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Growth of stochastic geometry for wireless networks

Growth of articles on IEEE Xplore over 1.5 decades
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IEEE Xplore Articles on "Stochastic Geometry" & "Wireless"

Growth: 16 dB/decade (factor 40)

linear fit: f(x)=10*(x/6+1/3)
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Typicality

The typical person

The typical French person (in numbers)

Lives 82 years.

Makes USD 29,759 per year (disposable income).

Lives in a household whose wealth is USD 53,851.

Lives in 1.8 rooms.

The typical American person (in numbers)

Lives 79 years.

Makes USD 41,071 per year (disposable income).

Lives in a household whose wealth is USD 163,268.

Lives in 2.4 rooms.
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Typicality

The (stereo)typical French person
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Typicality

The (stereo)typical American tourist
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Typicality

The globally typical person

The typical user!
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Typicality Inequality

Inequality

Inequality in France

Social inequality (household income and wealth): 4.67.

1% income: $242,000.
0.1% income: $720,000.
0.01% income: $2,252,000.

Top 20% earns 5× as much as the bottom 20%.

Inequality in the USA

Social inequality (household income and wealth): 8.19.

1% income: $465,000.
0.1% income: $1,695,000.
0.01% income: $9,141,000.

Top 20% earns 8× as much as the bottom 20%.
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Typicality Inequality

Typicality and inequality

In many situations, merely considering the typical entity reveals only
limited information.

The satisfaction of people in a country depends as much (or more) on
the inequality than the absolute level of income, wealth, number of
rooms, etc.

Similarly, in a cellular network, whether a user is happy or not with 1
Mb/s strongly depends on whether other users get 100 kb/s or 10
Mb/s.

Industry often focuses on the performance of the "5% user", which is
the performance that the top 95% of the users experience. Increasing
the performance of the typical user may decrease the performance of
the 5% user.

M. Haenggi (ND) How Typical is "Typical"? 05/19/2017 8 / 55



From spatial averages to the meta distribution Spatial or ensemble averages

Stochastic geometry: From spatial averages to the meta

distribution

Spatial/ensemble average

Let Φ be a point process and f : N → R
+ a performance function.

Ensemble average:
f̄ = E

of (Φ)

User at o is the typical user. In an ergodic setting, its performance is
the performance averaged over all users (spatial average).

But in a realization of Φ, no user is typical. All users have (much)
better/worse performance than f̄ .

To quantify this, we need to calculate other properties of the random
variable f (Φ) than just its mean.
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From spatial averages to the meta distribution Spatial distribution

Spatial distribution

Refined analysis:

F̄ (x) = E
o
1(f (Φ) > x) ≡ P

o(f (Φ) > x)

In an ergodic setting, this yields the fraction of users that achieve
performance at least x (spatial distribution). This is more informative.

This is still an average (but so is any distribution of any random
variable), and it is again evaluated at the typical user.

Of course, f̄ =
∫

F̄ (x)dx .

Key example in wireless networks: The SIR distribution.
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From spatial averages to the meta distribution SIR distribution

SIR distribution

Let fθ(Φ) = 1(SIR(Φ) > θ). The SIR distribution at the typical user is

P
o(SIR(Φ) > θ) ≡ E

ofθ(Φ),

which is a family of spatial averages since the performance function has an
extra parameter θ. It yields the fraction of users that achieve an SIR of θ.
It is also interpreted as the success probability of the typical user.

Does this give us complete information on the network performance, such
as the performance of the 5% user?
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From spatial averages to the meta distribution SIR distribution

Interpretation of the SIR distribution

Let us assume that Po(SIR(Φ) > 1/10) = 0.95 and consider a realization
of Φ representing the node locations for a certain period of time.

95% of the users achieve an SIR of -10 dB, at any given time.

However, the set of users that achieve this SIR changes in each
coherence interval. Hence each user is likely to belong to the bottom
5% and to the top 95% many times in a short period. (This is why
the SIR distribution is not the coverage—details to follow.)

Moreover, this does not mean that an individual user achieves -10 dB
SIR 95% of the time.

In fact, nothing can be said about the SIR at an individual user.

It could be that for each group of 100 users, 5 never achieve -10 dB (100%
outage for 5 users, 0% outage for the rest).
Or it could be that the 5 who do not achieve -10 dB are picked uniformly at
random every 10ms (5% outage for all users.)
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From spatial averages to the meta distribution SIR distribution

How to get more information?
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To capture user performance, we
need to adopt a longer-term
viewpoint. This way, we can talk
consistently about the 5% user.

This means we need to average over
the fading (and channel access).

So lets assign to each user a
personal SIR distribution (success
probability):

P(SIRu(Φ) > θ | Φ)

SIR distribution: E
o(P(SIR(Φ) > θ | Φ))
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From spatial averages to the meta distribution Meta distribution

The meta distribution of the SIR

SIR distribution: E
o(P(SIR(Φ) > θ | Φ))

So the SIR distribution is just the spatial average of the conditional success
probability random variable

Ps(θ) , P(SIRo(Φ) > θ | Φo).

But, as before, instead of considering only the average, let’s consider the
distribution!

The meta distribution of the SIR is the ccdf 〈Haenggi, 2016〉

F̄ (θ, x) = F̄Ps(θ)(x) , P
o(Ps(θ) > x), θ ∈ R

+, x ∈ [0, 1].

F̄ (θ, x) is the fraction of users that achieve an SIR of θ with probability at
least x , in each realization of Φ. Those users do not change over time.
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From spatial averages to the meta distribution Meta distribution

Meta distribution of the SIR

Using the previous notation, we have fθ(Φ) = P(SIRo > θ | Φ) and

F̄ (θ, x) = E
o
1(fθ(Φ) > x) = E

o
1

(

E1(SIRo(Φ) > θ | Φo) > x
)

.

It is the distribution of the conditional SIR distribution, hence the term
"meta". The standard SIR distribution (mean success probability) is

ps(θ) = P
o(SIR > θ) =

∫ 1

0
F̄ (θ, x)dx .

Performance of the 5% user:
Rate (spectral efficiency) is determined by θ, e.g., through log(1 + θ).
The 5% user achieves the rate-reliability trade-off pairs (θ, x) given by
F̄ (θ, x) = 0.95.
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From spatial averages to the meta distribution Meta distribution

Example contour plot of F̄ (θ, x): Trading off rate and reliability

θ [dB]

x
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Contours F̄ (θ, x) = u for u ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 0.95}.

The bottom curve u = 0.95 gives the performance of the 5% user.

For example, this user achieves an SIR of −10 dB with reliability 0.72 or an
SIR of −4.3 dB with reliability 0.3.
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From spatial averages to the meta distribution Meta distribution

Remarks on the meta distribution

The standard SIR distribution (mean success probability) is an
expectation over the point process and the fading, treating both
sources of uncertainty the same.

The meta distribution separates fading (time averaging) and location
(spatial averaging). This makes sense since the coherence time of the
large-scale path loss is much longer than that of the small-scale fading.

For stationary and ergodic Φ, the ccdf of Ps can be alternatively
written as the limit

F̄Ps(θ)(x) = lim
r→∞

1

λpπr2

∑

y∈Φ
‖y‖<r

1(P(SIRỹ > θ | Φ) > x),

where ỹ is the receiver of transmitter y .
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From spatial averages to the meta distribution Meta distribution

How to determine the meta distribution

A direct calculation does not seem feasible, but we may be able to
calculate the moments

Mb , E
o(Ps(θ)

b), b ∈ C.

Even just M2 is valuable, since the variance is a first important step
towards characterizing the discrepancies between the users, i.e.,

E
o
(

(Ps(θ)− ps(θ))
2
)

= M2 −M2
1 ,

and we can use standard bounding techniques.

If we know Mjt , j ,
√
−1, t ∈ R

+, we can use the Gil-Pelaez theorem
to determine the entire distribution exactly!

F̄ (θ, x) =
1

2
+

1

π

∫ ∞

0

ℑ(e−jt log xMjt)

t
dt.
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From spatial averages to the meta distribution Meta distribution

Prior work

M1 has a very rich history, see, e.g., 〈Zorzi and Pupolin, 1995;

Baccelli et al., 2006; Andrews et al., 2011; Mukherjee, 2012; Nigam

et al., 2014; DiRenzo, 2015; Deng et al., 2015; Madhusudhanan et al.,

2014〉.

M−1 is the mean local delay 〈Baccelli and Blaszczyszyn, 2010;

Haenggi, 2013〉. It is the mean number of transmission attempts
needed until success.

Conditioned on Φ, the transmission success events are independent and
occur with probabality Ps(θ). Hence the conditional local delay is geometric
and E(D) = E(Ps(θ)

−1).

For Poisson bipolar networks (without MAC), Mb, b ≥ 0, is derived in
〈Ganti and Andrews, 2010〉.

Mk , k ∈ N, is the joint success probability of succeeding k times in a
row, which is calculated for Poisson bipolar and cellular networks in
〈Haenggi and Smarandache, 2013〉 and 〈Zhang and Haenggi, 2014a〉.
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Poisson bipolar networks Model and definition

Poisson bipolar networks

Conditional success probabilities

For a realization of a Poisson bipolar net-
work, attach to each link the probability

P(x)
s (θ) , P(SIRx > θ | Φ, tx),

taken over fading and ALOHA.

P
(x)
s (θ) are random variables that capture

the individual link performance.

Alternative interpretation of Ps(θ) (thanks to
Steven Weber): If node x has full knowledge

of Φ, P
(x)
s (θ) is its estimated link success prob-

ability.
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The histogram of all P
(x)
s gives very fine-grained information about the

network performance.
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Poisson bipolar networks Model and definition

Conditional success probability histograms

The mean (standard success probability) M1 is the same for all pairs (λ, p)
with the same λp. For Rayleigh fading, we have the well-known result

P(SIR > θ) = exp
(

−λpπr2θδ

sinc δ

)

, where δ = 2/α.

But the disparity between the links depends strongly on both λ and p.
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Poisson bipolar networks Example

Example (Meta distribution for Poisson bipolar network with ALOHA)
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λ = 1, p = 1/4, α = 4, and r = 1/2

For each realization of Φ, the meta distribution yields the fraction of links
that achieve a success probability at least x .
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Poisson bipolar networks Moments

Moments for Poisson bipolar networks with ALOHA

The moments Mb , E(Ps(θ)
b), b ∈ C, are given by 〈Haenggi, 2016〉

Mb = exp
(

−λπr2θδΓ(1 − δ)Γ(1 + δ)Db(p, δ)
)

, b ∈ C,

where
Db(p, δ) = pb 2F1(1 − b, 1 − δ; 2; p).

M1 =
∫ 1
0 F̄ (θ, x)dx is the standard success probability.

The variance varPs(θ) = M2
1 (M

p(δ−1)
1 − 1) quantifies the link disparity

and yields the concentration result

lim
p→0
λp=τ

Ps(θ) = M1.

Using Mjt , t ∈ R, Gil-Pelaez inversion gives an integral expression of
the exact meta distribution.
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Poisson bipolar networks Moments

Classical bounds

For x ∈ [0, 1], the ccdf F̄Ps
is bounded as

1 − E
o((1 − Ps(θ))

b)

(1 − x)b
< F̄Ps

(x) ≤ Mb

xb
, b > 0.

Illustrations for θ = 1, r = 1/2 and λp = 1/4 ⇒ ps = M1 = 0.735:
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0 0.2 0.4 0.6 0.8 1
x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1-
F

P
(x

)

exact
Markov bounds
Chebyshev bounds
Paley-Zygmund bound

b=-1

b=2

b=3 b=1

b=2

b=4

b=3

b=1

λ = 5, p = 1/20, var(Ps) = 0.00418

M. Haenggi (ND) How Typical is "Typical"? 05/19/2017 24 / 55



Poisson bipolar networks Moments

Best bounds using M1 through M4

Illustrations for α = 4, θ = 1, r = 1/2, and p = 1/2:
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λ=1 ⇒ ps=0.54, var(Ps)=0.049
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λ=1/5 ⇒ ps=0.88, var(Ps)=0.024

Approximation with beta distribution

Since Ps is supported on [0, 1], it is natural to approximate it as a beta
random variable.
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Poisson bipolar networks Beta approximation

Beta approximation of the meta distribution
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Exact ccdf and beta approximation for θ = 1, r = 1/2, α = 4, and λp = 1/4.

Two cases: (1) λ = 1, p = 1/4 → varPs = 0.02.
(2) λ = 5, p = 1/20 → varPs = 0.004.

For both cases, M1 = 0.735. The standard analysis does not distinguish
between the two networks.
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Poisson cellular networks Network model

Cellular networks

Downlink Poisson cellular networks
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α = 4, θ = 1

Base stations (BSs) form a homoge-
neous Poisson point process (PPP) Φ
of density λ.

A user connects to nearest BS, while
all others interfere.

The received power at user u is
Su = hu‖xu − u‖−α,
where xu = argmin{x ∈ Φ: ‖x − u‖}
and hu is exponential.

For each user u, calculate P(u)
s = P(SIRu > θ | Φ) = Eh1(SIRu > θ).
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Poisson cellular networks Network model

Basic result for downlink

For the typical user, we have 〈Andrews et al., 2011〉

ps(θ) , P(SIR > θ) = F̄SIR(θ) =
1

2F1(1,−δ; 1 − δ;−θ)
, δ , 2/α.

For δ = 1/2 (α = 4) : ps(θ) =
1

1 +
√
θ arctan

√
θ

Remarkably, the same result holds for a multi-tier Poisson model (HIP
model), where each tier can have a different density and transmit power
〈Nigam et al., 2014; Madhusudhanan et al., 2016〉.

Focusing on the user at o, we are interested in the meta distribution

F̄ (θ, x) = F̄Ps(θ)(x) , P(Ps(θ) > x), θ ∈ R
+, x ∈ [0, 1],

and the moments Mb , E(Ps(θ)
b). Again M1 = ps.
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Poisson cellular networks Example

Example (PPP, Rayleigh fading, α = 4)
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F̄ (θ, x) = P(Ps(θ) > x)

=Fraction of users who achieve an SIR of θ with probability at least x .
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Poisson cellular networks Moments

Theorem (Moments of Ps for Rayleigh fading 〈Haenggi, 2016〉)

For Poisson cellular networks with nearest-BS association and Rayleigh

fading,

Mb =
1

2F1(b,−δ; 1 − δ;−θ)
, b ∈ C.

Remark

Alternatively,

Mb =
(1 + θ)b

2F1(b, 1; 1 − δ; θ/(1 + θ))
.

This way, we can write the hypergeometric function as a series and obtain

Mb =

[

(1 − z)b
∞
∑

n=0

b(b + 1) · . . . · (b + n − 1)

(1 − δ) · . . . · (n − δ)
zn

]−1

,

where z = θ/(1 + θ) < 1.
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Poisson cellular networks Moments

M1, M2, and variance

M1 =

[

(1 − z)

∞
∑

n=0

n!

(1 − δ) · . . . · (n − δ)
zn

]−1

M2 =

[

(1 − z)2
∞
∑

n=0

(n + 1)!

(1 − δ) · . . . · (n − δ)
zn

]−1

Letting gn(δ) the polynomial of order n with roots [n] and gn(0) = 1, i.e.,

gn(δ) ,
(1 − δ) · . . . · (n − δ)

n!
,

we have

var(Ps) =
1

(1 − z)2

[

1
∑

n+1
gn(δ)

zn
− 1
(

∑ 1
gn(δ)

zn
)2

]

.

This can be used to obtain rational approximations and bounds.
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Poisson cellular networks Moments

Proof (Moments Mb)

Let x0 = argmin{x ∈ Φ: ‖x‖} be the serving BS. Given the BS process Φ,
the success probability is

Ps(θ) = P

(

h > ‖x0‖αθ
∑

x∈Φ\{x0}

hx‖x‖−α
∣

∣

∣
Φ
)

=
∏

x∈Φ\{x0}

1

1 + θ(‖x0‖/‖x‖)α
.

The b-th moment follows as

Mb = E

∏

x∈Φ\{x0}

1

(1 + θ(‖x0‖/‖x‖)α)b
.

To evaluate this, we use the relative distance process (RDP), defined as

R , {x ∈ Φ \ {x0} : ‖x0‖/‖x‖} ⊂ [0, 1].
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Poisson cellular networks Moments

Proof (cont’d)

The pgfl of the RDP for a PPP is 〈Ganti and Haenggi, 2016a〉

GR[v ] , E

∏

x∈R

v(x) =
1

1 + 2
∫ 1
0 (1 − v(x))x−3dx

,

hence we obtain

Mb =
1

1 + 2
1
∫

0

(

1 − 1
(1+θrα)b

)

r−3dr

=
1

2F1(b,−δ; 1 − δ;−θ)
, b ∈ C.

Remark

Using the RDP provides us with a more direct way of calculating quantities
such as ps(θ) and Ps(θ). It combines the two steps of first conditioning on
the distance to the nearest BS and then taking an expectation w.r.t. that
distance into one.
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Poisson cellular networks Numerical results and approximation

Meta distribution and bounds
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α = 4, θ = 1
→ ps = 0.56, var(Ps) = 0.098
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α = 4, θ = 1/10
→ ps = 0.91, var(Ps) = 0.0086

As before, "best bounds" here means the best possible bounds that can be
obtained given the first four moments.
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Poisson cellular networks Numerical results and approximation

Approximation with beta distribution
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Exact ccdf and beta approximation for θ = 1/10, 1, 10 for α = 4.

The beta distribution tightly approximates the meta distribution.
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Poisson cellular networks What is coverage?

Coverage

What is "coverage"?

P(SIR > θ) gives, in each realization and each time slot, the fraction
of users who happen to succeed. Some because of good fading from
the BS, some because of bad fading from an interfering BS, some
because they are close to the BS.
In the next time slot, some previously successful users won’t succeed,
and vice versa.

This is not a robust metric for coverage. Declaring a user "covered" or
not on a 10 ms time scale is impractical. We would have to redraw
coverage maps 100 times/s, at a spatial scale of cm.

We need a metric that does not depend on the instantaneous channel
realization, but still takes into account the fading statistics.
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Poisson cellular networks Per-user success probability

What is coverage—solution

For each user u, calculate

P(u)
s = P(SIRu > θ | Φ) = Eh1(SIRu > θ).

This averages over the fading (and random access).

Then declare those user covered for whom P
(u)
s > x , where x ∈ [0, 1]

is a reliability constraint.
This gives a robust coverage map and reflects true user satisfaction.

It also achieves a time scale separation between the time scales of
fading and changes in the network geometry.

Coverage means to consistently achieve a certain SIR.

The next talk has nice illustrations of coverage and per-user SINR ccdfs.
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Poisson cellular networks Uplink

Uplink in cellular networks

Uplink with power control 〈Wang et al., 2017〉

Often, the benefits of a transmission technique are not reflected in the
mean success probability. Uplink power control is an important example.
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Power control: For link distance R ,
user transmits at power Rαǫ.

ǫ ∈ [0, 1]: no power control to full
inversion of large-scale path loss.

For a target SIR of around 0 dB,
ps(1) ≈ 50–60%, irrespective of ǫ.
So what ǫ is best?

The variance M2 −M2
1 shows a gain of at least a factor of 3 for ǫ = 1.

Hence power control reduces the inequality in the user experiences.
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Poisson cellular networks D2D

Meta distribution with D2D underlay 〈Salehi et al., 2017〉

Network modeled as superposition
of a Poisson cellular network and
an independent Poisson bipolar
network (D2D users).

Base stations transmit with
probability pBS and D2D users
with probability pD2D.

For both types of users, the
moments Mb can be calculated
exactly.
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λBS = 2 km−2, λD2D = 50 km−2.
θ = 1, PBS/PD2D = 100, pBS = 0.7,
pD2D = 0.3, α = 4.

Using the meta distribution, we can calculate the density of D2D links that
can be accommodated such that both types of users maintain a target
reliability. Again the beta approximation is very accurate.
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Other work

Other work

Other "per-user" and "meta" work

SIR and throughput improvement for cellular networks using rateless
codes 〈Rajanna and Haenggi, 2017〉

Predicting transmission success in Poisson bipolar networks 〈Weber,

2017〉

Millimeter wave networks 〈Deng and Haenggi, 2017〉

Downlink cellular networks with base station cooperation

Bipolar networks with interference cancellation

Spatial outage capacity in bipolar networks 〈Kalamkar and Haenggi,

2017a〉

Ergodic spectral efficiency in cellular networks 〈George et al., 2017〉
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Spatial outage capacity Definition

Spatial outage capacity
Joint work with S. Kalamkar

Density of links given an outage constraint

Fundamental question: What is the maximum density of concurrent
transmissions given an outage constraint?
For a stationary and ergodic point process Φ of potential transmitters,

λε , lim
r→∞

1

πr2

∑

y∈Φ
‖y‖<r

1(P(SIRỹ > θ | Φ) > 1 − ε)

is the density of transmissions satisfying an outage constraint ε.

The outage constraint results in a static dependent thinning of Φ to a
point process of density λε.

Goal: Maximize λε over λ and p to obtain the spatial outage capacity.
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Spatial outage capacity Definition

Key observation

λε can be expressed using the meta distribution as

λε = λpF̄ (θ, 1 − ε),

where λ is the density of Φ and p is the fraction of concurrently active
transmitters.

Definition (Spatial outage capacity (SOC) 〈Kalamkar and Haenggi,

2017b〉)

For a stationary and ergodic point process model and parameters θ > 0 and
ε ∈ (0, 1), the spatial outage capacity is defined as

S(θ, ε) , sup
λ>0,p∈(0,1]

λε = sup
λ>0,p∈(0,1]

λpF̄ (θ, 1 − ε).

λ is the density of the point process, p is the fraction of links that are
concurrently active, and F̄ is the SIR meta distribution.
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Spatial outage capacity Relationship to transmission capacity

Comparison with transmission capacity 〈Weber et al., 2010〉

Let Ps(θ) be the conditional success probability given the point process.

SOC: S(θ, ε) , sup
λ>0,p∈(0,1]

{

λp P
(

Ps(λ, p, θ) > 1 − ε
)}

TC: c(θ, ε) , (1 − ε) sup{λp > 0 : EPs(λ, p, θ) > 1 − ε}

The mean ps(λp, θ) , EPs(λ, p, θ) only depends on the product λp and is
monotonic, hence the TC can be written as c(θ, ε) , (1 − ε)p−1

s (1 − ε).

The TC yields the maximum density of links such that the typical link
satisfies an outage constraint. The supremum is taken only over one
parameter, namely λp.

In the SOC, the outage constraint is applied at each individual link. It
yields the maximum density of links that satisfy an outage constraint. This
means that λ and p need to be considered separately.
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Spatial outage capacity Relationship to transmission capacity

Example (SOC vs. TC)

For the Poisson bipolar network with ALOHA, we set r = 1, α = 4 and
consider ε = θ = 1/10.

Transmission capacity:
c(1/10, 1/10) = 0.061, achieved at λp = 0.0675. By design, ps = 0.9.
But at p = 1, only 82% of the transmissions satisfy the 10% outage.
Hence the spatial density of links that achieve 10% outage is only
0.055.

Spatial outage capacity:
S(1/10, 1/10) = 0.092, achieved at λ = 0.23 and p = 1, resulting in
ps = 0.7.

Hence the maximum spatial density of links given the 10% outage
constraint is more than 50% larger than the TC.
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Spatial outage capacity SOC for Poisson bipolar networks with ALOHA

3D plot for Poisson bipolar networks with ALOHA
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3D plot for ε = 1/10, θ = 1/10, r = 1, α = 4.
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Spatial outage capacity The high-reliability regime

Poisson bipolar networks in the high-reliability regime

Using de Bruijn’s Tauberian theorem, it can be shown that 〈Kalamkar and

Haenggi, 2017b〉

λε ∼ λp exp

(

−
(

θp

ε

)κ
(

λδπr2Γ(1 − δ)
)κ/δ

κ

)

, ε → 0,

where κ = δ/(1 − δ) = 2/(α − 2).

Interestingly, only the ratio of ε to θ matters.

λ and p have different exponents, hence not only their product
matters.

M. Haenggi (ND) How Typical is "Typical"? 05/19/2017 46 / 55



Spatial outage capacity The high-reliability regime

Outage-constrained density for Poisson bipolar network

For non-asymptotic values of ε, λε can be approximated using the beta
distribution.

0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Exact

Asymptotic

Beta approximation

λε for ε = 1 − x , θ = 1, r = 1, α = 4, λ = 1/2, p = 1/3.
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Spatial outage capacity The high-reliability regime

SOC in the high-reliability regime

It follows from the high-reliability result for λε that

S(θ, ε) ∼
( ε

δθ

)δ e−(1−δ)

πr2Γ(1 − δ)
, ε → 0.

The SOC is achieved at p = 1. (This holds also for Rayleigh
distributed link distances.)

The ratio ε/θ shows an interesting rate-reliability trade-off: At low
rates, log(1 + θ) ∼ θ, so a 10× higher reliability can be achieved by
lowering the rate by a factor 10.

Alternative form:

Sπr2 ∼
(ε

θ

)δ
f (δ)

For r = 1 and α = 4, S ∼ 0.154
√

ε/θ, and M1,opt ∼ 1 − 1.2533
√
ε.
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Spectral efficiency Motivation

Ergodic spectral efficiency
Joint work with G. Georgie, R. Mungara, and A. Lozano

Motivation

The outage-based framework of the meta distribution is useful for
short messages and low-latency situations.

For longer messages (codewords) transmitted over larger bandwidths
or many antennas or using hybrid ARQ, an ergodic point of view is
warranted.

As before, we aim at a clean time-scale separation. Ergodicity applies
to the time scale of small-scale fading, with the network geometry
fixed. Then stochastic geometry is applied to capture different
network configurations.

This approach lends itself to MIMO extensions and sectorization.
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Spectral efficiency Definition and approach

Ergodic spectral efficiency 〈George et al., 2017〉

Let ρ ,
‖x0‖−α

∑

x∈Φ\{x0}
‖x‖−α

be the SIR (of the user at the origin) without fading. It captures the
network geometry. Next, let

C (ρ) , Eh(log(1 + hρ))

be the ergodic spectral efficiency given the point process. For Rayleigh
fading, C (ρ) = e1/ρE1(1/ρ), where E1 is the exponential integral.

Q: Why not include the fading of the interferers’ channels?

A: Because the user does not know them.

Ignoring the fading of the interferers yields a tight lower bound, while
including it in the expression would yield a looser upper bound.
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Spectral efficiency Definition and approach

Distribution of the ergodic spectral efficiency

The conditional ergodic spectral efficiency C (ρ) is a random variable.
In a realization, each user u has her/his personal ρu.

Naturally, we are interested in the ccdf FC(ρ)(γ) = P(C (ρ) ≤ γ). To
evaluate it, we need the distribution of ρ.

◮ For θ ≥ 1, Fρ(θ) = 1 − sinc(δ)θ−δ 〈Zhang and Haenggi, 2014b;

Madhusudhanan et al., 2014〉.
◮ For θ < 1 an exact integral expression can be given that gets

increasingly cumbersome for θ → 0 〈Blaszczyszyn and Keeler,

2015〉.
◮ As θ → 0, log Fρ(θ) = s∗/θ + o(1), where s∗ < 0 is given by

s∗δ Γ̄(−δ, s∗) = 0 〈Ganti and Haenggi, 2016b〉.

Lastly, we use
FC(ρ)(γ) = Fρ(C

−1(γ)).
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Spectral efficiency Results

SISO with Rayleigh fading

Using an invertible approximation of C (ρ) = e1/ρE1(1/ρ):

where
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Spectral efficiency Results

Distribution of the ergodic spectral efficiency

With SISO, essentially no user gets less than
0.18 bps/Hz. With 2x2 MIMO, no user gets
less than 0.3 bps/Hz.

Interesting observation: Spectral effi-
ciencies are essentially lognormal.
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Spectral efficiency Results

Scaling behavior at high user reliabilities

What is the spectral efficiency achieved by a fraction 1− ξ of the users, for
ξ ≪ 1? Setting ξ = P(C (ρ) ≤ γ) = FC (γ) ≈ e1.15s∗/γ , we obtain

γ ≈ 1.15s∗

log ξ
, ξ ≪ 1.

For α = 4 and ξ < 0.15, this
simplifies to γ ≈ −1/ log ξ.

For ξ = 1/100, for example, we
obtain γ ≈ 0.22 bps/Hz, while the
exact value is 0.24 bps/Hz.

For comparison, if we used
F̄SIR(θ) = 0.99, we would get
θ = −20 dB and γ = 0.014 bps/Hz.
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Conclusions

Conclusions

Spatial distributions of the form P(Ehf (Φ) > t) achieve a clean
separation of temporal and spatial randomness.

◮ f (Φ) = 1(SIR > θ) yields the meta distribution of the SIR
(outage-based performance).

◮ f (Φ) = log(1 + hρ), where ρ is the SIR without fading, yields the
distribution of the ergodic spectral efficiency.

This yields the area/user/link fraction that achieves performance t

and thus the performance of the 5% user. Classical averages for the
typical user/link are obtained by integration over t.

The meta distribution can be bounded and calculated using the
moments. A beta approximation yields simple yet accurate results.

The ergodic spectral efficiency distribution can be well approximated
in closed-form, also for MIMO, using results on the SIR distribution
without fading. It is close to lognormal.

Slides available at: www.nd.edu/~mhaenggi/talks/spaswin17.pdf
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