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The Poisson bipolar network Bipolar network with ALOHA

Poisson bipolar network with ALOHA random access

Sources form a Poisson point process
(PPP) Φ of intensity λ.

Each source has a destination at
distance r and transmits with
probability p in each time slot.

The SIR at receiver y is

SIRy ,
S(y)

I (y)
=

hzyℓ(z − y)
∑

x∈Φint
hxyℓ(x − y)

.

(hxy ) are the fading random variables,
and ℓ is the path loss function.

Transmissions succeed if SIR > θ.
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Poisson bipolar network with

λ = 1, r = 1/2

What is the SIR distribution (or reliability) P(SIR > θ) of a representative
link?
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The Poisson bipolar network The typical link

The typical link

To the PPP, add a (desired)
transmitter at location z and a
receiver at the origin o. The link
z → o is the typical link.

Letting Φint = {x1, x2, . . .} ⊂ Φ
denote the locations of the
interferers in a given time slot, the
SIR at the typical receiver is

SIR =
hℓ(z)

∑

x∈Φint
hxℓ(x)
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Φint ⊆ Φ and the typical link

We are interested in the SIR distribution (ccdf) P(SIR > θ).
For each realization of Φ, it is the spatial average of the link success
probabilities P(SIRy > θ | Φ).
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The Poisson bipolar network Reliability of the typical link

SIR distribution for Rayleigh fading

Laplace transform of the interference

Let δ , 2/α and sinc δ , sin(πδ)/(πδ).
For ℓ(x) = ‖x‖−α = ‖x‖−2/δ and Rayleigh fading (h ∼ exp(1)),

LI (s) = exp
(

−λpπΓ(1 + δ)Γ(1 − δ)sδ
)

= exp

(

−λpπsδ

sinc δ

)

, δ < 1.

Success probability/SIR ccdf

For Rayleigh fading, ps(θ) ≡ LI (θr
α) sincea

ps(θ) = P(hr−α > Iθ) = E(e−θrαI ) = exp

(

−λpπr2θδ

sinc δ

)

.

a

Baccelli, Blaszczyszyn, and Mühlethaler, “An ALOHA Protocol

for Multihop Mobile Wireless Networks”. 2006.
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The Poisson bipolar network Optimum power control and full-duplex

Power control and full-duplex operation

ALOHA performs optimum power control

Assumptions:

A Poisson bipolar network with Rayleigh fading

No information about the fading at the transmitter (no CSIT)

There is a peak and an average power constraint.

In each time slot, the transmitter chooses a transmit power randomly
and independently from a distribution that satisfies both constraints.

In turns out that on/off power control is the optimum (memoryless)
random power control strategya.

So while ALOHA is suboptimum as a MAC scheme, it can be optimum as
a power control scheme.

a

Zhang and Haenggi, “Random Power Control in Poisson Networks”.

2012.
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The Poisson bipolar network Optimum power control and full-duplex

Throughput gain with full-duplex links

The bipolar model is a natural model to explore the impact of full-duplex
(FD) communicationa. It turns out that:

If the links can be used bi-directionally, the throughput

(density of active links) × (success probability)

cannot be doubled due to the extra interference.

Only if the links are not too long and self-interference can be cancelled
almost perfectly, FD operation is beneficial. There is a threshold
behavior—either all links should be operated in half-duplex or all
should use FD.

Even with perfect self-interference cancellation, the throughput gain
does not exceed 2α/(α + 2), which is 4/3 for α ≤ 4.

a

Tong and Haenggi, “Throughput Analysis for Full-Duplex Wireless

Networks with Imperfect Self-interference Cancellation”. 2015, Subm.
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Joint success probability Static network model

Joint success probability

SIR in three time slots
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The network is static (nodes do not move).

SIR at the receiver in time slot k :

SIRk =
hk r

−α

∑

x∈Φk
hx ,k‖x‖−α

Success event in slot k : Sk , {SIRk > θ}.
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Joint success probability Temporal correlation of the interference

Interference powers are correlated

The interference power levels in different time slots are correlated (despite
ALOHA and iid fading), since the interferers are chosen from the static set
of nodes Φ.
For Nakagami-m fading, where the fading coefficients are gamma
distributed with pdf

fh(x) =
mmxm−1 exp(−mx)

Γ(m)
,

the temporal correlation coefficient of the interference isa

ζt = p
m

m + 1
.

As a consequence of the interference correlation, the success events Sk are
also dependent.

a

Ganti and Haenggi, “Spatial and Temporal Correlation of the

Interference in ALOHA Ad Hoc Networks”. 2009.
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Joint success probability Rayleigh fading

The joint success probability

Let Sk , {SIRk > θ} be the event that the transmission succeeds in time
slot k . We would like to calculate P(S1 ∩ S2).
Letting θ′ = θrα,

P(S1 ∩ S2) = P(h1 > θ′I1, h2 > θ′I2)

= E(e−θ′I1e−θ′I2)

= E

[

exp

(

−θ′
∑

x∈Φ

‖x‖−α
(

1(x ∈ Φ1)hx ,1 + 1(x ∈ Φ2)hx ,2
)

)]

= E

[

∏

x∈Φ

(

p

1 + θ′‖x‖−α
+ 1 − p

)2
]

= exp

(

−λ

∫

R2

[

1 −
(

p

1 + θ′‖x‖−α
+ 1 − p

)2
]

dx

)

.
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Joint success probability Rayleigh fading

Joint success probability

This generalizes easily to

P(S1 ∩ . . . ∩ Sn) = exp

(

−λ

∫

R2

[

1 −
(

p

1 + θ′‖x‖−α
+ 1 − p

)n]

dx

)

.
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Joint success probability Rayleigh fading

Theorem (Joint success probability)

Let δ = 2/α. The probability that a transmission over distance r succeeds

n times in a row isa

p
(n)
s (θ) = e−∆Dn(p,δ),

where ∆ = λπr2θδΓ(1 + δ)Γ(1 − δ) and

Dn(p, δ) =

n
∑

k=1

(

n

k

)(

δ − 1

k − 1

)

pk

is the diversity polynomial. It has order n in p and order n − 1 in δ.

a

Haenggi and Smarandache, “Diversity Polynomials for the Analysis

of Temporal Correlations in Wireless Networks”. 2013.
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Joint success probability Diversity polynomial

The diversity polynomial

Joint success probability: p
(n)
s (θ) = e−∆Dn(p,δ).

D1(p, δ) = p

D2(p, δ) = 2p − (1 − δ)p2

D3(p, δ) = 3p − 3(1 − δ)p2+
1
2(1 − δ)(2 − δ)p3

Note that δ ∈ (0, 1).

The term in p is np, which would
be the result in the independent
case. So p → 0 restores indepen-
dence:

Dn(p, δ) ∼ np, p → 0.

The same holds for δ → 1 (α ↓ 2).

For n = 5 :
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Joint success probability Diversity polynomial

The diversity polynomial

For small p, the first term dominates,
and the transmission success is only
weakly correlated.

If δ ↑ 1, the success events become
independent, but ∆ ↑ ∞.

If δ ↓ 0, the correlation is largest, but
∆ ↓ λπr2.

If δ ↓ 0 and p = 1, Dn(1, 0) = 1 for
all n, so the success events are fully
correlated, i.e.,

p
(1)
s = p

(2)
s = . . . = e−∆ = e−λπr2 .

This is just the void probability.

For n = 5:
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Joint success probability Conditional success and outage probabilities

Conditional success and outage probabilities

Using the joint success probabilities, the conditional probabilities of success
after n successes and after n failures immediately follow.

0 0.2 0.4 0.6 0.8 1

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

n=0

n=1

n=2

n=4

p

P
(S

n+
1 

 S
1, .

..,
 S

n)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

n=0n=0

n=1

n=4

p
C

on
d.

 o
ut

ag
e 

gi
ve

n 
n 

fa
ilu

re
s

δ = 1/2, ∆ = 1/2.

Previous success or failures greatly affect future success probabilities.
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Joint success probability Diversity

Asymptotic probability of success in n transmissions

With some work it can be shown that the probability of succeeding at least
once in n attempts is

p
1|n
s = 1 −∆pn

Γ(n − δ)

Γ(n)Γ(1 − δ)
+ O(∆2), ∆ → 0.

It follows that p
(n)
o = 1 − p

1|n
s = ∆C + O(∆2) for some C > 0 that does

not depend on ∆. Hence the diversity gain is

d = lim
∆→0

log(∆(C + O(∆)))

log∆
= 1.

So there is no temporal diversity gain—no matter how many attempts are
made and no matter how small p is!
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Joint success probability Local delay

Local delay

Local delay (first approach)

Since after a failure, the probability of success decreases, an interesting
question is how long it takes to succeed.

Local delay: M , min
k∈N

{Sk occurs}.

We have P(M > n) = p
(n)
o = 1 − p

1|n
s , and the mean local delay can be

expressed as

EM =
∞
∑

k=0

P(M > k) =
∞
∑

k=0

p
(k)
o .

= exp

(

∆
p

(1 − p)1−δ

)

≫ exp(∆p).

So for a deterministic link distance, the mean delay is finite for all p < 1,
but much larger than in the independent case.
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Joint success probability Local delay

Local delay (second approach)

Success events are conditionally independent given Φ.

Hence, conditioned on Φ, the local delay is geometric with parameter

ps(Φ) = LI (θr
α | Φ) = E(exp(−θrαI | Φ)) .

It follows that the mean local delay isa

D = EΦ

(

1

LI (θrα | Φ)

)

= exp

(

∆p

(1 − p)1−δ

)

,

as before.

a

Baccelli and Blaszczyszyn, “A New Phase Transition for Local

Delays in MANETs”. 2010.
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Joint success probability Local delay

Mean local delay for nearest-neighbor communication

With random link distance,

D = E exp

(

pλπR2θδ

sinc(δ)(1 − p)1−δ

)

In nearest-neighbor transmission, R is Rayleigh distributed, and there is
"tension" between the decay of the Rayleigh tail and the exp(cR2) shape of
the mean local delay given R :

D = c

∫ ∞

0
re−ξ1r2eξ2r

2
dr =

c

2

1

ξ1 − ξ2
, if ξ1 > ξ2.

As a result, there is a phase transition. The mean delay is infinite if p or θ
are too large.a

a

Baccelli and Blaszczyszyn, “A New Phase Transition for Local

Delays in MANETs”. 2010; Haenggi, “The Local Delay in Poisson

Networks”. 2013.
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Joint success probability Local delay

Mean local delay example (α = 4)
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static NNT

Static networks suffer from increased delay and sensitivity to p.

Random frequency-hopping multiple access drastically reduces the
delay variance compared to ALOHA.a

a

Zhong, Zhang, and Haenggi, “Managing Interference Correlation

through Random Medium Access”. 2014.
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Meta distributions Link reliabilities

Meta distributions

Back to link reliabilities

The success probability of the typical link is an average that provides
limited information on the performance of an individual link.

For a realization of a Poisson bipolar net-
work, attach to each link the probability

Ps(θ) , Ps(SIRx > θ | Φ, tx),
which is taken is over the fading and
ALOHA and conditioned on Φ and on the
partner node transmitting.
Ps(θ) is a random variable, and its distri-
bution is the meta distribution of the SIR.
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What can we say about the random variable Ps?
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Meta distributions Definition

Definition (Meta distribution)

We define the SIR meta distribution (ccdf) asa

F̄Ps(x) , P
!t(Ps(θ) > x), x ∈ [0, 1]

Due to the ergodicity of the PPP, the ccdf of Ps can be alternatively
written as the limit

F̄Ps(x) = lim
r→∞

1

λpπr2

∑

y∈Φ
‖y‖<r

1(P(SIRỹ > θ | Φ) > x),

where ỹ is the receiver of transmitter y .

Hence F̄Ps(x) denotes the fraction of links in the network (in each
realization of the point process) that, when scheduled to transmit, exceeds
an SIR of θ with probability at least x .

a

Haenggi, “The Meta Distribution of the SIR in Poisson Bipolar and

Cellular Networks”. 2015, arXiv.
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Meta distributions Moments of the conditional success probability

Moments of Ps(θ)

A direct calculation of F̄Ps seems unfeasible, so let us focus on the moments

Mb(θ) , E
!t(Ps(θ)

b) =

∫ 1

0
bxb−1F̄Ps(x)dx .

M1 is just the "standard" success probability ps(θ).

For b ∈ N,
Mb(θ) = E

!t(Ps(SIR > θ | Φ)b)
is a quantity that we have already calculated...
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Meta distributions Moments of the conditional success probability

Moments of Ps(θ)

A direct calculation of F̄Ps seems unfeasible, so let us focus on the moments

Mb(θ) , E
!t(Ps(θ)

b) =

∫ 1

0
bxb−1F̄Ps(x)dx

M1 is just the "standard" success probability ps(θ).

For b ∈ N,
Mb(θ) = E

!t(Ps(SIR > θ | Φ)b)
is a quantity that we have already calculated:

Mb(θ) = P(S1 ∩ . . . ∩ Sb)

= exp

(

−λ

∫

R2

[

1 −
(

p

1 + θ′‖x‖−α
+ 1 − p

)b
]

dx

)

.
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Meta distributions Moments of the conditional success probability

Moments of Ps(θ)

So for b ∈ N,
Mb(θ) = E

!t(Ps(SIR > θ | Φ)b)
is the probability that the transmission succeeds b times in a row.
For arbitrary b ∈ C, generalizing the diversity polynomial to

Db(p, δ) ,
∞
∑

k=1

(

b

k

)(

δ − 1

k − 1

)

pk , b ∈ C and p, δ ∈ [0, 1],

we have, with C , λπr2θδΓ(1 − δ),

Mb(θ) = exp (−CΓ(1 + δ)Db(p, δ)) , b ∈ C.

Db can be expressed using the Gaussian hypergeometric function 2F1 as

Db(p, δ) = pb 2F1(1 − b, 1 − δ; 2; p).
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Meta distributions Moments of the conditional success probability

Variance of Ps(θ)

The variance of Ps(θ) follows asa

var Ps(θ) = M2
1 (M

p(δ−1)
1 − 1).

Remarkably, fixing the transmitter density to τ , λp (and thus fixing M1)
and letting p → 0, we have varPs → 0 and thus

lim
p→0
λp=τ

Ps(θ) = ps(θ)

in mean square (and probability and distribution).

So in an ultra-dense network with very small transmit probability, the
success probability of each link is identical.

a

Haenggi, “The Meta Distribution of the SIR in Poisson Bipolar and

Cellular Networks”. 2015, arXiv.
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Meta distributions Moments of the conditional success probability

Bounds

For x ∈ [0, 1], the ccdf F̄Ps is bounded as

1 − E
!t((1 − Ps(θ))

b)

(1 − x)b
< F̄Ps(x) ≤

Mb

xb
, b > 0.

Illustrations for ps = M1 = 0.735:
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λ = 1, p = 1/4, var(Ps) = 0.0212
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λ = 5, p = 1/20, var(Ps) = 0.00418
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Meta distributions Exact expression

Exact expression

Since we know the moments for b ∈ C, we can use the Gil-Pelaez theorem
to obtain an exact expression for the meta distribution:

F̄Ps(x) =
1

2
− 1

π

∫ ∞

0

e−CΓ(1+δ)ℜ(Djt ) sin(t log x + CΓ(1 + δ)ℑ(Djt))

t
dt .

This can be evaluated quite efficiently.

Approximation with beta distribution

The beta distribution with moments M1 and M2 provides an excellent
approximation.
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Meta distributions Example

Example of meta distribution
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λ = 1, p = 1/4, α = 4, and r = 1/2
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Meta distributions Example

Cross-sections
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θ = −10,−5, 0, 5, 10, 15 dB.
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Left: For a transmission at a certain rate, what fraction of links achieve
reliability x? At θ = 0 dB, 80% of the links succeed 60% of the time.

Right: For a given fraction of links x , what θ can be sustained?
A target reliability of 90% is only achieved by 40% of the links for θ = −5
dB.
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Meta distributions Discussion

Discussion

The meta distribution provides much more fine-grained information
than the success probability of the typical link.

It shows that stochastic geometry is not restricted to spatial averaging
but can provide spatial distributions.

In cellular networks, operators may be more interested in the
performance of the "5% user" than the typical user. Using the meta
distribution, we can answer questions such as "what spectral efficiency
can be guaranteed with 90% probability for 95% of the users?"

As in bipolar networks, the moments of the conditional success
probability can be calculated in Poisson cellular networks.
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Cellular networks Setup

From bipolar to cellular networks

A generic cellular network (downlink)

Base stations form a stationary
point process and all transmit at
equal power.

Assume a user is located at o.
Its serving base station is the
nearest one (strongest on
average).

The other base stations are
interferers (frequency reuse 1).

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Differences to bipolar model: (1) No ALOHA; (2) random link distance;
(3) no interferers within black disk.
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Cellular networks The Poisson model

Basic result for Poisson cellular networks

If the BS form a PPP and fading is Rayleigh,a

ps(θ) , F̄SIR(θ) =
1

2F1(1,−δ; 1 − δ;−θ)
, δ , 2/α.

For α = 4 (δ = 1/2), ps(θ) =
(

1 +
√
θ arctan

√
θ
)−1

.

This is obtained by conditioning on the link distance R , noting that the
point process of interferers is a PPP on b(o,R)c, and taking the
expectation w.r.t. R , which is Rayleigh distributed.

The density and the transmit power do not matter.

a

Andrews, Baccelli, and Ganti, “A Tractable Approach to Coverage

and Rate in Cellular Networks”. 2011.

M. Haenggi (ND & EPFL) SIR Distributions (Part I) May 2015 33 / 38



Cellular networks The Poisson model

Moments of conditional success probability

The moments of the conditional success probability area

Mb(θ) =
1

2F1(b,−δ; 1 − δ;−θ)
.

a

Zhang and Haenggi, “A Stochastic Geometry Analysis of Inter-cell

Interference Coordination and Intra-cell Diversity”. 2014.

Beyond the basic Poisson model

The single-tier Poisson model can be extended to a multi-tier model
consisting of independent PPPs.

Extensions to other types of fading and non-Poisson models are
difficult.

More on this topic tomorrow...
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Conclusions

Conclusions

For Poisson bipolar networks, the joint success probability can be
expressed using the diversity polynomial.

Retransmissions do not provide diversity gain.

The joint success probability is closely related to the local delay and
the moments of the conditional success probability given the point
process.

The distribution of the conditional success probablity is termed meta
distribution. It can be expressed in integral form and provides
fine-grained information about the performance of individual links or
users in cellular networks.

Tomorrow we will focus on cellular networks and discuss an
approximate analysis framework of the SIR distribution that is
applicable for general base station processes.

Now it is time for the homework assignment...
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Homework

Homework problem

One-dimensional Point process with constant pair correlation

Let W ⊆ R, and let Wint = W \ ∂W . Find a point process on W such that

g(x , y) = 2 ∀x , y ∈ Wint.

g is the pair correlation function, defined as

g(x , y) ,
ρ(2)(x , y)

λ(x)λ(y)
,

and ρ(2) is the second moment density, i.e., the density pertaining to the
factorial second moment measure.

For the PPP, g(x , y) = 1.
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