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Cellular system evolution

nG, n ≤ 4 5G+: The ultra-era

- ultra-fast

- ultra-dense

- ultra-low latency

- ultra-high reliability

- ultra-heterogeneous

- ultra-MIMO (well, massive)

- ultra-high frequency

- ultra-flexible

- ultra-software-defined

- ultra-virtualized

⇒ ultra-happy users (?)
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Modeling networks using point processes
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Lots of points—base stations at different tiers, users, RRHs, etc.
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Modeling without point processes
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Modeling without stochastic geometry is point-less.
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Overview

Menu

Overview

What if networks are not HIP (homogeneous independent Poisson)?

Revisiting coverage: the meta distribution of the SIR
◮ Downlink
◮ Uplink
◮ D2D

Diverse messages and ergodic spectral efficiency

Conclusions
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Overview

Ultra-Menu

Overview in ultra-speak

Analyzing ultra-HetNets

Ultra-reliability at ultra-low latency

Ultra-dense networks

Ultra-fast and ultra-reliable transmission of long messages

Conclusions
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HIP and beyond using ASAPPP The HIP model

HIP—and beyond

The HIP (homogeneous independent Poisson) model
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2 Base stations in each tier form
independent Poisson point processes
(PPPs) of densities λi and transmit
powers Pi .

Here λi = 1, 2, 3 for the blue, red,
and green tiers.

This model is doubly independent and
thus highly tractable.

A user connects to the BS that is strongest on average (not including
fading), while all others interfere. We are interested in the SIR.
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HIP and beyond using ASAPPP The HIP model

Basic result for HIP downlink

Assumptions:

Homogeneous path loss law ℓ(r) = r−α

Rayleigh fading

Remarkably, the SIR distribution at the typical usera is independent of the
number of tiers, their densities, and their power levels [ZH14, NMH14]:

ps(θ) , P(SIR > θ) = F̄SIR(θ) =
1

2F1(1,−δ; 1 − δ;−θ)
, δ , 2/α

For δ = 1/2 (α = 4) : ps(θ) =
1

1 +
√
θ arctan

√
θ

What can be said about non-HIP models?

aIf users form an independent stationary point process, this equals the
average over all users assuming they are served.
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HIP and beyond using ASAPPP SIR gain

Beyond HIP

SIR gain [GH15, Hae14]
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When comparing different models or
transmission schemes, the resulting
SIR ccdfs appear to be horizontally
shifted versions of each other.

The nearly constant gap is the SIR
gain.

If the SIR ccdfs were indeed just
shifted:

ps,PPP(θ) , P(SIRPPP > θ) ⇒ ps(θ) = ps,PPP(θ/G).

ASAPPP: "Approximate SIR Analysis based on the PPP". Or simply "as a PPP".
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HIP and beyond using ASAPPP Deployment gain

Deployment gain [GH15]
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For the square lattice, the gap (deployment gain) is quite exactly 3
dB—irrespective of α! For α = 4, psq

s = (1 +
√

θ/2 arctan
√

θ/2)−1.

For the triangular lattice, it is 3.4 dB. This is the maximum achievable.
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HIP and beyond using ASAPPP ISR

Definition (Interference-to-(average)-signal ratio ISR)

ISR ,
I

Eh(S)
=

I

ℓ(x0)

Relevance [Hae14]

The SIR ccdf is given by ps(θ) = EF̄h(θ ISR).

For Rayleigh fading, ps(θ) = LISR(θ) and, letting MISR = E(ISR),

ps(θ) ∼ θMISR, θ → 0.

Hence the asymptotic gain G0 at θ → 0 is G0 = MISRPPP/MISR2,
where

MISRPPP =
2

α− 2
=

δ

1 − δ
.

The gain G0 is surprisingly accurate over the entire ccdf, and it barely
depends on α and and the fading distribution [GH16].
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HIP and beyond using ASAPPP ISR

The bandgap of SIR distributions (α = 4)
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All (repulsive) deployments have SIRs that fall into this relatively thin
band—even if there are many tiers.

Higher gains can only be achieved using interference-mitigating and/or
signal-boosting schemes.
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HIP and beyond using ASAPPP HetNets

Extensions to HetNets

General K -tier HetNet model

Let Φk , k ∈ [K ], be a family of independent simple stationary point
processes modeling the locations of the base stations of tier k .

Let λk and Pk denote the density and transmit power of tier k .

Let Gk denote the SIR gain (relative to the PPP) of the single-tier
network consisting only of tier k .

A user is served by the BS providing the highest power (on average).

Example (3-tier HetNet)

Let K = 3, and take tier 1 to be a square lattice with λ = 1/10 and
P = 100, tier 2 to be a Ginibre point process (GPP) with λ = 1/2 and
P = 10, and tier 3 to be a PPP with λ = 1 and P = 1.
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HIP and beyond using ASAPPP HetNets

Result [WDZH16]

Define the effective gain as

Geff , 1 +
∑

k∈[k]

w2
k (Gk − 1),

where

wk =
λkP

δ
k

∑

i∈[K ] λiP
δ
i

, δ = 2/α.

In the HIP model, wk is the probability that the typical user is served by
tier k .
Then the SIR distribution for the HetNet is (ultra-)tightly approximated by

F̄SIR(θ) ≈ F̄PPP
SIR (θ/Geff).
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HIP and beyond using ASAPPP HetNets

Discussion

Let G̃k = Gk − 1 and G̃eff = Geff − 1. Then

G̃eff =
∑

k∈[K ]

w2
k G̃k .

Since the superposition of many independent stationary point
processes results (under mild conditions) in a PPP, we have G̃eff → 0
as K → ∞, no matter what the tiers are.

For example, if all tiers are square lattices with the same intensity and
transmit power, G̃k = 1 and wk = 1/K . It follows that

G̃eff =
∑

k∈[K ]

1

K 2
=

1

K
.

Generally, for K identical tiers, G̃eff = G̃/K .
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HIP and beyond using ASAPPP HetNets

Example: Numerical results for 3-tier HetNets
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λ3 = 5λ1, P3 = 1/25
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square lattice / 1-GPP / PPP
λ1 = 10−5, P1 = 1,
λ2 = 2λ1, P2 = 1/5,
λ3 = 5λ1, P3 = 1/25
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The meta distribution What is coverage?

Basketball

Who is a good free throw shooter?

To find out which of 100 players are good free throw shooters, let them
shoot one free throw. The good ones are those who succeed—are they?
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The meta distribution What is coverage?

Coverage

What is "coverage"?

P(SIR > θ) gives, in each realization and each time slot, the fraction
of users who happen to succeed. Some because of good fading from
the BS, some because of bad fading from an interfering BS, some
because they are close to the BS.
In the next time slot, some previously successful users won’t succeed,
and vice versa.

This is not a robust metric for coverage. Declaring a user "covered" or
not on a 10 ms time scale is impractical. We would have to redraw
coverage maps 100 times/s, at a spatial scale of cm.

We need a metric that does not depend on the instantaneous channel
realization, but still takes into account the fading statistics.
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The meta distribution What is coverage?

What is "coverage"?—cont’d

So let the BS transmit 100 packets to the user. Declare the user
satisfied—covered—if (s)he successfully receives 80 of them (in the
first attempt). And ultra-happy if it is 99/100.

Analogy: Let basketball players shoot 100 free throws. Declare those
who make 80/100 good free throw shooters.
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The meta distribution Per-user success probability

What is "coverage"—solution

For each user u, calculate

P(u)
s

= P(SIRu > θ | Φ) = Eh1{SIRu > θ}.

This averages over the fading (and random access).

Then declare those user covered for whom P
(u)
s > x , where x ∈ [0, 1]

is a reliability constraint.
This gives a robust coverage map and reflects true user satisfaction.

It also achieves a time scale separation between the time scales of
fading and changes in the network geometry.

Coverage means to consistently achieve a certain SIR.
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The meta distribution Per-user success probability

Distribution of the conditional SIR distribution Ps
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Per-user success probabilities P

(u)
s for

a PPP with θ = 1, α = 4.

The mean of all these random vari-
ables P

(u)
s is the (standard) success

probability ps(θ) = P(SIR > θ). Here
we have ps(1) = 0.56.

But we need to know more: What
fraction of users achieve P

(u)
s > x ,

i.e., what is P(P
(u)
s > x)?

So instead of just considering the mean of Ps, we need its ccdf. This is the
meta distribution.

M. Haenggi (ND) SG for 5G 12/04/2016 20 / 33



The meta distribution Definition

Definition

Definition (Meta distribution of the SIR [Hae16])

Let Φ ⊂ R
2 be a stationary and ergodic point process of base stations and

let SIR = SIRo be the signal-to-interference ratio at the origin. The
conditional success probability is the random variable

Ps(θ) , P(SIR > θ | Φ),

and its distribution is the meta distribution

F̄ (θ, x) = F̄Ps(θ)(x) , P(Ps(θ) > x), θ ∈ R
+, x ∈ [0, 1].
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The meta distribution Example

Example (PPP, Rayleigh fading, α = 4)
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F̄ (θ, x) = P(Ps(θ) > x)

=Fraction of users who achieve an SIR of θ with probability at least x .
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The meta distribution Moments

Moments

The moments
Mb , E(Ps(θ)

b), b ∈ C.

reveal interesting properties of the meta distribution.

M1 =
∫ 1

0
F̄ (θ, x)dx is the standard success probability.

varPs(θ) = M2 −M2
1 gives basic information about the disparity of

the user experiences.

M−1 is the mean number of transmissions until success (aka local
delay).

And they can be calculated in closed-form—at least in some cases.

Using Mjt , Gil-Pelaez inversion yields an integral expression of the exact
meta distribution.
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The meta distribution Moments for the PPP

Theorem (Moments of Ps for Rayleigh fading (Hae16))

For Poisson cellular networks with nearest-BS association and Rayleigh

fading,

Mb =
1

2F1(b,−δ; 1 − δ;−θ)
, b ∈ C.

Remark

For b ∈ N, Mb is the joint success probability of b transmissions
[ZH14].
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The meta distribution Moments for the PPP

Approximation with beta distribution
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Exact ccdf and beta approximation for θ = 1/10, 1, 10 for α = 4.

The beta distribution tightly approximates the meta distribution.
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The meta distribution Uplink

Uplink with power control [WH16]

Often, the benefits of a transmission technique are not reflected in the
mean success probability. Example: Uplink power control.
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Power control: For link distance R ,
user transmits at power Rαǫ.

ǫ ∈ [0, 1]: no power control to full
inversion of large-scale path loss.

For a target SIR of around 0 dB,
ps(1) ≈ 50–60%, irrespective of ǫ.
So what ǫ is best?

The answer is given by the variance M2 −M2
1 ! It shows a gain of at least a

factor of 3 for ǫ = 1.
Hence power control leads to a concentration in the user experiences.
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The meta distribution D2D

Meta distribution with D2D underlay [SMH16]

Network modeled as superposition
of a Poisson cellular network and
an independent Poisson bipolar
network (D2D users).

Base stations transmit with
probability pBS and D2D users
with probability pD2D.

For both types of users, the
moments Mb can be calculated
exactly.
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Cellular
D2D−d=50 m
D2D−d=70 m
D2D−d=90 m

λBS = 2 km−2, λD2D = 50 km−2.
θ = 1, PBS/PD2D = 100, pBS = 0.7,
pD2D = 0.3, α = 4.

Using the meta distribution, we can calculate the density of D2D links that
can be accommodated such that both types of users maintain a target
reliability.
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The meta distribution Spatial outage capacity

Spatial outage capacity [KH17]

A fundamental question—in view of ultra-dense networks: What is the
maximum density of concurrent links that achieve a reliability x?

Definition (Spatial outage capacity):

S(θ, x) = sup
λ,p

λpF̄ (θ, x), λ > 0, p ∈ (0, 1]

p is the fraction of links that are concurrently active.

Example: Poisson bipolar network in the (ultra-)high reliability regime

S(θ, 1 − ǫ) ∼
( ǫ

δθ

)δ e−(1−δ)

πr2Γ(1 − δ)
, ǫ → 0

is achieved at p = 1. The ratio ǫ/θ shows an interesting rate-reliability
trade-off: At low rates, log(1 + θ) ∼ θ, so a 10× higher reliability can be
achieved by lowering the rate by a factor 10.
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Spectral efficiency Motivation

Ergodic spectral efficiency

Motivation

The outage-based framework of the meta distribution is useful for
short messages and low-latency situations.

For longer messages (codewords) transmitted over larger bandwidths
or many antennas or using hybrid ARQ, an ergodic point of view is
warranted.

As before, we aim at a clean time-scale separation. Ergodicity applies
to the time scale of small-scale fading, with the network geometry
fixed. Then stochastic geometry is applied to capture different
network configurations.

This approach lends itself to MIMO extensions and sectorization.
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Spectral efficiency Definition

Long (diverse) messages: Ergodic spectral efficiency [GMLH16]

Let ρ ,
ℓ(x0)

∑

x∈Φ\{x0}
ℓ(x)

be the SIR (of the user at the origin) without fading. It captures the
network geometry. Next, let

C (ρ) , Eh(log(1 + hρ))

be the ergodic spectral efficiency given the point process. For Rayleigh
fading, C (ρ) = e1/ρE1(1/ρ), where E1 is the exponential integral.

Q: Why not include the fading of the interferers’ channels?

A: Because the user does not know them.

Ignoring the fading of the interferers yields a tight lower bound, while
including it in the expression would yield a looser upper bound.
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Spectral efficiency Result

Ergodic spectral efficiency distribution

Using stochastic geometry, we can evaluate the expectation w.r.t. point
process and find (approximately) the distribution of C .

With SISO, essentially no user gets less
than 0.18 bps/Hz. With 2x2 MIMO, no
user gets less than 0.3 bps/Hz.

Observation: Spectral efficiencies are
essentially lognormal.
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Conclusions

Conclusions

We have discussed several ultras: Density, reliability, latency,
heterogenity.

With ASAPPP, models do not have to be HIP—they can be quite
geeky. The basic idea is to shift the SIR ccdf of the PPP horizontally,
by a gain factor that is obtained asymptotically.

The meta distribution captures the per-user experience and has a
natural interpretation as a metric for coverage. It captures the
disparity of user experiences and yields the performance of user
percentiles, say the "5% user".
It also provides a mathematical foundation for questions of network
densification under strict reliability constraints.

Ergodic spectral efficiency is the long-packet (or diverse packet)
counterpart. Its distribution can be well approximated in closed-form,
also for MIMO.

Slides available at: www.nd.edu/~mhaenggi/talks/globecom16.pdf
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