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CHAPTER 1

INTRODUCTION

1.1 Background

The past three decades have witnessed a boost of data exchange and number/diversity

of connected devices in the wireless networks. The demand for data transmission over

the wireless medium will continue to grow. A key enabling factor to meet this demand

is the densification and heterogeneity of base station (BS) deployment, along with

other dimensions such as a new spectrum (millimeter band), more antennas (massive

multiple-input and multiple-output technology), and coordinated transmissions. As

the point-to-point transmission architecture is approaching its theoretical limit, inte-

grating more BSs with diverse capabilities to the existing infrastructure provides the

network with more available radio resources per unit area. Meanwhile, the coordina-

tion among massive active nodes brings potential gain, which is an essential part of

advanced network design.

However, the analysis and design of current and future wireless systems are more

challenging with the densification and heterogeneity of BS deployment. Modern com-

munication scenarios rely on various performance aspects of the system including

coverage, throughput, reliability, mobility, latency and so on. Having a guaranteed

performance on each aspect is particularly important for cellular networks. Yet, the

simulation of such a system is costly to implement, difficult if not impossible to repli-

cate and insufficient for design insights. A specific simulation scenario often assumes

numerous parameters, a deterministic network geometry and fixed transmission tech-

niques. It leads to limited insights as to whether the network performance depends
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on certain parameters, how it depends on them and why. Hence, the theoretical

counterpart of simulations is needed, which (1) reflects the essential network charac-

teristics, (2) permits the analysis of the network from various aspects, and (3) serves

as a baseline to compare the performance of advanced transmission techniques.

Due to the nature of the wireless medium, any node in the network can in theory

transmit/receive signals to/from other nodes. An inherent problem with such a

freedom is interference. Interference has become the limiting factor in today’s dense

cellular networks. Since wireless signals are subject to multi-path fading and path

loss, both desired signal and interference depend strongly on the geometric locations

of the transmitting nodes. Network geometry, therefore, plays a critical role in the

modelling of current networks.

By modelling the node locations in space as a random point process, stochastic

geometry provides a natural tool for network analysis. The randomness of node

locations is justified since real BS deployment is subject to constrains from various

sources, and there is less planning of deployment with smaller and lower-cost BSs.

In particular, modeling BS locations using the homogeneous Poisson point process

(PPP) has become a common practice due to the tractability of the model. Prior to

that, networks models were based on either a limited number of cells or the hexagonal

lattice structure—one failed to capture the growing scale of the network and the

other failed to capture the inherent randomness and heterogeneity [1]. Indeed, real

BS deployment often falls in between ideal hexagonal lattice and the PPP [2]. The

PPP model can (1) provide a theoretical lower bound of the network performance,

and (2) facilitate the analysis of general networks models and advanced transmission

techniques by approximation [3, 4].

Similar to the role of the signal-to-noise ratio (SNR) in point-to-point systems

[5], the signal-to-interference ratio (SIR) is a critical quantity in dense networks.

The SIR varies significantly with the distances from a user to both its transmitter(s)
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and interferers. For instance, it is commonly acknowledged that “the cell boundary

users” are the bottleneck of cellular networks due to their vulnerability to interference

[6]. For practical system design such as interference management, handover and

fairness mechanisms, characterizing the performance of “the cell boundary users” is

important. However, the existing literature based on stochastic geometry focuses

mostly on the typical user, who represents the average of all users. Hence, the goal

of this thesis is to classify users by their vulnerability to interference and design

advanced techniques to ameliorate the problem.

Interference can be mitigated through the coordination among transmissions. Co-

ordination can be in the form of multi-user scheduling, relaying, joint transmission

and so on. The gain comes at the cost of the channel state information (CSI),

backhaul capacity, synchronization efforts, and in general more signaling overhead.

Coordinated multipoint (CoMP) [7] is an effective technique to mitigate inter-cell

interference and has been incorporated into the long-term evolution (LTE). By al-

lowing selected BSs to jointly serve one or more users, the interference originating

from nearby BSs can be turned into useful signals. In this thesis, we study a BS

cooperation scheme that primarily helps users vulnerable to interference due to their

disadvantaged locations. In order to put minimal constraints on the system, we focus

on the analysis of non-coherent joint transmission.

1.2 Related Work

The general theory of stochastic geometry can be found in [8–10] and its appli-

cation in wireless networks in [11–14]. We refer readers to [15–17] for an overview

of the field. Stochastic geometry is extensively applied to the analysis of cellular

networks from network modelling [2, 18–21], SIR/SINR characterization [3, 22–26],

interference management and coordinated transmissions [25, 27–34], heterogeneous

networks and load balancing [34–37], drone communications [38, 39] and so on. We
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now give a more detailed literature review on BS cooperation.

BS cooperation schemes mainly focuses on four aspects: the dependence of coop-

eration on users’ channel (user-centric or not), the selection of the set of cooperating

BSs (fixed-size or adaptive), the cooperation mode (BS silencing, point selection,

coherent/non-coherent joint transmission), and its implementation challenges (lim-

ited backhaul, imperfect synchronization, imperfect CSI). [30, 31, 33] study user-

centric BS cooperation while [25, 34] study BS cooperation where all users are non-

coherently served by n strongest BSs. It is shown in [34] that users located at the

Voronoi vertices benefit more from cooperation than the typical user. Also, it is

shown in [25] that increasing the size of the cooperation set leads to a larger variance

of the link success probability and thus reduces fairness. In [31, 33], the authors

define the “cooperation region” such that users receive cooperation only when they

are located in the cooperation region. Both definitions are based on the relative dis-

tances to the serving and the nearest interfering BS, and different cooperation modes

are analyzed. In [33], BS silencing is activated for users in the cooperation region.

However, it assumes a small-cell scenario where there are many inactive BSs and

is thus less interference-limited. [31] studies the network where all BSs are always

active. Users within the cooperation region are coherently served by the two nearest

BSs. The scheme, however, relies on the precise channel phase match within the

cooperating BSs. A transmission scheme that is less sensitive to channel estimation

is analyzed in [30], where the cooperating BSs non-coherently transmit to the target

user without exchanging CSI. The set of cooperating BSs is defined to be BSs within

a disk of a fixed radius centered at each user. The definition depends on the selection

of the radius and leads to an indefinite size of the cooperating set, which can boost

the system complexity. BS cooperation in a two-tier network is studied in [36], where

the strongest BSs from each tier jointly serve users who suffer from strong interfer-

ence. The scheme does not consider the case when both the strongest serving BS and
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strongest interfering BS belong to the same tier.

1.3 Contributions

This thesis makes the following main contributions:

1. We mathematically define the cell regions for any ergodic and stationary BS
point process based on the relative distances of the three nearest BSs. While
we focus on Rayleigh fading and power-law path loss, the user grouping method
is based on the relative average received signal strengths of the three strongest
BSs, which applies to general channel models and heterogeneous networks.

2. We show that in Poisson networks, the top fraction x of users enjoy an SIR
gain of −5α log10 x dB relative to the typical user. We derive both the exact
and asymptotic form of the SIR distribution for the cell boundary users.

3. We propose and study a location-dependent BS cooperation scheme which
primarily helps users vulnerable to interference. We introduce a parameter
γ ∈ [0, 1] to tune the cooperation level of the network. We derive the SIR
distribution and its approximation form based on the asymptotic SIR gain.

4. We show that in Poisson networks (1) the derivative of the asymptotic SIR gain
equals to the path loss exponent α at γ = 0 (no cooperation) and is 0 at γ = 1
(full cooperation); (2) a moderate γ jointly improves the SIR performance and
the network fairness.

5. We study the spectral efficiency normalized by the number of cooperating BSs.
The normalization permits the evaluation of BS cooperation gain without in-
creasing the cell load, i.e., users who receive cooperation from N BSs are served
by 1/N resource blocks from each BS. We show that with a moderate γ, the
non-coherent joint transmission can improve users’ throughput even with the
normalization.

6. In each case, network models including the PPP, lattice networks and hetero-
geneous networks (used interchangeably with “multi-tier networks”) are stud-
ied. We compare the simulation results of the asymptotic SIR gain in lattice
networks to Poisson networks and show their similarity. Multi-tier networks
consider different powers and densities of each tier of BSs.

1.4 Thesis Organization

In Chapter 2, we describe the system model and introduce performance metrics

to characterize the SIR. Specifically, BS models including the PPP, lattice networks,
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and heterogeneous networks (used interchangably with “multi-tier networks” in this

thesis) are introduced. Metrics including the success probability (known also as the

coverage probability or the complement of the outage probability in the literature),

the asymptotic SIR gain, the conditional success probability, and the SIR meta dis-

tribution are introduced.

In Chapter 3, we introduce the definition of the cell center region and the cell

boundary region for any ergodic and stationary point process. We analyze the SIR

performance based on a user’s located region.

In Chapter 4, we design a location-dependent BS cooperation scheme based on

the definition from Chapter 3. The cell partition is extended to three regions: the cell

center region, the cell edge region and the cell corner region. The rationale behind

this partition is that the worst-case user located on the vertex of Voronoi cells has

three equidistant nearest BSs.

We include conclusions and future work in Chapter 5.
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CHAPTER 2

SYSTEM MODEL AND CHARACTERIZATIONS OF THE SIR

In this chapter, we introduce the system model and performance metrics. In the

first section, we introduce three BS models: the homogeneous PPP (also referred to

as “Poisson networks”), stationary lattices, and heterogeneous networks. In general,

the actual deployment of BSs falls somewhere between Poisson networks and lattice

networks—from completely random to completely repulsive [2]. The study of the

homogeneous PPP model potentially provides unified analysis that applies to general

network models. For the channel model, we consider iid Rayleigh fading and power-

law path loss.

In the second section, we introduce metrics that characterize the SIR perfor-

mance, from the most coarse characterization—the success probability of the typical

user, to the most fine-grained one—the SIR meta distribution. The most extensively

explored metric is the success probability, which is the probability that the SIR ex-

ceeds a threshold θ. For less tractable models, we use the PPP model as a baseline

to approximate the success probability [22]. Specifically, the asymptotic SIR gain

captures the SIR gap between different models as θ → 0 and is shown to be a good

approximation over the entire range of θ. Further, the conditional success probability

and its distribution the SIR meta distribution are introduced to answer questions like

“what is the fraction of links in the network that achieve an SIR of 5 dB with 90%

of the time?”.
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2.1 System Model

We first give the definition of a Voronoi cell for general point process. Then

we define three BS models, namely the homogeneous PPP, stationary lattices and

heterogeneous networks.

Definition 1. The Voronoi cell V (x) of a point x of a general point process Φ ⊂ Rd

consists of those locations of Rd whose distance to x is not greater than their distance

to any other point in Φ, i.e.,

V (x) , {u ∈ Rd : ‖x− u‖ ≤ ‖z − u‖ ∀z ∈ Φ \ {x}.} (2.1)

2.1.1 Homogeneous PPP

Definition 2. The homogeneous PPP with intensity λ is a point process in Rd such

that

• for every compact set B, the number of points falling into B has a Poisson
distribution with mean λ|B|, where |B| is the Lebesgue measure of B.

• the numbers of points in disjoint bounded sets are independent random variables.

The intensity λ is the expected number of points of the process per unit area or volume.

2.1.2 Stationary Lattices

Definition 3. Let L ⊂ Rd be a lattice and V (o) the Voronoi cell of the origin. The

randomly translated lattice is

Φ , {u ∈ Zd : Gu+X} (2.2)

where G ∈ Rd×d is an arbitrary matrix of full rank and X is uniformly distributed

over V (o).
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In the case of (stationary) triangular lattice, G = η

1 1/2

0
√

3/2

 and the density

of Φ is 2/(
√

3η2).

2.1.3 Multi-Tier Networks

We model heterogeneous networks by the union of K BS point process, i.e.,

Φ ,
K⋃
i=1

Φi (2.3)

where Φi is a stationary and ergodic BS point process. We only specify two pa-

rameters for Φi: the density λi and the transmit power Pi. No assumption about

the independence/dependence between Φis is made to preserve the generality of the

model. Since the selection of proper model for each tier is a dedicated research prob-

lem itself, we only propose the definition of cell regions in heterogeneous networks

and study a special case when the network tiers are modeled by independent PPPs.

We will focus on the power-law path loss model, i.e.,

l(r) = r−α, (2.4)

where r denotes the distance from the transmitter to the receiver. l(r) denotes the

mean power received at distance r when unit power is transmitted, and α > 2 is the

path loss exponent. We assume iid Rayleigh fading from different BSs. Denote h as

the power of the multiplicative fading, where

P(h > x) = exp(−x), x ≥ 0. (2.5)

The SIR is defined as

SIR ,
S

I
, (2.6)
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where S denotes the desired signal power and I denotes the aggregated power of in-

terference. The most basic model is when the desired signal comes from one selected

serving BS and the interference comes from the other transmitting BSs. In this the-

sis, we will use maximum-average-signal-strength association, i.e., nearest-neighbor

association, as the baseline model. We focus on the typical user1 located at the ori-

gin. Let xi(o) ∈ Φ denote the i-th nearest BS to the origin, hi denote the fading from

xi(o) and ri = ‖xi(o)‖ denote the Euclidean distance from xi(o) to the origin,

SIR =
h1r

−α
1∑

i>1 hir
−α
i

. (2.7)

2.2 Characterizations of the SIR

2.2.1 Success Probability

For a given threshold θ, the success probability is defined as

F̄ (θ) , P(SIR > θ), (2.8)

which is the complementary cumulative distribution function (CCDF) of the SIR.

In this thesis, we will use F̄PPP(θ) to denote the success probability for the homo-

geneous PPP with intensity λ, it is shown in [18, 28]

F̄PPP(θ) =
1

2F1(1,−δ; 1− δ;−θ)
, (2.9)

where δ = 2/α and 2F1(, ; ; ) is the Gaussian hypergeometric function.

1The performance of the typical user corresponds to the average performance of all users in the
network. By the stationarity of the point process, we assume that the typical user is located at the
origin without loss of generality.
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2.2.2 Asymptotic SIR Gain

While the success probability of all but a few basic network models is intractable,

the asymptotic SIR gain [22] gives a simple and unified characterization of the SIR

improvement compared to a baseline scheme. Using the PPP model as baseline, G

is the asymptotic SIR gain if

F̄ (θ) ∼ F̄PPP(θ/G), θ → 0. (2.10)

It can be visualized as the asymptotic horizontal shift (in dB) between the SIR

distributions of the studied model and the PPP.

Lemma 1. For Rayleigh fading [22],

F̄ (θ) ∼ θE[I/S̄], θ → 0. (2.11)

where S̄ , Eh(S).

Proof.

F̄ (θ) = P(SIR > θ)

= P(h > θI/S̄)

= E[exp(−θI/S̄)]

∼ θE[I/S̄], θ → 0.

(2.12)

Following [22], we define the mean-interference-signal-ratio (MISR) as MISR ,

E
(
I/S̄

)
. MISRPPP denotes the MISR of the PPP. Using Lemma 1 and the PPP
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model as baseline, we have

F̄ (θ) ∼ F̄PPP(θ/G), θ → 0, (2.13)

where G , MISRPPP/MISR is the asymptotic SIR gain.

It is shown that the asymptotic gain is an accurate approximation to capture the

difference for the SIR distribution of different network models over the entire range

of θ [3]. The form of F̄ (θ) depends on the fading statistics and generalizes to other

fading models.

2.2.3 Conditional Success Probability

For an individual link with fixed locations of the user and BSs, the conditional

success probability for a SIR threshold θ is defined as

Ps(θ) , P(SIR > θ | Φ), (2.14)

where Φ denotes the set of active BSs. It is also referred to as the individual link

reliability, quantifying how reliable the link is with respect to θ. The quantity Ps(θ) ∈

[0, 1] is obtained by averaging over fading only.

For Rayleigh fading and power-law path loss,

Ps(θ) =
∞∏
i=2

1

1 + θrα1 /r
α
i

. (2.15)

The traditional success probability can be obtained by the expectation of the

conditional link success probability over the point process, i.e.,

F̄ (θ) = E[Ps(θ)]. (2.16)
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2.2.4 SIR Meta Distribution

By defining the conditional success probability, the randomness in time (fading)

and space (BS point process) can be separately evaluated, thus providing a finer-

grained view of the SIR. The distribution of the conditional success probability can

characterize the link performance in cellular networks. It answers questions such as

“what is the fraction of links in the network that achieve an SIR of 5 dB with 90%

of the time?”. The SIR meta distribution (MD) [24], defined as

F̄Ps(θ, x) , P(Ps(θ) > x), x ∈ [0, 1], (2.17)

is the fraction of links achieving reliability higher than x for threshold θ. For an

ergodic BS point process, the SIR MD distribution can be interpreted as the fraction

of links that achieves θ and reliability higher than x in any realization of the network.

Fig. 2.1 shows the histogram of the individual link reliability for θ = 1 in a

Poisson network via simulation. In this example, when the target reliability is set to

be x = 0.56 (which is the success probability of the typical user), the empirical value

of the fraction of links satisfying Ps(1) > 0.56 is 0.5 and they are referred to as “top

50% users”. The mean is coincidentally equal to the median for the parameters in

this example.

Fig. 2.2 shows the color map of the individual link reliability in the Voronoi cells.

It is obvious from observation and intuitive that users in the cell center region achieve

better average performance than the typical user due to their good locations.
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CHAPTER 3

LOCATION-DEPENDENT SIR ANALYSIS

In the literature, “the cell boundary users” typically refers to users who are almost

equally close to the serving and nearest interfering BS, and “the cell center users”

refers to those who are much closer to the serving BS than to interfering ones. It

is equally common to define these merely by users’ distance to the serving BS. The

latter one is deficient since cells have random sizes. Users within the defined radius

of the serving BS can be subject to strong interference and users outside the radius

of the serving BS do not necessarily suffer from strong interference. In this chapter,

we partition the Voronoi cells of any stationary and ergodic BS process into the cell

center region and the cell boundary region based on the relative distance to two

nearest BSs. The intuition is that the SIR is mostly affected by the ratio of the

desired signal to the first-order interference. We study the SIR distribution of the

typical user in each region. We show a surprisingly simple relationship between the

SIR performance of the typical cell center user and that of the typical user in Poisson

networks: the top fraction x of users enjoy an SIR gain of −5α log10 x dB relative

to the typical user for the power-law path loss with the exponent α. For the cell

boundary users, both the exact form and approximation based on the asymptotic

SIR gain are given1.

The idea of grouping users and analyzing the corresponding performance applies

to general networks. In the case of heterogeneous networks, the transmission power,

BS density and load balancing can be integrated to the definition of cell regions.

1Part of this chapter has been presented at [40].
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3.1 Cell Partition

We define the region of a location u by how much closer u is to its serving BS

than to its nearest interfering BS following [29, 31]. Let Φ ⊂ R2 be an ergodic and

stationary BS point process and xi(u) ∈ Φ be the i-th nearest BS to u. For γ ∈ [0, 1]

and ρ = 1− γ

C1 , {u ∈ R2 : ‖u− x1(u)‖ ≤ ρ ‖u− x2(u)‖}

C2 , {u ∈ R2 : ρ ‖u− x2(u)‖ < ‖u− x1(u)‖}.
(3.1)

Here, C1 is referred to as the “cell center region” and C2 as the “cell boundary region”.

γ controls the area fraction of each region. γ = 0 is the case where C1 = R2 and

γ = 1 is the case where C2 = R2

Using the geometric partition, we can express the success probability as

F̄ (θ) =
2∑
i=1

P(SIR > θ | o ∈ Ci)P(o ∈ Ci). (3.2)

In the next section, we will study the success probability conditioned on the typical

user being in the two regions.

Let ri , ‖xi(o)‖ denote the distance of the i-th nearest BS to o. For any stationary

and ergodic BS point process, from (3.1),

P(o ∈ C1) = P
(r1

r2

≤ ρ
)
, P(o ∈ C2) = P

(r1

r2

> ρ
)
. (3.3)

3.2 Poisson Networks

Lemma 2. For a homogeneous Poisson point process in Rm with intensity λ,

P
( ri
ri+1

≤ x
)

= xmi, x ∈ [0, 1]. (3.4)
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Figure 3.1. The area fraction of both regions.

Proof.

P(ri/ri+1 ≤ x) = E[P(ri/ri+1 ≤ x | ri+1)]

= E[P(ri ≤ xri+1 | ri+1)]

(a)
= xmi.

Step (a) follows from the fact that conditioning on ri+1, the i points are independently

and uniform randomly distributed in the m-dimensional ball with radius ri+1. Thus,

the distance ratio ri/ri+1 is independent of the value of ri+1 for i ∈ N+.

Lemma 2 gives the area fraction of both regions in Poisson networks, i.e.,

P(o ∈ C1) = ρ2, P(o ∈ C2) = 1− ρ2. (3.5)

In the case when Φ is a lattice network, the calculation of the area fractions is

straightforward but the result is unwieldy. Fig. 4.2 shows the area fraction of each

region in Poisson networks and triangular networks as γ increases from 0 to 1.
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Note that from Lemma 2, the random variable ri/ri+1 is more likely to have a

value close to 1 as i increases. It is intuitive since the void probability depends on

the area of the annulus π(r2
i /x

2 − r2
i ), which depends on ri.

Lemma 3. For any PPP, the random variables r1/r2, r2/r3, ..., ri/ri+1, i ∈ N+ are

pairwise independent. i.e.,

f ri
ri+1

,
rj
rj+1

(x, y) = f ri
ri+1

(x)f rj
rj+1

(y), ∀i 6= j, i, j ∈ N+. (3.6)

Proof. It is sufficient to prove (3.6) for j = i+ 1 and j > i+ 1. For j = i+ 1,

P
( ri
ri+1

≤ x,
ri+1

ri+2

≤ y
)

= E
[
P
( ri
ri+1

≤ x,
ri+1

ri+2

≤ y
∣∣∣ ri+1

)]
(a)
= E

[
P
( ri
ri+1

≤ x
∣∣∣ ri+1

)
P
(ri+1

ri+2

≤ y
∣∣∣ ri+1

)]
(b)
= P

( ri
ri+1

≤ x
)
E
[
P
(ri+1

ri+2

≤ y
∣∣∣ ri+1

)]
= P

( ri
ri+1

≤ x
)
P
(ri+1

ri+2

≤ y
)

where (a) follows from the fact that for Poisson point processes, ri is independent of

ri+2 given ri+1. (b) follows from the independence of ri/ri+1 and ri+1 as established

in the proof of Lemma 2.

For i+ 1 < j,

P
( ri
ri+1

≤ x,
rj
rj+1

≤ y
)

= E
[
P
( ri
ri+1

≤ x,
rj
rj+1

≤ y
∣∣∣ ri+1, rj

)]
= E

[
P
( ri
ri+1

≤ x
∣∣∣ ri+1

)
P
( rj
rj+1

≤ y
∣∣∣ rj)]

= P
( ri
ri+1

≤ x
)
E
[
P
( rj
rj+1

≤ y
∣∣∣ rj)]

= P
( ri
ri+1

≤ x
)
P
( rj
rj+1

≤ y
)
.
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Lemma 3 is a key result that helps simply the analysis related to relative distances

in Poisson networks. Using the same technique, we can immediately show that r1/r2

is independent of r2/ri, for ∀i ≥ 2, i ∈ N+.

3.2.1 Cell Center Region

Theorem 1. For a homogeneous PPP, the success probability conditioned on the

typical user lying in C1 is

P(SIR > θ | o ∈ C1) = F̄PPP(θρα). (3.7)

In particular, for α = 4, we have

P(SIR > θ | o ∈ C1) =
1

1 + ρ2
√
θ arctan (ρ2

√
θ)
. (3.8)

Proof.

P(SIR > θ | o ∈ C1) = P(S > θI | o ∈ C1)

(a)
= E

[ ∞∏
i=2

1

1 + θ( r1
ri

)α
| o ∈ C1

]
= E

[ ∞∏
i=2

1

1 + θρα( r1/ρ
ri

)α
| o ∈ C1

]
(b)
= E

[ ∞∏
i=2

1

1 + θρα( r1
ri

)α

]
= F̄PPP(θρα),

where step (a) follows from the fact that for Rayleigh fading, P(h > x) = exp(−x)

and the Laplace transform Lh(s) , E[exp(−sh)] = 1/(1 + s). Step (b) is due to the

fact that the region C1 is equivalent to {r1/r2 < ρ} = {r1/ρ < r2}. Put differently,
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the probability law of r1/ρ, r2, ... conditioned on r1/r2 < ρ is the same as the law of

r1, r2, ... without conditioning. This can be shown by establishing that f r1
ρ

(x | r1
r2
≤

ρ) = fr1(x) in the following derivation and using the independence from Lemma 3.

P
(
r1 ≤ x | r1

r2

< ρ

)
=

P(r1 ≤ x, r1/r2 < ρ)

P
(
r1/r2 < ρ

)
=

∫ x
0

∫∞
u
ρ

4λπuv exp (−λπv2)dvdu

ρ2

= 1− exp

(
− λπx

2

ρ2

)
,

(3.9)

and the pdf

fr1

(
x | r1

r2

≤ ρ

)
=

2λπx

ρ2
exp

(
− λπx

2

ρ2

)
. (3.10)

Now

f r1
ρ

(x | r1/r2 ≤ ρ) = 2πλx exp(−λπx2) = fr1(x).

Remark 1. Theorem 1 shows the SIR gain (in dB) conditioned on the typical user

being in C1 is

G1 = −10 log10 ρ
α. (3.11)

(3.11) is remarkably simple and directly shows that the top fraction x = ρ2 of users

enjoy an SIR gain of −5α log10 x dB relative to the typical user. Here, the “top” users

are those with the highest distance ratio of the nearest interferer and the serving BS.

Fig. 3.2 shows the SIR gain G1 as a function of the area fraction of users in C1. For

instance, there are 31.5% of the users that enjoy an average gain of 10 dB over the

typical user, and 10% achieve a gain of 20 dB.

Remark 2. It is interesting to compare this result with the success probability of a
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Figure 3.2. The SIR gain (in dB) as a function of the area fraction of C1,
α = 4.

BS silencing scheme that mutes all the BSs within r1/ρ for the typical user, where

P(SIR > θ) =

∫ ∞
0

2πλx exp
(
− πλx2 −

∫ ∞
x
ρ

(
1− 1

1 + θ(x
t
)α
)
2πλtdt

)
dx

=
1

1− ρ−2 + ρ−2
2F1(1,−δ; 1− δ;−ραθ)

.

(3.12)

It is easy to show that (3.12) is smaller than (3.7) for any θ > 0 and ρ ∈ [0, 1]. This

is expected since muting the interfering BSs in r1/ρ does not affect the ratio of r1/ri

for ri > r1/ρ.

Corollary 1. The gain of the typical user being in C1 is the same as the gain when

all interferers are 1/ρ times more distant, i.e.,

r′i = ri/ρ, i > 1, (3.13)

or, equivalently, the interference power is ρα times smaller, i.e., I ′ = Iρα.
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Proof. Trivial.

Theorem 1 leads to the evaluation of the conditional success probability, denoted

by Ps(θ), and the SIR meta distribution [24] conditioned on the typical user being in

C1.

Corollary 2. The b-th moment of the conditional success probability conditioned on

the typical user lying in C1 is

E[Ps(θ)
b | o ∈ C1] =

1

2F1(b,−δ; 1− δ;−ραθ)
, b ∈ C. (3.14)

and the SIR meta distribution conditioned on the typical user lying in C1 satisfies

P(Ps(θ) > x | o ∈ C1) = P(Ps(ρ
αθ) > x), x ∈ [0, 1]. (3.15)

Proof.

E[Ps(θ)
b | o ∈ C1] = E

[ ∞∏
i=2

1

(1 + θ(r1/ri)α)b
| Φ, o ∈ C1

]
= E

[ ∞∏
i=2

1

(1 + ραθ(r1/ri)α)b
| Φ
]

=
1

2F1(b,−δ; 1− δ;−ραθ)
.

Since this holds for any b ∈ C, it holds for the SIR meta distribution [41].

Remark 3. (3.15) shows that for the same target reliability and percentile, the typical

user in C1 achieves an SIR that is ρ−α times higher than that of the typical user.
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(b) γ = 0.6.

Figure 3.3. The conditional success probability for the two regions, α = 4.
The curves for C1 (red circle) correspond to the curve for the typical user

(black) shifted by 3.876 dB and 15.92 dB, respectively.

3.2.2 Cell Boundary Region

Corollary 3. The success probability conditioned on the typical user being in C2 is

P(SIR > θ | o ∈ C2) =
F̄PPP(θ)− ρ2F̄PPP(θρα)

1− ρ2
(3.16)

Proof. Combining (3.2), P(o ∈ C2) = 1− ρ2 and the result in Theorem 1, we obtain

Corollary 3.

From (3.16) we notice that the horizontal gain within C2 is not constant but

depends on θ. Fig. 3.3 shows the success probability in the two regions plotted using

(3.7) and (3.16). The success probability of the typical user is the weighted average

of them.

Taking the limit ρ −→ 1 of (3.16) we obtain the success probability for the typical
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edge user, i.e., the typical user that lies on the edges of the Voronoi cells,

P(SIR > θ | x1(o) = x2(o))

=
1

2F1(1,−δ; 1− δ;−θ)
− θ

1− δ
2F1(2, 1− δ; 2− δ;−θ)
2F1(1,−δ; 1− δ;−θ)2

=
1

(1 + θ) 2F1(1,−δ; 1− δ;−θ)2

=
F̄PPP(θ)2

1 + θ
.

In contrast, for the typical vertex user [27], i.e., the user lying on the vertex of the

Voronoi cells,

P(SIR > θ | x1(o) = x2(o) = x3(o)) =
F̄PPP(θ)2

(1 + θ)2
.

There is an extra factor 1 + θ in the denominator due to the third equidistant BS.

We now calculate the asymptotic SIR gain (the SIR gain as θ → 0) of the users

in C2. Denote by G2 the asymptotic SIR gain of the users in C2 relative to the typical

user. Note that G2 ≤ 1. We can write the asymptotic form of the success probability

of the users in C2 as [22]

P(SIR > θ | o ∈ C2) ∼ F̄PPP(θ/G2), θ → 0, (3.17)

where

G2 =
MISRPPP

MISRC2
=

1− ρ2

1− ρα+2
. (3.18)

(3.18) follows from the the mean interference-to-signal ratio (MISR) of the typical

user MISRPPP = 2/(α− 2), and the MISR conditioned on the typical user being in
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Figure 3.4. The asymptotic SIR gain conditioned on the typical user being
in the two regions, α = 4.

C2 as

MISRC2 = E
[ ∞∑
i=2

(
r1

ri

)α
| o ∈ C2

]
= E

[(
r1

r2

)α
| o ∈ C2

](
1 + E

[ ∞∑
i=3

(
r2

ri

)α ])
=

2(1− ρα+2)

(α + 2)(1− ρ2)

(
1 +

4

α− 2

)
=

2(1− ρα+2)

(α− 2)(1− ρ2)
.

Fig. 3.4 shows the asymptotic SIR gains of the two types of users wrt γ.

Alternatively, we can express the asymptotic success probability using the success

probability of the typical edge user and the typical vertex user as baselines. Denote by

G2,e, G2,v the asymptotic gains compared to the typical edge user and the typical ver-

tex user. By combining the typical edge user MISRe = (α + 2)/(α− 2), and the typi-
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Figure 3.5. The success probability for the typical user in C2, α = 4. Three
approximation curves are plotted, based on the asymptotic SIR gain

compared to the typical user, the typical edge user and the typical vertex
user.

cal vertex user MISRv = 2α/(α− 2) [22], we haveG2,e = (α + 2)(1− ρ2)/(2(1− ρα+2)),

G2,v = α(1− ρ2)/(1− ρα+2) and

P(SIR > θ | o ∈ C2) ∼ F̄PPP(θ/G2)

∼ F̄PPP(θ/G2,e)
2

1 + θ/G2,e

∼ F̄PPP(θ/G2,v)2

(1 + θ/G2,v)2
, θ → 0.

(3.19)

Fig. 3.5 shows the success probability of the typical user in C2 and its approx-

imated forms using (3.19). Observe that for large γ, G2,typical provides a better

approximation, while for small γ, G2,edge provides a better approximation.
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3.2.3 Spectral Efficiency

We determine the spectral efficiency in units of nats/s/Hz in an interference-

limited scenario assuming rate adaption. The spectral efficiency is defined as

R , E[log(1 + SIR)] (3.20)

and has analytical form R =
∫∞

0
1/
(

2F1(1,−δ; 1− δ;−(et − 1))
)
dt [18][28].

Letting Ri , E
[

log(1 + SIR) | o ∈ Ci
]
, i = 1, 2, we have

R = R1P(o ∈ C1) +R2P(o ∈ C2). (3.21)

Corollary 4. The spectral efficiencies conditioned on the typical user being in C1 and

C2 are

R1 =

∫ ∞
0

1

2F1(1,−δ; 1− δ;−ρα(et − 1))
dt, (3.22)

and

R2 =
1

1− ρ2

(
R− ρ2R1

)
. (3.23)

Proof.

R1 = E
[

log(1 + SIR) | o ∈ C1

]
=

∫ ∞
0

P(log(1 + SIR) > t | o ∈ C1)dt

=

∫ ∞
0

P(SIR > et − 1 | o ∈ C1)dt

=

∫ ∞
0

1

2F1(1,−δ; 1− δ;−ρα(et − 1))
dt.

(3.24)

The second part is trivial.

Fig. 3.6 shows the spectral efficiency conditioned on the typical user being in each

region in bits/s/Hz. For instance, when α = 4 and γ = 0.4, R1 ≈ 4.2 bits/s/Hz, so
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Figure 3.6. The spectral efficiency conditioned on the typical user being in
the two regions in comparison with that of the typical user R = 2.163

bits/s/Hz (the black line), α = 4.

36% of the users achieve almost double of R as a result of good locations. In contrast,

the other 64% achieve only R2 ≈ 0.995 bits/s/Hz, which is less than half of R as a

result of bad locations. R1 approaches infinity as γ → 1 due to the singularity of the

power-law path loss function.

3.3 Lattice Networks

In this section, we study the success probability and the asymptotic SIR gain of

the cell center region defined in (4.28) in triangular lattice networks. Fig. 3.7 shows

the simulated result of the success probability in C1 with different γ. Fig. 3.8 shows

the asymptotic SIR gain G1 in Poisson networks and triangular lattice networks. The

former is plotted using (3.11), and the latter using simulation results evaluated at

ps(θ) = 0.95 with the success probability of the typical user in triangular lattices as
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Figure 3.7. The success probability for the typical user in C1 in triangular
lattice networks for γ = 0, 0.1, ..., 0.9, α = 4.

the baseline. The latter is smaller since a user is more likely to have other nearby

interfering BSs when fixing the distance ratio between the nearest two BSs.

3.4 Multi-Tier Networks

In this section, we extend our definition of “cell regions” for K-tier networks

Φ =
⋃K
i=1 Φi, where the i-th tier is modelled using a stationary and ergodic point

process Φi ⊂ R2, 1 ≤ i ≤ K.

Assume that BSs at the i-th tier transmits with power Pi, 1 ≤ i ≤ K. For a

user u, let xi(u) be its i-th strongest BS and v(xi(u)) be the index of the tier xi(u)

belongs to, i.e.,

xi(u) ∈ Φv(xi(u)). (3.25)
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Figure 3.8. The asymptotic SIR gain in the cell center region in Poisson
networks and triangular lattice networks, α = 4.

We have

‖xi(u)− u‖
P

1/α
v(xi(u))

≤ ‖xj(u)− u‖
P

1/α
v(xj(u))

, i ≤ j. (3.26)

We define

C1 ,
{
u ∈ R2 :

‖x1(u)− u‖
P

1/α
v(x1(u))

≤ ρ
‖x2(u)− u‖
P

1/α
v(x2(u))

}
C2 ,

{
u ∈ R2 : ρ

‖x2(u)− u‖
P

1/α
v(x2(u))

<
‖x1(u)− u‖
P

1/α
v(x1(u))

}
,

(3.27)

as the “virtual” cell centers and cell boundaries since it is not only distance-based.

K = 1 retrieves the single-tier case where the regions are defined based on the

distances only.
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CHAPTER 4

LOCATION-DEPENDENT BASE STATION COOPERATION

The previous analysis shows the disparity in the SIR between different geometric

regions. In this chapter, we will exploit the location-dependence of the SIR in BS

cooperation schemes where extra resources are allocated to users who need them.

Specifically, we focus on joint transmission schemes which turn a set of interfering BSs

into cooperating BSs that jointly serve users. Intuitively, turning distant interfering

BSs into cooperating BSs would result in inefficient utilization of BS resources (by

adding to the cell load), higher computational effort, and extensive backhaul data

exchange, since distant BSs have little impact on either the desired signals or the

interference. Hence, cooperating BSs should be limited to those close to the user.

From the geometric perspective, users near the Voronoi vertices suffer from strong

interference from (at least) two nearby BSs and users near the Voronoi edge suffer

from strong interference from (at least) one nearby BS. Extending our definition in

Chapter 3, we partition the cells into three regions: the cell center region, the cell

edge region, and the cell corner region, based on the relative distances of three nearest

BSs. We study the scheme where users in the above regions receive non-coherent joint

transmission from one, two, and three nearest BSs, respectively. As such, the scheme

primarily helps users with bad locations. The area fraction of each region is tuned

by the cooperation level γ ∈ [0, 1].

We analyze the performance of the success probability, the asymptotic SIR gain

and the conditional success probability. In particular, the variance of the conditional

success probability is studied which serves as a criterion of user fairness in the SIR.
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To further evaluate the effectiveness of the scheme under cell load constraints, we

study the normalized spectral efficiency, defined as the spectral efficiency normalized

by the number of cooperating BSs. We show that the asymptotic SIR gain has a

derivative α at γ = 0 and 0 at γ = 1, respectively. The user fairness and normalized

spectral efficiency both increase first and then decrease with γ. The optimum relia-

bility performance is essentially achieved at γ ≈ 0.4, where the normalized spectral

efficiency is decreased by only about 3.4% when α = 4.

4.1 BS Cooperation Scheme

4.1.1 Cell Regions and Cooperation Set

(a) γ = 0.2. (b) γ = 0.5.

Figure 4.1. Illustration of the partition when the BSs follow a PPP with
intensity λ = 1 for γ = 0.2 and γ = 0.5. The window is [−5, 5]2. Blue

circles denote points generated from the PPP. Red lines are the edges of
the associated Voronoi cells. Blank, green and blue regions denote the cell

center region C1, the cell edge region C2, and the cell corner region C3,
respectively.
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Let xi(u) ∈ Φ denote the i-th nearest BS in the point process to u. For γ ∈ [0, 1]

and ρ = 1− γ we define

C1 , {u ∈ R2 : ‖u− x1(u)‖ ≤ ρ ‖u− x2(u)‖}

C2 , {u ∈ R2 : ρ ‖u− x2(u)‖ < ‖u− x1(u)‖ , ‖u− x1(u)‖ ≤ ρ ‖u− x3(u)‖}

C3 , {u ∈ R2 : ‖u− x1(u)‖ > ρ ‖u− x3(u)‖}.

(4.1)

With a slight abuse of notation (C2 is referred to as “the cell boundary region” in

Chapter 3), we refer to C1, C2, C3 as “the cell center region”, “the cell edge region”,

“the cell corner region” respectively. Users within C1, C2, C3 are referred to as “the

cell center users”, “the cell edge users”, and “the cell corner users”, respectively. The

boundaries of each region Ci are formed by the union of circular arcs, where for each

arc, the two nearest points of Φ are the same and their distance ratio to a point of

the arc is ρ.

We define the cooperation set S to be

S ,


{x1(u)}, u ∈ C1

{x1(u), x2(u)}, u ∈ C2

{x1(u), x2(u), x3(u)}, u ∈ C3.

(4.2)

In other words, a user in Ci is jointly served by i BSs since it is relatively close to i

BSs.

γ is referred to as the cooperation level since the area fraction of C2

⋃
C3 increases

monotonically with γ. γ = 0 results in C1 = R2 (no cooperation), and γ = 1 results in

C3 = R2 \Φ. The special cases γ ∈ {0, 1} for the Poisson network have been analyzed

in [18, 24] and [25, 34], respectively.
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4.1.2 System Model

We consider the non-coherent joint transmission scheme to minimize the con-

straints on CSI. We focus on the typical user located at the origin o, where the

desired signal comes from BSs in the defined cooperation sets and the interference

comes from the other BSs. The SIR at the typical user is

SIR =

∣∣∣∑x∈S hx‖x‖
−α/2

∣∣∣2
I

with

I ,
∑
x∈Φ\S

|hx|2‖x‖−α.

Here, (hx)x∈Φ are iid random variables modelling Rayleigh fading, and α denotes the

power-law path loss exponent.

4.2 Poisson Networks

We study the performance of the scheme in Poisson networks, where Φ ⊂ R2 is

a PPP with intensity λ. Let ri = ‖xi(o)‖ be the distance from the origin to its i-th

nearest BS as defined before. The joint distribution of r1, r2 and r3 is [28]

fr1,r2,r3(x, y, z) = (2λπ)3xyz exp (−λπz2), 0 ≤ x ≤ y ≤ z. (4.3)

The area fraction of each region depends on γ and is equal to the probability that

the origin falls into each region:

P(o ∈ C1) = (1− γ)2, P(o ∈ C2) = γ(1− γ)2(2− γ), P(o ∈ C3) = γ2(2− γ)2.

(4.4)

Fig. 4.2 shows the area fraction of the three regions as γ increases from 0 to 1.
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Figure 4.2. The area fraction of the three regions for Poisson networks per
(4.4).

Theorem 2. The asymptotic SIR gain of the proposed BS cooperation scheme in

Poisson networks is

G =
2

(α + 2)E
[
( r1
r2

)α1C1

]
+ (α + 4)E

[
(r1/r3)α

1+(r1/r2)α
1C2

]
+ 6E

[
(r1/r3)α

1+(r1/r2)α+(r1/r3)α
1C3

] .
(4.5)

For α = 4, we have

G =
(
ρ6 + ρ8

( 2

ρ2
− π

2
+ 2 arctan ρ2 − 2

)
+ 3

∫ ∞
0

∫ x
ρ

x

∫ ∞
x
ρ

8xyz−3e−z
2

x−4 + y−4 + z−4
dzdydx

)−1

.

(4.6)

Proof. The asymptotic SIR gain G can be expressed as

G =
MISRPPP

MISRγ

.
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The MISR of the 2D PPP without cooperation is MISRPPP = 2/(α− 2) [22], and

MISRγ = MISRC1 + MISRC2 + MISRC3 ,

where MISRCi denotes the MISR within Ci. For C1, we have

MISRC1 =
∑
i>1

E
[(r1

ri

)α
1C1

]
(a)
= E

[(r1

r2

)α
1C1

]∑
i>1

E
[(r2

ri

)α]
,

where step (a) follows from the fact that only the first term in MISRC1 is constrained

by the cooperation region by Lemma 3. It can be calculated using the joint distribu-

tion of r1 and r2 as

E
[(r1

r2

)α
1C1

]
=

∫ ∞
0

∫ ∞
x
ρ

fr1,r2(x, y)
(r1

r2

)α
dydx

= ρα+2.

The second term can be calculated by considering the relative distance process [3]

∑
i>1

E
[(r2

ri

)α]
= 1 +

4

α− 2
.

Similarly, we obtain the MISR in C2 and C3 as

MISRC2 =
∑
i>2

E
[ r−αi
r−α1 + r−α2

1C2

]
(4.7)

= E
[ (r1/r3)α

1 + (r1/r2)α
1C2

]∑
i>2

E
[(r3

ri

)α]
,

where ∑
i>2

E
[(r3

ri

)α]
= 1 +

6

α− 2
,
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and

MISRC3 =
∑
i>3

E
[ r−αi
r−α1 + r−α2 + r−α3

1C3

]
= E

[ (r1/r3)α

1 + (r1/r2)α + (r1/r3)α
1C3

]∑
i>3

E
[(r3

ri

)α]
(4.8)

=

∫ ∞
0

∫ x
ρ

x

∫ ∞
x
ρ

8xyz1−αe−z
2

x−α + y−α + z−α
dzdydx

∑
i>3

E
[(r3

ri

)α]
, (4.9)

where ∑
i>3

E
[(r3

ri

)α]
=

6

α− 2
.

We obtain the expression for G as in (4.5).
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Figure 4.3. The asymptotic gain G (in dB) using (4.5).
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We next investigate the derivative of the asymptotic SIR gain.

Corollary 5 (Derivative at γ = 0 and γ = 1). The asymptotic SIR gain G satisfies

∂G

∂γ

∣∣∣
γ=0

= α,
∂G

∂γ

∣∣∣
γ=1

= 0. (4.10)

Proof. For a general α we express G as G = (G1 +G2 +G3)−1, where

G1 = (α + 2)E
[(r1

r2

)α
1C1

]
= ρα+2, (4.11)

G2 =
α + 4

2
E
[ (r1/r3)α

1 + (r1/r2)α
1C2

]
=
α + 4

2

∫ ∞
0

∫ x
ρ

x

∫ ∞
x
ρ

8xyze−z
2 z−α

x−α + y−α
dzdydx,

(4.12)

G3 = 3E
[ (r1/r3)α

1 + (r1/r2)α + (r1/r3)α
1C3

]
= 3

∫ ∞
0

∫ x
ρ

x

∫ ∞
x
ρ

8xyze−z
2 z−α

x−α + y−α + z−α
dzdydx.

(4.13)

Now

∂G

∂ρ
= −G2

(∂G1

∂ρ
+
∂G2

∂ρ
+
∂G3

∂ρ

)
,

where

∂G1

∂ρ
= (α + 2)ρα+1, (4.14)

∂G2

∂ρ
=
−4ρ1+α

1 + ρα
+
ρα−3(α + 4)

2

∫ ∞
0

∫ x
ρ

x

x3e
−x

2

ρ2
8y

1 + (x/y)α
dydx, (4.15)
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and

∂G3

∂ρ
= −3ρα−3

∫ ∞
0

∫ x
ρ

x

x3ye
−x

2

ρ2
8

1 + ρα + (x/y)α
dydx. (4.16)

By taking the limit we obtain

∂G

∂γ

∣∣∣
γ=0

= − lim
ρ→1

∂G

∂ρ
= α, (4.17)

and

∂G

∂γ

∣∣∣
γ=1

= − lim
ρ→0

∂G

∂ρ
= 0. (4.18)

This result shows that the asymptotic gain from γ = 0 increases with slope α and

saturates at γ = 1. Fig. 4.3 shows the asymptotic SIR gain as γ increases from 0 to

1. When the path loss exponent α grows large, the transmission scenario approaches

the point-to-point transmission scenario where the interference is negligible—the in-

terference free scenario. In this case, the network is no longer interference-limited

and the effect of noise needs to be considered.

4.2.1 Conditional Success Probability

Lemma 4. The conditional success probability for the proposed scheme is

Ps(θ) =



∏∞
i=2

1
1+θr−αi /r−α1

, o ∈ C1∏∞
i=3

1
1+θr−αi /(r−α1 +r−α2 )

, o ∈ C2∏∞
i=4

1
1+θr−αi /(r−α1 +r−α2 +r−α3 )

, o ∈ C3

(4.19)
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Proof. For o ∈ C1, the typical user is associated with the nearest BS only, hence

Ps(θ) = P
(
g1r
−α
1 > θ

∞∑
i=2

gir
−α
i

)
(a)
= E

[
exp

(
− θ

∞∑
i=2

gir
−α
i /r−α1

)]
(b)
= E

[ ∞∏
i=2

exp(−θgir−αi /r−α1 )

]
=
∞∏
i=2

1

1 + θr−αi /r−α1

.

(4.20)

Step (a) follows the exponential distribution of the fading power. Step (b) follows

from the independence of fading coefficients.

For o ∈ C2, the typical user receives the non-coherent joint transmission from two

nearest BSs, and thus

Ps(θ) = P
(
|h1r

−α/2
1 + h2r

−α/2
2 |2 > θ

∞∑
i=3

gir
−α
i

)
(a)
= E

[ ∞∏
i=3

exp(−θgir−αi /(r−α1 + r−α2 ))

]
=
∞∏
i=3

1

1 + θr−αi /(r−α1 + r−α2 )
.

(4.21)

Step (a) follows from the fact that |h1r
−α/2
1 + h2r

−α/2
2 |2 is exponentially distributed

with mean r−α1 + r−α2 .

The proof of o ∈ C3 is parallel to that of o ∈ C2.
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4.2.2 Moments
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(a) M1(θ) for 0 ≤ γ ≤ 0.4.
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(b) M1(θ) for 0.4 ≤ γ ≤ 1.
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(c) M2(θ)−M1(θ)
2 for 0 ≤ γ ≤ 0.4.
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Figure 4.4. The mean M1(θ) and variance M2(θ)−M1(θ)2 of the
conditional success probability with cooperation level γ = 0 to γ = 1,

α = 4.
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Theorem 3. The b-th moment of the conditional success probability of the typical

user of the proposed scheme in Poisson networks is

Mb =
ρ2

2F1(b,−δ; 1− δ,−ραθ)

+

∫ ∞
0

∫ x
ρ2

x

∫ ∞
x
ρ2

exp

(
− zFb

((z
x

) 1
δ

+
(z
y

) 1
δ

))(
1 +

θ

( z
y
)
1
δ + ( z

x
)
1
δ

)−b
dzdydx

+

∫ ∞
0

∫ x
ρ2

x

∫ x
ρ2

y

exp

(
− zFb

(
1 +

(z
x

) 1
δ

+
(z
y

) 1
δ

))
dzdydx, b ∈ C,

(4.22)

where Fb(x) = 2F1(b,−δ; 1− δ;−θ/x).

Proof.

Mb = E[Ps(θ)
b] =

3∑
i=1

E[Ps(θ)
b
1Ci ]. (4.23)

For C1, we know from Chapter 3 that E[Ps(θ)
b
1C1 ] = ρ2/2F1(b,−δ; 1− δ,−ραθ). For

C2,

E[Ps(θ)
b
1C2 ] = E[

∞∏
k=3

(
1

1 + θr−αk /(r−α1 + r−α2 )

)b
1C2 ] (4.24)

(a)
=

∞∫
0

x
ρ∫

x

∞∫
x
ρ

fr1,r2,r3(x, y, z)

(1 + sz−α)b
exp

(
−
∫ ∞
z

(
1− (1 + st−α)−b

)
2πλtdt

)
dzdydx

(b)
=

∞∫
0

x
ρ2∫
x

∞∫
x
ρ2

exp(−z)

(1 + sz−α/2)b
exp

(
−
∫ ∞
z

(
1− (1 + st−α/2)−b

)
dt
)

dzdydx

(c)
=

∞∫
0

x
ρ2∫
x

∞∫
x
ρ2

exp
(
− z 2F1

(
b,−δ, 1− δ,− s

zα

))
(1 + sz−1)−1dzdydx.

Step (a) follows from letting s = θ/(x−α + y−α). Step (b) follows from changing
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variables 2πλx2, 2πλy2, 2πλz2, 2πλt2 to x, y, z, t. Step (c) follows from changing vari-

able tα/2 to t and
∫∞
r

(1−1/(1 + sx−1)b)xδ−1dx = rδ(−1 + 2F1(b,−δ, 1− δ,−s/r))/δ.

E[Ps(θ)
b
1C3 ] can be derived by changing the integration region and s.

We focus on the mean and variance of Ps(θ), namely M1 and M2 −M2
1 . Fig. 4.4

shows the success probability and the variance as a function of θ from γ = 0 to γ = 1.

For 0 ≤ γ ≤ 0.4, the maximal variance is monotonically decreasing when θ is

small, and is maximized when the success probability is around ps(θ) = 0.35. For

γ ≥ 0.4, the maximal variance starts monotonically increasing. So the minimal

maximal variance is achieved when γ = 0.4. For 0 ≤ γ ≤ 0.4, the variance when

θ > 10 dB is essentially the same. For γ ≥ 0.4, the variance when θ < 0 dB is

essentially the same.

For γ = 1, the results coincide with the proposed scheme in [25], where all users

are served by a fixed number of cooperating BSs. It is shown in [25] that such

user-independent BS cooperation increases the unfairness (variance).

Remark 4. For small θ, the main reason not to succeed is bad fading (fading defines

the asymptotic slope of the success probability as θ → 0). The secondary reason

is bad location. Cooperation helps with both, but it makes less of a difference for

users in a good location—users near the cell center almost all succeed anyway, even

without cooperation. Hence for small θ, M1 does not change anymore once γ > 0.4.

Similarly, for the variance, all users who need help are receiving it at γ < 0.4. For

larger γ, there is a negligible improvement for most users, hence no further reduction

in variance.

For large θ, the main reason to succeed is good location (proximity to the serving

BS defines the asymptotic slope as θ →∞). Those users who are quite close to their

BS but not extremely close will benefit from cooperation, which means that γ needs

to be fairly large (> 0.4) to make a difference in M1. Conversely, users who get

cooperation for γ < 0.4 are in such bad location that they cannot succeed at high θ.
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Similarly, for the variance, for γ < 0.4 there is no impact since no user switches from

not succeeding to succeeding. For γ > 0.4, the users in almost-great locations start to

benefit from cooperation (while those in bad locations still do not), which widens the

gap between the two, increasing the variance. This is the regime where “the rich get

richer”.

4.2.3 Normalized Spectral Efficiency

The normalized spectral efficiency in units of nats/s/Hz/BS is defined as

R , E
[

1

N
log(1 + SIR)

]
(4.25)

where N = |S| is a random variable that depends on the region the typical user falls

in. This normalization allows the evaluation of the benefits of cooperation under the

constraint of the number of resource blocks a user can occupy.

As shown in the simulation results in Fig. 4.5 (with 100,000 user locations), the

ergodic normalized spectral efficiency (in units of bits/s/Hz/BS) increases slightly

and then decreases wrt γ. Observe that the same normalized spectral efficiency is

guaranteed when γ = 0 and γ ≈ 0.28. As a result, γ ∈ [0, 0.28] is the range of the

cooperation level that improves the typical link quality without lowering the overall

throughput. For γ = 0.4, R ≈ 2.075 bits/s/Hz/BS, which is about only 3.4% of

decrease compared to R = 2.149 bits/s/Hz/BS at γ = 0.

4.3 Lattice Networks

In this section, we apply the scheme to two single-tier lattice networks, namely

square lattice and triangular lattice networks. Lattice networks are generally less

tractable but they provide upper bounds on the network performance due to the opti-

mistic assumption of BS deployment. Here, we confine our analysis to the asymptotic
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Figure 4.5. The normalized spectral efficiency via simulation, α = 4.

SIR gain and make a comparison between Poisson and lattice networks.
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(a) Square lattice (b) Triangular lattice

Figure 4.6. The cooperation regions in a square lattice and a triangular
lattice network when γ = 0.5. Only one cell is colored since all cells are

shifted version of each other. Red crosses and red lines denote BSs and the
edges of the associated Voronoi cells in the lattice. Blank, green and blue

regions denote C1, C2 and C3 respectively.
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(a) Square lattice
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(b) Triangular lattice

Figure 4.7. The area fractions of the three regions for square and triangular
lattices.

The area fraction of the three regions in lattice networks can be analytically

calculated thanks to its rigid structure. The boundaries of each region Ci are formed

by the union of circular arcs, where for each arc, the distance ratio from a point of

the arc to its two nearest points is ρ. Note that all the arcs have the same radius and

angle depending on γ, as shown in Fig. 4.6. Fig. 4.7 shows the area fraction of each

region as γ increases from 0 to 1.

In Fig. 4.8, we compare the asymptotic gain in Poisson networks and lattice

networks. The horizontal shift in the lattice cases are approximated using G̃ps=0.95,

i.e., the horizontal SIR shift of the simulated success probability evaluated at ps =

0.95. The simulation is performed with 100,000 user locations. The SIR gap at γ = 0

is the inherent deployment gain between Poisson and lattice networks (3 dB and 3.4

dB respectively [22]). All three curves increase almost linearly at the beginning and

tend to saturate around γ = 0.6. The comparison reveals the similarity of the SIR

gain patterns due to BS cooperation in different network structures.
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Figure 4.8. The comparison of the asymptotic SIR gain in Poisson
networks and lattice networks, α = 4.

4.4 Multi-Tier Networks

Multi-tier networks characterize the BS deployment where BSs at different layers

have different transmission powers, spatial densities, maximum load, etc. We study

a K-tier network Φ =
⋃K
i=1 Φi, where the i-th tier is modelled using a stationary

and ergodic point process Φi ⊂ R2, 1 ≤ i ≤ K. We modify our definition of “cell

regions” by including the power of each tier. To simplify the analysis, we will limit

our partition to three types of users with the maximum number of cooperating BSs

being three as before.
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4.4.1 Cell Regions and Cooperation Set

Assume BSs at the i-th tier transmits with power Pi, 1 ≤ i ≤ K. For a user at

location u, let xi(u) be its i-th strongest BS and v(xi(u)) be the index of the tier

xi(u) belongs to, i.e.,

xi(u) ∈ Φv(xi(u)). (4.26)

We have

‖xi(u)− u‖
P

1/α
v(xi(u))

≤ ‖xj(u)− u‖
P

1/α
v(xj(u))

, i ≤ j. (4.27)

Letting ρ = 1− γ we define

C1 ,
{
u ∈ R2 :

‖x1(u)− u‖
P

1/α
v(x1(u))

≤ ρ
‖x2(u)− u‖
P

1/α
v(x2(u))

}
C2 ,

{
u ∈ R2 : ρ

‖x2(u)− u‖
P

1/α
v(x2(u))

<
‖x1(u)− u‖
P

1/α
v(x1(u))

,
‖x1(u)− u‖
P

1/α
v(x1(u))

≤ ρ
‖x3(u)− u‖
P

1/α
v(x3(u))

}
C3 ,

{
u ∈ R2 :

‖x1(u)− u‖
P

1/α
v(x1(u))

> ρ
‖x3(u)− u‖
P

1/α
v(x3(u))

}
.

(4.28)

For a cooperation level γ we partition the plane into three regions based on the

relative average received signal strength to the three strongest BSs. The order is

determined jointly by the power and distance of the BSs. Intuitively, each user has

a list of potential serving BSs in the network that have descending average channel

quality. A user within C1 receives a much stronger signal from its serving BS than

from all the interfering ones; a user within C2 receives signals of similar strength from

two strongest BSs and much weaker signals from the interfering ones; C3 is defined

analogously. The cooperation scheme is that a user receiving similar signal strength

from i BSs is jointly served by i BSs. γ defines “similarity” in a rigorous way.

K = 1 is the single-tier case where the regions are defined based on the distances

only.
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4.4.2 Homogeneous Independent Poisson Networks

The homogeneous independent Poisson (HIP) model [22, Def. 2] is a K-tier

network, where the i-th tier BSs are modeled as a homogeneous PPP Φi ⊂ R2 with

intensity λi and transmit with power Pi. The independence between Φis is assumed.

We focus on the typical user at the origin o. Let Ξ =
⋃K
i=1{‖x‖

α /Pv(x)}, we obtain

the distance process (DP)—a non-homogeneous PPP on R+. Its intensity function

is

λ(t) =
K∑
i=1

λiπδPit
δ−1, t ∈ R+, (4.29)

where δ = 2/α. Arranging the elements in Ξ in ascending order, we have ξi =

‖xi(o)‖α /Pv(xi(o)) where ξ1 < ξ2 < .... Note that ξ−1
i is the average received signal

power from the i-th strongest BS.

The joint distribution of ξ1 < ξ2 < ξ3 is given by [34] as

fξ1,ξ2,ξ3(x, y, z) = (λeqπδ)
3 exp (−λeqπz

δ)(xyz)δ−1, 0 ≤ x ≤ y ≤ z, (4.30)

where λeq =
∑K

i=1 λiP
δ
i .

The success probability is independent of the number of network tiers K and the

power level Pi in each tier [34], so is the meta distribution [42]. The evaluation of

the metrics of interest is omitted, since this generalization to multi-tier networks is

but a redefinition of the three regions.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

In this thesis, we develop a location-dependent SIR analysis based on cell regions

in cellular networks. The definition of “the cell edge region” (“the cell corner re-

gion”) is based on the relative distances between the nearest two (three) BSs. We

show that in Poisson networks, the top fraction x of users enjoy an SIR gain of

−5α log10 x dB relative to the typical user. To mitigate the interference, we propose

a location-dependent BS cooperation scheme that primarily helps users in bad loca-

tions. The cooperation level γ is introduced to tune the area fraction of cell regions,

which gives the room for optimization. By defining the three regions where users

get served by one, two, and three nearest BSs, the reliability performance can be

improved without sacrificing spectral efficiency. In fact, there is a regime of γ where

both can be improved. The optimum reliability performance is achieved at γ ≈ 0.4,

where the normalized spectral efficiency is decreased only about 3.4%. BS cooper-

ation with γ beyond the optimum level will essentially not improve the reliability

performance but increase the cell load. Therefore, BS cooperation should focus on

users in disadvantaged locations.

This work permits many potential extensions. For instance, in this thesis we

consider a special case of heterogeneous networks. It can be extended to BS models

where the repulsion within each tier and dependence between tiers are considered.

The proposed definition of cell regions can be applied in the scenario of handover

to avoid frequent handovers in dense networks—mobile users in the cell corner re-

gion may not need switch even if the serving BS is not the nearest (strongest) one.
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This work can be combined with user distributions to facilitate the analysis of intra-

cell/inter-cell multi-user scheduling and interference management in the uplink. The

proposed framework can also be used in interference coordination for non-orthogonal

multiple access (NOMA) transmission techniques. Lastly, it would be interesting to

explore the similarities and differences between the notion of top users in the cell

center region and that of the SIR meta distribution.
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