
ØÙÙÙÙÚ ÙÙÙÙÛ
�� %O£§OL°FXQ�F\¹ � NP ûGàF
��|Ò�� F\¹ � NP \��F,
 � or Fc�i|��!NP \��F
½ �Ü� F¡�i|¸�jNP � � N (37)
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where ¶���Fµ|Q µ
�� , O£§����Õ§ and O£§ML­F¥Q´�RO£§ for F � |�� , and O£§OL°FXQ´� ±T S U.§ O
S � ½ �u�aLh��| ½ �Ü�ÜQ § V B for

Fû� |¸� . Manipulating the balance equations, the steady-state probability is ��D��T��� N D (FÒ¹ �
).

Since the delay probabilities involve only non-negative states (as in (31)), the delay distribution

is geometric with

N
.

For the relay node �þ� , with ½ �u��� � �� Ü`a� and ½ �Ü�����Á , the delay probabilities are �'Dh�º�����
Lh��|

N
Q
N D at the time slot level. Therefore, the mean and variance are

@[�×� �Æ
 �
N

��|
N �i��
��VU¥N U + f�¤|áf �~|��Á �Á (38)

A B� � � B
N

Lh��|
N
Q B � � B U'Lh��
WUjQ)Z (39)

The output of �[� is also bursty and correlated, but too complicated to be characterized by a

simple traffic model. It is stated in [26] that the output process of tandem GI/Geom/1 queues

converges to a Bernoulli (geometric) process as the number of nodes goes to infinity. However, in

practical wireless networks, the route is often too short for the output to converge to a geometric

process. Considering that on-off is a simple yet accurate model for bursty and correlated traffic,

we use the derived on-off process with � ½ �Ü�)N ½ �u��� to characterize the inputs to all relay nodes.

As a matter of fact, simulation results confirm that the delays ��� ( �W¹�� ) of the relay nodes are

close to the geometric process described in Lemma 3.6.

C. Estimation of the correlation factor

The inputs to relay nodes are correlated and bursty and result in correlations between the

delays �C� ’s. As mentioned in Section II, the correlation is generally a function of the traffic

intensity fc�Ä�E`.Lu�P�� hQ . However, in a TDMA tandem network, the operations of the servers are

successive, i.e., the neighboring nodes cannot be served simultaneously. This behavior affects

the correlation. It also implies that the correlation might not be solely determined by f . If f�� � ,
there is no traffic, and ���YX �

. So, there is no correlation and Kô� �
. On the other hand, if

�� Æ� � , the channel is perfect, and every packet can be successfully transmitted with only one
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attempt regardless of f , i.e., ���ZXä� ( �~¹ � ). Then, the correlation is expected to be Ký� �
as

well even if f�]� �
. In this sense, the correlation depends at least on two parameters f and �� 

although f itself is a function of �Ã since �� ´��� does not necessarily lead to f�� � . From (38)

and (39), it is verified that the delay ��� ( �W¹�� ) is a function of U . Accordingly, we assume that

the correlation coefficient K is a function of U .
It is unclear how U impacts the correlation coefficient K . A set of simulation results (obtained

by MATLAB) are provided to establish an empirical model of K . As shown in Fig. 4(a), i)

the correlation is indeed negative; ii) the magnitude of the correlation can be regarded as

exponentially increasing with U . Based on the least-square principle, the curve is fitted as follows

K�L[U!Q´� ü��^
áü B�\ V^]�_a`CbBc N U�� f�¤|áf æ ��|��� �� N (40)

where ü�����| � Z �!� dj� , ü B ��| � Z-dj�fe � , ühg�� � Zãdb�'��e , üjic��| � Z-ekeklfm . With the empirical K and

assuming that all relay nodes behave identically, the e2e delay mean and variance are further

simplified from (1) to the following

@ � @��[
�	�@þ� (41)

A B � A B� 
àA B� 
�K¥AÁ�£A��^
ÄL{	�|e��QÕKXA B� »
A B� 
�	ôLh��
�K'QhA B� Z (42)

Then, the tandem network can be treated as a series of independent discrete-time servers. The

first one is the source with mean @�� and variance A B� . The others are identical relays with mean

@[� and scaled variance Lh��
àK.QÕA�B� . According to the Law of Large Numbers, the e2e delay will

converge to a Gaussian distribution, and the mean and variance are linear with the number of

nodes 	 . Simulation results in Fig. 5(a) and Fig. 3 confirm the quick convergence to a “sampled”

Gaussian and the linearity even for relatively short networks.

In Fig. 3 ( ���Ä�XNM�� ´� � Znm'N£	��i� ; for ��� ;
and ���Re , respectively), we compare the mean

and variances in three cases: 1) the simulated e2e delay; 2) the sum of the simulated delays of

the individual nodes, i.e., the e2e delay when all servers are independent; and 3) the analytical

delay with mean (41) and scaled variance (42). It is obvious that, with respect to the variance,
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(b) ALOHA: o vs. q (see (50))

Fig. 4. The estimation of the correlation coefficient o
the correlation causes a huge gap between the real case 1) and the “independence” case 2). In

other words, the “independence” assumption is not accurate for the calculation of the variance.

Our analytical results (case 3)) use the empirical correlation coefficient K and are much closer

to the simulated variance.

The other observation revealed in Fig. 3 is the impact of the traffic rate ��`b� . As � increases,

the delay mean and variance unsurprisingly decrease. However, the delay decreases at a much

faster speed than the increase of � . Comparing ��� ;
and ���re , with � increasing by d �#" ,

the mean decreases by d �#" and the variance by mfd " . The reason is that the traffic intensity is

determined by three parameters �CN���NM�� ( f��k�E`.Lu�P�� hQ ). With � and �� fixed, a small change

in � probably causes a huge change in f , and in @ (38) and A B (39). Previous work usually

assumed f���� thereby preventing a study of the impact of the traffic rate.

IV. ANALYSIS OF THE SLOTTED ALOHA NETWORK

� -phase TDMA achieves the optimal performance but also incurs a substantial amount of

overhead to establish the frame structure and requires a complete cooperation between all nodes
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Fig. 5. Pmf of the packet cumulated delay with m�n�o)pgx�ncwyp�J ( n�qPr sPput$n vMw
involved. In wireless networks, slotted ALOHA may be more practical since every node operates

in a completely independent way. However, unless the traffic is light, its random and independent

transmission pattern generally results in poor performance. This section analyzes the delay of

ALOHA networks using a similar technique as in TDMA since the individual node is also

modeled as a GI/Geom/1 system. The difference is that the ALOHA network is analyzed at the

time slot level. Note that the source node ��� is modeled as a D/Geom/1 queueing system with

an integer interarrival time � . The delay distribution is derived in the following Corollary 4.1 to

Theorems 3.1 and 3.2.

Corollary 4.1: Consider a D/Geom/1 queueing system with interarrival time �c�Ò� and service

rate * . Then the delay is %[� V�s , where t is a positive real root of the polynomial

*@u À | u 
 �~| * � � Z (43)
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The delay mean and variance are approximately expressed in an explicit form

@�� � ��¤|�t » Lg�Ô|I��QÕfd'Lh�¤|áf¥Q N f�� �* � (44)

A B� � tLh�¤|�tèQ B »87 Lg�,|I��QÕfd.Lh��|áf¥Q�9 B 7!��| d.Lh�¤|áf¥QLg�,|e��QÕfM9 Z (45)

Proof: As a special case ���k� of Theorem 3.1, the polynomial (10) is modified to (43)

by replacing �Ã with * and setting ���i� . There is only one root inside unit circle, denoted byt . Plugging ½ ����`kt and ú � �vt into (22) (Theorem 3.2), the pgf of the delay distribution is
�� 
 L*�!Q�� Lh�¤|�tèQ&��¤|�tL� N (46)

which is corresponding to a geometric distribution with parameter �j|wt . Using the same technique

as in Proposition 3.3 but replacing
�

by �Æ|ô� , if �P1 ;
and f'1 � Z-e , t is well approximated by

t�»¢��| d.Lh�¤|áf¥QLg�,|e��QÕf Z (47)

Then, the delay mean @�� and variance A B� are approximated as in (44) and (45).

The output process of ��� is more complex in ALOHA than in TDMA since the system idle

time ranges from
�

to �c|�� time slots. But it can be approximated as an on-off process, as

stated in Lemma 4.2 by using a similar technique in Theorem 3.5. The proof is skipped due to

the space constraints.

Lemma 4.2: Consider a D/Geom/1 queueing system with interarrival time �c��� and service

rate * . Then, the output process is approximately an on-off with transition probabilities ½ �Ü�Ô�Lh��| * QR`.LÜLg�,|e��Q&tèQ and ½ �u�¤��LÕ�¤| * QR`kt .

Then the relay nodes are modeled as GI/Geom/1 with on-off input � ½ �Ü�)N ½ �u��� . According to

Lemma 3.6, the delay ��� ( �W¹�� ) is geometric with

N
N
� ��| ** ½ �u�º

Lh��| * Q ½ �·� � Lg�,|e��Q&t[f�¤|�Lh��|�Lg�Ô|I��Q&tèQhf »¢��| ��|áf�bf�|I� Z (48)
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The mean and variance are

@[�Þ� ���|
N ����
 Lu�,|I��QÕf^t��|�f » �bf�|I��¤|áf Z

A B� �
N

LÕ�~|
N
Q B � Lg�Ô|I��QÕf^t��|áf x ��
 Lg�,|I��Qhf^t�~|ôf y »87 �af�|I��~|ôfz9 B | �bf¸|e���|�f Z (49)

The correlations in ALOHA are different from those in TDMA because i) the nodes are not

served successively; ii) the service rate is * ���� �.� , which cannot reach to � for �Á�I_�� even if

the channel is perfect. In other words, it might not be necessary to include �� explicitly in the

calculation of the correlation. Therefore, as stated in Section II, we assume that the correlation

in ALOHA is a function of the traffic intensity f . Through simulation results (Fig. 4(b)), K is

found to be composed of two parts and characterized as follows

K\� ü���
àü B f,
 ühgüji�|�f N (50)

where ü��W��| � Zãd ; m!� , ü B �i| � Z-e ; ��e , ühg¤� � Z �!� l < , ühi¤���!Z �!� mkm . The intuition behind this shape

of K�Luf¥Q is: as the traffic intensity increases, the queueing delay will increase and so does the

resulting correlation magnitude ë Kþë . However, if f increases to � , all delays increase to infinity.

Then, ë Kþë might decrease rather than continue to increase. So, interestingly, a transition point

fÒ» � Znl!� exists. Therefore, it is not suggested in ALOHA to set the traffic intensity f higher

than this transition point because of both the increasing delay and the almost-zero correlation.

The remaining part of the ALOHA analysis is similar to TDMA. The simulated pmf (Fig. 5(b))

of the delay verifies the convergence to Gaussian. The delay mean and variance are presented

in Fig. 6. The d �#" increase of � causes dj� " decrease of the mean and l#d " of the variance.

V. COMPARISON

Table V lists the delay statistics of the individual node for TDMA and ALOHA. As the number

of nodes 	 increases, the e2e delay statistics are mainly determined by those of the relay nodes.

Therefore, the delay of TDMA and ALOHA can be compared as follows:@ TDMA@ ALOHA
» ��,|�� æ ��|Ò�Á �� %t » ��,|e� æ ��|Ò�� �� _
�jN (51)
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Fig. 6. Comparison of the delay performance in the ALOHA network

A�BTDMAA BALOHA
»87 ��
�K TDMA��
àK ALOHA 9{x ��,|I� y B æ ��|��� �� æ�7 ��|Ò�Á �Á 
 ��|áff 9 _��!N (52)

where K TDMA and K ALOHA are given in (40) and (50), respectively. The mean for ALOHA is

Lu��|���Q-�� h`b�$Lh��|$�� RQ times than TDMA. The ratio of the variance depends on the correlation

coefficients K . The ratio of �j
�K TDMA to �b
�K ALOHA lies between
� Z3e and dXZ3e . So, A BTDMA `bA BALOHA |� for � ¹ �XN�� _ ��_ db�CNM�� � � Z3e . As an example, for � � ; NM�Ã Ò� � Znm and � � �

(corresponding to �Á��� ��`j� for ALOHA), (51) and (52) shows that the mean and variance

of ALOHA are
;

and �!�!Znl times than those of TDMA, respectively. The simulation results in

Fig. 3 and Fig. 6 confirm that the delay mean of ALOHA is about four times greater than that

of TDMA, while the variance is about �!� times larger. Theoretically, we proved that TDMA

achieves better performance than ALOHA not only in the throughput but also in the e2e delay.

This comparison is based on the assumption of equal �� for TDMA and ALOHA. If the network

were interference-limited, TDMA would have a larger �� than ALOHA (if the other parameters

are the same), which would further increase the performance gap.

In addition, with the Gaussian approximation of the e2e delay, we are able to calculate the
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Source node Relay node

mean }^~ variance �^�~ mean }�� variance �"��
TDMA ���J������� �� ����� � � } ~ ��} ~ � � � �������8���� � � �����f��k� ��} � �����%��} � ���������

ALOHA ���L������� �� ����� � � }"~)��}"~������ �������L�������8���� � �&� }�����}��#�����
TABLE I

COMPARISON OF LOCAL DELAYS FOR TDMA AND ALOHA

delay outage probability �h �L��XQÔ� ²´³ �b� � �.� for delay-sensitive applications, where � is the

regarded as a hard delay bound. Given the mean @ and variance A B , �j �L��¥Q is

�j �L*�¥Q´� ²´³ �b� � �.��� �d 7 ��| erf x ��|á@¡ dbA y�9 Z (53)

Fig. 7 shows �h �L*�¥Q for � � �'N���� ; NM�� E� � Z3mXN£	 � � � . Compared to previous work that

assumed independent ��� ’s, our analysis provides more accurate insight on �� �L��¥Q . For example,

given �$�Þ��m"e for TDMA, we calculate �¢ �L*�¥Qc� � Z �!� l!� while the independence assumption

leads to �j �L*�¥Q´� � Z � l , which is almost � � times higher. Similarly, for ALOHA, given �c� <j�!�
,

our analysis yields �h �L*�¥Q´� � Z �!� m"d while the independence assumption leads to �� �L*�¥QW� � Z � mflX� .
Since �j �L*�¥Q is an important measure for the design of real-time networks, a more accurate

analysis is desired. Besides, Fig. 7 also shows how much worse ALOHA behaves in terms of the

outage probability. In order to achieve �� �L*�¥QÆG�� �#" , ALOHA requires the delay bound �c�!efd � ,
about �'Z3e times than the delay bound ����� <!� of TDMA.

VI. CONCLUSIONS

This paper integrates the queueing analysis of individual nodes with the MAC schemes, using

queueing theory to explain the delay difference between TDMA and ALOHA. For TDMA, the

resulting system is more complicated than conventional D/Geom/1 even for CBR traffic. We

establish a 2-D Markov chain to derive the distributions of the queue length, delay and the
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Fig. 7. The delay outage probability J?£f¤¦¥¨§ for m�n�o)p-x�n�w)p�J ( n�q)r s)put$nHv·q
output process. Unlike previous work on MAC schemes, we do not assume overly heavy traffic

(i.e., f���� , such that the nodes always have packets to transmit) so that the impact of the traffic

load can be explored. It is shown that a small decrease of the traffic rate may substantially

improve the e2e delay.

From the perspective of queueing theory, the access delays are incorporated into the prolonged

service time in TDMA and the decreased service rate in ALOHA. Given the same traffic load and

original service rate, we proved that prolonging the service time by � times causes less delay

than decreasing the service rate by ��������`b� times in terms of both the mean and variance.

Regarding the e2e delay, we take into account the negative correlations between the delays

since they have significant influence on the e2e delay variance and have been ignored in previous

work based on the “independence” assumption. Using simulation results to establish an empirical

model on the correlation coefficient, the tandem network is modeled as a series of independent

servers whose variances are scaled by the correlation coefficient K . Then, we derive a more

accurate expression for the e2e delay variance which has been paid little attention in the

literature. The complete delay distribution leads to a delay outage probability �� �L*�¥Q , a critical
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measurement for delay-sensitive applications. Naturally, the more accurate variance results in

improved tightness of �h �L*�¥Q .
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