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Introduction Motivation for spatial models

Motivation for spatial models

Performance analysis of wireless networks

There are essentially three approaches:

1 Assume no network geometry, just (independent) stochastic processes
that model channels, traffic, etc.

2 Assume a fixed network geometry, e.g., three nodes in a particular
configuration, or a lattice.

3 Assume a spatial stochastic model for the node locations.

iid possible


(equilateral triangle) iid channels impossible
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Introduction Motivation for spatial models

Performance analysis of wireless networks

Properties of three approaches:

1 No network geometry: Ignores dependencies in space and time
(triangle inequalities, node mobility, etc.).

2 Fixed network geometry: Yields results that are only valid for exactly
this network.

3 Spatial stochastic modeling: Yields general and accurate results by
averaging over the likely network topologies—or averaging over nodes,
links, or routes in a single realization.

not realistic


(no dependencies)

no geometry
fixed geometry

- lack of generality


- hard to analyze

spatial stochastic model

- realistic models


- general results
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Introduction First-order properties

Wireless network abstraction

(interferer)

R
T

Receiver

Transmitter

Inactive node
(potential interferer)

Active node

r0

r1

r2

r3

ri

First-order questions

Given a model for the transmitter (interferer) locations:
- What is the distribution of the interference power at R?
- How reliable is the transmission from T to R?
- What is the best rate of transmission?
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Introduction First-order properties

First-order results

Much progress has been made in the last decade on these first-order
questions.
In particular, for Poisson networks:

Interference and SIR distribution (Rayleigh fading, general fading)

Probability of transmission success in bipolar, cellular, and other
models

Spatial and Shannon-type throughput E log(1 + SIR)

Extensions to include power control, MIMO, etc.

First-order: Examine the network at one location and time instant, then
take an average.
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Introduction Second-order properties

Second-order properties

Second-order questions

What is the joint distribution of the interference at locations x1 and
x2?

How long does it take for a transmission to succeed?

What is the joint distribution of the SIR at multiple antennas at a
receiver?

What is the throughput achievable with successive interference
cancellation?

What is the joint probability of finding a node in b(x1, r) and b(x2, r)?

These questions are about dependencies and correlations in the network.
They are important but frequently ignored—explicitly or implicitly.

Main message

Second-order properties are important—and far from hopeless to analyze.
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First-Order analysis of Poisson networks Interference

First-order properties of Poisson networks

Stochastic geometry rules

Campbell’s theorem for general stationary point processes:
For measurable g(x) : Rd → R

+,

E

∑

x∈Φ

g(x) = λ

∫

Rd

g(x)dx .

Probability generating functional (pgfl) for the PPP:
For a PPP of intensity λ and a measurable function 0 6 v 6 1,

G [v ] , E

∏

x∈Φ

v(x) = exp

(

−λ

∫

Rd

[1 − v(x)]dx

)

.
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First-Order analysis of Poisson networks Laplace transform

Laplace transform of the interference

Let Φ be a stationary PPP of interferers and the path loss law be r−α.
The interference at the origin o is

I ,
∑

x∈Φ

hx‖x‖
−α ,

where hx is iid with Eh = 1 (fading).
Laplace transform:

LI (s) = E(e−sI ) = EΦ,h

(

e−s
∑

x∈Φ hx‖x‖−α

)

= EΦ

∏

x∈Φ

Eh(e
−shx‖x‖−α

)
︸ ︷︷ ︸

v(x)

.

LI (s) does not depend on the location due to stationarity.
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First-Order analysis of Poisson networks Laplace transform

Laplace transform (cont’d)

If Φ is a stationary PPP, using the pgfl,

LI (s) = G [v ] = exp
(

− λcdE(h
δ)Γ(1 − δ)sδ

)

, 0 < δ < 1 ,

where δ , d/α and cd is the volume of the d -dim. unit ball.

Properties of the interference

Distribution is stable with characteristic
exponent δ. Pdf only exists for δ = 1/2.

I has a heavy tail, no finite moments.
(Unbounded path loss law.)

Fading: Only the δ-th moment matters.
0 20 40 60 80 100

0

0.005

0.01

0.015

0.02

0.025

0.03
Levy distribution

As δ ↑ 1 (or α ↓ d), we have LI (s) ↓ 0, so I ↑ ∞ a.s.

For ALOHA with transmit probability p, replace λ by λp (thinning).
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First-Order analysis of Poisson networks Outage

Outage in Rayleigh fading

Laplace transform for Rayleigh fading

If all interferers are Rayleigh fading, E(hδ) = Γ(1 + δ), and

LI (s) = exp
(

−λcdΓ(1 + δ)Γ(1 − δ)sδ
)

= exp

(

−λcd s
δ πδ

sin(πδ)

)

.

Outage for Rayleigh fading desired transmitter

If S ∼ exp(1),

ps(θ) = P(S > Iθ) = E(e−θI ) = exp
(

−λcdE(h
δ)Γ(1 − δ)θδ

)

.

Hence ps(θ) ≡ LI (θ).
The outage probability 1 − ps(θ) is the complete SIR distribution!
This is just a benign Weibull distribution.
☛

✡

✟

✠

Baccelli et al., "An ALOHA Protocol for Multihop Mobile Wireless Networks", IEEE

Trans. Info. Theory, 2006.
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First-Order analysis of Poisson networks Optimum power control

Optimum power control—or why ALOHA is important

The Poisson bipolar network

This network consists of a PPP of (potential) transmitters, and each
transmitter has a dedicated receiver at distance r in a random orientation.

0 1 2 3 4 5 6
0

1

2

3

4

5

6

Poisson bipolar network, λ = 1, r = 1/2
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First-Order analysis of Poisson networks Optimum power control

ALOHA performs optimum power control

Assumptions:

A Poisson bipolar network

The fading statistics are known but there is no CSIT.

There is a peak and an average power constraint.

In each time slot, the transmitter chooses a transmit power
independently from a distribution that satisfies both constraints.

What is the optimum (memoryless) random power control strategy?

It turns out that on-off power control is optimum. This is just ALOHA!

☛

✡

✟

✠

Zhang and H., "Random Power Control in Poisson Networks", IEEE Trans. Comm.,

Sep. 2012
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Interference and outage correlation Introduction

Temporal correlation in Poisson networks

Intuition (PPP with ALOHA probability p)
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Take a static Poisson point process with ALOHA. There is temporal
correlation of the interference at o in different time slots, even with
independent fading.

There is also spatial correlation between the interferences measured at
nearby points ◦ and �.
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Interference and outage correlation Interference correlation

Interference correlation

Interference correlation: Setup

A PPP Φ ⊂ R
2 with ALOHA with probability p and iid fading.

Let Ik(u) be the interference measured at location u in time slot k .

The distribution of Ik(u) is the same for all k ∈ Z and u ∈ R
2, but the

common randomness Φ introduces dependence.

For example: Assume p = 1 and no fading. Then Ik(u) and Iℓ(u) would be
perfectly correlated, for all k , ℓ ∈ Z.

Definition (The spatio-temporal correlation coefficient)

For path loss laws g(x) : R2 → R
+ for which the interference has a finite

second moment and k 6= ℓ,

ζ(u, v) ,
E[Ik(u)Iℓ(v)]− E[Ik(u)]

2

E[Ik(u)2]− E[Ik(u)]2
.
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Interference and outage correlation Interference correlation

Calculation of the moments

For all k ∈ Z and u ∈ R
2, Ik(u)

d
= I0(o).

The first moment, EIk(o), follows directly from Campbell’s theorem:

EIk(o) = pλ

∫

R2

g(x)dx .

The second moment is

E(Ik(o)
2) = E

[(
∑

x∈Φk

hxog(x)

)2
]

= pE(h2)λ

∫

R2

g2(x)dx + p2
E(h2)λ2

∫

R2

∫

R2

g(x)g(y)dxdy ,

which follows from the second-order product density of the PPP.
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Interference and outage correlation Interference correlation

Spatio-temporal correlation

Spatio-temporal correlation coefficient of Ik(u) and Iℓ(v), k 6= ℓ:

ζ(u, v) =
p
∫

R2 g(x)g(x − ‖u − v‖)dx

E(h2)
∫

R2 g2(x)dx
.

Temporal correlation

For Nakagami-m fading, the temporal correlation coefficient (between, say
Ik(u) and Ij(u), k 6= j), is

ζt = p
m

m + 1
.

☛

✡

✟

✠

Ganti and H., "Spatial and Temporal Correlation of the Interference in ALOHA Ad Hoc

Networks," IEEE Comm. Letters, 2009
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Interference and outage correlation Interference correlation

Observations

(interferer)

R
T

Receiver

Transmitter

Inactive node
(potential interferer)

Active node

replacements
r0

r1

r2

r3

ri

Temporal correlation: The distances ri stay the same over time. Only
the set of transmitters (ALOHA) and their channels (fading) change.

The correlation is proportional to the transmit probability p.

Fading helps decorrelate the interference. In Rayleigh fading, the
correlation coefficient is p/2.

Different MAC schemes and channels with memory exhibit stronger
correlation, so this is a lower bound.
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Interference and outage correlation Outage correlation in Rayleigh fading

Outage correlation in Rayleigh fading

The joint success probability

Let Su be the event that a transmission over distance r succeeds in time
slot u. We would like to calculate P(S1 ∩ S2).
Denoting by Φt

k the set of transmitters in slot k and letting θ′ = θrα,

P(S1 ∩ S2) = P(h1 > θ′I1, h2 > θ′I2)

= E(e−θ′I1e−θ′I2)

= E

[

exp

(

−θ′
∑

x∈Φ

‖x‖−α
(
1(x ∈ Φt

1)hx ,1 + 1(x ∈ Φt
2)hx ,2

)

)]

= E

[
∏

x∈Φ

(
p

1 + θ′‖x‖−α
+ 1 − p

)2
]

= exp

(

−λ

∫

R2

[

1 −

(
p

1 + θ′‖x‖−α
+ 1 − p

)2
]

dx

)

.
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Interference and outage correlation Outage correlation in Rayleigh fading

Joint success probability

In general,

P(S1 ∩ . . . ∩ Sn) = exp

(

−λ

∫

R2

[

1 −

(
p

1 + θ′‖x‖−α
+ 1 − p

)n]

dx

)

.

Theorem (Joint success probability)

Let δ = 2/α. The probability that a transmission over distance r succeeds

n times in a row is

p
(n)
s = e−∆Dn(p,δ),

where ∆ = λπr2θδΓ(1 + δ)Γ(1 − δ) and

Dn(p, δ) =

n∑

k=1

(
n

k

)(
δ − 1

k − 1

)

pk

is the diversity polynomial. It has order n in p and order n − 1 in δ.
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Interference and outage correlation Outage correlation in Rayleigh fading

Joint success probability

We have for the joint success probability: p
(n)
s = e−∆Dn(p,δ).

The first few diversity polynomials are:
D1(p, δ) = p

D2(p, δ) = 2p + (δ − 1)p2

D3(p, δ) = 3p + 3(δ − 1)p2 + 1
2(δ − 1)(δ − 2)p3

For small p, the first term dominates, and the transmission success is
only weakly correlated.

If δ ↑ 1, the success events become independent, but ∆ ↑ ∞.

If δ ↓ 0, the correlation is largest, but ∆ ↓ λπr2.

If δ ↓ 0 and p = 1, Dn(1, 0) = 1 for all n, so the success events are
fully correlated, i.e.,

p
(1)
s = p

(2)
s = . . . = e−∆ = e−λπr2 ,

and P(S2 | S1) = 1. In general, P(S2 | S1) = e−∆(p−(1−δ)p2).
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Interference and outage correlation Outage correlation in Rayleigh fading

Joint outage probability

Probability of a successful transmission in n attempts:

ps(n) , P

(
n⋃

k=1

Sk

)

=
n∑

k=1

(−1)k+1

(
n

k

)

p
(k)
s .

For the joint outage it follows that

P(S̄1 ∩ S̄2) = 1 − ps(2) = 1 − 2e−∆p + e−∆p(2−p+δp).

Hence
P(S̄2 | S̄1) = e∆p + e−∆p(1−p+δp) − 2.
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Interference and outage correlation Outage correlation in Rayleigh fading

Conditional success probabilities
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α = 4, θ = 1.

This has an impact on retransmission schemes and end-to-end delays.
=⇒ How long does it take until a transmission succeeds?
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Local delay Definition

Local delay

Local delay

The local delay D is the mean time for a node to successfully transmit a
message to a neighbor (or receive from it).

Derivation from conditional outage

Let Sk , k ∈ N, be the event that the transmission succeeds in time
slot k .

Define the delay-till-success M , min{k ∈ N : Sk occurs}. Then
D = EM.

Event that M exceeds n:

{M > n} ⇔ {S̄1 ∩ S̄2 ∩ . . . ∩ S̄n}

with {M > 0} = Ω.

M. Haenggi (Univ. of Notre Dame) SpaSWiN’13 Keynote 05/13/2013 24 / 62



Local delay Calculation

Local delay calculation from conditional success probabilities

Letting
C̄n = {S̄1 ∩ S̄2 ∩ . . . ∩ S̄n}, C̄0 = Ω,

we have

EM =

∞∑

n=0

P(M > n) =

∞∑

n=0

P(C̄n)

Question: Does the joint outage probability decay to zero fast enough so
that EM < ∞?

Conversely, if D = EM = ∞, then there is "too much" correlation in the
network.

So the local delay may be a sensitive indicator of correlation.
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Local delay Calculation

Two extreme cases

Independent events (a frequent assumption):
If the events Sk were independent,

P(M > n) = (PS̄1)
n = (1 − ps)

n =⇒ EM = p−1
s .

Fully correlated events:
In this case, P(C̄n) = 1 − ps for n > 0. So (unless ps = 1)

EM = 1 +
∞∑

n=1

(1 − ps) = ∞.

Phase transition

In static networks, for which δ and p does P(M > n) not decrease fast
enough, i.e., when is P(M > n) = Ω̃(n−1)?
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Local delay Static networks

The local delay in static Poisson networks

Key idea

Transmission success events are conditionally independent given Φ.

Conditioned on Φ, the delay-till-success is geometric with parameter

ps(R | Φ) = LI (θR
α | Φ) = E(exp(−θRαI | Φ)) .

It follows that

D(R) = EΦ

(
1

LI (θRα | Φ)

)

.

The local delay is then obtained by de-conditioning on the link distance R :
D = ER(D(R)).

Need to calculate the conditional Laplace transform.
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Local delay Static networks

Lemma

Let I denote the interference as defined before and let

LI (s | Φ) = E(exp(−sI | Φ)

be the conditional Laplace transform given Φ. Then

E

(
1

LI (s | Φ)

)

= exp

(
pλπ2δsδ

sin(πδ)(1 − p)1−δ

)

.

☛

✡

✟

✠
Baccelli and Błaszczyszyn, "A New Phase Transition for Local Delays in MANETs",

INFOCOM 2010.

Local delay expression

The lemma yields

D = ER exp

(
pλπ2δR2θδ

sin(πδ)(1 − p)1−δ

)
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Local delay Static networks

Local delay for fixed and random distances

Previous expression:

D = ER exp

(
pλπ2δR2θδ

sin(πδ)(1 − p)1−δ

)

If R is deterministic (bipolar network), the local delay is finite for all
p < 1.

In nearest-neighbor transmission, R is Rayleigh distributed, and there
is "tension" between the decay of the Rayleigh tail and the exp(cR2)
shape of the local delay given R :

D = c

∫ ∞

0
re−ξ1r

2
eξ2r

2
dr =

c

2

1

ξ1 − ξ2
, if ξ1 > ξ2.

Depending on the type of nearest-neighbor transmission, a factor 1/p
and/or 1/(1 − p) needs to be added.
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Local delay Static networks

Local delay for nearest-receiver transmission (NRT)

For a Poisson network with Rayleigh fading:

Infinitely mobile networks: D =
1

p
+

γ

π(1 − p)

Static networks: D =
1

p
·

π

π − γp(1 − p)δ−2
(∗)

γ = θδπδ/ sin(πδ) is the spatial contention.
The result is independent of the network density λ since the
nearest-neighbor distance scales with λ−1/2.

The local delay is infinite in static networks if p (or γ) is too large.

☛

✡

✟

✠

(∗) is from Baccelli and Błaszczyszyn, "A New Phase Transition for Local Delays in

MANETs", INFOCOM 2010.
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Local delay Static networks

Nearest-neighbor transmission (NNT) in a static network

3 time slots:
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−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x Transmitters. x Receivers. o Source node under consideration.
� Destination node under consideration.

The black disk is necessarily free of interferers! This means that for NNT
we need to calculate the conditional interference given that there is no
interferer inside this disk.
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Local delay Static networks

Local delay (α = 4)
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Static networks suffer from a significantly increased delay (due to
correlation or lack of diversity).

These results can be extended to networks with (finite) mobility.
✞
✝

☎
✆Gong and H., "The Local Delay in Mobile Poisson Networks", submitted.
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Random MAC for reduced interference correlation Network model

Frequency-hopping multiple access vs. ALOHA

Model

Poisson bipolar network PPP with intensity λ and link distance r

Total bandwidth W

FHMA: Frequency-hopping multiple access. Randomly pick one of N
sub-bands of bandwidth W /N.

ALOHA: Transmit with probability p using full bandwidth.

SINR model with threshold θ. At full bandwidth, a packet requires one
successful transmission at θ = 1. For FHMA, a packet requires
N/ log2(1 + θ) successful transmissions.
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Random MAC for reduced interference correlation Local delay for FHMA

Result for FHMA

D(N) =
N

log2(1 + θ)
exp

(

λπr2γ

(N − 1)1−δNδ

︸ ︷︷ ︸

interference

+
θrαWσ2

N
︸ ︷︷ ︸

noise

)

δ = 2/α, γ = θδΓ(1 + δ)Γ(1 − δ). Observations:

D(1) = ∞ for all network parameters. (Same as ALOHA with p = 1.)

For large N, D(N) ∝ N. This is the bandwidth-limited regime.

D ′(N) > 0 for all N, so there exists a unique optimum Nopt that
minimizes the local delay:

Nopt ∈ (n, n + 2) for n = λπr2θδC (δ) + θrαWσ2

The regime N < Nopt is the correlation-limited regime. Here, the
network performance is limited by the lack of diversity.

☛

✡

✟

✠

Y. Zhong et al., "Reducing Interference Correlation through Random Medium Access",

IEEE Trans. Wireless, submitted.
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Random MAC for reduced interference correlation Local delay for FHMA

The correlation- and the bandwidth-limited regimes

bandwidth-limited
correlation-


limited
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Random MAC for reduced interference correlation Comparison with ALOHA

Comparison with ALOHA

Let D̃(p) be the local delay for ALOHA transmit probability p.

If noise is ignored, D̃(1/N) = D(N).

With FHMA, a node is guaranteed to transmit in each time slot,
whereas with ALOHA it is not. This affects the delay variance.

Delay variance

The delay variances V (N) for FHMA and Ṽ (p) can be calculated in
closed-form.

Remarkably, as N → ∞, V (N) = Θ(1) while Ṽ (1/N) = Θ(N2).
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Random MAC for reduced interference correlation Delay variances

Delay variances and mean-variance trade-off in FHMA

Delay variances for FHMA and
ALOHA

Mean-variance trade-off as a
function of N for FHMA

Optimum rate

In both cases, we can also analytically find the optimum θopt jointly with
the optimum N.
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Diversity loss in SIMO networks Introduction and system model

Diversity loss in SIMO networks

Question

For a link from • to •, how reliable is the
transmission in the presence of interfer-
ence if the receiver is equipped with n

antennas?

Observation

Even if all channel fading coefficients are independent, the interference
powers at each receive antenna are correlated since the distances
(large-scale path loss) are the same.

As a result, the SINRs at the antennas are not independent, and the
diversity is smaller than generally assumed.
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Diversity loss in SIMO networks Introduction and system model

System model

Interferers equipped with a single antenna form a PPP Φ of intensity λ.
The receiver under consideration is located at the origin o and equipped
with n ≥ 1 antennas, and a desired transmitter is added at distance r from
the origin.

All channels are subject to iid Rayleigh fading.
The SIR at antenna k of the receiver is

SIRk =
hk r

−α

∑

x∈Φ hx ,k‖x‖−α
, k = 1, 2, . . . , n ,

for independent exponential hk , hx ,k and a path
loss exponent α > 2.
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Diversity loss in SIMO networks Introduction and system model

SIR events

We focus on the probabilities of the events Sk , {SIRk > θ} and unions
and intersections thereof.

For n = 1, we know that

P1(θ) , P(S1) = exp(−∆) ,

where ∆ , λπr2θδΓ(1 + δ)Γ(1 − δ) and δ = 2/α.

As before, we would like to find the probability of the joint occurrence

Pn(θ) , P

(
⋂

k∈[n]

Sk

)

.

[n] = {1, 2, . . . , n}
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Diversity loss in SIMO networks Introduction and system model

Result

The probability that the SIR at all antennas exceeds θ is

Pn(θ) = exp(−∆Dn(δ)) ,

where Dn is the diversity polynomial of order n − 1 given by

Dn(δ) =
Γ(n + δ)

Γ(n)Γ(1 + δ)

and δ = 2/α.

The diversity polynomial Dn(δ) has zeros at δ = −1,−2, . . . ,−n + 1, and
Dn(0) = 1 and Dn(1) = n.
It is a special case of the temporal diversity polynomial D(p, δ): Here we
have Dn(δ) = Dn(1, δ).

✞
✝

☎
✆H., “Diversity Loss due to Interference Correlation", IEEE Comm. Letters, Oct. 2012.
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Diversity loss in SIMO networks Simple bounds

Simple Bounds

For δ ∈ (0, 1),

nδ < Dn(δ) .
nδ

Γ(1 + δ)
.

The right side is asymptotically ex-
act as n → ∞.

As a result,

0 5 10 15 20
0

0.1

0.2

0.3

0.4
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0.8

n

P
n(1

)

 

 

exact
lower bound
upper bound
independent

∆ = 1/4, δ = 1/2.

exp(−∆nδ) > Pn(θ) > exp

(

−∆
nδ

Γ(1 + δ)

)

.

The diversity increases as nδ instead of n.
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Diversity loss in SIMO networks Outage in selection combining

Selection combining

Probability that the SIR at at least one antenna exceeds the threshold:

pn(θ) = P

(
n⋃

k=1

Sk

)

=
n∑

k=1

(−1)k+1

(
n

k

)

Pk(θ) .
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Successive interference cancellation Setup

Successive interference cancellation

Setup

Let Φ be a point process of transmitters. A message from node x ∈ Φ can
be decoded at the origin o if

SIRx ,
hx‖x‖

−α

∑

y∈Φ\{x} hy‖y‖
−α

> θ.

Assume all nodes in Φ are ordered according to the received power
hx‖x‖

−α.
If the k − 1 strongest messages are cancelled, the kth message can be
decoded if

SrIRk ,
hxk‖xk‖

−α

∑∞
i=k+1 hyi‖yi‖

−α
> θ.

The SrIR is the signal-to-residual-interference ratio.
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Successive interference cancellation Setup

Decoding the kth strongest user

Let ξi = ‖xi‖
α/hxi and Ik =

∑∞
i=k+1 ξ

−1
i . Then

P(SrIRk > θ) = P(ξ−1
k > θIk)

Theorem

Let θ ≥ 1, Φ be a uniform PPP, and the fading be arbitrary with Eh = 1.
Then

P(ξ−1
k > θIk) =

1

θkδΓ(1 + kδ)(Γ(1 − δ))k
.

In particular, for δ = 1/2,

P(ξ−1
k > θIk) =

1

(πθ)k/2Γ(1 + k/2)
.

☛

✡

✟

✠

Zhang and H., "On Decoding the kth Strongest User in Poisson Networks with Arbitrary

Fading Distribution", Asilomar 2013.
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Successive interference cancellation Setup

Proof sketch

The point process {ξk} is a Poisson process on R
+ with intensity

measure
Λ([0, r ]) = λπr δE(hδ).

The decoding probability is scale-invariant (independent of constant
factors in the intensity).

Since the fading only affects the intensity function through E(hδ), we
can assume Rayleigh fading.

We can apply the k-fold joint Laplace transform and use the kth
factorial moment measure of the PPP to obtain

P(ξ−1
k > θIk) =

1

k!

∫

(R+)k
exp

(

−
θδπδ

sin(πδ)
‖x‖1/δ

)

dx

for θ ≥ 1. For θ < 1 this is an upper bound.
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Successive interference cancellation Setup

Bounding the number of decodable users

Let pk be the probability that at least k users can be decoded:

pk = P(ξ−1
1 > θI1, ξ

−1
2 > θI2, . . . , ξ

−1
k > θIk)

It can be shown that

(1 + θ)−δk(k−1)/2 ≤
pk

P(ξ−1
k > θIk)

≤ θ−δk(k−1)/2 ,

which yields bounds on the expected number of decodable users

EN =

∞∑

k=1

pk .

☛

✡

✟

✠

Zhang and H., "The Performance of Successive Interference Cancellation in Random

Wireless Networks", IEEE Trans. Info. Theory, submitted.
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Correlation in the point process Introduction

Correlation in the point process

General point processes

hardcore PPs PPP

randomness
complete spatial
zero interaction;

lattice

repulsion attraction

clustered PPs

In all non-Poisson processes, the number of points in disjoint regions
may be dependent.

This means that conditioning on a point being at a certain location
changes the statistics of the point process to the Palm measure.

As a result, correlations (second- and higher-order statistics) become
important.
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Correlation in the point process Introduction

Comparison of Thomas cluster process and PPP on [−5, 5]2:

Thomas process
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Correlation in the point process Introduction

Comparison of Thomas cluster process and PPP on [−5, 5]2:

Almost a Thomas process

λ, c̄ , σ = ?

PPP
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Correlation in the point process Second-order statistics

Second-order statistics

Reduced second moment measure

The first-order statistic of a stationary point process is its intensity λ. The
second moment measure plays a role similar to the variance.
The reduced second moment measure K2(B) is the mean number of points
in B \ {o} given that o ∈ Φ: K2(B) = E

!
oΦ(B) .

There is a corresponding density, the second-order product density ̺(2):

K2(B) =
1

λ

∫

B

̺(2)(x)dx

̺(2)(x) measures the probability that there are two points separated by x ;
it is the density pertaining to the second-order factorial moment measure:

α(2)(A× B) = E





6=
∑

x ,y∈Φ

1A(x)1B (y)



 =

∫

A

∫

B

̺(2)(x − y)dydx
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Correlation in the point process Second-order statistics

Second-order factorial moment measure

The name factorial moment measure comes from the fact that

α(2)(A× A) = E(Φ(A)2)− E(Φ(A)) = E(Φ(A)(Φ(A)− 1)) .

For the uniform PPP, ̺(2)(x) ≡ λ2, α(2)(A× B) = λ2|A| |B |,
andK2(B) = λ|B |.

If Φ is motion-invariant, then ̺(2)(x) depends only on ‖x‖, and
Ripley’s K function is often sufficient.

Definition (Ripley’s K-function)

K (r) , λ−1K2(b(o, r))

or

K (r) , λ−1
E[number of extra points within distance r

of a randomly chosen point]
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Correlation in the point process Interference in hard-core process

Matern hard core process

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Take a PPP of intensity λp and
eliminate all pairs of points that
are within distance r .

The intensity of this motion-
invariant process is
λ = λpe

−λpπr2 .

Mean interference at a point of
the process:

E
!
o(I ) = 2π

∫

R+

g(r)K(rdr)

= λ

∫

R+

g(r)K ′(r)dr

K (r) = 2π exp(2λpπr
2)

∫ r

0
uk(u)du ; k(u) = exp(−λpVr (u))1(u > r) .

M. Haenggi (Univ. of Notre Dame) SpaSWiN’13 Keynote 05/13/2013 52 / 62



Cellular network modeling An example

Cellular network modeling

Poisson distributed base stations?
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Cellular network modeling An example

Comparison

Looks reasonable, but how about the other tiers in heterogeneous networks?
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Cellular network modeling A dependent model

A dependent model for HetNets

Heterogeneous cellular networks

There are two main developments in the cellular world:

Deployment of new base stations to improve coverage.

Deployment of new base stations to improve capacity.

These new base stations are often smaller, with smaller transmit powers
(small cells, micro-cells, pico-cells, femto-cells, etc.). As a result, the
network is heterogeneous, and multiple tiers need to be modeled.

First-order model: Use a multi-Poisson model with independent PPPs
modeling each tier.

While analytically tractable, the multi-Poisson model ignores dependencies
between and within the tiers. There is a need for dependent models.
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Cellular network modeling A dependent model

A four-tier model
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Cellular network modeling A dependent model

A four-tier model
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Cellular network modeling A dependent model

A dependent model for HetNets

Model definition

Basic model:

1 Tier 1 consists of a homogeneous PPP of intensity λ on the plane.

2 Tier 2 consists of a non-homogeneous PPP that is restricted to the
edges of the Voronoi cells of tier 1. On each Voronoi edge, a PPP of
intensity µ (points per unit length) is placed.

3 Tier 3 consists of an independent thinning of the Voronoi vertices of
tier 1 with retaining probability p.

4 Tier 4 is again a homogeneous PPP of intensity ν on the plane.

In an enhanced model, tier 1 can be modeled using a hard- or soft-core
process, and tier 4 can be replaced by a cluster (or Cox) process to model
intensity variations due to increased capacity demand.
✞
✝

☎
✆H., "A Versatile Dependent Model for Heterogeneous Cellular Networks", arXiv 2013.
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Cellular network modeling A dependent model

A four-tier model
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Conclusions

Conclusions

Independence is a convenient assumption but may lead to dangerously
wrong results.

In the Poisson case, many second-order properties are fairly tractable.

While throughput-type metrics may not reveal correlations due to the
linearity of the expectation even for dependent random variables, the
local delay does. It is a sensitive indicator as it becomes infinite if
there is strong temporal dependence in the interference.

Correlation also exists between the points of a non-Poisson
process—stochastic geometry provides the second-order statistics to
analyze such processes.

A dependent HetNet model may be tractable to some extent. At least
it can give a common basis for simulations.
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Conclusions

Correlations Abound in Networks

Yes we CAN!
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