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SPATIAL ANALYSIS OF CELLULAR NETWORKS: META DISTRIBUTIONS,

COOPERATION, AND JOINT GEOMETRIC MODELING

Abstract

by

Ke Feng

This dissertation takes a probabilistic approach to analyze cellular networks, with

an emphasis on the spatial aspect. This approach is substantiated by the increasingly

dense and irregular deployment of base stations as well as the need for tractability for

advanced network analysis. For instance, in recent developments, the ultra-reliable

and low-latency communications (URLLC) is introduced as a keystone to support

mission-critical applications; there is also a shift of emphasis from the average/peak

performance to a seamless user experience. These developments require guaranteed

performance at the link level under varied propagation conditions, interference, and

so on. To model these variations, the framework of stochastic geometry is developed,

with the primary goal of refining the network analysis to the link level. Previously,

network metrics are often analyzed in ways that obscure the effects of multiple sources

of spatial and temporal randomness. An important example is the success probability,

defined through the distribution of the signal-to-interference-plus-noise ratio (SINR).

The SINR is subject to randomness both temporally and spatially, including the

small-scale fading and the large-scale propagation loss. Distinguishing their effects is

a crucial step towards the analysis of next-generation networks.

The dissertation consists of three parts. In the first part, we study the SINR

meta distribution, which defines the individual link reliability by first conditioning
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on the spatial locations of base stations. Exploiting the independence between the

small-scale fading and large-scale path loss, we derive the separability of the meta

distributions for arbitrary fading. In the second part, we quantify the performance

gap between the typical user and the cell edge users; then we investigate cooperative

transmissions to improve the performance of the latter. The last part focuses on

the correlation between the irregular base station deployment and the large-scale

propagation conditions. We show that properly accounting for this correlation reveals

a critical deployment gain over models that ignore the dependence.
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CHAPTER 1

INTRODUCTION

1.1 Spatial Analysis of Wireless Networks

Wireless signals propagating in space are subject to fading at the large and small

scales, and they interfere with each other when using the same channel. These ba-

sic characteristics inevitably lead to performance variation of wireless links across

space and time. While a probabilistic approach has long been used to characterize

small-scale fading and its effect on link reliability, only in the recent decades has

it become prevalent to characterize large-scale propagation and interference through

spatial modeling. The reason is that, with the evolution of network infrastructure,

any specific spatial configuration risks losing the generality of the conclusions from

which they are obtained; it also usually lacks tractability and prevents advanced

analysis. In contrast, a probabilistic approach to the spatial analysis of wireless net-

works has the advantages of (1) considering all possible spatial realizations (dictated

by the distribution of the spatial model), and (2) establishing a clear connection be-

tween the performance and assumptions through a few key system parameters. This

probabilistic approach falls into the framework of stochastic geometry, the study of

random spatial patterns.

1.1.1 A Brief History

One of the earliest works on spatial modeling of wireless networks is the work by

Gilbert [1]. Assuming communication devices are distributed in the two-dimensional
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space according to a Poisson point process (PPP) with a given density and each com-

municates within a range of radius R, this work studies what is the probability that a

device belongs to a connected component of size N . This models multi-hop wireless

networks where the characterization of wireless connectivity is simplified using a sin-

gle parameter R. It is further shown that there exists a critical threshold Rc above

which N →∞ is possible. Later this work is followed by research efforts both on the

theoretical side, e.g., stochastic geometry, random graphs, and percolation [2–5], and

their applications on communication/network engineering, e.g., connectivity, cover-

age, and delay in wireless networks such as cellular, ad hoc, and vehicular networks

[6–10]. In the past few decades, crisp analyses are obtained for emerging wireless

networks within the framework of stochastic geometry. One of the most successful

cases is cellular networks.

In cellular networks, each base station (BS) serves a set of users based on the

signal strengths, which largely depend on the large-scale path loss and shadowing.

The coverage region of a BS is referred to as its cell. Such a structure is naturally

characterized by the Voronoi tessellations (Definition 1.2). Traditionally, the hexag-

onal cellular structure is used despite its mathematical intractability. In [11], it is

proposed to model BSs and users as PPPs. In contrast to the hexagonal model, the

PPP captures the dense and irregular BS deployment of evolving cellular networks

while producing tractable results. Since then, key quantities such as the signal-to-

interference-plus-noise ratio (SINR), interference, rate, delay, area spectral efficiency

are studied via functionals of the Poisson point processes [12, 13]. The special case

of the worst-case users, usually users close to cell edges, is also investigated [14, 15].

It is shown both in experiments and analysis that there is a huge performance gap

between generally placed users and the cell-edge users. The framework also generalize

to multi-tier networks [14, 16] and general BS point processes [17–20]. We refer to

[10, 21, 22] for reviews of stochastic geometry modeling of cellular networks.
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1.1.2 Meta Distributions

An increasingly important characterization of wireless systems is the achievable

performance by almost all links at almost all times, not just a subset of links or peak

performance. This requires the evaluation of spatial and temporal randomness in (at

least) two separate steps, which is formalized by the notion of meta distributions in

[23–25]. For instance, a fundamental quantity that determines the link capacity is

the SINR, which is subject to the small-scale fading and the large-scale fading. The

reliability of a given link (i.e., fixed transceiver locations) refers to the probability

of the SINR exceeding a threshold under only the small-scale fading, which varies

significantly over short distances/time (depending on the wavelength of the signal),

whereas the large-scale fading is considered static at fixed locations. The SINR meta

distribution is the distribution of the link reliability, which gives the fraction of links

in the network that achieve a target reliability x ∈ [0, 1] (for a given target SINR

threshold). However, the exact characterization of the SINR meta distribution is

difficult to obtain even in the case of Rayleigh fading. In Chapter 2, we obtain

the separability of the meta distributions by exploiting the independence between

the small and large-scale fading [26, 27]. The separability allows characterization of

tail performance for arbitrary fading statistics and is accurate in the high-reliability

scenarios.

1.1.3 Cooperation

The performance disparity between cell-center users and cell-edge users in cellu-

lar networks is long known yet rarely quantified in spatial models. In Chapter 3, we

quantify this disparity in Poisson cellular networks [28]. Further, a base station co-

operation scheme is investigated where multiple base stations jointly serve the same

user. Joint transmission schemes are known as the coordinated multipoint (CoMP)

techniques in the long-term evolution (LTE) and further developed in the fifth gen-
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eration (5G) specifications, to provide macro diversity to improve link reliability,

throughput, and mobility. In contrast to existing schemes, the proposed scheme acti-

vates cooperative transmission only if a user’s received signal strengths from nearby

base stations are relatively close. This policy translates to a geometric policy, where

geometric regions of cell centers, cell edges, and cell corners are defined. The coop-

erating BSs are Delaunay neighbors. We show that this scheme jointly improves the

cell edge performance and the uniformity of the user experience [29, 30].

1.1.4 Joint Spatial-Propagation Modeling

In cellular networks, base station deployment often correlates with the large-scale

propagation conditions for coverage. In particular, cellular operators deploy more

base stations in regions with severe signal decay, and vice versa, such that cell-edge

users can achieve sufficient signal strength. However, this correlation is ignored in

almost all prior theoretical works. In Chapter 4, we bridge this gap by studying a

joint spatial-propagation model. This model ascribes the irregular deployment of base

stations to an intelligent design by the operators, rather than to pure randomness.

We show that, even though the Poisson deployment is often considered pessimistic, it

achieves near-optimal coverage when the spatial-propagation correlation is accounted

for [31].

1.2 Preliminaries

Definition 1.1 (Spatial random point process). A spatial random point process is a

countable random set Φ = {x1, x2, ...} ⊂ Rd.

By using the random set formalism, we have implicitly assumed that the point

process is simple, i.e., no points are collocated. This assumption holds for the mod-

eling of BS locations in most cases. Alternatively, the random measure formalism is

useful for general point processes [7, Chapter 2].
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Definition 1.2 (Voronoi Tessellations). The Voronoi cell V (x) of a point x of a

general point process Φ ⊂ Rd consists of those locations of Rd whose distance to x is

not greater than their distance to any other point in Φ, i.e.,

V (x) , {u ∈ Rd : ‖x− u‖ ≤ ‖z − u‖, ∀z ∈ Φ}. (1.1)

Further, we require Φ to be locally finite, i.e., #{Φ ∩ B} < ∞ almost surely

if |B| < ∞, stationary, i.e., its distribution is translation-invariant, and ergodic,

i.e., spatial averages correspond to ensemble averages. We consider two points to

be neighbors if they share a boundary, i.e., if their Voronoi cells overlap in d − 1

dimension. The dual graph for the Voronoi tessellation corresponds to the Delaunay

triangulation, where two points are connected if they are neighbors. In R2, a Voronoi

edge contains locations equidistant to two points, and a Voronoi vertex is a location

equidistant to three points.

Definition 1.3 (Intensity measure). The intensity measure Λ of a point process

Φ ⊂ Rd is defined as

Λ(B) , E#{Φ ∩B}, (1.2)

where B is any Borel set in Rd.

For a stationary process, Λ(B) = λ|B|, where λ is the intensity of the point

process, and | · | is the Lebesgue measure in Rd.

Two classes of random point processes are of particular interest for BS modeling:

the homogeneous PPP and the stationary lattices. In general, the actual BS deploy-

ment falls somewhere between the PPP (completely random) and triangular lattices

(completely repulsive) [20]. As a result, these two are often used as references for

pessimistic deployment and optimistic deployment. The other difference is that the

PPP is tractable while metrics such as the SINR statistics for lattice networks are

obtained by simulations or analytical approximations.
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(a) Poisson-Voronoi cells. (b) Hexagonal cells.

Figure 1.1. Illustration of the Poisson-Voronoi tessellation and the
hexagonal cellular structure.

Definition 1.4 (Homogeneous PPP). The homogeneous PPP with intensity λ is a

point process in Rd such that

• for every compact set B, the number of points falling into B has a Poisson
distribution with mean λ|B|, where |B| is the Lebesgue measure of B.

• the numbers of points in disjoint bounded sets are independent random variables.

The intensity λ is the expected number of points of the process per unit area or

volume.

Fig. 1.1 shows a realization of the Poisson-Voronoi tessellation and the hexagonal

cellular structure.

Theorem 1.5 (Campbell’s Theorem for sums). Let Φ ⊂ Rd be a point process with

mean measure Λ, and let f : Rd → R be measurable. Then the sum

S =
∑
x∈Φ

f(x) (1.3)
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is a random variable with mean

ES =

∫
Rd
f(x)Λ(dx) (1.4)

provided the right hand side is finite.

Proof. See [7, Theorem 4.1].

For a stationary point process, ES = λ
∫
Rd f(x)dx.

Theorem 1.6 (Campbell’s Theorem for Poisson point process). Let Φ ⊂ Rd be a ho-

mogeneous Poisson point process with intensity λ, and let f : Rd → R be measurable.

Then the sum S =
∑

x∈Φ f(x) is absolutely convergent almost surely if and only if

∫
Rd

min(|f(x)|, 1)dx <∞. (1.5)

If it is, we have

E
(
etS
)

= exp

(
λ

∫
Rd

(
etf(x) − 1

)
dx

)
. (1.6)

Proof. See [7, Theorem 4.6].
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CHAPTER 2

META DISTRIBUTIONS

2.1 Introduction

Consider a cellular network where BS locations are modeled using a stationary

and ergodic point process Φ ⊂ R2. We focus on the SINR at the typical user, which

usually involves two different notions.

• Any arbitrary location can be considered as the typical location; a user placed
at that location becomes the typical user upon averaging over Φ.

• For an arbitrary stationary point process of users that is independent of Φ, the
performance of the typical user corresponds to the average performance of all
users.

Here, we adopt the former notion as it is sufficient for downlink analysis. Without

loss of generality, we assume that the typical user is located at the origin. Let x ∈ Φ

be the serving BS and Φ \ {x} be the set of interfering BSs. The SINR at the typical

user is

SINR ,
hx‖x‖−α∑

y∈Φ\{x} hy ‖y‖
−α + σ2

, (2.1)

where hx denotes the fading associated with BS x, ‖·‖−α denotes the path loss with

exponent α, and σ2 is the variance of the additive white Gaussian noise. Given the

BS locations, the SINR received at the typical user is subject to the randomness of

small-scale fading only. In this case, the reliability of the link for a target SINR of θ

is defined as

Ps(θ) , P(SINR > θ | Φ), θ > 0, (2.2)
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Figure 2.1. Histogram of Ps(θ) for θ = −5 dB in a Poisson cellular network
with iid Rayleigh fading, power-law path loss with α = 4, and σ2 = 0. The
mean reliability is 0.7769, indicated by the red dashed line. Approximately

58.2% of the links achieve θ = −5 dB with reliability above x = 0.7769.

which is referred to as the conditional success probability (CSP) interchangeably [23]

since it evaluates the probability of success conditioned on the BS point process. The

distribution of Ps(θ) depends on the distribution of Φ. The SINR meta distribution

(MD) is defined as [23, 24]

F̄Ps(θ, x) , P(Ps(θ) > x), x ∈ [0, 1], (2.3)

which is the CCDF of the conditional success probability. For any ergodic BS point

process, the SINR MD can be interpreted as the fraction of links (or the plane) that

achieves θ with reliability higher than x in any realization of the network. Generally,

F̄Ps(θ, x) monotonically decreases with θ and x, and F̄Ps(θ, 1) = 0.

Fig. 2.1 shows the histogram of the conditional success probability for θ = −5

dB in a Poisson network with iid Rayleigh fading, power-law path loss with exponent

α = 4, and σ2 = 0. In this example, approximately 58.2% of the links achieve θ = −5

9



dB with a reliability above x = 0.7769, which is the mean success probability defined

as

ps(θ) , P(SINR > θ), θ > 0. (2.4)

The mean success probability is extensively studied in the literature of wireless net-

works modeling using stochastic geometry. With the definitions in (2.2) and (2.4),

ps(θ) ≡ E[Ps(θ)]. (2.5)

2.2 Previous Work

For interference-limited networks, the signal-to-interference ratio (SIR) MD for

cellular networks with BS cooperation is analyzed in [32], with non-orthogonal multi-

ple access (NOMA) in [33], with offloading in [34, 35], and with power control in [36].

[37] studies the MD in the Poisson typical cell while [38, 39] provide approximations

of the MD for non-Poisson cellular networks. The MD for Poisson bipolar networks

is studied in [40] as a basis for the spatial outage capacity, defined as the maximum

density of concurrently active links that satisfy a certain outage constraint. Most of

the work mentioned above evaluate the MD based on simulations or approximations

due to the lack of efficient analytical methods. Numerical methods are proposed

in [41, 42] to calculate the MD based on the moments of the conditional success

probability, which are more tractable. We refer to [43, 44] for comprehensive reviews.

The moments of the conditional success probability in Poisson networks and an

exact integral expression for the MD are given in [23]. The authors in [38] study

the asymptotics of the moments as θ → 0 for general networks. They propose to

approximate the SIR MD for non-Poisson networks using the shifted version of the

MD for Poisson networks. However, only Rayleigh fading is studied in [23, 38].

The SINR MD can also be interpreted as the distribution of the link rate, given

10



that the transmission rate of each link is adjusted to achieve a target reliability x

[45]. Given the quest for ultra-reliable transmission in 5G and beyond communication

systems [46], the link-level reliability is expected to be higher than 1−10−5. It is thus

critical to explore the asymptotic behavior of the SINR MD in cellular networks as

x→ 1. Asymptotic analyses of the (mean) success probability show that, for general

2D stationary point processes under general independent and identically distributed

(iid) fading and power-law path loss, ps(θ) = Θ(θ−δ) as θ →∞ with δ , 2/α [18, 47–

49]. In comparison, here we focus on the asymptotics of the MD as θ → ∞ and as

x→ 1. Further, we exploit the connection between the link reliability, rate, and local

delay in the context of the MD.

2.3 System Model

Assume that the typical user is associated with its nearest BS, which provides

the strongest average signal. Let xi(o) denote the i-th nearest BS to the typical user

and hi the associated fading power, i ∈ N. Define ri , ‖xi(o)‖, the distance to xi(o).

The CSP is

Ps(θ) = P
(

h1r
−α
1∑∞

i=2 hir
−α
i + σ2

> θ
∣∣∣ Φ

)
. (2.6)

We first observe that for power-law path loss and arbitrary fading, the noise power σ2

and the BS density λ jointly impact the MD only through the network signal-to-noise

ratio (NSNR), defined as follows.

Definition 2.1 (Network Signal-to-Noise Ratio). The network signal-to-noise ratio

for a stationary BS point process with density λ is

η , λα/2/σ2. (2.7)
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2.4 General Networks

Let Φ0 be an arbitrary stationary point process of density 1. We assume that the

BS locations are modeled by Φ = Φ0/
√
λ, where λ > 0 is the density of Φ.1

Lemma 2.2. For the baseline model, the SINR MD depends on λ and σ2 only through

the NSNR. Equivalently, if the bandwidth (and thus the noise power) is doubled, the

BS density needs to be increased by a factor 22/α to maintain the same performance.

Proof. Let us write

Ps(θ) = P
(
h1 > θ

(
rα1

∞∑
i=2

hir
−α
i + rα1 σ

2

) ∣∣∣ Φ

)
. (2.8)

For any fading distribution, rα1
∑∞

i=2 hir
−α
i does not depend on either λ or σ, since

{ri}∞i=1 is scaled by the same factor 1/
√
λ. The distribution of the random variable

rα1 σ
2 depends on η = λα/2/σ2.

We observe that densifying the network has the same effect as reducing the noise

power. In the ultradense case, as η → ∞, the network becomes noise-free—as if

σ2 → 0. Conversely, when η → 0, the network is interference-free, but the SINR

decays to 0. Lemma 1 shows that two networks that differ only in the BS density

and noise power are equivalent in their SINR MD performance if λ
α/2
1 /σ2

1 = λ
α/2
2 /σ2

2.

One may define a crossover point of η and classify the network as interference-limited

if η > 1 (assuming unit transmission power) and noise-limited otherwise. For α = 4,

η = λ2/σ2. So if there is twice as much noise, the BS density needs to be increased

by a factor of
√

2 to maintain the same performance.

In a practical setting, relevant network parameters include the BS transmis-

sion power P (normalized to 1 in this work), the BS density (estimated by the

1This way, if Φ0 is a hard-core process with hard-core distance u, Φ has a hard-core distance
u/
√
λ.
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average inter-site distance), and the noise power (estimated by noise density and

channel bandwidth). We can generalize the definition of NSNR to include P , i.e.,

η = Pλα/2/σ2. For instance, a dense urban scenario may have λ ≈ 25/km2 (λ ≈ 1/d2

for inter-site distance d = 200 m in a square lattice) and noise power -94 dBm (for

noise density -174 dBm/Hz and 100 MHz channel bandwidth) [50, 51].

A similar observation to Lemma 1 is made in [52, Lemma 4] for the standard

success probability, i.e., EPs(θ), and only for the PPP. Note that the equivalence in

the standard success probability does not imply the equivalence in the SINR MD,

while the opposite holds trivially since EPs(θ) is obtained by integrating the MD

over the parameter x. For instance, it is known that for Poisson networks with

instantaneously-strongest base station association (ISBA), EPs(θ) does not depend

on the fading distribution. Thus it is equivalent to the success probability for no

fading [53]. Such an equivalence does not hold for the SINR MD: Ps(θ) ∈ {0, 1} for

no fading while 0 < Ps(θ) < 1 for general fading (with continuous distribution).

2.5 Poisson Networks

We now study the separability of the SINR MD in Poisson networks. We first

present some useful properties of the PPP. To simplify the notation, we define the

distance ratios ti , ri/ri+1 for i ∈ N.

2.5.1 Basic Properties of the Poisson Point Process

Lemma 2.3. For a homogeneous Poisson point process in Rm,

P(ti ≤ x) = xmi, x ∈ [0, 1]. (2.9)
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Proof.

P(ti ≤ x) = E[P(ti ≤ x | ri+1)]

= E[P(ri ≤ xri+1 | ri+1)]

(a)
= xmi.

Step (a) follows from the fact that conditioning on ri+1, the i points x1(o), ..., xi(o)

are independently and uniform randomly distributed in the m-dimensional ball with

radius ri+1. ri is the maximum distance of the i points and the distance ratio ti does

not depend on the value of ri+1 for i ∈ N.

Lemma 2.3 shows that 1/ti is Pareto distributed in Poisson networks. ti is likely

to have a value close to 1 when i is large, which is intuitive since the void probability

depends on the volume cm(rmi /x
m− rmi ), which depends on ri. Alternatively, we can

prove Lemma 2.3 by conditioning on ri and using the void probability of the PPP

and the distribution of ri [54].

Following Lemma 2.3, it is easy to show that t1 is independent of any subset of

{ti}i≥2.

2.5.2 Separability

Define R+ , [0,∞) and δ , 2/α. The following theorem characterizes the sepa-

rability of the SINR MD in Poisson cellular networks.

Theorem 2.4. For Poisson networks, there exists a function g : [0, 1] → R+ such

that the SINR MD is

F̄Ps(θ, x) = g(x)θ−δ, (θ, x) ∈ D,
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where

D , {(θ, x) : P (h1/h2 > θ) ≤ x} , (2.10)

and g depends on the distributions of the fading random variables {hi}i∈N and η.

Further, g is monotonically decreasing with g(1) = 0.

Proof. Let us rewrite (2.8) as

Ps(θ) = P
(
h1 > θ

(r1

r2

)α(
h2 +

∞∑
i=3

hi

(r2

ri

)α
+ rα2 σ

2

) ∣∣∣ Φ

)
. (2.11)

Ps(θ) is continuous and monotonically decreases with θrα1 /r
α
2 . Denote the inverse of

Ps(θ) w.r.t. θrα1 /r
α
2 as f . f is a function of the random variables {ri}i≥2 and depends

on σ2. Then

F̄Ps(θ, x) = P (Ps(θ) > x)

= P (θrα1 /r
α
2 < f (x, r2, . . .))

= E [P (θrα1 /r
α
2 < f (x, r2, . . .) | r2, . . .)]

= E
[
min

{
1, θ−δf (x, r2, . . .)

δ
}]

.

The last step follows from the fact that for a PPP, P(r1/r2 < t) = t2 and r1/r2 is

independent from {ri}i≥2.

For (θ, x) ∈ D,

Ps(θ) > x ⇒ Ps(θ) > P (h1 > θh2) (2.12)

Writing Ps(θ) as (2.11), we conclude f(x, r2, . . .) < θ for ∀{ri}i≥2, (θ, x) ∈ D. Note
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that
∑∞

i=3 hi(r2/ri)
α + rα2 σ

2 > 0. Hence

F̄Ps(θ, x) = θ−δE
[
f (x, r2, . . .)

δ
]

(2.13)

= θ−δg(x), (θ, x) ∈ D.

The dependence of g on the fading distributions is obvious, and the dependence

on η follows from Lemma 1. The monotonicity of g is inherited from the monotonicity

of the SINR MD with F̄Ps(θ, 1) = 0 for any θ > 0.

When (θ, x) /∈ D, (2.13) becomes an upper bound. Adding noise does not change

the separable region in [26]. This is because the noise power, which appears in an

extra term rα2 σ
2 in (2.11), does not change the regime in which f < θ.

Remark 2.1. From (2.10), the separable region is x ≥ 0 as θ →∞. So limθ→∞ θ
δEPs(θ) =

limθ→∞ θ
δ
∫ 1

0
F̄Ps(θ, x)dx = limθ→∞ θ

δ
∫
D g(x)θ−δdx =

∫ 1

0
g(x)dx. For σ = 0,

∫ 1

0
g(x)dx =

sinc (δ) where sinc (x) , sin(πx)/(πx). This follows from [55, Theorem 4] which

shows that for the PPP with arbitrary iid fading, EPs(θ) ∼ sinc(δ)θ−δ, θ → ∞.

Theorem 1 shows that EPs(θ) = Θ(θ−δ) also holds for Poisson networks with noise,

and the pre-constant depends on the noise. To obtain the pre-constant
∫ 1

0
g(x)dx for

σ > 0, we can directly modify the statement and proof in [55, Theorem 4] to include

noise. For the PPP with iid fading h,

EPs(θ) ∼ sinc(δ)θ−δ
∫ ∞

0

exp(−x−Kx1/δ)dx, θ →∞, (2.14)

where K , (πE[hδ]Γ(1 − δ))−1/δ/η. Hence for σ > 0,
∫ 1

0
g(x)dx depends on E[hδ].

Specifically, for δ = 1/2,

∫ 1

0

g(x)dx =
1√
πK

erfc
( 1

2
√
K

)
exp

( 1

4K

)
. (2.15)
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For no fading, K = 1/(ηπ3), and for Rayleigh fading, K = 4/(ηπ4). Further, [55,

Theorem 4] proves that EPs(θ) = Θ(θ−δ) holds for all simple stationary BS point

processes in the noise-free scenario. A natural conjecture is that the MD satisfies

Θ(θ−δ) for all simple stationary BS point processes with noise.

Corollary 2.5. Let D be expressed in terms of (1/(1 + θ), x) ⊂ [0, 1]2. For any iid

fading, D always contains the point (1/2, 1/2), and the area of D is 1/2.

Proof. The separable region D in terms of (θ, x) is

x ≥ P (h1/h2 > θ) (2.16)

= P
(
h1 + h2

h2

> θ + 1

)
(2.17)

= P
(

h2

h1 + h2

<
1

1 + θ

)
. (2.18)

Letting t = 1/(1 + θ), we have D = {(t, x) : x ≥ P(h2/(h1 + h2) < t)}, which is a

subset of [0, 1]2. For any iid fading, P(h2/(h1 + h2) < 1/2) = 1/2. Thus (1/2, 1/2) ∈

D.

The area of D is

∫
D

dxdt =

∫ 1

0

1− P
(

h2

h1 + h2

< t

)
dt (2.19)

= 1− E
[

h2

h1 + h2

]
(2.20)

(a)
=

1

2
. (2.21)

Step (a) holds since Eh2/(h1 + h2) = Eh1/(h1 + h2) = 1/2 for any iid h1, h2.

Remark 2.2. Corollary 1 shows that for any iid fading, D always covers half of the

parameter space. Further, the boundary of D, x = P(h2/(h1 + h2) < t), is an odd

function w.r.t. the center point (1/2, 1/2). This is proved by showing that for iid
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fading,

P(h2/(h1 + h2) < t) + P(h2/(h1 + h2) < 1− t) = 1.

2.5.3 Impact of Fading

We first study the separable region for iid Nakagami-m fading2, m > 0. The rate

of Nakagami-m fading is set to 1/m to have unit mean power for any m. We then

focus on two special cases, namely no fading (m→∞) and Rayleigh fading (m = 1).

Throughout the rest of the paper, we denote by h the fading random variable.

The PDF of Nakagami-m fading is

fh(x) =
mm

Γ(m)
xm−1e−mx, x ≥ 0, (2.22)

and the CCDF is

F̄h(x) =
mm

Γ(m)

∫ ∞
x

tm−1e−mtdt

=
Γ(m,mx)

Γ(m)
.

Theorem 2.6. For Poisson networks with Nakagami-m fading, m > 0,

D =
{

(θ, x) : I 1
1+θ

(m,m) ≤ x
}
, (2.23)

where θ > 0, x ∈ [0, 1], and Ip(a, b) is the regularized incomplete beta function.

2While Nakagami-m fading has been defined only for m ≥ 1/2 [56], our results hold for any
positive m.
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Proof.

P(h1/h2 > θ) = E
[
P(h1 > θh2 | h2)]

(a)
=

1

Γ(m)
E
∫ ∞
mθh

tm−1e−tdt

(b)
=

mm

Γ(m)

∫ ∞
θ

E
[
hme−mhu

]
um−1du

(c)
=

Γ(2m)

(Γ(m))2

∫ ∞
θ

1

(1 + u)m+1

um−1

(1 + u)m−1
du

(d)
=

∫ 1
1+θ

0 vm−1(1− v)m−1dv

B(m,m)

= I 1
1+θ

(m,m).

Step (a) follows from the PDF of h. Step (b) follows from change of variable u =

t/mh. Step (c) follows from E[hme−mhu] = m−mΓ(2m)/Γ(m)(1+u)2m and (d) follows

from the change of variable v = 1/(1 + u). The last step follows from the definition

of the regularized incomplete beta function. Letting P(h1/h2 > θ) ≤ x, we obtain

D.

Fig. 2.2 shows the boundary of the separable region. We plot I 1
1+θ

(m,m) versus

1/(1 + θ) for m = 1/2, 1, 2, 3, and m → ∞. The x-axis is chosen such that it

is in [0, 1). Note that the boundary I 1
1+θ

(m,m) contains the point (1/(1 + θ), x) =

(1/2, 1/2) for any finite m, which is stated in Corollary 1. And the area of D is 1/2.

For m → ∞, I 1
1+θ

(m,m) is a step function: x = 1 for θ < 1, and x = 0 for θ ≥ 1.

For m→ 0, I 1
1+θ

(m,m)→ 1/2 for any θ > 0.

Without fading, i.e., h ≡ 1, Ps(θ) ∈ {0, 1}. F̄Ps(θ, x) = EPs(θ) = P(SINR > θ),

∀x ∈ (0, 1). The separable region is D = {θ ≥ 1, 0 < x < 1}, and P(SINR > θ) =

g(x)θ−δ, θ ≥ 1. For x ∈ (0, 1), g(x) ≡ g is a constant.

g = sinc(δ)

∫ ∞
0

exp(−x−Kx1/δ)dx, (2.24)

19



0 0.2 0.4 0.6 0.8 1

1/(1+ )

0

0.2

0.4

0.6

0.8

1

x

m=1/2

m=1

m=2

m=3

m

Figure 2.2. The curve x = I 1
1+θ

(m,m) (boundary of D) versus 1/(1 + θ) for

m = 1/2, 1, 2, 3, and m→∞.

where K = (πΓ(1− δ))−1/δ/η. For δ = 1/2, K = 1/(ηπ3), and g can be written in a

closed-form as (2.15). Eq (2.24) simplifies the expression derived in [52, Corollary 5]

and generalizes [53, Corollary 2] which considers the noise-free scenario.

With iid Rayleigh fading, the conditional success probability is [57]

Ps(θ) = exp(−σ2θrα1 )
∞∏
i=2

1

1 + θ (r1/ri)
α . (2.25)

Using the probability generating functional (PGFL) of the PPP, its b-th moment is

derived in [57]. Applying Theorem 1, we know that F̄Ps(θ, x) = g(x)θ−δ for D =

{(θ, x) : 1 + θ ≥ x−1}. g(x) can be obtained through a quick simulation and/or ap-

proximated by analytical expressions [26]. We obtain g(x) by simulating F̄Ps(100, x)100δ.

Fig. 2.3 shows the impact of η on the MD for SINR thresholds θ = 1 and θ = 3. Fig.

2.4 shows the impact of η on g.

To show the impact of the fading statistics on g, we compare the following four

fading scenarios: i) no fading, ii) iid Rayleigh fading, iii) h1, h2 iid Rayleigh fading,
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Figure 2.4. Simulation results of g(x) for η =∞, 1, 1/2, 1/4, iid Rayleigh
fading, δ = 1/2.
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Figure 2.5. g(x) for four fading scenarios. η = 1, δ = 1/2.

hj ≡ 1, j ≥ 3, and iv) h1 ≡ 1, {hj}j≥2 iid Rayleigh fading. For i), D = {θ ≥ 1}, and

g(x) is a constant for x ∈ (0, 1) as expressed in (2.24), which is approximately 0.6017

for δ = 1/2, η = 1. For the remaining scenarios, g(x) is obtained through simulation.

For scenarios ii) and iii), D = {(θ, x) : 1 + θ ≥ x−1}. For iv), D = {(θ, x) : θ ≥

−1/ log(1− x)}, as noted in Remark 2. The results are plotted in Fig. 2.5. g(x) for

iii) is lower than that for ii) since the conditional success probability for iii) is smaller

than that for ii) given the same BS locations. However, the difference is minor, which

shows that the fading statistics of faraway interferers do not significantly impact g.

In contrast, g(x) for iv) is significantly larger than ii) at the high-reliability end,

and lower at the low-reliability end. Hence combating multi-path fading from the

serving BS is crucial for the high reliability scenario and less so for the low reliability

scenario.
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2.6 Repulsive Network Models

We focus on two specific networks that model the repulsion between BS locations:

Ginibre networks [17, 19, 58] and triangular lattice networks. We assume iid Rayleigh

fading and that the network is interference-limited (σ2 = 0). We are interested in

showing that g(x)θ−δ serves as a good approximation for these networks. To that

end, we simulate the SIR MD for x = 0.9 and x = 0.99. We show that when θ

is chosen large enough, g(x)θ−δ is indeed a good approximation. The choice of the

“large enough” θ depends on the reliability x.

As is mentioned earlier, only the distances need to be simulated to obtain the MD

with Rayleigh fading. The simulation of the distances in a triangular lattice network

is straightforward. For Ginibre networks, we use [59, Proposition 4.3].

Proposition 2.7. The distances {ri}i∈N, for a Ginibre point process have the same

distribution as {
√
Yi}i∈N, where Yi, i ∈ N, are mutually independent and Yi follows

the i-th Erlang distribution with unit-rate parameter3, denoted by Yi ∼ Γ(i, 1), i ∈ N.

Fig. 2.6a and 2.6b shows the SIR MD in Ginibre networks and triangular lattice

networks for x = 0.9 and x = 0.99. We consider g(x)θ−δ to be a good approxima-

tion when its relative error from the simulated result is less than 5%. For Ginibre

networks, 0.29θ−δ provides a good approximation for θ ≥ 0 dB when x = 0.9; the

same accurateness holds with 0.092θ−δ for θ ≥ −6 dB when x = 0.99. For triangular

lattices, 0.42θ−δ provides a good approximation for θ ≥ 6 dB when x = 0.9; the same

accurateness holds with 0.134θ−δ for θ ≥ −1 dB when x = 0.99. In comparison,

for Poisson networks with Rayleigh fading, the “separable region” for x = 0.9 and

x = 0.99 are θ ≥ −9.54 dB and θ ≥ −20 dB, respectively. Thus, g(x)θ−δ provides a

good approximation for θ ≥ −1 dB when x = 0.99 in all cases studied.

3The intensity of this Ginibre point process is π−1. Distances in a Ginibre point process with a
different intensity can be obtained by scaling the rate parameter of the Erlang distribution.
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Figure 2.6. Simulation and the g(x)θ−δ approximation of the SIR MD for
x = 0.9, 0.99 in Ginibre networks and triangular lattice networks, Rayleigh

fading, α = 4.

2.7 Generalized System Models

2.7.1 General Path Loss Models

Consider a general path loss model `(r), with the only requirement that it de-

creases with the distance r and has an inverse `−1. In general, the tail distribution of

the SINR MD in terms of θ depends critically on the path loss from the serving BS,

and we can modify the proof for Theorem 2.4 for `. Consider the special case where

h ≡ 1 (no fading). For the PPP and θ ≥ 1,

P(SINR > θ) = P

(
`(r1) < θ

(
∞∑
i=2

`(ri) + σ2

))
(a)
= P

[
r1

r2

<
`−1 (θ (

∑∞
i=2 `(ri) + σ2))

r2

]
.

Step (a) follows from first inverting ` and then dividing r2. θ ≥ 1 guarantees

`−1 (θ (
∑∞

i=2 l(ri) + σ2)) < r2. If `−1 (θ (
∑∞

i=2 l(ri) + σ2)) > 0, we can apply P(r1/r2 <

x) = x2 and the conditional independence of r1/r2 given {ri}i≥2. The power-law path
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loss satisfies `−1(xy) = `−1(x)`−1(y), so (`−1(θ))2 will be extracted from the right

hand side of (a).

2.7.2 General Path Loss With Selection Combining

Let n ∈ N be the number of resource blocks used. We assume the fading coeffi-

cients from each BS across different resource blocks are iid. The resource block with

the maximum SINR is chosen to decode the message. We have

P (n)
s (θ) = 1− (1− Ps(θ))

n , (2.26)

and

F̄
(n)
Ps

(θ, x) = F̄Ps

(
θ, 1− (1− x)

1
n

)
. (2.27)

By the monotonicity of F̄Ps(θ, x) w.r.t. x, F̄
(n)
Ps

(θ, x) ≥ F̄
(m)
Ps

(θ, x) if n ≥ m. For

all links to achieve the same target reliability of x, the number of resource blocks

n assigned to each link must adapt to the link SINR. Allowing n ∈ R to be a link-

dependent random variable for fixed target θ and x, we obtain n = log(1−x)/ log(1−

Ps(θ)).

2.7.3 Power-Law Path Loss With ALOHA

Let χi ∼ Bernoulli(p), i ∈ N, be iid denoting the transmission status of a BS, i.e.,

xi is active if χi = 1 and inactive otherwise. The conditional success probability is

Ps(θ) = P
(

h1r
−α
1∑∞

i=2 hiχir
−α
i + σ2

> θ | Φ
)
.

It is easy to show that Lemma 1 applies to this setting. For the PPP, F̄Ps(θ, x) =

g(x)θ−δ, (θ, x) ∈ D, where D =
{

(θ, x) : pI 1
1+θ

(m,m) ≤ x+ p− 1
}

. This is calcu-
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lated by

P (h1/h2 > χθ) = E
[
I 1

1+θχ
(m,m)

]
= pI 1

1+θ
(m,m) + 1− p. (2.28)

If 1 − x ≥ p, D = ∅. The separable region is different from the baseline model with

BS density λp, since the separable region in the baseline model does not depend on

BS density. For σ = 0, the moments of the conditional success probability are derived

in [23].

2.7.4 Power-Law Path Loss With BS Silencing

Let n ∈ N be the number of silenced BSs. The conditional success probability is

Ps(θ) = P
(

h1r
−α
1∑∞

i=n+2 hir
−α
i + σ2

> θ | Φ
)
. (2.29)

Lemma 1 applies to this scenario also. For the PPP, one can derive the separable

region via the definition in Theorem 1. P(r1/rn+2 ≤ x) = 1− (1− x2)n+1, x ∈ [0, 1]

[60]. Thus the MD is 1−E
[(

1− f(x, rn+2, rn+3, ...)θ
−δ)n+1

]
in the separable region.

For instance, when n = 1, i.e., the nearest interferer is silenced, the MD can be written

as a(x)θ−δ−b(x)θ−2δ in the separable region. It satisfies F̄Ps(θ, x) = Θ(θ−δ), θ →∞,

and is upper bounded by 1 −
(
1− Ef(x, rn+2, rn+3, ...)θ

−δ)n+1
due to the convexity

of power functions on R+.

2.8 Asymptotics, Rate, and Local Delay

The link reliability, rate, and latency in wireless networks are fundamentally in-

tertwined. Given the quest for ultra-reliable transmission, we study the asymptotics

of the SIR MD as x → 1 for general cellular networks with Rayleigh fading. Then

we apply the results of the SIR MD to study the distribution of the link rate and the
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local delay. Many of the results can be generalized to the case of SINR.

2.8.1 Asymptotics

2.8.1.1 General Networks

Lemma 2.8. [47, Theorem 4] For all simple stationary BS point processes Φ and iid

fading4 {hx}x∈Φ, where the typical user is served by the nearest BS,

ps(θ) ∼ C(α)θ−δ, (2.30)

where

C(α) = λπE!
o

[(
h∑

x∈Φ hx‖x‖−α

)δ]1/δ

, (2.31)

and E!
o is the expectation with respect to the reduced Palm measure5 of Φ.

Theorem 2.9. For all simple stationary point processes with Rayleigh fading, for

any x > 0,

F̄Ps(θ, x) = Θ(θ−δ), θ →∞, (2.32)

and for any θ > 0,

F̄Ps(θ, x) ∼ C(α)(x−1 − 1)δθ−δ, x→ 1, (2.33)

where C(α) is defined in Lemma 2.8 with h ≡ 1.

Proof. For Rayleigh fading, the SIR MD is

F̄Ps(θ, x) = P
( ∞∏

i=2

(
1 + θ(r1/ri)

α
)
< x−1

)
. (2.34)

4[48] derives a sufficient condition of Lemma 2.8 on the fading and the point process.

5The reduced Palm distribution is the conditional point process distribution given that the typical
point exists at a given location (the origin) but is excluded in the distribution [7, Chapter 8].
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For ai > 0, the inequalities

1 +
∑
i

ai ≤
∏
i

(1 + ai) ≤ exp

(∑
i

ai

)
(2.35)

hold, and thus we can bound the SIR MD as

P
(

exp

( ∞∑
i=2

θ(r1/ri)
α

)
< x−1

)
≤ F̄Ps(θ, x) ≤ P

(
1 +

∞∑
i=2

θ(r1/ri)
α < x−1

)
. (2.36)

For the lower bound,

P
(

exp

( ∞∑
i=2

θ(r1/ri)
α

)
< x−1

)
= P

( ∞∑
i=2

θ(r1/ri)
α < − log x

)
(2.37)

∼ C(α)(− log x)δθ−δ, x→ 1, (2.38)

∼ C(α)(x−1 − 1)δθ−δ, x→ 1. (2.39)

(2.38) also holds for any x and θ →∞.

For the upper bound,

P
(

1 +
∞∑
i=2

θ(r1/ri)
α <

1

x

)
= P

( ∞∑
i=2

θ(r1/ri)
α < x−1 − 1

)
(2.40)

∼ C(α)(x−1 − 1)δθ−δ, x→ 1. (2.41)

(2.41) also holds for any x and θ →∞.

From (2.38) and (2.41), for any x > 0, F̄Ps(θ, x) = Θ(θ−δ), θ → ∞. For any

θ > 0 and x → 1, the asymptotic expressions (2.39) and (2.41) are the same, hence

the proof is complete.

Remark 2.3. Theorem 2.9 shows that the calculation of the MD in the limiting case

boils down to the calculation of the SIR MD without fading. The effect of Rayleigh

fading is captured by (x−1 − 1)δ, and the effect of the network geometry is captured
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by C(α) (under no fading).

Remark 2.4. Taking the derivative of g(x) at x→ 1 yields

lim
x→1

∂F̄Ps(θ, x)

∂x
= −∞. (2.42)

Given F̄Ps(θ, 1) = 0, (2.42) implies that in the ultra-reliable regime, reducing the

reliability requirement by a small amount leads to a significant increase of the user

percentage satisfying the reliability requirement. This behavior is a result of the un-

boundedness of the power-law path loss and the distribution of t1 as t1 → 0. We

contrast this result with that in Poisson bipolar networks [40] where

lim
x→1

∂F̄Ps(θ, x)

∂x
= 0. (2.43)

This follows from the derivative of F̄Ps(θ, x) ∼ exp(−C(1−x)−δ/(1−δ)), x→ 1, where

C = (θpδ)δ/(1−δ)(1 − δ)(λπΓ(1 − δ))1/(1−δ) [40, Theorem 4]. Thus, the asymptotic

behaviors of the MD for any θ as x → 1 in cellular networks and Poisson bipolar

networks are quite different. This is because in Poisson bipolar networks, the distance

from the user to the desired transmitter is fixed, while in cellular networks, the user

can be arbitrarily closer to the serving BS than to the interfering ones.

2.8.1.2 Poisson Networks

Corollary 2.10. For Poisson networks with Rayleigh fading, for any θ > 0 and

x→ 1,

F̄Ps(θ, x) ∼ sinc(δ)θ−δ(x−1 − 1)δ. (2.44)

Proof. It follows from (2.15) that for the PPP,

C(α) = sinc(δ). (2.45)
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Figure 2.7. g(x) and its asymptotic form using (2.33) in Poisson networks
with Rayleigh fading, α = 2.5, 4, 5.5, 7 from lower left to upper right.

In Poisson networks, by the definition of the separable region, for any θ, (θ, x) ∈ D

when x → 1. Thus, (2.44) is equivalent to g(x) ∼ sinc(δ)(x−1 − 1)δ. Fig. 2.7 shows

g(x) from simulation and its asymptotic (2.44) for α = 2.5, 4, 5.5, 7.

2.8.1.3 Ginibre Networks

Lemma 2.11 ([48]). The distances {ri}i∈N, for a Ginibre point process under the

reduced Palm distribution, have the same distribution as {Yi+1}i∈N, where Yi, i ∈

N \ {1} are defined in Proposition 2.7.

Lemma 2.12. For Ginibre networks with no fading,

ps(θ) ∼ C(α)θ−δ, θ →∞, (2.46)

where

C(α) = E
[( ∞∑

i=2

Y
−α

2
i

)−δ]
(2.47)
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Figure 2.8. C(α) for Poisson and Ginibre networks per (2.45) and (2.47).

and Yi for i ∈ N \ {1}, is defined in Proposition 2.7.

Proof. There are two ways to prove this lemma. The first is by directly applying

Lemma 2.8, h ≡ 1, and the reduced Palm measure of Ginibre point processes given

in Proposition 2.11. Alternatively, we can follow the proof for [18, Theorem 2] and

replace Rayleigh fading with no fading.

Corollary 2.13. For Ginibre networks with Rayleigh fading,

F̄Ps(θ, x) ∼ C(α)(x−1 − 1)δθ−δ, x→ 1, (2.48)

where C(α) is given in Lemma 2.12.

Proof. Follows directly from Theorem 2.9 and Lemma 2.12.

Fig. 2.8 shows C(α) in Poisson and Ginibre networks for α ∈ [2.5, 7]. The former

has an explicit form C(α) = sinc(δ) and the latter is simulated using (2.47). For

Ginibre networks and C(4) ≈ 0.91. Fig. 2.9 shows the result in Lemma 2.12 and the

two bounds (2.38) and (2.41). Note that from Fig. 2.9b, the lower bound (2.38) is

quite tight over the entire range of x.
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Figure 2.9. Asymptotic of the success probability for no fading as θ →∞
and two bounds for the SIR MD in Ginibre networks with Rayleigh fading,

α = 4.

2.8.2 Rate

It is shown in [45, Theorem 1] that the MD can be interpreted as the distribution

of the SIR threshold for a fixed link reliability x, denoted by T (x). In adaptive

transmission techniques, based on the channel quality of each link, the transmission

rate (modulation and coding scheme) is chosen such that a certain reliability can be

achieved. For instance, in a network where the target reliability x = 0.99, the SIR

threshold at each individual link is adjusted such that P(SIR > T (0.99) | Φ) = 0.99.

The local delay is defined as the number of transmissions needed for a message to be

received successfully. Retransmissions are less likely to occur for links with a high

reliability. The distribution of the delay and, especially, its tail, is a critical metric

in 5G cellular networks and beyond. We focus on Poisson networks with Rayleigh

fading.

The distribution of the SIR threshold determines the distribution of the trans-

mission rate by the Shannon formula. The normalized rate in nats/Hz/s for a given
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Figure 2.10. P(T (x) > θ) for reliability x = 0.95 and x = 0.99, Poisson
networks, α = 4.

reliability is defined as

R , x log(1 + T (x)), (2.49)

where T (x) is the SIR threshold that satisfies the reliability x. It is a random variable

whose distribution is a function of x. Let R̄ , E[R] be the ergodic rate for a given

reliability x. There is a trade-off between the reliability and the ergodic rate. Setting

x → 0 or x → 1 will result in arbitrarily small rate, either due to an ultra-low

reliability or due to an ultra-low SIR threshold. Hence, there is an optimal reliability

0 < x < 1 that maximizes the ergodic rate.

Fig. 2.10 shows the distribution of the SIR threshold when the reliability in the

network is fixed. From Theorem 1, when (θ, x) ∈ D, the two curves only differ

in the constant ratio 0.99g(0.99)/0.95g(0.95) ≈ 0.47, where g(0.95) = 0.1448 and

g(0.99) = 0.0658 are obtained through simulation.

Corollary 2.14. In Poisson networks, the rate distribution satisfies

F̄R(r) = g(x)(er/x − 1)−δ, (er/x − 1, x) ∈ D, (2.50)
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and the ergodic rate satisfies

R̄ ∼ π

sin(πδ)
xg(x), x→ 1. (2.51)

Proof. For a given reliability x, the rate distribution can be written in the form of

the SIR MD as F̄R(r) = F̄Ps(e
r/x − 1, x) [45]. Hence,

F̄R(r) = g(x)(er/x − 1)−δ, (er/x − 1, x) ∈ D, (2.52)

which follows from Theorem 1. Solving er/x− 1 ≥ 1
x
− 1 for r for a given x using the

definition of D yields r ≥ −x log x. The ergodic rate for a given reliability x is

R̄ =

∫ −x log x

0

F̄R(r)dr + g(x)

∫ ∞
−x log x

(er/x − 1)−δdr

=

∫ −x log x

0

F̄R(r)dr + xg(x)

∫ ∞
− log x

(et − 1)−δdt.

(2.53)

The first integral approaches 0 as x→ 1 faster than the second integral since g(x) ∼

(x−1 − 1)δ, and so

R̄ ∼ xg(x)

∫ ∞
0

(et − 1)−δdt, x→ 1, (2.54)

which evaluates to (2.51).

With rate adaptation, the ergodic rate is a function of the target reliability. Fig.

2.11 plots the trade-off of the ergodic rate versus the reliability x per Corollary 2.14.

(2.51) is asymptotically exact as x→ 1. It provides an upper bound for R̄ in general

and an accurate approximation when x ≥ 0.8. It is worth noting that in the simulated

per-link rate-reliability trade-off, the optimum rate R̄ ≈ 0.8 [nats/s/Hz] is achieved

at some point for x ∈ [0.65, 0.75].
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2.8.3 Local Delay

The local delay is defined as the number of transmissions, averaged over the fading,

needed for a message to be received successfully. Denote by D(θ) the local delay as

a function of θ. We have D(θ) ≡ 1/Ps(θ) (the mean of a geometric distribution with

success probability Ps(θ)). In other words, the local delay for any individual link

is the reciprocal of the link reliability Ps(θ). It is known that the mean local delay

E[D(θ)] = (1− δ)/(1− δ(1 + θ)) for θ < 1/δ − 1 in Poisson networks with Rayleigh

fading [23, Theorem 2]. Here, we provide the asymptotic form of the CDF of the

local delay.

Lemma 2.15. The CDF of the local delay in the network can be expressed using the

SIR meta distribution as

P(D(θ) ≤ t) = F̄Ps(θ, t
−1), t ≥ 1. (2.55)

Proof. Rewriting the CDF of the local delay as P(D(θ) ≤ t) = P(Ps(θ) ≥ t−1) we

obtain (2.55).
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Corollary 2.16. For Poisson networks with Rayleigh fading,

P(D(θ) ≤ 1 + ε) = g((1 + ε)−1)θ−δ, θ ≥ ε. (2.56)

And for any θ > 0,

P(D(θ) ≤ 1 + ε) ∼ sinc δεδθ−δ, ε→ 0. (2.57)

Proof. omitted.

Eq. (2.57) shows the trade-off between the SIR threshold and the target local

delay. Note that by Theorem 2.9, the distribution across different types of network

models (satisfying the condition in Theorem 2.9) only differs in a constant ratio.

Essentially, the fraction of links satisfying a mean local delay constraint w.r.t. θ only

depends on the ratio ε/θ. For more general networks, the constant sinc(δ) is replaced

by C(α), which is defined as in Lemma 2.8.

2.9 Summary

1. For stationary base station point processes, arbitrary fading, and power-law
path loss with exponent α, the base station density λ and the noise power σ2

impact the SINR MD only through the network signal-to-noise ratio (NSNR),
η , λα/2/σ2.

2. In Poisson networks with power-law path loss, the SINR MD for any indepen-
dent fading, either identically or non-identically distributed, can be expressed
as g(x)θ−δ for (θ, x) ∈ D, where g depends on the NSNR and D depends on
fading statistics. This is referred to as the separability of the SINR MD in
Poisson networks.

3. For Ginibre and triangular lattice networks, the SIR MD is well approximated
by g(x)θ−δ in the high reliability regime when θ is chosen large enough. We
further characterize the asymptotics of the SINR MD.

4. We show that there is an optimal reliability that maximizes the ergodic rate
normalized by the reliability.
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CHAPTER 3

COOPERATION

3.1 Introduction

The previous analysis shows that the link reliability is primarily dependent on the

distance ratio to the serving BS and nearest interfering BS. In the literature, “the

cell edge users” typically refers to users who are almost equally close to the serving

and nearest interfering BS and “the cell center users” refers to those who are much

closer to the serving BS than to interfering ones. The former type is known to be the

bottleneck of the network.

In this chapter, we distinguish these two types of users and quantify their per-

formance gain/loss relative to the typical user. Further, to improve the reliability

of users at the cell edge, we exploit cooperative transmission schemes in the context

of coordinated multipoint (CoMP). We focus on CoMP joint transmission schemes,

which turn a set of interfering BSs into cooperating BSs that jointly serve users.

Intuitively, turning distant interfering BSs into cooperating BSs would result in inef-

ficient utilization of BS resources (by adding to the cell load), higher computational

effort, and extensive backhaul data exchange, since distant BSs have little impact on

either the desired signals or the interference. Hence the cooperating set of BSs is an

important design aspect. Here, we propose a geometric policy where the cooperating

set is decided by the geometric region of the considered user.
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3.2 Quantifying the Performance Gap

In this section, we study the performance gap between two types of users: the

cell-center user and the cell-edge users. For any stationary and ergodic base station

process, we partition its associated Voronoi cells into the cell centers and the cell

edges. We define the region of a location u by how much closer u is to its serving BS

than to its nearest interfering BS following [29, 61]. Let Φ ⊂ R2 be an ergodic and

stationary BS point process and xi(u) ∈ Φ be the i-th nearest BS to u. For γ ∈ [0, 1]

and ρ , 1− γ we define

C1 , {u ∈ R2 : ‖u− x1(u)‖ ≤ ρ ‖u− x2(u)‖}

C2 , {u ∈ R2 : ρ ‖u− x2(u)‖ < ‖u− x1(u)‖}.
(3.1)

γ controls the area fraction of each region (for any realization of Φ).

In the case when Φ is a homogeneous PPP with intensity λ, the area fraction of

each region equals the probability that the origin falls into each region [61]:

P(o ∈ C1) = ρ2, P(o ∈ C2) = 1− ρ2. (3.2)

Theorem 3.1. The success probability conditioned on the typical user lying in C1 is

P(SIR > θ | o ∈ C1) = F̄PPP(θρα)

=
1

2F1(1,−δ; 1− δ;−ραθ)
.

(3.3)

In particular, for α = 4, we have

P(SIR > θ | o ∈ C1) =
1

1 + ρ2
√
θ arctan (ρ2

√
θ)
. (3.4)
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Proof.

P(SIR > θ | o ∈ C1) = P(S > θI | o ∈ C1)

= E
[ ∞∏
i=2

1

1 + θ( r1
ri

)α
| o ∈ C1

]
= E

[ ∞∏
i=2

1

1 + θρα( r1/ρ
ri

)α
| o ∈ C1

]
(a)
= E

[ ∞∏
i=2

1

1 + θρα( r1
ri

)α

]
= F̄PPP(θρα),

where (a) is due to the fact that the region C1 is equivalent to {r1/r2 ≤ ρ} = {r1/ρ ≤

r2}. Put differently, the probability law of r1/ρ, r2, ... conditioned on r1/r2 ≤ ρ is the

same as the law of r1, r2, ... without conditioning. This can be shown by establishing

that f r1
ρ

(x | r1
r2
≤ ρ) = fr1(x) in the following derivation and using the independence

property of the PPP:

P
(
r1 ≤ x | r1

r2

≤ ρ

)
=

P(r1 ≤ x, r1/r2 ≤ ρ)

P
(
r1/r2 ≤ ρ

)
=

∫ x
0

∫∞
u
ρ

(2λπ)2uv exp (−λπv2)dvdu

ρ2

= 1− exp

(
− λπx

2

ρ2

)
,

(3.5)

and the pdf

fr1

(
x | r1

r2

≤ ρ

)
=

2λπx

ρ2
exp

(
− λπx

2

ρ2

)
. (3.6)

Now

f r1
ρ

(x | r1/r2 ≤ ρ) = 2πλx exp(−λπx2) = fr1(x).
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Figure 3.1. The SIR gain (in dB) as a function of the area fraction of C1,
α = 4.

Remark 3.1. Theorem 1 shows the SIR gain (in dB) conditioned on the typical user

being in C1 is

G1 = −10 log10 ρ
α. (3.7)

Eq (3.7) is remarkably simple and directly shows that the top fraction x = ρ2

of users enjoy an SIR gain of −5α log10 x dB relative to the typical user. Here, the

“top” users are those with the highest distance ratio of the nearest interferer and the

serving BS. Fig. 3.1 shows the SIR gain G1 as a function of the area fraction of users

in C1. For instance, there are 31.5% of the users that enjoy an average gain of 10 dB

over the typical user, and 10% achieve a gain of 20 dB.

Remark 3.2. It is interesting to compare this result with the success probability of

a BS silencing scheme that mutes all the BSs within r1/ρ for the typical user. We

have

P(SIR > θ) =

∫ ∞
0

2πλx exp
(
− πλx2 −

∫ ∞
x
ρ

(
1− 1

1 + θ(x
t
)α
)
2πλtdt

)
dx

=
1

1− ρ−2 + ρ−2
2F1(1,−δ; 1− δ;−ραθ)

.

(3.8)
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It is easy to show that (3.8) is smaller than (3.3) for any θ > 0 and ρ ∈ [0, 1].

This is expected since muting the interfering BSs in r1/ρ does not affect the ratio of

r1/ri for ri > r1/ρ.

3.3 Cooperation

The spatial variation of link performance lead to nonuniformity of user experience.

BS cooperation is one of the methods to ameliorate the problem and improve per-

formance at the cell edge. BS cooperation, known as CoMP in 3GPP, is a technique

to mitigate/exploit interference and improve reliability by coordinating the signal

transmission or enabling the joint transmission/processing among a set of BSs. The

design, analysis and optimization of BS cooperation schemes are of significant impor-

tance, as the gain of coordination comes at the cost of the backhaul capacity, channel

state information (CSI), synchronization efforts, and, in general, more signaling over-

head [15]. Hence practical BS cooperation schemes need to be evaluated under the

constraint of limited time-frequency resource blocks (RBs) at each BS.

3.3.1 Previous Work

BS cooperation schemes mainly focus on four aspects: the dependence of co-

operation on users’ channel, the selection of the set of cooperating BSs (fixed-size

or adaptive), the cooperation mode (BS silencing, point selection, coherent/non-

coherent joint transmission), and its implementation challenges (limited backhaul,

imperfect synchronization, imperfect CSI). [61–63] study user-centric BS cooperation

while [14, 64] study BS cooperation where all users are non-coherently served by n

strongest BSs. It is shown in [14] that users located at the Voronoi vertices benefit

more from cooperation than the typical user. Also, it is shown in [64] that increasing

the size of the cooperation set leads to a larger variance of the link success probability

and thus reduces fairness. In [61, 62], the authors define the “cooperation region”
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such that users receive cooperation only when they are located in the cooperation

region. Both definitions are based on the relative distances to the serving and the

nearest interfering BS, and different cooperation modes are analyzed. In [62], BS

silencing is activated for users in the cooperation region. However, [62] assumes a

small-cell scenario where there are many inactive BSs and the network is thus less

interference-limited. [61] studies the network where all BSs are always active. Users

within the cooperation region are coherently served by the two nearest BSs. The

scheme, however, relies on the precise channel phase match within the cooperating

BSs. A transmission scheme that is less sensitive to channel estimation is analyzed

in [63], where the cooperating BSs non-coherently transmit to the target user. The

set of cooperating BSs is defined to be BSs within a disk of a fixed radius centered

at each user. The definition depends on the selection of the radius and leads to an

indefinite size of the cooperating set, which can boost the system complexity. BS

cooperation in a two-tier network is studied in [65], where the strongest BSs from

each tier jointly serve users who suffer from strong interference. The scheme does

not consider the case when both the strongest serving BS and strongest interfering

BS belong to the same tier.

3.3.2 A Tunable Cooperation Scheme

In designing the cooperation scheme, we extend our previous definition for cell

regions. Define

C1 , {u ∈ R2 : ‖u− x1(u)‖ ≤ ρ ‖u− x2(u)‖}

C2 , {u ∈ R2 : ρ ‖u− x2(u)‖ < ‖u− x1(u)‖ , ‖u− x1(u)‖ ≤ ρ ‖u− x3(u)‖}

C3 , {u ∈ R2 : ‖u− x1(u)‖ > ρ ‖u− x3(u)‖}.

(3.9)
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(a) γ = 0.2. (b) γ = 0.5.

Figure 3.2. Illustration of the partition when the BSs follow a PPP with
intensity λ = 1 for γ = 0.2 and γ = 0.5. The window is [−5, 5]2. Blue

circles denote points generated from the PPP. Red lines are the edges of
the associated Voronoi cells. Blank, green and blue regions denote the cell

center region C1, the cell edge region C2, and the cell corner region C3,
respectively.
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With a slight abuse of notation (C2 ∪C3 is referred to as “the cell edge region” in the

last section), we refer to C1, C2, C3 as “the cell center region”, “the cell edge region”,

and “the cell corner region” respectively. Users within C1, C2, C3 are referred to as

“the cell center users”, “the cell edge users”, and “the cell corner users”, respectively.

The boundaries of each region Ci are formed by the union of circular arcs, where for

each arc, the two nearest points of Φ are the same and their distance ratio to a point

of the arc is ρ. An illustration of the partitioned plane for cooperation levels γ = 0.2

and γ = 0.5 is shown in Fig. 3.2.

We define the cooperation set S to be

S ,


{x1(u)}, u ∈ C1

{x1(u), x2(u)}, u ∈ C2

{x1(u), x2(u), x3(u)}, u ∈ C3.

(3.10)

In other words, a user in Ci is jointly served by i BSs since it is relatively close to i

BSs.

γ is referred to as the cooperation level since the area fraction of C2

⋃
C3 increases

monotonically with γ. γ = 0 results in C1 = R2 (no cooperation), and γ = 1 results in

C3 = R2 \Φ. The special cases γ ∈ {0, 1} for the Poisson network have been analyzed

in [12, 23] and [14, 64], respectively.

We consider the non-coherent joint transmission scheme to minimize the con-

straints on CSI. We focus on the typical user located at the origin o, where the

desired signal comes from BSs in the defined cooperation sets and the interference

comes from the other BSs. The SIR at the typical user is

SIR =

∣∣∣∑x∈S hx‖x‖
−α/2

∣∣∣2∑
x∈Φ\S |hx|

2‖x‖−α
.
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Here, (hx)x∈Φ are iid Rayleigh fading, and α denotes the power-law path loss expo-

nent.

3.3.3 Poisson Networks

We study the performance of the scheme in Poisson networks, where Φ ⊂ R2 is

a PPP with intensity λ. Let ri = ‖xi(o)‖ be the distance from the origin to its i-th

nearest BS as defined before. The joint distribution of r1, r2 and r3 is [66]

fr1,r2,r3(x, y, z) = (2λπ)3xyz exp (−λπz2), 0 ≤ x ≤ y ≤ z. (3.11)

The area fraction of each region depends on γ and is equal to the probability that

the origin falls into each region:

P(o ∈ C1) = (1− γ)2, P(o ∈ C2) = γ(1− γ)2(2− γ), P(o ∈ C3) = γ2(2− γ)2.

(3.12)

Fig. 3.3 shows the area fraction of the three regions as γ increases from 0 to 1.

3.3.3.1 Asymptotic Gain

While the success probability of all but a few basic network models is intractable,

the asymptotic SIR gain [67] gives a simple and unified characterization of the SIR

improvement compared to a baseline scheme. Using the PPP model as baseline, G

is the asymptotic SIR gain if

F̄ (θ) ∼ F̄PPP(θ/G), θ → 0. (3.13)

It can be visualized as the asymptotic horizontal shift (in dB) between the SIR

distributions of the studied model and the PPP. Following [67], we define the mean
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Figure 3.3. The area fraction of the three regions for Poisson networks per
(3.12).

interference-signal ratio (MISR) as MISR , E
(
I/S̄

)
, where S̄ , Eh[S] is the average

signal power. MISRPPP denotes the MISR of the PPP.

Theorem 3.2. The asymptotic SIR gain of the proposed BS cooperation scheme in

Poisson networks is

G =
2

(α + 2)E
[
( r1
r2

)α1C1

]
+ (α + 4)E

[
(r1/r3)α

1+(r1/r2)α
1C2

]
+ 6E

[
(r1/r3)α

1+(r1/r2)α+(r1/r3)α
1C3

] .
(3.14)

For α = 4, we have

G =
(
ρ6 + ρ8

( 2

ρ2
− π

2
+ 2 arctan ρ2 − 2

)
+ 3

∫ ∞
0

∫ x
ρ

x

∫ ∞
x
ρ

8xyz−3e−z
2

x−4 + y−4 + z−4
dzdydx

)−1

.

(3.15)

Proof. The asymptotic SIR gain G can be expressed as

G =
MISRPPP

MISRγ

.
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The MISR of the 2D PPP without cooperation is MISRPPP = 2/(α− 2) [67], and

MISRγ = MISRC1 + MISRC2 + MISRC3 ,

where MISRCi denotes the MISR within Ci. For C1, we have

MISRC1 =
∑
i>1

E
[(r1

ri

)α
1C1

]
(a)
= E

[(r1

r2

)α
1C1

]∑
i>1

E
[(r2

ri

)α]
,

where step (a) follows from the fact that only the first term in MISRC1 is constrained

by the cooperation region. It can be calculated using the joint distribution of r1 and

r2 as

E
[(r1

r2

)α
1C1

]
=

∫ ∞
0

∫ ∞
x
ρ

fr1,r2(x, y)
(r1

r2

)α
dydx

= ρα+2.

The second term can be calculated by considering the relative distance process [47]

∑
i>1

E
[(r2

ri

)α]
= 1 +

4

α− 2
.

Similarly, we obtain the MISR in C2 and C3 as

MISRC2 =
∑
i>2

E
[ r−αi
r−α1 + r−α2

1C2

]
(3.16)

= E
[ (r1/r3)α

1 + (r1/r2)α
1C2

]∑
i>2

E
[(r3

ri

)α]
,

where ∑
i>2

E
[(r3

ri

)α]
= 1 +

6

α− 2
,
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Figure 3.4. The asymptotic gain G (in dB) using (3.14).

and

MISRC3 =
∑
i>3

E
[ r−αi
r−α1 + r−α2 + r−α3

1C3

]
= E

[ (r1/r3)α

1 + (r1/r2)α + (r1/r3)α
1C3

]∑
i>3

E
[(r3

ri

)α]
(3.17)

=

∫ ∞
0

∫ x
ρ

x

∫ ∞
x
ρ

8xyz1−αe−z
2

x−α + y−α + z−α
dzdydx

∑
i>3

E
[(r3

ri

)α]
, (3.18)

where ∑
i>3

E
[(r3

ri

)α]
=

6

α− 2
.

We obtain the expression for G as in (3.14).

We next investigate the derivative of the asymptotic SIR gain.

Corollary 3.3 (Derivative at γ = 0 and γ = 1). The asymptotic SIR gain G satisfies

∂G

∂γ

∣∣∣
γ=0

= α,
∂G

∂γ

∣∣∣
γ=1

= 0. (3.19)
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Proof. For a general α we express G as G = (G1 +G2 +G3)−1, where

G1 = (α + 2)E
[(r1

r2

)α
1C1

]
= ρα+2, (3.20)

G2 =
α + 4

2
E
[ (r1/r3)α

1 + (r1/r2)α
1C2

]
=
α + 4

2

∫ ∞
0

∫ x
ρ

x

∫ ∞
x
ρ

8xyze−z
2 z−α

x−α + y−α
dzdydx,

(3.21)

G3 = 3E
[ (r1/r3)α

1 + (r1/r2)α + (r1/r3)α
1C3

]
= 3

∫ ∞
0

∫ x
ρ

x

∫ ∞
x
ρ

8xyze−z
2 z−α

x−α + y−α + z−α
dzdydx.

(3.22)

Now

∂G

∂ρ
= −G2

(∂G1

∂ρ
+
∂G2

∂ρ
+
∂G3

∂ρ

)
,

where

∂G1

∂ρ
= (α + 2)ρα+1, (3.23)

∂G2

∂ρ
=
−4ρ1+α

1 + ρα
+
ρα−3(α + 4)

2

∫ ∞
0

∫ x
ρ

x

x3e
−x

2

ρ2
8y

1 + (x/y)α
dydx, (3.24)

and

∂G3

∂ρ
= −3ρα−3

∫ ∞
0

∫ x
ρ

x

x3ye
−x

2

ρ2
8

1 + ρα + (x/y)α
dydx. (3.25)
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By taking the limit we obtain

∂G

∂γ

∣∣∣
γ=0

= − lim
ρ→1

∂G

∂ρ
= α, (3.26)

and

∂G

∂γ

∣∣∣
γ=1

= − lim
ρ→0

∂G

∂ρ
= 0. (3.27)

This result shows that the asymptotic gain from γ = 0 increases with slope α and

saturates at γ = 1. Fig. 3.4 shows the asymptotic SIR gain as γ increases from 0 to

1. When the path loss exponent α grows large, the transmission scenario approaches

the point-to-point transmission scenario where the interference is negligible—the in-

terference free scenario. In this case, the network is no longer interference-limited

and the effect of noise needs to be considered.

3.3.3.2 Conditional Success Probability

Lemma 3.4. The conditional success probability for the proposed scheme is

Ps(θ) =



∏∞
i=2

1
1+θr−αi /r−α1

, o ∈ C1∏∞
i=3

1
1+θr−αi /(r−α1 +r−α2 )

, o ∈ C2∏∞
i=4

1
1+θr−αi /(r−α1 +r−α2 +r−α3 )

, o ∈ C3.

(3.28)
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Proof. For o ∈ C1, the typical user is associated with the nearest BS only, hence

Ps(θ) = P
(
g1r
−α
1 > θ

∞∑
i=2

gir
−α
i

)
(a)
= E

[
exp

(
− θ

∞∑
i=2

gir
−α
i /r−α1

)]
(b)
= E

[ ∞∏
i=2

exp(−θgir−αi /r−α1 )

]
=
∞∏
i=2

1

1 + θr−αi /r−α1

.

(3.29)

Step (a) follows from the exponential distribution of the fading power. Step (b)

follows from the independence of fading coefficients.

For o ∈ C2, the typical user receives the non-coherent joint transmission from two

nearest BSs, and thus

Ps(θ) = P
(
|h1r

−α/2
1 + h2r

−α/2
2 |2 > θ

∞∑
i=3

gir
−α
i

)
(a)
= E

[ ∞∏
i=3

exp(−θgir−αi /(r−α1 + r−α2 ))

]
=
∞∏
i=3

1

1 + θr−αi /(r−α1 + r−α2 )
.

(3.30)

Step (a) follows from the fact that |h1r
−α/2
1 + h2r

−α/2
2 |2 is exponentially distributed

with mean r−α1 + r−α2 .

The proof of o ∈ C3 is parallel to that of o ∈ C2.
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(b) M1(θ) for 0.4 ≤ γ ≤ 1.
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(c) M2(θ)−M1(θ)2 for 0 ≤ γ ≤ 0.4.
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(d) M2(θ)−M1(θ)2 for 0.4 ≤ γ ≤ 1.

Figure 3.5. The mean M1(θ) and variance M2(θ)−M1(θ)2 of the
conditional success probability with cooperation level γ = 0 to γ = 1,

α = 4.
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3.3.3.3 Moments

Theorem 3.5. The b-th moment of the conditional success probability of the typical

user of the proposed scheme in Poisson networks is

Mb =
ρ2

2F1(b,−δ; 1− δ,−ραθ)

+

∫ ∞
0

∫ x
ρ2

x

∫ ∞
x
ρ2

exp

(
− zFb

((z
x

) 1
δ

+
(z
y

) 1
δ

))(
1 +

θ

( z
y
)
1
δ + ( z

x
)
1
δ

)−b
dzdydx

+

∫ ∞
0

∫ x
ρ2

x

∫ x
ρ2

y

exp

(
− zFb

(
1 +

(z
x

) 1
δ

+
(z
y

) 1
δ

))
dzdydx, b ∈ C,

(3.31)

where Fb(x) = 2F1(b,−δ; 1− δ;−θ/x).

Proof.

Mb = E[Ps(θ)
b] =

3∑
i=1

E
[
Ps(θ)

b
1Ci
]
. (3.32)

For C1, we know from the last section that E[Ps(θ)
b
1C1 ] = ρ2/2F1(b,−δ; 1− δ,−ραθ).

For C2,

E[Ps(θ)
b
1C2 ] = E

[
∞∏
k=3

(
1

1 + θr−αk /(r−α1 + r−α2 )

)b
1C2

]
(3.33)

(a)
=

∞∫
0

x
ρ∫

x

∞∫
x
ρ

fr1,r2,r3(x, y, z)

(1 + sz−α)b
exp

(
−
∫ ∞
z

(
1− (1 + st−α)−b

)
2πλtdt

)
dzdydx

(b)
=

∞∫
0

x
ρ2∫
x

∞∫
x
ρ2

exp(−z)

(1 + sz−α/2)b
exp

(
−
∫ ∞
z

(
1− (1 + st−α/2)−b

)
dt
)

dzdydx

(c)
=

∞∫
0

x
ρ2∫
x

∞∫
x
ρ2

exp
(
− z 2F1

(
b,−δ, 1− δ,− s

zα

))
(1 + sz−1)−1dzdydx.
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Step (a) follows from letting s = θ/(x−α + y−α). Step (b) follows from changing

variables 2πλx2, 2πλy2, 2πλz2, 2πλt2 to x, y, z, t. Step (c) follows from changing vari-

able tα/2 to t and
∫∞
r

(1−1/(1 + sx−1)b)xδ−1dx = rδ(−1 + 2F1(b,−δ, 1− δ,−s/r))/δ.

E[Ps(θ)
b
1C3 ] can be derived by changing the integration region and s.

We focus on the mean and variance of Ps(θ), namely M1 and M2 −M2
1 . Fig. 3.5

shows the success probability and the variance as a function of θ from γ = 0 to γ = 1.

For 0 ≤ γ ≤ 0.4, the maximal variance is monotonically decreasing when θ is

small, and is maximized when the success probability is around ps(θ) = 0.35. For

γ ≥ 0.4, the maximal variance starts monotonically increasing. So the minimal

maximal variance is achieved when γ = 0.4. For 0 ≤ γ ≤ 0.4, the variance when

θ > 10 dB is essentially the same. For γ ≥ 0.4, the variance when θ < 0 dB is

essentially the same.

For γ = 1, the results coincide with the proposed scheme in [64], where all users

are served by a fixed number of cooperating BSs. It is shown in [64] that such user-

independent BS cooperation increases the unfairness (variance of the conditional

success probability).

Remark 3.3. For small θ, the main reason not to succeed is bad fading (fading

defines the asymptotic slope of the success probability as θ → 0). The secondary

reason is bad location. Cooperation helps with both, but it makes less of a difference

for users in a good location—users near the cell center almost all succeed anyway, even

without cooperation. Hence for small θ, M1 does not change anymore once γ > 0.4.

Similarly, for the variance, all users who need help are receiving it at γ < 0.4. For

larger γ, there is a negligible improvement for most users, hence no further reduction

in variance.

For large θ, the main reason to succeed is good location (proximity to the serving

BS defines the asymptotic slope as θ →∞). Those users who are quite close to their

BS but not extremely close will benefit from cooperation, which means that γ needs
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to be fairly large (> 0.4) to make a difference in M1. Conversely, users who get

cooperation for γ < 0.4 are in such bad location that they cannot succeed at high θ.

Similarly, for the variance, for γ < 0.4 there is no impact since no user switches from

not succeeding to succeeding. For γ > 0.4, the users in almost-great locations start to

benefit from cooperation (while those in bad locations still do not), which widens the

gap between the two, increasing the variance. This is the regime where “the rich get

richer”.

3.3.4 Lattice Networks

Here we apply the scheme to two single-tier lattice networks, namely square lattice

and triangular lattice networks. Lattice networks are generally less tractable but they

provide upper bounds on the network performance due to the optimistic assumption

of BS deployment. Here, we confine our analysis to the asymptotic SIR gain and

make a comparison between Poisson and lattice networks.

The area fractions of the three regions in lattice networks can be analytically

calculated thanks to its rigid structure. The boundaries of each region Ci are formed

by the union of circular arcs, where for each arc, the distance ratio from a point of

the arc to its two nearest points is ρ. Note that all the arcs have the same radius and

angle depending on γ, as shown in Fig. 3.6. Fig. 3.7 shows the area fraction of each

region as γ increases from 0 to 1.

In Fig. 3.8, we compare the asymptotic gain in Poisson networks and lattice

networks. The horizontal shift in the lattice cases are approximated using G̃ps=0.95,

i.e., the horizontal SIR shift of the simulated success probability evaluated at ps =

0.95. The simulation is performed with 100,000 user locations. The SIR gap at γ = 0

is the inherent deployment gain between Poisson and lattice networks (3 dB and 3.4

dB respectively [67]). All three curves increase almost linearly at the beginning and

tend to saturate around γ = 0.6. The comparison reveals the similarity of the SIR
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(a) Square lattice. (b) Triangular lattice.

Figure 3.6. The cooperation regions in a square lattice and a triangular
lattice network when γ = 0.5. Only one cell is colored since all cells are

shifted version of each other. Red crosses and red lines denote BSs and the
edges of the associated Voronoi cells in the lattice. Blank, green and blue

regions denote C1, C2 and C3 respectively.
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(a) Square lattice.
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(b) Triangular lattice.

Figure 3.7. The area fractions of the three regions for square and triangular
lattices.
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Figure 3.8. The comparison of the asymptotic SIR gain in Poisson
networks and lattice networks, α = 4.

gain patterns due to BS cooperation in different network structures.

3.4 Summary

1. We show that in Poisson networks, the top fraction x of users enjoy an SIR
gain of −5α log10 x dB relative to the typical user. We derive both the exact
and asymptotic form of the SIR distribution for the cell boundary users.

2. We propose and study a location-dependent BS cooperation scheme. We intro-
duce a parameter γ ∈ [0, 1] to tune the cooperation level of the network. We
derive the SIR distribution and its approximation form based on the asymptotic
SIR gain.

3. We show that in Poisson networks: (1) the derivative of the asymptotic SIR
gain equals to the path loss exponent α at γ = 0 (no cooperation) and is 0 at
γ = 1 (full cooperation); (2) a moderate γ jointly improves the SIR performance
and the network fairness.

4. BS models including the PPP and lattice networks are studied. We compare
the simulation results of the asymptotic SIR gain in lattice networks to Poisson
networks and show their similarity.
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CHAPTER 4

JOINT SPATIAL-PROPAGATION MODELING

4.1 Introduction

The previous chapters focus on analysis of systems where wireless signal propa-

gation consists of power-law path loss and small-scale fading. Shadowing, caused by

obstacles is another propagation effect that leads to spatial variation. It is highly rel-

evant to cell planning. This chapter considers a model where the spatial deployment

of BSs and shadowing are inherently correlated. For coverage, cellular operators de-

ploy more BSs in regions with severe signal decay, and vice versa, such that users at

the cell boundaries achieve a sufficient and consistent signal strength. In other words,

the shape and size of the Voronoi cells reflect the underlying propagation conditions,

which we reverse-engineer to devise a cell-dependent correlated shadowing model.

To do so, it is necessary to study the cell shape and radii in the Poisson Voronoi

tessellation (PVT).

We first introduce the notion of the directional radius of Voronoi cells. The

directional radius of a cell is defined as the distance from the nucleus to the cell

boundary at an angle relative to the direction of a uniformly random location in

the cell. We study the distribution of the radii in two types of cells in the Poisson

Voronoi tessellations: the zero-cell, which contains the origin, and the typical cell.

The analysis reveals the asymmetry of PVT and is applied later to analyze the JSP

model. It will be shown that accounting for the spatial-propagation correlation reveals

a critical deployment gain of approximately 3.4 dB over the standard independent

model.
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4.2 Previous Work

The first and only JSP model is presented in [68], where the authors reverse en-

gineer the path loss exponent (PLE) of the power-law path loss model from the BS

locations. A fundamental assumption in [68] is that the PLE is a deterministic func-

tion of the BS locations such that users at the Voronoi cell edge receive a minimum

average power P0, or, equivalently, a minimum average signal-to-noise ratio (SNR),

from their nearest BS. It is shown that under this assumption, the PPP yields almost

the same success probability as the triangular lattice networks. However, there are a

few drawbacks in this model. Firstly, it suffers from the singularity of the power-law

path loss model, which can result in a negative PLE. Secondly, the assumption that

all users along the cell boundaries receive power P0 is rather optimistic and unlikely

to hold in an actual deployment. In this chapter, we take the variation of the received

power along the cell boundaries into account. Lastly, the analysis in [68] is limited

to the spatially averaged coverage performance, whereas this work provides a more

fine-grained analysis.

Also relevant to this model are models that consider correlated shadowing. One

of the first correlated shadowing models is proposed in [69], where for a fixed BS

and a moving user with a constant velocity, the periodically sampled shadowing is a

discrete process whose autocorrelation decays exponentially. A correlated shadowing

model with an intuitive physical interpretation is modeled and analyzed in [70], where

the “penetration loss” depends on the number of obstacles (in this case, buildings)

in the path. A survey of correlated shadowing models can be found in [71]. Apart

from the correlation, the variance of shadowing is shown to have a significant impact

on network performance [72] [73]. It is derived in [73] that for general BS processes

satisfying a homogeneity constraint, if the shadowing correlation is “moderate” (de-

creasing fast enough in distance), the signal strengths converge to those in a PPP as

the variance of shadowing increases.
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To facilitate the analysis of the JSP model, we study two types of Poisson Voronoi

cells and their radii: the zero-cell, which is the cell that contains the origin, and the

typical cell. While it is known that the zero-cell has a larger mean volume than the

typical cell [74, 75], the directional radii characterize the shape of the two cells and

have not been studied before to the best of our knowledge. Related, the distance

from the nucleus to a uniformly random location in the typical cell and the distance

from the nucleus of the zero-cell to the typical location are studied in [76]. User

point processes are characterized based on the PVT in [77]. The distribution of the

distance from the typical Voronoi edge/vertex location to its nearest Poisson point

is given in [78, 79], while [80] derives the distribution of the radius of the largest

disk included within the cells and the radius of the smallest disk containing the cells.

Some gamma-type results1 are given in [81, 82].

4.3 Directional Radii of Poisson Voronoi Cells

4.3.1 Definitions

We first define the radii of interest. For consistency of the definitions, we introduce

the displaced typical cell and zero-cell such that the nucleus of the cells is at the origin.

Let Φ ⊂ R2 be a motion-invariant point process of intensity λ.

Typical cell. Let

Φo , (Φ | o ∈ Φ)

and denote by V (o) the Voronoi cell of Φo with nucleus o. Let z be a location chosen

uniformly at random from V (o) and let (‖z‖, ζ) be its polar coordinates. Next, define

Φ̃ , rot−ζ(Φ
o),

1Results related to Gamma distribution.
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Figure 4.1. Illustration of the directional distances in the typical cell and
the 0-cell of a PPP. The blue circles represent Poisson points and the red
lines represent the Voronoi tessellations. In (a), the red square represents
the uniform randomly distributed point z in the typical cell. In (b), z is
displaced to reside on the positive semi x-axis. In (c) and (d), the red

square represents the origin and the displaced origin.

where rotu is a rotation around the origin by angle u, and denote the Voronoi cell

of Φ̃ with nucleus o by Ṽ (o). Let D , ‖z‖ be the distance from the nucleus of the

typical cell to the uniformly random location in the typical cell.

Zero-cell. Let xi ∈ Φ be the (i + 1)-th closest point to the origin, e.g., x0 =

arg minx∈Φ{‖x‖}. Let V0 be the Voronoi cell with nucleus x0 (which contains the

origin). Letting ϕ0 be the angle of x0, define

Φ̃0 , rotπ−ϕ0(Φ−x0),

where Φy is a translation of all points of Φ by y. This way, o ∈ Φ̃0. Let Ṽ0 be the

Voronoi cell of Φ̃0 with nucleus o. Let D0 , ‖x0‖.

Definition 4.1 (Directional radius). For ϕ ∈ [0, 2π), we define the directional radius

R(ϕ) to the boundary ∂Ṽ (o) of the typical cell by

R(ϕ)(cosϕ, sinϕ) ∈ ∂Ṽ (o)
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and the directional radius R0(ϕ) to the boundary ∂Ṽ0 of the 0-cell by

R0(ϕ)(cosϕ, sinϕ) ∈ ∂Ṽ0.

So (R(ϕ), ϕ)ϕ∈[0,2π) parametrizes the boundary of the typical cell Ṽ (o) in polar

coordinates, and R(0) is the distance from the nucleus to the boundary in the di-

rection of the randomly chosen point. Similarly, (R0(ϕ), ϕ)ϕ∈[0,2π) parametrizes the

boundary of the 0-cell Ṽ0 in polar coordinates, and R0(0) is the distance from the

nucleus to the boundary in the direction of the displaced origin, now at coordinates

(‖x0‖, 0).

The areas of the two cells are obtained as

|Ṽ (o)| = 1

2

∫ 2π

0

R2(ϕ)dϕ

and

|Ṽ0| =
1

2

∫ 2π

0

R2
0(ϕ)dϕ,

respectively, and the mean areas follow as

E|Ṽ (o)| =
∫ π

0

E(R2(ϕ))dϕ

and

E|Ṽ0| =
∫ π

0

E(R2
0(ϕ))dϕ,

where | · | is the Lebesgue measure in two dimensions. Integrating over [0, π) is

sufficient due to the symmetry of the distributions, i.e., ER(ϕ) ≡ ER(−ϕ).

Fig. 4.1 shows realizations of the typical cell, the zero-cell and their displaced

version when Φ is a Poisson point process.

Definition 4.2 (Uniform-angled radius). We define the uniform-angled radius R̄ to
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the boundary ∂Ṽ (o) of the typical cell by

R̄ , R(Θ)

and the uniform-angled radius R̄0 to the boundary ∂Ṽ0 of the 0-cell by

R̄0 , R0(Θ)

where

Θ ∼ Uniform[0, 2π].

Since Φ is motion-invariant, we may equivalently define R̄ , ‖∂V (o) ∩ (R+, 0)‖

and R̄0 , ‖∂V0 ∩ (R+, 0)‖.

R and R̄ are related by

E(R̄b) =
1

π

∫ π

0

E(Rb(ϕ))dϕ, (4.1)

and

E(R̄b
0) =

1

π

∫ π

0

E(Rb
0(ϕ))dϕ, (4.2)

for b ∈ R. Again, integrating over [0, π) is sufficient due to the symmetry.

Lemma 4.3. For general point processes where |V (o)| and |V0| are finite almost

surely, we have

P(‖z‖/R(0) ≤ t) = t2, t ∈ [0, 1], (4.3)

and

P(‖x0‖/R0(0) ≤ t) = t2. t ∈ [0, 1]. (4.4)

Proof. For any point process, conditioned on V (o), let z be uniform randomly dis-

tributed in V (o). The probability that ‖z‖/R(0) < t is the same as the probability
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that z falls into the similar polygon of V (o), with radius scaled by t in all directions.

This probability is equal to t2 for any realization of V (o). The same argument holds

for the zero-cell.

Remark 4.1. Lemma 4.3 holds for non-stationary point processes also, where the

typical cell is centered at the origin.

4.3.2 The Typical Cell of the PVT

Let Φ be a Poisson point process of intensity λ.

Lemma 4.4. The pdf of R̄ is

fR̄(r) = 2λπre−λπr
2

. (4.5)

Proof. Due to the isotropy of the Poisson process, it is sufficient to consider R̄ =

‖∂V (o)∩ (R+, 0)‖. The event that R̄ is larger than r happens if b((R̄, 0), r)2 contains

no point. Thus, P(R̄ > r) = e−λπr
2
.

Remark 4.2. The mean area of the typical cell follows as

E|V (o)| = πE(R̄2) =
1

λ
.

Recall that in [75], the mean area of the typical cell is obtained by using Robbin’s

formula [83] and that for any fixed point p = (r, θ), P(p ∈ V (o)) = exp(−λπr2),

E|V (o)| =
∫
R2

P (p ∈ V (o)) dp =

∫ 2π

0

∫ ∞
0

exp
(
−λπr2

)
rdrdθ =

1

λ
.

Our method and the method in [75] for calculating the mean area are essentially the

same, by observing that the event that R̄ is larger than r happens if and only if a

2The open ball with center (R,φ) (in polar coordinates) and radius r ≥ 0 is denoted by
b((R,φ), r).
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Figure 4.2. First two moments of the directional distances in the typical
cell, λ = 1, via simulation. The mean and second moment of R̄ (straight

lines) are obtained via Lemma 4.4.

fixed point (r, 0) ∈ V (o). Its probability does not depend on θ. The result for the

mean area holds for arbitrary stationary point processes [74].

Fig. 4.2 shows the first two moments of the directional radius in the typical cell

obtained via simulation. It is apparent that the cell is significantly larger in the

direction of the randomly chosen point than in the opposite direction. R(0) is on

average about 55% larger than R(π).

4.3.3 The 0-cell of the PVT

Recall that D0 = ‖x0‖ is the distance from the nucleus of the 0-cell to the origin.
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Figure 4.3. Illustration of the intersection between b((x, 0), x) and
b((y, ϕ), y) whose area is S(ϕ, x, y).

Theorem 4.5. The joint pdf of D0, R0(ϕ), ϕ ∈ [0, π) is

fD0,R0(ϕ)(x, y) = 2λπx exp
(
− λπ(x2 + y2) + λS(ϕ, x, y)

)(
2λπy − λ∂S(ϕ, x, y)

∂y

)
,

(4.6)

for x ≥ 0, y ≥ 0 when ϕ 6= 0, and for y ≥ x ≥ 0 when ϕ = 0, and

S(ϕ, x, y) = (π − ϕ)x2 + (y2 − x2) arccos
y − x cosϕ√

x2 + y2 − 2xy cosϕ
− xy sinϕ. (4.7)

Proof. The event R0(ϕ) > y given ‖x0‖ = x is equivalent to there being no point in

b((y, ϕ), y) \ b((x, 0), x). Hence

P(R0(ϕ) > y | D0 = x) = exp
(
− λ(πy2 − S(ϕ, x, y))

)
, (4.8)
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where S(ϕ, x, y) in (4.7) is the area of the intersection of b((x, 0), x) and b((y, ϕ), y),

i.e., S(ϕ, x, y) = |b((x, 0), x) ∩ b((y, ϕ), y)|.

Hence the conditional pdf of R0(ϕ) given D0 is

fR0(ϕ)|D0(y | x) = exp
(
− λπy2 + λS(ϕ, x, y)

)(
2λπy − λ∂S(ϕ, x, y)

∂y

)
. (4.9)

From the void probability of the PPP we know that

fD0(x) = 2λπx exp(−λπx2).

Applying the Bayesian rule fD0,R0(ϕ)D0(x, y) = fR0(ϕ)|D0(y | x)fD0(x) we obtain (4.6).

Fig. 4.3 illustrates the directional radius R0(ϕ) and the intersection region.

Remark 4.3. Integrating (4.6) over x we obtain the distribution for R0(ϕ), ϕ ∈ [0, π].

A straightforward extension of Theorem 4.5 is the joint distribution of R0(ϕ1), R0(ϕ2), D0

for ϕ1 ∈ [0, π], ϕ2 ∈ [0, π], which involves the intersection of three open balls. Such an

extension is needed when evaluating the second moment of |Ṽ0| but is omitted here.

Corollary 4.6. The pdf of R0(0) is

fR0(0)(y) = 2(λπ)2y3 exp (−λπy2), (4.10)

and the pdf of R0(0)−D0 is

fR0(0)−D0(y) =
√
λπ erfc (y

√
λπ). (4.11)

The pdf of R0(π) is

fR0(π)(y) = 2λπy exp (−λπy2). (4.12)
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Figure 4.4. First two moments of the directional radius (R0(ϕ)) via
Theorem 4.5 and the uniform-angled radius (R̄0) in the 0-cell, λ = 1. The

green curve, c(ϕ)/λπ, is given in (4.20).

Further, D0 and R0(π) are iid.

Proof. Letting ϕ = 0, the joint distribution of D0, R0(0) is

fR0(0),D0(x, y) = (2λπ)2xy exp (−λπy2), y ≥ x ≥ 0. (4.13)

So the pdf of R0(0) is

fDo(y) =

∫ y

0

(2λπ)2xy exp (−λπy2)dx = 2(λπ)2y3 exp (−λπy2). (4.14)

The ccdf of R0(0)−D0 given D0 can be written as

P(R0(0)−D0 > y | D0 = x) = P(R0(0) > x+ y | D0 = x) = exp(−λπ(y2 + 2xy)).

(4.15)
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and

fR0(0)−D0|D0(y | x) = 2λπ(x+ y) exp(−λπ(y2 + 2xy)). (4.16)

The joint distribution of R0(0), R0(0)−D0 is

fR0(0),R0(0)−D0(x, y) = (2λπ)2x(x+ y) exp (−λπ(x+ y)2), (4.17)

which gives the pdf of R0(0)−D0 as

fR0(0)−D0(y) = (2λπ)2

∫ ∞
0

x(x+y) exp (−λπ(x+ y)2)dx =
√
λπ erfc (y

√
λπ). (4.18)

For ϕ = π, we obtain S(π, x, y) = 0, ∂S(π,x,y)
∂y

= 0. fD0,R0(π)(x, y) = fD0(x)fR0(π)(y).

Thus, D0 and R0(π) are iid.

From Corollary 4.6, we obtain E(R0(0)) = 3/(4
√
λ), E(R0(π)) = 1/(2

√
λ), and

E(R0(0)−D0) = 1/(4
√
λ). Thus, R0(0) is on average exactly 50% larger than R0(π).

The correlation coefficient of R0 and R0(0)−D0 follows as

ρR0,R0(0)−D0 =
8− 3π√

12− 3π
√

16− 3π
≈ −0.3462.

Also, E((R0(0)−D0)/D0) = 1, but E(R0(0)−D0)/E(D0) = 1/2.

Corollary 4.7. The pdf of R̄0 is

fR̄0
(y) =

1

π

∫ π

0

fR0(ϕ)(y)dϕ. (4.19)

Proof. Combine Θ ∼ uniform[0, 2π] and Theorem 4.5.

ER̄0 = E[
∫ π

0
R0(ϕ)dϕ]/π = 0.5753/

√
λ.
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Remark 4.4. The mean area of the 0-cell is

E|Ṽ0| =
∫ π

0

E(R2
0(ϕ))dϕ =

1.280176

λ
.

Further,

E(R2
0(ϕ)) ≈ c(ϕ)

λπ
, (4.20)

where c(ϕ) = 1 + exp(−ϕ3/2), is a good approximation to the second moment of the

directional radius. It gives a mean area of

1 +
2Γinc(2/3, π

3/2)

3π
≈ 1.2869,

where Γinc(a, z) =
∫ z

0
e−tta−1dt is the lower incomplete gamma function3.

Fig. 4.4 shows the first two moments of R0(ϕ), ϕ ∈ [0, π] and R̄0; it also shows the

approximation ER2
0(φ) ∼ c(ϕ)/(λπ) is quite good. This new approach for evaluating

the mean area is easy to understand. By comparison, the existing approach is based

on the first two moments of the area of the typical cell and the statistical relation

between V0 and V (o) [74, 75], which we discuss in the next subsection.

4.3.4 Relation of the Typical Cell and the 0-Cell

Fundamentally, the typical cell and the zero-cell are related by [84]

E
[
f(V0)

]
=

Eo
[
|V (o)|f(V (o))

]
Eo
[
|V (o)|

] , (4.21)

where f is any translation-invariant non-negative function on compact sets, and

Eo denotes the expectation with respect to the Palm distribution [7]. In words,

a translation-invariant statistic of the 0-cell is that of the typical cell weighted by

3In Matlab, Γinc(2/3, π
3/2) is expressed as gammainc(pi^1.5,2/3)*gamma(2/3).
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volume (area in 2D). Letting f(·) = | · |, the mean area of the zero-cell is

E
[
|V0|
]

= λEo
[
|V (o)|2

]
. (4.22)

Using Robbin’s formula, Eo (|V (o)|2) =
∫
R4 P (x0, x1 ∈ V (o)) dx0dx1 [74] [75]. It is

apparent that the 0-cell is not just a typical cell enlarged by 28%. In fact, larger cells

in the PVT are associated with being more circular and having more sides [85]. To

compare the typical cell and the 0-cell, we consider the number of sides of the typical

cell and the 0-cell, denoted by N and N0. We have EN0 = λEo[|V (o)|N ] ≥ EN = 6

due to the positive correlation between the area and number of sides of Poisson

Voronoi cells [2, Chap 9]. Table 4.1 shows some mean values related to the typical

cell and the 0-cell for λ = 1. Results obtained via simulations are marked by (*).

TABLE 4.1

SOME MEAN VALUES OF THE TYPICAL CELL AND THE

ZERO-CELL IN THE PVT.

Cell Type Number of
Sides

Area Directional Ra-
dius

Distance to a
Uniformly Ran-
dom Location

Typical cell EN = 6 E|V (o)| = 1 ER(0) = 0.67 (*),
ER(π) = 0.432 (*)

ED = 0.447 (*)

Zero-cell EN0 = 6.41
(*)

E|V0| ≈ 1.28 ER0(0) = 0.75,
ER0(π) = 0.5

ED0 = 0.5
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Figure 4.5. Distribution of distances in the 0-cell and the typical cell, λ = 1.

4.3.5 Gamma-Type Results

We now compare our results with some known distributions. Corollary 4.6 shows

that πR2
0(0) ∼ Γ(2, λ); it is known that ‖x1‖, the distance between the origin and

its second-nearest point, satisfies π‖x1‖2 ∼ Γ(2, λ) [86]. Hence R0(0) and ‖x1‖ are

identical in distribution. The explanation is as follows: for the PPP, the stopping set

defined as the minimum disk containing n Poisson points is Γ(n, λ) distributed [82].

Further, the probability that a point is covered by a stopping set does not depend

on whether it is a point of the process or not. In our cases, both πR2
0(0) and π‖x1‖2

are defined by two Poisson points. Denote the distance from the typical point on

the edge to its closest Poisson point by Re and the distance from the typical point

on the Voronoi vertex to its closest Poisson point by Rv. It is shown in [78, 79]

that πR2
e ∼ Γ(3/2, λ), and πR2

v ∼ Γ(2, λ), which gives fRe(r) = 4λ3/2πr2e−λπr
2
, and

fRv(r) = 2(λπ)2r3e−λπr
2
. Hence R0(0) and Rv are identical in distribution. Fig. 4.5

shows the ccdf of the distributions given in Lemma 4.4, Theorems 4.5, 4.7, and the

distributions of Re and Rv.

72



0 0.5 1 1.5

x

0

0.2

0.4

0.6

0.8

C
C

D
F

R( )

D

Figure 4.6. The distribution of D and R(π), λ = 1, via simulation.

4.3.6 Discussion and Impact of Cell Asymmetry

From the results on the directional radii, it is apparent that the Poisson Voronoi

cells are, quite surprisingly, rather asymmetric around their nucleus. We summarize

them in the facts below.

Fact 1. For the zero-cell, the mean radius in the direction of the typical user is 50%

larger than the mean radius in the opposite direction, i.e., E (R0(0)) /E (R0(π)) = 3/2.

The typical user is at the same distance on average as an edge user in the opposite

direction, since R0(π) and D0 are iid. Further, we can infer from Fig. 4.4 that about

a quarter of edge users (those with ϕ ≥ 3π/4) are at essentially the same distance as

the typical user.

Fact 2. For the typical cell, numerical results from Table I suggest that ER(π) is 3%

smaller than ED. The ccdf of D and R(π) are plotted in Fig. 4.6, which shows that

the two curves are almost identical. In the one-dimensional case where ϕ ∈ {0, π},

the distribution of R(π), derived in Appendix B, is identical to the distribution of

D, derived in [76, Theorem 1]. Further, we can infer from Fig. 4.2 that about a
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quarter of edge users (those with ϕ ≥ 3π/4) are at essentially the same distance as

the uniformly random user.

In addition, the distance from the typical BS to the nearest edge location, Rmin,

is distributed as fRmin
(r) = 8λπre−4λπr2 as it is half the nearest-neighbor distance in

the PPP. Since E(πR2
min) = 1/4, 3/4 of the interior users are farther from the nucleus

than the nearest edge user. And E(Rmin) is only 37% of the mean distance in the

direction of the uniformly random user.

These facts may prompt us to rethink some assumptions that are generally made,

such as the claim that edge users necessarily suffer from low signal strength. Also,

care is needed when evaluating the performance of non-orthogonal multiple access

(NOMA) schemes, especially if “cell-center” refers to a user located uniformly at

random in the cell and “cell-edge” refers to a user located uniformly at random on

the edge of the cell. In this case, simply pairing a cell-center user as the strong

user and an edge user as the weak one may be quite inefficient, since the edge user

may be closer to the BS than the “cell-center” user. Conversely, if “cell-center” and

“cell-edge” are defined based on relative distances between serving and interfering

base stations as in Chapter 3, then a “cell-edge” user may actually be quite far from

the edge of the cell. A potential model to pair users for Poisson Voronoi cells is to

select a “cell-center” user uniformly at random inside the cell, and select an edge user

whose angle differs only slightly from that of the “cell-center” user. This increases the

likelihood of significant channel gain difference between users and thus increases the

NOMA gain. An alternative model that guarantees the intended ordering of strong

and weak user is to place the two randomly in the in-disk of the cell and then order

them [87].
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4.4 JSP Model

In this section, we introduce the JSP model and the performance metrics. We

also recall some relevant results of previous models.

4.4.1 System Model

Let Φ ⊂ R2 be a stationary point process with intensity λ modeling BS locations.

We refer to the JSP model for a specific type of BS point processes named x as the

“JSP-x” model. For instance, “ JSP-PPP” refers to the JSP model when Φ is a PPP.

The typical user is located at the origin without loss of generality. We assume all BSs

are active and transmit with unit power. For x ∈ Φ, denote by hx and Kx the power

of the small-scale iid Rayleigh fading with unit mean and the large-scale shadowing

between x and the origin, respectively. The power-law path loss model is considered,

i.e., `(x) = ‖x‖−α, where α > 2 is a constant.

Let r(x) be the distance from x ∈ Φ to its Voronoi cell edge oriented towards the

typical user. Let {xi}i∈N be the point process ordered by the distance to the origin,

i.e., x1 , arg minx∈Φ{‖x‖} and so on. Note that r(x1) is the same as R0(0) defined in

the last section. Fig. 4.7 shows a realization of Φ and the corresponding r(x1), r(x2).

By the construction of the Voronoi cells, r(x1) ≥ ‖x1‖ and r(xi) ≤ ‖xi‖, i ≥ 2.

Definition 4.8 (Cell-Dependent Shadowing). In cell-dependent shadowing, the coef-

ficients {Kx}x∈Φ have the property that given Φ, users at the Voronoi cell boundaries

receive an expected power P0, i.e.,

E[Kxr(x)−α | Φ] = P0. (4.23)

We further assume that {Kx}x∈Φ are conditionally independent (given Φ) log-normal
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Figure 4.7. An illustration of the JSP model with cell-dependent
shadowing. Blue circles are BS locations generated from a PPP. Red lines
are the Voronoi tessellation. The typical user is denoted by the red square.

random variables. We denote by µx and σx the mean and standard deviation4 of

log(Kx) conditioned on Φ, and we fix σx ≡ σ for ∀x ∈ Φ.

The log-normal model is commonly used to capture the distribution of shadowing

and thus allows us to compare this model with previous models. We have exp(µx +

σ2/2) = P0r(x)α, which gives µx = log(P0r(x)α) − σ2/2. Depending on whether

σ = 0 or σ > 0, {Kx}x∈Φ is a deterministic function of Φ or a set of random variables

correlated with Φ.

For σ = 0, {Kx}x∈Φ is a deterministic function of Φ. In this case, we have

Kx = P0r(x)α. (4.24)

4Instead of denoting the standard deviation of the noise in the previous chapters, σ denotes the
standard deviation of shadowing coefficients in this chapter.
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Users located at the Voronoi cell edges receive a signal power P0 (averaged over

small-scale fading).

For σ > 0, the shadowing in the JSP model is doubly random such that the power

averaged over small-scale fading along the cell edge fluctuates around P0. In this case,

we have

E[Kx | Φ] = P0r(x)α. (4.25)

The JSP model for a deterministic BS point process φ (such as a realization of a

PPP) can be defined similarly by removing the conditioning on the BS point process.

Remark 4.5. The JSP model in [68] assumes r(x)−α(x) = P0, which is sensitive to

P0 and λ due to the singularity of the path loss model as mentioned earlier. Our

model avoids this deficiency while generalizing several models in the literature: if

P0 = r(x)−α in (4.23), we retrieve the iid shadowing model in [72]; if further σ = 0,

we retrieve the traditional model without shadowing (or constant shadowing) in [12].

4.4.2 Performance Metrics

We consider the strongest-BS association throughout this paper. Let x ∈ Φ be

the serving BS, i.e., the BS from which the user receives the strongest signal averaged

over small-scale fading. We consider the SIR, defined as

SIR ,
S

I
=

hxKx‖x‖−α∑
y∈Φ\{x} hyKy‖y‖−α

. (4.26)

4.4.2.1 Asymptotic Gain

Here, the MISR is

MISR = E
[ ∑
y∈Φ\{x}

Ky‖y‖−α

Kx‖x‖−α

]
.
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Throughout this paper, we use the PPP model without shadowing as the baseline for

comparison. Denoting the asymptotic gain by G, we have

G =
MISRPPP

MISR
. (4.27)

4.4.2.2 Meta Distribution

For Rayleigh fading, the conditional success probability is

Ps(θ) , P(SIR > θ | Φ, {Ky}y∈Φ)

= P
(
hxKx‖x‖−α > θ

∑
y∈Φ\{x}

hyKy‖y‖−α
∣∣∣ Φ, {Ky}y∈Φ

)

= E
[

exp
(
− θ

∑
y∈Φ\{x}

hy
Ky‖y‖−α

Kx‖x‖−α
) ∣∣∣ Φ, {Ky}x∈Φ

]
(a)
=

∏
y∈Φ\{x}

1

1 + θ(‖x‖/‖y‖)αKx/Ky

.

4.4.2.3 Path Loss Point Process

We define the path loss point process for a general BS point process Φ to be Π ,

{Kx/‖x‖α}x∈Φ. For deterministic point processes, we use φ instead of Φ. To avoid

a colocated BS and user, we assume no BS is located at the origin. The path loss

point process, introduced in [88], characterizes the received signal strengths (averaged

over small-scale fading) from all transmitters in the network from the viewpoint of the

typical user. It is also referred to as the “signal spectrum” in [73], or the “propagation

process” in [72].

4.4.3 Relevant Results

In the baseline model, it is assumed that shadowing is constant for all transmis-

sions, i.e., Kx ≡ 1, x ∈ Φ. The nearest BS also provides the strongest signal (av-

eraged over fading). It is known that for the PPP, Mb(θ) = 1/2F1(b,−δ; 1− δ;−θ)
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[23], b ∈ C, where 2F1 is the hypergeometric function. The triangular lattice has a

3.4 dB asymptotic gain over the PPP [67].

In the iid log-normal shadowing model [72], it is assumed that logKx ∼ N (µ, σ2),

x ∈ Φ, where µ = −σ2/2 to normalize EKx. It is shown in [89] that the path

loss point process of the PPP with iid shadowing is again a PPP. Thus, under the

strongest-BS association, the performance of the iid log-normal shadowing model for

the PPP is the same as the baseline PPP model. Further, [72] shows that in the

iid log-normal shadowing model for any deterministic/stochastic BS point processes

satisfying a homogeneity constraint, the path loss point process converges to that

of a PPP when σ → ∞. [73] proves that this conclusion also holds for moderately

correlated shadowing.

4.5 Performance Analysis

In this section, we analyze the performance of the JSP-PPP model. We focus on

the distribution of the serving signal, shadowing distribution/correlation, the asymp-

totic SIR gain, the SIR meta distribution, and finally the path loss point process.

We first introduce the lemma below.

Lemma 4.9. For a Poisson point process with intensity λ, the ccdf of r(xi)/‖xi‖,

i ≥ 2 is

P(r(xi)/‖xi‖ > t) = (1− t2)i, t ∈ [0, 1], (4.28)

and the ccdf of r(xi) is

P(r(xi) > t) = exp(−λπt2). (4.29)

Proof. Recall that xi is the i-th closest point to the origin. Let Φ(b(o, r)) denote

the number of points in Φ falling in the disk of radius r centered at the origin. For
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t ∈ [0, 1],

P(r(xi)/‖xi‖ > t)

= EP(r(xi) > ‖xi‖t | ‖xi‖)
(a)
= EP(Φ(b(o, ‖xi‖t)) = 0 | Φ(b(o, ‖xi‖)) = i)

(b)
= E

(
‖xi‖2 − ‖xi‖2t2

‖xi‖2

)i

= (1− t2)i.

Step (a) holds since the probability of having no point inside a disk only depends on

the radius of the disk, not on the disk center. Step (b) follows from the property of

the PPP, where conditioned on ‖xi‖, the i points are distributed uniformly at random

in b(o, ‖xi‖). Combining (4.28) with the distribution of ‖xi‖ [86] we obtain the ccdf

for r(xi), i ≥ 2, in (4.29).

4.5.1 The Serving Signal

For σ = 0, x1 is the strongest BS. Hence Eh[S] = Kx1‖x1‖−α. We have

P(Kx1‖x1‖−α > t) = P(P0r(x1)α‖x1‖−α > t)

= P(‖x1‖/r(x1) < (P0/t)
1/α)

(a)
= P δ

0 t
−δ, t ≥ P0, (4.30)

where t ≥ P0 due to the minimum received power constraint. Step (a) follows from

Lemma 4.3. The distribution of Kx1‖x1‖−α does not depend on Φ, and it is equal to

the distribution of the signal power in a circular cell where the received power at the

cell edge is P0. We further obtain the tail of the ccdf of S in the lemma below.
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Figure 4.8. The distribution of Eh[S]. P0 = 0.5, α = 4.

Lemma 4.10. For the JSP model with any BS process and σ = 0,

P(S > t) ∼ P δ
0E(hδ)t−δ, t→∞. (4.31)

Proof.

P(S > t) = P(P0hx1r(x1)α‖x1‖−α > t)

= P(‖x1‖/r(x1) < (P0hx1/t)
1/α)

∼ P δ
0E(hδ)t−δ, t→∞.

In [47, Lemma 7], it is shown that for the baseline model (without shadowing),

the tail of the ccdf of the desired signal strength for all stationary point processes is

P(S > t) ∼ λπE(hδ)t−δ, t→∞. If we let

P0 = (λπ)1/δ, (4.32)
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we obtain the same tails. Intuitively, if we could “pack” the space with congruent

circular cells, we would have r−α = (1/λπ)−α/2 = (λπ)1/δ = P0.

Fig. 4.8a shows the distribution of Eh[S] for the JSP-PPP model and (4.30) with

σ = 0, λ = 10−2, P0 = 0.5, and α = 4. Fig. 4.8b shows that we can use (P0θ)
−δ to

approximate the distribution of the signal from the nearest BS in triangular lattices,

which is not surprising considering that hexagonal cells and circular cells are similar

in shape. Note that for lattices, the minimum average received power is determined

by the radius of the smallest disk containing the cell, or, equivalently, the intensity of

the point process. Thus, the intensity of the triangular lattice in Fig. 4.8b is scaled

for a fair comparison.

For σ > 0, the serving BS x = arg maxy∈Φ{Ky‖y‖−α}.

P(Kx‖x‖−α < t)

= P(Ky‖y‖−α < t, y ∈ Φ) (4.33)

= E
∏
y∈Φ

P(Ky < ‖y‖αt | Φ)

= E
∏
y∈Φ

(
1

2
+

1

2
erf

[
log t‖y‖α − logP0r(y)α + σ2/2√

2σ

])
.

4.5.2 Shadowing Coefficients

4.5.2.1 Distribution

For σ = 0, the shadowing coefficient from any BS is a deterministic function of

the cell radius of that BS oriented towards the origin. For the serving cell,

P(Kx1 ≥ t) = exp (−λπtδP−δ0 )(1 + λπtδP−δ0 ), (4.34)
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Figure 4.9. Ccdfs, means, and standard deviations of Kx1 and Kx2 , σ = 0,
λ = 1, α = 4.

and

P(Kxi ≥ t) = exp (−λπtδP−δ0 ), (4.35)

which follow from the distribution of r(x1) and r(xi), i ≥ 2, in Theorem 4.5 and

Lemma 4.9, respectively.

Based on (4.34) and (4.35), E[Kx1 ] = P0(λπ)−α/2Γ(α/2+2). E[Kxi ] = P0(λπ)−α/2

× Γ(α/2 + 1), i ≥ 2. Denoting by VKxi the variance of Kxi , we have VKx1 =

P 2
0 (λπ)−α(Γ(α+2)−Γ(α/2+2)2) and VKxi = P 2

0 (λπ)−α(Γ(α+1)−Γ(α/2+1)2), i ≥ 2.

Fig. 4.9a shows the ccdfs for Kx1 and Kx2 . Fig. 4.9b shows the mean and standard

deviation of Kx1 and Kx2 versus α based on (4.34) and (4.35). Kx1 statistically

dominates Kxi , i ≥ 2, since r(x1) statistically dominates rxi , i ≥ 2.
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For σ > 0, the ccdf of Kxi is

P(Kxi ≥ t) = EP(Kxi ≥ t | r(xi))

=
1

2
E erfc

(
log t− log(P0r(xi)

α) + σ2/2√
2σ

)
,

where the distribution of r(x0) is given in Theorem 4.5 and the distribution of

r(xi), i ≥ 2, is given in Lemma 4.9. σ appears in both the denominator and nu-

merator inside of the erfc function. When σ →∞, the impact of r(xi) diminishes.

4.5.2.2 Correlation

We consider two types of shadowing correlation. The first type is the correlation

between the shadowing coefficients from two BSs to the typical user. The second

type is the correlation between the shadowing coefficient and the directional radius

of a cell. In the proposed JSP model, these two types of correlation are inherently

related, i.e., the correlation between shadowing is induced by the correlation between

cell radius. If the BS deployment is modeled by a point pattern (i.e., deterministic

point process), only the second type of correlation exists.

Let P0 = 1 for simplicity. The correlation coefficient between the shadowing

coefficients Kx, Ky (from BS x, y ∈ Φ) is

ρKx,Ky =
E[KxKy]− EKxEKy√

VKx

√
VKy

,

where E[KxKy] = E[r(x)αr(y)α], EKx = E[r(x)α], and VKx = exp(σ2)Er(x)2α −

(Er(x)α)2. As the distance between two BSs x, y increases, the correlation between

r(x) and r(y) vanishes. Hence the locality of the shadowing correlation is preserved.

Obviously, ρKx,Ky ≤ ρr(x)α,r(y)α , and the equality holds when σ = 0. Further, ρKx,Ky

decreases with σ. For σ →∞, ρKx,Ky → 0 for any x 6= y.
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The correlation between Kx and r(x)α is

ρKx,r(x)α =

√
V(r(x)α)

VKx

,

where again, VKx = exp(σ2)Er(x)2α − (Er(x)α)2. ρKx,r(x)α = 1 for σ = 0. For

σ →∞, ρKx,r(x)α → 0.

4.5.3 Asymptotic Gain

For σ = 0,

MISR = E
[∑

x∈Φ\{x1}Kx‖x‖−α

Kx1‖x1‖−α

]
= E

[ ∑
x∈Φ\{x1}

r(x)α

r(x1)α
‖x‖−α

‖x1‖−α

]
.

The MISR is independent of P0 and λ. Fig. 4.10a shows the asymptotic gain (relative

to the baseline-PPP model) for the baseline triangular lattice model and the JSP-

PPP with σ = 0. The asymptotic gain increases with α. Fig. 4.10b shows the

asymptotic gain G for the JSP-PPP decreases with σ. As discussed in the last

subsection, increasing σ decreases the correlation between the shadowing coefficients

as well as the correlation between shadowing and cell radius. The figure shows that

increasing the variance of the JSP-PPP model is harmful to coverage. Eventually,

the JSP-PPP model reverts to the PPP as σ →∞.

4.5.4 Meta Distribution

Fig. 4.11 shows how the conditional success probabilities with a fixed θ = 1 are

distributed for the PPP with iid log-normal shadowing and the JSP-PPP model. The

strongest-BS association is assumed for both models. For σ = 0, the region where

Ps(θ) > 0.8 appears elliptical around the nucleus for the PPP; while for the JSP-
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Figure 4.10. The asymptotic gain of the JSP-PPP model.

PPP, the region where Ps(θ) > 0.8 is enlarged and adapts to the cell shape almost

perfectly. For σ = 1, both regions are blurred due to the shadowing variance, and

the JSP-PPP model outperforms the PPP model.

Fig. 4.12 shows the simulation results for the MD of the JSP-PPP model with

fixed reliabilities. The MD for the (baseline) triangular lattice and the (baseline)

PPP model are plotted for comparison. Under the strongest-signal association, the

MD decreases with σ, making a shift from the triangular lattice to the PPP.

Fig. 4.13 plots the first two moments of the conditional success probability for

the JSP-PPP model and the triangular lattice with iid log-normal shadowing. The

first two moments leads to a good approximation of the MD [23]. Hence the MD for

the JSP-PPP model is close to the triangular lattice for a set of different values of σ.

4.5.5 Convergence of the Path Loss Point Process

The path loss point process of the JSP model for a point pattern φ is Π =

{‖x‖α/Kx}x∈φ. In this subsection, we show that the path loss point process of the

JSP model for any realization of the PPP converges to that of a PPP as σ → ∞.
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the PPP and the JSP-PPP with σ = 0, 1 under the strongest-BS

association, λ = 1, α = 4.
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Figure 4.12. The MD for the JSP-PPP model with σ = 0, 1, 2, 3 and
x = 0.9, 0.99, α = 4. The black dashed and dotted curves denote the MD
for the PPP and the triangular lattice (without shadowing), respectively.

First we recall a result from [72].

Proposition 4.11. [72] For any deterministic and locally finite collection of points

φ ⊂ R2 without a point at the origin, let the shadowing coefficients, {Kx}x∈φ, be

iid log-normal random variables with EKx = 1 and V(log(Kx)) = σ2. If there is a

constant 0 < λ <∞ such that as t→∞

φ (b(o, t))

πt2
→ λ, (4.36)

then the path loss point process Π after rescaling by (EKδ
x)

1/δ = exp (−σ2(1− δ)/2)

converges weakly as σ → ∞ to that of the PPP on R+ with intensity measure

Λ([0, t)) = λπt2.

The rescaling of Π by (EKδ
x)

1/δ is necessary to obtain a non-zero intensity measure

as σ →∞. Now, when φ be a realization of the PPP, we have the convergence of the

path loss point process for the JSP model as follows.

Lemma 4.12. The path loss point process of the JSP model for any realization of
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Figure 4.13. First two moments of the conditional success probability for
JSP-PPP and the triangular lattice with iid shadowing. σ = 0, 1, 2, α = 4.

the PPP after rescaling by P0 exp (−σ2(1− δ)/2) converges weakly as σ →∞ to that

of the PPP on R+ with intensity measure Λ([0, t)) = t2.

Proof. We first show that the JSP model for a point pattern φ can be viewed as the

iid log-normal shadowing model in Proposition 4.11 with a modified point pattern φ̂.

Then we show that when φ is a realization of the PPP, its modified BS point pattern

φ̂ satisfies the convergence criterion.

For the JSP model, {Kx}x∈φ are independent but not necessarily identically dis-

tributed log-normal random variables such that EKx = P0r(x)α and V(log(Kx)) = σ2.

We have

Π =

{
x ∈ φ :

‖x‖α

r(x)α
1

Kx/r(x)α

}
=

{
x ∈ φ̂ :

‖x‖α

K̂x

}
,

where φ̂ , {x ∈ φ : x/r(x)} and K̂x , Kx/r(x)α. Now {K̂x}x∈φ are iid log-

normal with EK̂x = P0 and V(log(K̂x)) = σ2. After rescaling of Π by (EK̂δ
x)

1/δ =

P0 exp (−σ2(1− δ)/2), we retrieve the iid shadowing model in [72]. Now it suffices

to show that φ̂ satisfies the homogeneity condition (4.36).
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For the PPP,

EΦ̂(b(o, t)) = E
∑
i≥1

1(‖xi‖/r(xi) < t)

=
∑
i≥1

P(r(xi)/‖xi‖ > 1/t)

(a)
= t2.

Step (a) follows from the ccdf of r(xi)/‖xi‖ given in Lemma 4.3 and Lemma 4.9. 1(·)

is the indicator function. Hence we have EΦ̂(b(o, t))/πt2 = 1/π. By the ergodicity of

the PVT, limt→∞ φ̂(b(o, t))/πt2 = 1/π.

4.6 Summary

1. We characterize the shape and size of the Poisson Voronoi cells by introducing
the notion of the directional radius in Voronoi tessellations.

2. For the PVT, we derive the exact distributions of the directional radius in
the zero-cell and the uniform-angled radius in the typical cell. The results
reveal the asymmetry of Poisson Voronoi cells and also lead to a new approach
of evaluating the mean cell areas. For cases without an explicit expression,
simulation results and approximations are provided.

3. We introduce and study a joint spatial-propagation model for coverage-oriented
cellular networks. We consider cell-dependent shadowing where the shadowing
coefficients are conditionally log-normal random variables given the BS point
process such that users at the cell edges receive an expected power P0. Hence the
JSP model ascribes the irregular deployment of base stations to an intelligent
design by the operators, rather than to pure randomness, as is done in most of
the literature.

4. This chapter highlights the effect of the variance of the large-scale path loss
along the cell boundaries on the network performance. In the limiting case of
σ →∞, the path loss point processes for a general class of point processes seem
to converge to that of a PPP.
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CHAPTER 5

CONCLUSIONS

The inherent randomness of wireless node locations and their interactions through

the wireless medium warrants a probabilistic approach to studying wireless networks.

Through the stochastic geometry framework, we characterize the interplay between

the target reliability, rate, and user percentage using the meta distributions. Fur-

ther, cooperation between nodes is an effective way to improve the uniformity of user

performance. Lastly, cellular network coverage depends mainly on the correlation

between the deployment and propagation conditions. For future work, an impor-

tant future direction is to devise methods to improve the guaranteed performance

for (ultra-)high percentage of users in the presence of spatial and temporal random-

ness and to investigate further if fundamental limits of such guarantees exist. For

instance, modeling user traffic patterns can incorporate the temporal randomness.

For specific communication scenarios such as machine-type communications, node

traffic/activities and the network may be jointly designed to optimize the end-to-end

performance.
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