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Abstract

by

Radha Krishna Ganti

This thesis characterizes the relationship between the geometry of a wireless

network and its performance. The geometry of the network is largely influenced

by the wireless node locations and the large-scale path loss and in part by fading

and the transmit power levels. The performance of a wireless link is governed

by interference and signal power which in turn depend on the node locations.

Interference characterization is important in understanding the performance of a

wireless system. But unfortunately the distribution of the interference is known

only for few spatial distributions of node locations. More specifically, interference

was characterized when the nodes were either distributed as a Poisson point pro-

cess or as a lattice process. But in reality, the wireless nodes may neither be so

random nor so regular but somewhere in between. In this thesis the location of

nodes is modeled as a general stationary and isotropic point process, and we use

stochastic geometry to analyze the interference and outage.

We prove that the interference distribution depends critically on the path-loss

model under consideration. When the path-loss is unbounded at the origin, i.e.,

ℓ(x) = ‖x‖−α, interference has a heavy-tailed distribution with parameter 2/α.

When the path-loss is bounded, i.e., ℓ(x) = (1 + ‖x‖α)−1 the interference distri-

bution depends on the fading statistics. We prove that the interference has an
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exponential distribution when the fading is exponential and has a heavy-tailed

distribution when the fading is heavy-tailed. This proves that Gaussian model-

ing of interference is not appropriate. We also provide the temporal and spatial

correlation of interference when ALOHA is used for MAC scheduling.

Wireless nodes may cluster because of physical constraints or because of MAC

scheduling. For example, soldiers (with radios) cluster on the battle field or sensor

networks are clustered for energy reduction. But it is not clear if clustering of

transmitters is beneficial compared to randomizing the transmissions from the

perspective of link outages. We derive the outage probability of a Poisson clustered

network by obtaining its conditional probability generating functional.

It is difficult for the base station in a cellular network to connect to mobile

stations on the cell boundary because of the distance and the inter-cell interference.

It has therefore been proposed for the base station to communicate with the mobile

at the cell use using multiple hops. We use stochastic geometry to analyze the

outage probability in a two-hop cellular system. We provide the asymptotic gain

of a two-hop system over direct transmission, for three different relay selection

schemes. The major emphasis of the thesis is the inclusion of the spatial statistics

of the node locations in the performance analysis of a wireless network. To that

end we concentrate on effect of the spatial distribution of nodes on the interference

distribution. We provide results on the PDF, correlation and the tail behavior of

the interference. One of the main contributions of the thesis is the methodology

and the tools of analysis that we develop. The thesis concentrates on developing

spatial analysis techniques that have wide applicability rather than concentrating

on very specific details of a communication system.
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CHAPTER 1

INTRODUCTION

Information in a wireless communication system is modulated and transmit-

ted by an electro-magnetic wave. In the three dimensional space, wave energy

dissipates across the space with distance and in practice the dissipation follows

an inverse power law r−α, α > 0 where r is the distance from the source. Even

from this simple model of signal propagation, it is easy to observe that as the dis-

tance between the source-destination pair increases, the observable signal energy

decreases. Addition of thermal noise at the receiver requires the received signal

energy greater than a threshold (decided by the digital rate of transmission) for

the extraction of digital information. Hence the transmitter has to boost the

signal or limit the transmission distance for information transmission. When one

considers a single source-destination pair, the source can boost the signal power to

compensate for the distance, and noise becomes a limiting factor (given that the

source has enough power). Even in this case, observe that the distance translates

into power and hence the performance of the system implicitly depends on the

geometry, in this case the source-destination distance.

Since the medium is wireless, in addition to the desired signal, there is inter-

ference from other wireless transmitters. From the simple power law dissipation,

it can be easily seen that the desired signal will get drowned in interference if the

interferer is closer than the source (assuming both transmit with equal power). So
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the relative distances of the source from the destination and the interferer from the

destination becomes critical in recovering the transmitted information, i.e., the

geometry of the network plays a role in the performance. In most cases, the power

of the interfering signal cannot be controlled by the source and hence in this case,

boosting up the signal power cannot do the trick. This problem becomes more

significant when there are multiple sources and destinations and there is no coor-

dination among them. This problem can be tackled partially by allocating system

resources to coordinate the different transmitters, i.e., schedule the transmitters

and decide the transmit powers so as to reduce interference.

In the present wireless systems, generally a central controller schedules the

nodes so as to reduce the interference, for example base stations in the cellular

networks. On the other end of the spectrum are the distributed medium access

control (MAC) protocols by which a source self schedules. ALOHA and CSMA

are two classes of MAC protocols that are extensively used in the wireless systems.

But even after scheduling, interference cannot be entirely avoided in the network,

unless one is willing to drastically under-utilize the system resources. So even

after scheduling the system performance depends on the interference which in turn

depend on the geometry of the network, i.e., node locations. But unfortunately

the effect of space on a wireless system, is not well understood as compared to the

dimensions of frequency and time.

One of the major difficulty in incorporating the node locations in the per-

formance analysis of a communicating system is that, most often node locations

cannot be engineered. So one has to resort to various models of spatial loca-

tions that would facilitate the analysis. A common and analytically convenient

assumption for the node distribution in wireless networks is the homogeneous (or
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stationary) Poisson point process (PPP) of intensity λ, where the number of nodes

in a certain area of size A is Poisson with parameter λA, and the numbers of nodes

in two disjoint areas are independent random variables.

In the assumption of a PPP network, the node locations are being modeled

randomly. One can instead model the node locations in a deterministic manner,

for example [x1, . . . , xn] instead of the n nodes being uniformly distributed. De-

termining the system performance for any deterministic node placement is more

difficult, and the network geometry depends on the particular values of [x1, . . . , xn].

Also from a practical point of view it is more easier and more flexible to model

the radio locations in a statistical manner.

An alternative approach to node location modeling is to abstract the com-

munication channel between the users. This is the approach taken in multi-user

information theory in which the channel is modeled as a general probabilistic

function. Although this approach would lead to the analysis of a large class of

channels the problems are two-fold:

• The problems posed by such abstraction are very difficult to solve.

• Once the capacity of such a probabilistic function is found, the stochastic

modeling of node locations is again required to understand and apply the

results.

So an elegant way to understand the performance of a communication network

is to start with a probabilistic model for the node locations and use the tools

from wireless communication and information theory to study the performance

(1). This approach of using PPP to model the spatial locations of radios is used

extensively in the analysis of large wireless ad hoc networks which constitute of

wireless nodes that operate in a distributed fashion. This fully distributed nature
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of the network makes the geometry of the network very prominent in its analysis.

The use of the PPP model simplified the analysis and provided insight into the

operation of the network in the form of scaling laws.

For sensor networks, this assumption of PPP is usually justified by claiming

that sensor nodes may be dropped from aircraft in large numbers; for mobile

ad hoc networks, it may be argued that terminals move independently from each

other. While this may be the case for certain networks, it is much more likely that

the node distribution is not ”completely spatially random” (CSR), i.e., that nodes

are either clustered or more regularly distributed. Moreover, even if the complete

set of nodes constitutes a PPP, the subset of active nodes (e.g., transmitters in

a given time-slot or sentries in a sensor network), may not be homogeneously

Poisson. Certainly, it is preferable that simultaneous transmitters in an ad hoc

network or sentries in a sensor network form more regular processes to maximize

spatial reuse or coverage respectively. On the other hand, many protocols have

been suggested that are based on clustered processes. This motivates the need to

extend the rich set of results available for PPPs to other node distributions.

The major emphasis of the thesis is the inclusion of the spatial statistics of

the node locations in the performance analysis of a wireless network. To that end

we concentrate on effect of the spatial distribution of nodes on the interference

distribution. We provide results on the PDF, correlation and the tail behavior of

the interference. One of the main contributions of the thesis is the methodology

and the tools of analysis that we obtain. The thesis concentrates on developing

spatial analysis techniques that can be used to analyze various communication

systems. We focus on bare bone problems rather than very specific details of a

communication system.
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1.1 Definitions and Notation

In this section, we state the general system model, state the assumptions and

set the notation.

Time: We assume that the time is discretized. The duration of each time slot is

fixed and in general we assume that the slot is big enough to transmit a packet (a

sizeable chunk of information). We also assume that all the nodes are perfectly

synchronized.

Fading: We assume i.i.d unit mean fading between any two pair of nodes and

time. We use hxy[k] to denote the square of the fading, i.e., the power coefficient

between nodes located at x and y at time k. We also assume that the fading does

not change for the time slot k, i.e., we assume quasi-static fading. When there is

no confusion about the time instant under consideration, we shall drop k and use

hxy to denote the power fading coefficient. Some of the most common models for

fading used are the Rayleigh and Nakagami-m fading. In these cases, the PDF of

the power fading denoted by fh is given by:

1. Rayleigh:

fh(y) = exp(−y).

2. Nakagami-m:

fh(y) =
mm

Γ(m)
ym−1e−my.

Observe that E[h] = 1.

Path-loss model: The path-loss model is denoted by ℓ(x) : R
2 \ {o} → R

+ and

satisfies the following conditions.
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1. ℓ(x) is a continuous, positive, non-increasing function of ‖x‖ and

∫

R2\B(o,ǫ)

ℓ(x)dx <∞, ∀ǫ > 0.

2.

lim
‖x‖→∞

ℓ(x)

ℓ(x− y)
= 1, ∀y ∈ R

2 (1.1)

ℓ(x) is usually taken to be a power law in the form

1. Singular path-loss model: ‖x‖−α.

2. Non-singular path-loss model: (1 + ‖x‖α)−1.

min{1, ‖x‖−α} is also an example of a non-singular path-loss function.

Remarks:

1. To satisfy Condition 1, we require α > 2 in all the above models.

2. In practice, the decay of the power as r−α can be observed only when r ≫

λw where λw is the wavelength of the electromagnetic wave used. This

phenomena is generally referred as the near and far field effect. In practice

a receiver is in a transmitters far field if the distance is larger than 2D2/λw,

where D is the largest physical dimension of the transmitting antenna. The

exponent α is greater than 2 because of power dissipation in the medium.

In free space α would be equal to 2. In the near field the physics becomes

more difficult because of the coupling between the transmitter and receiver.

Node Locations:

• The node locations are modeled as a point process Φ on the plane.
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• For each node x ∈ Φ, its destination is in a random direction located at r(x)

with ‖x − r(x)‖ = R.

For a brief introduction to the theory of point processes please refer to Chapter 6

and (2) for more details.

Definition 1 (Interference). The interference at location z ∈ R
2 when Ψ is the

interfering set is given by

IΨ(z, k) =
∑

x∈Ψ

hxz[k]ℓ(x − z). (1.2)

When there is no confusion, Ψ, k and z will be dropped from IΦ(z, k).

In this thesis, interference is always treated as noise. From an information

theoretic point of view this is not entirely correct since more sophisticated signaling

schemes can be used to increase the rate of the system. But in practice most of

the receivers are designed by considering interference as noise. In the thesis we

also use the fact that Gaussian signaling is used and hence the capacity of a point

to point link with interference is

log2(1 + SINR).

This assumption leads to the following outage based model of connectivity.

Definition 2 (SINR model). A transmitting node at x can connect to a receiver

y if the received SINR is greater than θ. More precisely x can connect to y at time

instant k if

SINR(x, y,Ψ) =
hxy[k]ℓ(x− y)

σ2 + IΨ(y, k)
> θ, (1.3)
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where Ψ is the interfering set and σ2 denotes the power of the additive noise at

the receiver.

We assume that σ2 is constant throughout the network. θ depends on the modula-

tion and the rate of transmission. If one uses Gaussian code book for transmission

θ = 2a − 1, where a is the rate of transmission. This method of connectivity is

typically referred to as the outage model.

Definition 3 (Local connectivity). We define the local connectivity function as

follows

1(x→ y | Ψ) =







1 if SINR(x, y,Ψ) ≥ θ,

0 Otherwise.
(1.4)

We now define the success probability between a source and destination talking

the statistics of the transmit process. Let Bn ⊂ R
2 denote an increasing sequence

of convex sets with Bn−1 ⊂ Bn and limn→∞ |Bn| = ∞.

Definition 4 (Average spatial success probability). Let Φ be the transmitting set.

The average spatial success probability is defined as

Ps = lim
n→∞

1

Λ(Bn)
E

[
∑

x∈Φ∩Bn

1(x→ r(x) | Φ \ {x})
]

, (1.5)

for some convex set B ⊂ R
2. Here Λ(Bn) denotes the average number of points of

Φ in the set Bn. The expectation is with respect to the point process, fading and

the random direction.

In the above definition of the success probability we are averaging over space

(different source-destination pairs) as well different realizations of the point pro-

cess. Alternatively one may define the link success probability between a trans-

mitter x and its receiver r(x).
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Definition 5 (Link success probability). The success probability of an individual

link is defined as

Psl = P
!x (SINR(x, r(x),Φ) > θ) (1.6)

Here P
!x denotes the reduced conditional probability that there is a point of

the transmit point process Φ at x. In the definition of Psl the success probability

is averaged over different realizations of the point process but not over space. We

now remove the averaging over different realizations and define the ergodic success

probability.

Definition 6 (Ergodic success probabiltiy).

Pse = lim
n→∞

1

Λ(Bn)

[
∑

x∈Φ∩Bn

1(x→ r(x) | Φ \ {x})
]

. (1.7)

When the underling transmitter set Φ is stationary and isotropic, the success

probability simplifies as follows:

Theorem 1. When the transmitters are distributed as a stationary and isotropic

point process of density λ,

Ps = Psl = P
!o(SINR(o,R,Φ) > θ). (1.8)

Proof. By the Campbell Mecke theorem (3), we have

Ps = lim
n→∞

λ−1

|Bn|

∫

Bn

E
!x1(x→ r(x) | Φ)dx.

9



Expanding in terms of the interference we have

Ps = lim
n→∞

λ−1

|Bn|

∫

Bn

P
!x

(
hxr(x)ℓ(R)

σ2 + IΦ(r(x))
> θ

)

dx

(a)
= lim

n→∞

λ−1

|Bn|

∫

Bn

P
!o

(
hoRℓ(R)

σ2 + IΦ(x− r(x))
> θ

)

dx

(a) follows from the fact that the fading is i.i.d over space and P
!x(Y ) = P

!o(Yx).

Since the Palm measure is isotropic for a motion-invariant process, the integrand

does not depend on x and hence we have

Ps = P
!o

(
hoRℓ(R)

σ2 + IΦ(R)
> θ

)

.

Ps = Psl follows from the properties of the Palm distribution of a stationary point

process.

Theorem 2. When the underlying transmitter set Φ is stationary, isotropic and

ergodic,

Ps = Psl = Pse = P
!o(SINR(o,R,Φ) > θ).

Proof. The result follows from Theorem 1 and (2, Prop. 13.4.1).

In this thesis we concentrate only on transmitters distributed as stationary and

isotropic point processes and hence use Ps unless otherwise indicated. We now

provide a general formula for the success probability when the fading is Nakagami-

m distributed.

Theorem 3. The Probability of success when the transmitters form a stationary

10



point process Φ, σ2 = 0 and the fading is Nakagami-m is equal to

Ps =
m−1∑

k=0

(−1)k

k!

dk

dsk
L!o
IΦ(z)(s) exp(−σ2s) |s=θm/ℓ(R) (1.9)

where L!o
IΦ(z)(s) denotes the Laplace transform of the interference with respect to

the reduced Palm measure of Φ.

Proof. From (1.8) the success probability is given by

Ps = P
!o(SINR(o,R,Φ) > θ)

= P
!o

(
hoRℓ(R)

σ2 + IΦ(R)
> θ

)

=

(
θ

ℓ(R)

)m
mm

Γ(m)

∫ ∞

0

ym−1 exp

(

− θm

ℓ(R)
y

)

P
!o(IΦ(R) + σ2 < y)dy

Integrating by parts we have

Ps =
1

Γ(m)

∫ ∞

0

Γ

(

m,
θm

ℓ(R)

)

dP
!o(IΦ(z) + σ2 < y)

(a)
=

m−1∑

k=0

1

k!

∫ ∞

0

yk exp

(

− θm

ℓ(R)
y

)

dP
!o(IΦ(z) + σ2 < y)

where (a) follows from the series expansion of the incomplete Gamma function.

The result follows from the properties of the Laplace transform.

The following Corollary is obtained by setting m = 1.

Corollary 7. For Rayleigh fading, the success probability is equal to

Ps = L!o
IΦ(z)

(
θ

ℓ(R)

)

exp

(

− σ2θ

ℓ(R)

)

. (1.10)
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For other fading distributions a more abstract formula can be obtained for

the success probability which involves the conditional Laplace transform of the

interference. The following result is valid only for ℓ(x) = ‖x‖−α and ℓ(x) =

(1 + ‖x‖α)−1.

Proposition 1. Let F̂c(ξ) denote the Fourier transform of the complementary

cumulative distribution function (CCDF) Fc(x) of the fading. We then have

Ps =

∫ ∞

−∞
F̂c(ξ) exp

(

jξθ
σ2

ℓ(R)

)

L!o
IΦ(z)

(
jξθ

ℓ(R)

)

dξ.

Proof. The probability of success is

Ps = P
!o

(
hoRℓ(R)

σ2 + IΦ(R)
> θ

)

which is equal to

Ps = E
!oFc

(

θ
σ2 + IΦ(z)

ℓ(R)

)

= E
!o

∫ ∞

−∞
F̂c(ξ) exp

(

jξθ
σ2 + IΦ(z)

ℓ(R)

)

dξ

=

∫ ∞

−∞
F̂c(ξ) exp

(

jξθ
σ2

ℓ(R)

)

L!o
IΦ(z)

(
jξθ

ℓ(R)

)

dξ.

From Theorem 3 and Proposition 1, we observe that the conditional Laplace

transform of the interference is sufficient to evaluate the success probability. In

the next section, we describe the prior work related to the interference and outage

characterization in wireless networks pertinent to Chapters 2, 3 and 4.
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1.2 Related Work

There exists a significant body of literature for networks with Poisson dis-

tributed nodes. In (4), the characteristic function of the interference was obtained

when there is no fading and the nodes are Poisson distributed. They also pro-

vide the probability distribution function of the interference as an infinite series.

Mathar et al., in (5), analyze the interference when the interference contribution

by a transmitter located at x to a receiver located at the origin is exponentially

distributed with parameter ‖x‖2. Using this model they derive the density func-

tion of the interference when the nodes are arranged as a one dimensional lattice.

Also the Laplace transform of the interference is obtained when the nodes are

Poisson distributed.

It is known that the interference in a planar network of nodes can be modeled

as a shot noise process. Let {xj} be a point process in R. Let {βj(.)} be a sequence

of independent and identically distributed random functions on R
d, independent

of {xj}. Then a generalized shot noise process can be defined as (6)

Y (x) =
∑

j

βj(x− xj)

If βj() is the path loss model with fading, Y (x) is the interference at location

x if all nodes xj are transmitting. The shot noise process is a very well studied

process for noise modeling. It was first introduced by Schottky in the study of

fluctuations in the anode current of a thermionic diode and it was studied in detail

by Rice (7; 8). Daley in 1971 defined multi-dimensional shot noise and examined

its existence when the points {xj} are Poisson distributed in R
d. The existence

of generalized shot-noise process, for any point process was studied by Westcott
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in (6). Westcott also provides the Laplace transform of the shot-noise when the

points {xj} are distributed as a Poisson cluster process. Normal convergence of the

multidimensional shot-noise process is shown by Heinrich and Schmidt (9). They

also show that when the points {xj} form a Poisson point process of intensity λ,

the rate of convergence to a normal distribution is
√
λ.

In (10), Ilow and Hatzinakos model the interference as a shot noise process and

show that the interference is a symmetric α-stable process (11) when the nodes

are Poisson distributed on the plane. They also show that channel randomness

affects the dispersion of the distribution, while the path-loss exponent affects the

exponent of the process. The throughput and outage in the presence of interference

are analyzed in (12; 13; 14). In (12), the shot-noise process is analyzed using

stochastic geometry when the nodes are distributed as Poisson and the fading is

Rayleigh. In (15) upper and lower bounds are obtained under general fading and

Poisson arrangement of nodes.

Even in the case of the PPP, the interference distribution is not known for all

fading distributions and all channel attenuation models. Only the characteristic

function or the Laplace transform of the interference can be obtained in most of

the cases. The Laplace transform can be used to evaluate the outage probabilities

under Rayleigh fading characteristics (12; 16). In the analysis of outage proba-

bility, the conditional Laplace transform is required, i.e., the Laplace transform

given that there is a point of the process located at the origin. For the PPP, the

conditional Laplace transform is equal to the unconditional Laplace transform.

(17) introduces the notion of transmission capacity, which is a measure of the

area spectral efficiency of the successful transmissions resulting from the optimal

contention density as a function of the link distance. Transmission capacity is
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defined as the product of the maximum density of successful transmissions and

their data rate, given an outage constraint. Weber et al. provide bounds for the

transmission capacity under different models of fading, when the node location

are Poisson distributed. Transmission capacity is used as a metric to evaluate the

merit of power control in a Poisson ad hoc network in (18). In (19; 20) the optimal

number of sub-bands into which the bandwidth can be divided so as to maximize

the transmission capacity is obtained.

1.3 Contribution and Organization of the Thesis

In Chapter 2, we derive the statistical properties of the interference when

the transmitting nodes are distributed as a stationary and motion-invariant point

process. We obtain:

• Upper and lower bounds on the CCDF of interference which are asymptot-

ically tight.

• We prove that interference is heavy tailed when the path-loss model is ℓ(x) =

‖x‖−α irrespective of the fading.

• Interference is dictated by the fading when the path-loss model is bounded.

• Gaussian modeling of interference (power) is a bad assumption.

In Chapter 3, the spatial and temporal correlation properties of the interference

are obtained for a PPP set of transmitters with ALOHA as the MAC protocol.

In Chapter 4, we focus on Poisson clustered transmitters and obtain expres-

sions for the outage probability:

• The conditional probability generating functional of a PCP is obtained and

used in the derivation of Ps.
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• We provide conditions for which clustering the transmitters is more beneficial

than randomizing the transmissions.

• We prove that the transmission capacity of a Poisson clustered network is

equal to the transmission capacity of PPP network with the same density.

In Chapter 5, we analyze three relay selection schemes in a cellular architecture.

We provide a detailed analysis of the success probability by taking the spatial

statistics into account. We also provide exact computable asymptotic results in

the high SNR regime.

Chapter 6 provides a basic introduction to the theory of point processes.
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CHAPTER 2

INTERFERENCE IN GENERAL MOTION-INVARIANT NETWORKS.

2.1 System Model

The transmitters are modeled as a motion invariant (stationary and isotropic)

point process Φ of intensity λ on the plane. Examples of such process include the

stationary PPP and the PCP. Another example of such a process is the following:

Shifted lattice process: The point process Φ is equal to the randomly translated

and rotated integer lattice. More precisely

Φ =
√
λZ

2ejβ + U,

where β is uniformly distributed in [0, 2π] and U is uniformly distributed in [0,
√
λ].

Every transmitter is assumed to transmit with unit power. From (1.8) we observe

that the average success probability can be calculated by placing a typical trans-

mitter at the origin. So in this chapter we derive the properties of the interference

by placing a typical transmitter at the origin. Also in this chapter we shall exclu-

sively concentrate on the properties of the interference at a single location z and

hence all the fading coefficients are with respect to this location. The interference

observed at z ∈ R
2 is equal to

IΦ(z) =
∑

x∈Φ\{o}
hxzℓ(x − z). (2.1)
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In this chapter we provide the characterization of the (complementary) CDF of

IΦ(z) given that there is a transmitting node at the origin. So all probabilities are

conditioned on the event that there is a transmitting node at the origin, i.e., Palm

probabilities (2; 3; 21). Let G̃[v] denote the conditional probability generating

functional (CPGFL) of the point process Φ, i.e.,

G̃[v] = E
!o

[
∏

x∈Φ

v(x)

]

(2.2)

where v : R
2 → [0,∞) is a well behaved function (2).

2.2 Conditional Laplace Transform of the Interference: L!o
IΦ(z)(s)

We first start by deriving the first and the second conditional moments of the

interference.

Lemma 1. The mean of the interference is given by

E
!o[Iφ(z)] =

1

λ

∫

R2

ℓ(x− z)ρ(2)(x)dx,

where ρ(2)(z) is the second order product density.

Proof. The mean of the interference is equal to

E
!o[IΦ(z)] = E

!o
∑

x∈Φ

hxℓ(x − z)

(a)
= E[h]λ

∫

R2

ℓ(x− z)K2(dx)

(b)
=

E[h]

λ

∫

R2

ℓ(x− z)ρ(2)(x)dx.

(a) follows from the definition of the n-th factorial measure and (b) from the
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definition of ρ(2)(x).

The average interference is finite for the non-singular path-loss model. For

ℓ(x) = ‖x‖−α, the average interference is finite if and only if ρ(2)(x) is zero (or

ρ(2)(x) = o(xα), x → ∞) on a small neighborhood of z. From the definition of

ρ(2)(x) this implies that there should not be any interfering transmitter close to

the receiver located at z. For a PPP and PCP ρ(2)(z) 6= 0 for z > 0 and hence

the average interference is infinity. For the shifted lattice process, ρ(2)(x) = 0 for

‖x‖ <
√
λ and hence the average interference is finite for z <

√
λ.

Lemma 2. The second moment of the interference is equal to

E
!o[I2

Φ(z)] =
E[h2]

λ

∫

R2

ℓ2(x− z)ρ(2)(x)dx

+
1

λ

∫

R2

∫

R2

ℓ(x1 − z)ℓ(x2 − z)ρ(3)(x1, x2)dx1dx2.

Proof. We have

E
!o[I2

Φ(z)] = E
!o

[
∑

x∈Φ

hxℓ(x − z)

]2

= E
!o

[
∑

x∈Φ

h
2
x
ℓ2(x − z)

]

+ E
!o

[ 6=
∑

x1,x2∈Φ

hx1hx2ℓ(x1 − z)ℓ(x2 − z)

]

(a)
= E[h2]E!o

[
∑

x∈Φ

ℓ2(x − z)

]

+ E[h]2E!o

[ 6=
∑

x1,x2∈Φ

ℓ(x1 − z)ℓ(x2 − z)

]

.

(a) follows from the independence of the fading.
∑6=

x1,x2
is the sum over all tuples
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(x1, x2) such that x1 6= x2. We have,

E
!o

[
∑

x∈Φ

ℓ2(x − z)

]

(a)
= λ

∫

R2

ℓ2(x− z)K2(dx)

(b)
=

1

λ

∫

R2

ℓ2(x− z)ρ(2)(x)dx.

Similarly we have

E
!o

[ 6=
∑

x1,x2∈Φ

ℓ(x1 − z)ℓ(x2 − z)

]

(c)
= λ2

∫

R2

∫

R2

ℓ(x1 − z)ℓ(x2 − z)K3(dx1 × dx2)

(d)
=

1

λ

∫

R2

∫

R2

ℓ(x1 − z)ℓ(x2 − z)ρ(3)(x1, x2)dx1dx2.

where (a), (c) follow from (6.7) and (b), (d) follow from (6.8).

We observe that the interference moments and hence the distribution depends

on the location z for a general point process. The distribution of the IΦ(z) does

not depend on the direction of z because of the isotropy of the Palm distribution

for stationary processes. We now derive the conditional Laplace transform of the

interference in terms of the CPGFL.

Theorem 4. The conditional Laplace transform of the interference is given by

L!o
IΦ(z)(s) = G̃ [Lh(sℓ(· − z))] (2.3)
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Proof. The Conditional Laplace transform of the interference is

L!o
IΦ(z)(s) = E

!o exp(−s
∑

x∈Φ

hxℓ(x − z))

(a)
= E

!o
∏

x∈Φ

E exp(−shxℓ(x − z))

= E
!o
∏

x∈Φ

Lh(sℓ(x − z))

(b)
= G̃[Lh(sℓ(· − z))]

where (a) follows from the independence of the fading and (b) follows from the

definition of the CPGFL.

From the above expression we observe that the interference distribution can

be evaluated if the CPGFL of the transmit point process Φ is known. But unfor-

tunately the CPGFL is known only for a few point process.

2.2.1 Interference in Poisson Networks.

When Φ is PPP, we have ρ(2)(x) = λ2 and ρ(3)(x) = λ3 and hence the average

interference is

E
!o[IΦ(z)] = λ

∫

R2

ℓ(x)dx.

The second moment of the interference is equal to

E
!o[I2

Φ(z)] = E[h2]λ

∫

R2

ℓ2(x)dx+ λ2

(∫

R2

ℓ(x)dx

)2

.

Hence the variance of the interference is equal to E[h2]λ
∫

R2 ℓ
2(x)dx. By Slivnyak’s

theorem we have P
!o = P and hence the CPGFL is equal to the PGFL. Hence from
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(6.1) and Theorem 4 the Laplace transform of the interference is equal to

L!o
IΦ(z)(s) = exp

(

−λ
∫

R2

1 − Lh(sℓ(x− z))dx

)

= exp

(

−λ
∫

R2

1 − Lh(sℓ(x))dx
)

.

Observe that the interference distribution does not depend on the location z.

This is because of the stationary of the reduced Palm measure of the PPP. When

ℓ(x) = ‖x‖−α, by a change of variables we obtain

L!o
IΦ(z)(s) = exp

(

−λsδ
∫

R2

1 − Lh(‖x‖−α)dx
)

, (2.4)

where δ = 2/α. From the Laplace transform of the interference, we observe

that the interference is a stable distribution with parameter δ when the node

distribution is PPP and the path-loss model singular. In this case integer moments

of the interference do not exist. In the singular case the Laplace transform can be

simplified further:

L!o
IΦ(z)(s) = exp

(

−λsδ
∫

R2

∫ ∞

0

[

1 − e−‖x‖−αyf(y)
]

dydx

)

(a)
= exp

(

−λE[hδ]sδ
∫

R2

1 − e−‖x‖−α

dx

)

= exp
(
−πλE[hδ]Γ (1 − δ) sδ

)
.

where (a) follows from the substitution xy−1/α → x. From the above expression we

observe that the distribution depends only on the δ-th moment of the fading. This

is in contrast with the non-singular channel model in which the fading distribution

plays a more dominant role.
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Figure 2.1. The hashed disc of radius R = y−1/α and corresponds to the
set of transmitters (near set) which individually contribute at least y to

the interference I.

2.3 Bounds on the Interference Distribution

In the previous section, we have derived the Laplace transform of the in-

terference and although in theory, the Laplace transform provides the complete

description of the interference, it would be more beneficial to have the CDF or

the PDF of the interference. In this section we provide bounds on the CCDF of

the interference when the transmitting nodes are homogeneously distributed on

the plane.

The basic idea behind the proof is easy to understand when fading is absent,

ℓ(x) = ‖x‖−α and for a PPP. In this case the interference at the origin is given

by I =
∑

x∈Φ l(x). We can then divide the transmitting set into two subsets, the

near set and the far set. The near set consists of all the nodes that individually

contribute atleast y to I and the far set is the complement of the near set. See
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Figure 2.1. Since there is no fading it is easy to see that the near set consists of the

nodes in b(o, y−1/α). We can lower bound P(I > y) by neglecting the contribution

of the far set and this will be a tight bound if α − 2 is not too small since most

of the contribution to the interference is from the near set. A lower bound for

P(I < y) follows by first observing that the event I < y requires the near set to

be empty and secondly that the contribution of the far set can be replaced by

its average using the Markov inequality (the average interference caused by the

far set is finite for y > 0.). When there is fading, there is an effective reordering

of the points (22) but nevertheless the near and the far sets can be defined in a

similar fashion.

Theorem 5. When the transmitters are distributed as a stationary point process

Φ, the CCDF F̄I(y) of the interference at location z, conditioned on a transmitter

present at the origin but not included in the interference is lower bounded by F̄ l
I(y)

and upper bounded by F̄ u
I (y), where

F̄ l
I(y) = 1 − G̃

[

Fh

(
y

ℓ(.− z)

)]

(2.5)

F̄ u
I (y) = 1 − (1 − ϕ(y))G̃

[

Fh

(
y

ℓ(.− z)

)]

(2.6)

where Fh(x) denotes the CDF of the fading coefficient h, and

ϕ(y) =
1

yλ

∫

R2

ℓ(x− z)ρ(2)(x)

∫ y/ℓ(x−z)

0

νdFh(ν)dx. (2.7)

If E
!o[IpΦ] <∞, we can also use a loose ϕ(y) = E

!o[IpΦ]y−p, p ≥ 1 .

Proof. The basic idea is to partition the transmitter set Φ into two subsets Φy
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and Φc
y where,

Φy = {x ∈ Φ, hxℓ(x− z) > y} (near set),

Φc
y = {x ∈ Φ, hxℓ(x− z) ≤ y} (far set).

Φy consists of those transmitters whose contribution to the interference exceeds

y. We have IΦ(z) = IΦy(z) + IΦc
y
(z), where IΦy(z) corresponds to the interference

due to the transmitter set Φy and IΦc
y
(z) corresponds to the interference due to

the transmitter set Φc
y. Hence we have

F̄I(y) = P(IΦy(z) + IΦc
y
(z) ≥ y)

≥ P(IΦy(z) ≥ y)

= 1 − P(IΦy(z) < y)

= 1 − P(Φy = ∅). (2.8)

We can evaluate the probability P(Φy = ∅) that Φy is empty using the conditional

Laplace functional as follows:

P(Φy = ∅) = E
!o
∏

x∈Φ

1hxℓ(x−z)≤y

(a)
= E

!o
∏

x∈Φ

Ehx

(
1hxℓ(x−z)≤y

)

= E
!o
∏

x∈Φ

Fh

(
y

ℓ(x − z)

)

= G̃
[

Fh

(
y

ℓ(· − z)

)]

, (2.9)
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where (a) follows from the independence of hx. To obtain the upper bound

F̄I(y) = P(IΦ > y | IΦy > y)F̄ l
I(y) + P(IΦ > y | IΦy ≤ y)(1 − F̄ l

I(y))

(a)
= 1 − G̃

[

Fh

(
y

ℓ(· − z)

)]

+ P(IΦ > y | IΦy ≤ y)G̃
[

Fh

(
y

ℓ(· − z)

)]

= 1 − (1 − P(IΦ > y | IΦy ≤ y))G̃
[

Fh

(
y

ℓ(· − z)

)]

(2.10)

where (a) follows from the lower bound we have established. To evaluate P(IΦ >

y | IΦy ≤ y) we use the Markov inequality. We have

P(IΦ > y | IΦy ≤ y) = P(IΦ > y | Φy = ∅)
(a)

≤ E
!o (IΦ | Φy = ∅)

y

=
1

y
E

!o
∑

x∈Φ

hxℓ(x− z)1hxℓ(x−z)≤y

=
1

y
E

!o
∑

x∈Φ

ℓ(x− z)

∫ y/ℓ(x−z)

0

νdFh(ν)

(b)
=

1

yλ

∫

R2

ℓ(x− z)

∫ y/ℓ(x−z)

0

νdFh(ν)ρ
(2)(x)dx.

(a) follows from the Markov inequality, and (b) follows from a procedure similar

to the calculation of the mean interference from the previous section.

When Φ is a PPP, we have G̃[v] = exp(−λ
∫

1− v(x)dx)) (6.1) . For Rayleigh

fading and ℓ(x) = ‖x‖−α, the lower bound is equal to

F̄ l
I(y) = 1 − exp(−πλy−δΓ(1 + δ)),
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Figure 2.2. The CCDF of the interference is plotted when Φ is a PPP
and ℓ(x) = ‖x‖−4. In this case the interference is a Levy stable

distribution.

and the upper bound is equal to

F̄ u
I (y) = 1 −

(

1 − 2πλΓ(1 + δ)

α− 2
y−δ
)

exp(−πλy−δΓ(1 + δ)).

From Figure 2.2, we observe that the lower bound is closer to the actual CCDF

than the upper bound. In the above derivation, the upper bound may be loose

because a simple Markov inequality is used to bound P(IΦ > y | IΦy ≤ y), and a

better bound may be obtained by using the Chernoff bound. The upper bound

diverges as α ↓ 2 since the average interference contribution from the far set

diverges. From the upper and the lower bound we can observe that the interference

in a PPP network is heavy tailed with parameter δ for the singular path-loss model.

In the next Lemma we prove that the upper and the lower bounds are asymp-

27



totically tight when ℓ(x) = ‖x‖−α. We will use g1(x) ∼ g2(x) to denote

lim
x→∞

g1(x)/g2(x) = 1.

Lemma 3. When ℓ(x) = ‖x‖−α, α > 2, z ∈ R
2,

ϕ(y)







∼ 2πρ(2)(z)E[hδ ]
λ(α−2)

y−δ ρ(2)(z) 6= 0

= o(y−δ) ρ(2)(z) = 0.

Proof. When g(x) = ‖x‖−α, α > 2, we have

ϕ(y) =
1

yλ

∫

R2

‖x− z‖−αρ(2)(x)

∫ ‖x−z‖α

0

νdFh (ν)dx

(a)
=

1

yλ

∫ ∞

0

νdFh (ν)

∫

R2

‖x‖−α1(‖x‖α > νy−1)ρ(2)(x+ z)dx

(b)
=

y−2/α

λ

∫ ∞

0

νdFh (ν)

∫

R2

‖x‖−α1(‖x‖α > ν)ρ(2)

(
x

y1/α
+ z

)

dx

where (a) follows from the substitution x→ x+z and interchanging the integrals.

(b) follows by the substitution y1/αx → x. So by the dominated convergence

theorem when ρ(2)(z) 6= 0, we have

lim
y→0

ϕ(y)

y2/α
=

ρ(2)(z)

λ

∫ ∞

0

νdFh (ν)

∫

R2

‖x‖−α1‖x‖α>νdx

=
2πρ(2)(z)E[h2/α]

λ(α− 2)
.
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2.4 Asymptotic Behavior of the Interference Distribution

In the previous section, bounds on the CCDF were provided, and they depend

on the conditional PGFL. But the PGFL (let alone the conditional PGFL) is not

known, except for a few point processes. In this section we take an alternate

approach and evaluate the tail of the CDF. We show that the CCDF of the

interference depends critically on the path-loss model ℓ(x).

2.4.1 Singular Path-Loss Function

For a real-valued function f(x), the behavior of the function for large x can

be evaluated by the value of the Laplace transform at s = 0. The generalization

of this idea is expressed by the following Tauberian theorem.

Theorem 6 (Tauberian theorem (23; 24)). Let R0 represent the set of functions

which satisfy the property

η(λx)

η(x)
→ 1, (x→ ∞).

For 0 ≤ β ≤ 1, η ∈ R0, the following are equivalent:

1 −
∫ ∞

−∞
e−sxf(x)dx ∼ sβη

(
1

s

)

, (s ↓ 0)

1 −
∫ x

0

f(y)dy ∼ η(x)

xβΓ(1 − β)
, (x→ ∞).

In this section we will derive the tail behavior of the interference using the

conditional Laplace transform of the interference. We first prove that the inter-

ference is heavy-tailed when the path-loss model is singular. The basic idea of

the proof is as follows: From the previous chapter, we know that the conditional
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Laplace transform of the interference is given by G̃[Lh(sℓ(· − z))]. We have

G̃[Lh(sℓ(· − z))] = G̃[1 − v(s, x− z)],

where v(s, x) = (1 − Lh(sℓ(x))). We observe that v(s, x) → 0 as s → 0. Since

v(s, x) is small, we show that the following approximation holds true when s is

small.

G̃[1 − v(s, x)] ≈ 1 − E
!o
∑

x∈Φ

v(s, x − z)

= 1 −
∫

R2

v(s, x− z)ρ(2)(x)dx.

It is then shown that
∫

R2 v(s, x − z)ρ(2)(x)dx = Θ(s2/α) when ℓ(x) = ‖x‖−α and

the Tauberian theorem is used to prove that the tail of the interference is heavy.

Theorem 7. Let z ∈ R
2 such that ρ(2)(z) 6= 0 and ρ(2)(z) continuous around a

small neighborhood of z. If ℓ(x) = ‖x‖−α, α > 2, factorial moments of Φ exist

then IΦ(z) is heavy-tailed with parameter δ. More precisely

P(IΦ(z) ≥ y) ∼ πρ(2)(z)

λ
E[hδ]y−δ, y → ∞.

Proof. The idea is use the scaling of Laplace transform of IΦ(z) at s = 0 and

derive the properties of the tail properties of IΦ(z) using the Tauberian Theorem

6.

Let ℓr(x) = ℓ(x)1b(o,r)(x), be a truncated version of ℓ(x). Observe that ℓr(x) →

l(x) uniformly as r → ∞. We now prove that Eh(e
−shℓr(x−z)) belongs to the class

of functions over which the conditional PGFL is continuous.

Bounded support: Observe that 1 − Eh(e
−shℓr(x−z)) has a bounded support.
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Moment convergence: We now prove that

∫

R2

|Eh(e
−shℓr(x−z)) − Eh(e

−shℓ(x−z))|ρ(2)(x)dx→ 0 (2.11)

The left side of the above equation is

∫

R2

∣
∣
∣
∣

∫ ∞

0

[exp(−sℓr(x− z)t) − exp(−sℓ(x− z)t)] f(t)dt

∣
∣
∣
∣
ρ(2)(x)dx

=

∫

‖x−z‖>r

∫ ∞

0

[1 − exp(−sℓ(x− z)t)] f(t)dt ρ(2)(x)dx

(a)

≤ s

∫

‖x−z‖>r
‖x− z‖−αρ(2)(x)dx

∫ ∞

0

tf(t)dt

(b)
=

E[h]s

rα−2

∫

‖x‖>1

‖x‖−αρ(2)(rx+ z)dx

(c)
= → 0,when r → ∞. (2.12)

(a) follows from the inequality 1− exp(−x) ≤ x, (b) follows from the substitution

r−1(x− z) → x and (c) follows since ρ(2)(rx+ z) → λ2 and
∫

‖x‖>1
‖x‖−αdx <∞.

From (2.11) and from (2, Problem 9.4.5), we have

LIΦ(z)(s) = lim
r→∞

E
!o

[
∏

x∈Φ

Eh

(
e−shℓr(x−z))

]

. (2.13)

Hence we can work with ℓr(x) and take the limit r → ∞ at the end. Define

kr(s, x) = Eh

(
e−shℓr(x−z)) .

Since ℓr(x) = ℓ(x)1b(o,r)(x) is defined on a compact subset, we have that kr(s, x) 6=

1 only on a compact subset Br of R
2. Since Φ is a simple and finite point process,
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Φ(Br) <∞ with probability one. So we have from (25, p. 458),

0 ≤
∏

x∈Φ

[1 − (1 − kr(s, x))] −
[

1 −
∑

x∈Φ

(1 − kr(s, x))

]

≤
∑

x1 6=x2∈Φ

(1 − kr(s, x1))(1 − kr(s, x2)). (2.14)

First taking expectation and then taking the limit, we have from (2.13),

lim
r→∞

E
!o[
∏

x∈Φ

[1 − (1 − kr(s, x))]] = LIΦ(z)(s).

We also have that

η(s) = lim
r→∞

E
!o

[
∑

x∈Φ

(1 − kr(s, x))

]

(a)
= lim

r→∞
λ−1

∫

R2

(1 − kr(s, x))ρ
(2)(x)dx

= λ−1

∫

R2

(1 − k(s, x))ρ(2)(x)dx,

where (a) follows from the definition of ρ(2)(x) and k(s, x) = limr→∞ k(s, x). Sim-

ilarly we have

β(s) = lim
r→∞

E
1o

[
∑

x1 6=x2∈Φ

(1 − kr(s, x1))(1 − kr(s, x1))

]

(a)
= λ−2

∫ ∫

(1 − k(s, x1))(1 − k(s, x1))ρ
(3)(x1, x2)dx1dx2

where (a) follows from the definition of ρ(3)(x). We now prove that lims→0 η(s)s
−δ >
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0 and lims→0 β(s)s−δ = 0. We have

η(s) = λ−1

∫

R2

[
1 − Eh

(
e−shℓ(x−z)

)]
ρ(2)(x)dx

= λ−1

∫ ∞

0

∫

R2

[
1 − exp

(
−s‖x‖−αt

)]
ρ(2)(x+ z)dxf(t)dt

= λ−1sδ
∫ ∞

0

∫

R2

[
1 − exp

(
−‖x‖−αt

)]
ρ(2)(xsδ + z)dxf(t)dt.

We therefore have

lim
s→0

η(s)

sδ
= λ−1 lim

s→0

∫ ∞

0

∫

R2

[
1 − exp

(
−‖x‖−αt

)]
·

ρ(2)(xsδ + z)dxf(t)dt

(a)
= λ−1ρ(2)(z)

∫ ∞

0

∫

R2

[
1 − exp

(
−‖x‖−αt

)]
dxf(t)dt

= λ−1ρ(2)(z)E[hδ]πΓ (1 − δ) . (2.15)

Here (a) follows from the dominated convergence theorem. We now prove that

β(s) divided by sδ tends to zero. Consider

β(s) =

∫

R2

∫

R2

(1 − k(s, x1))(1 − k(s, x1))ρ
(3)(x1, x2)dx1dx2

= s4/α

∫

R2

∫

R2

(∫ ∞

0

1 − exp
(
−‖x1‖−αt

)
f(t)dt

)

·
(∫ ∞

0

1 − exp
(
−‖x2‖−αt

)
f(t)dt

)

·

ρ(3)(s1/αx1 + z, s1/αx2 + z)dx1dx2.

We also observe that the integral is a finite integral because of our assumption

ρ(3)(x, y) < log(‖x‖) log(‖y‖). So we have

lim
s→0

β(s)

sδ
= 0. (2.16)
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From (2.14), we have

0 ≤ LIΦ(z)(s) − (1 − η(s)) ≤ β(s).

Dividing both sides by sδ, taking the limit s→ 0 and using (2.15) and (2.16),

lim
s→0

1 − LIΦ(z)(s)

sδ
=
πρ(2)(z)

λ
E[hδ]Γ (1 − δ) .

So we have

1 − LIΦ(z)(s) ∼ πρ(2)(z)

λ
E[hδ]Γ (1 − δ) sδ.

So using the Tauberian Theorem 6,

P(IΦ(z) ≥ y) ∼ πρ(2)(z)

λ
E[hδ]y−δ.

From the above theorem we observe that interference at z is always a heavy

tailed distribution with parameter δ when the path-loss model is singular and

ρ(2)(z) 6= 0. This is because the receiver is not a part of the process and a

transmitter can be arbitrarily close to it, which causes the interference to blow

up.

2.4.2 Non-Singular Path-Loss Function

We now investigate the interference distribution when the path-loss is non-

singular. In this case, the existence of an interferer close to a receiver will not

alter the magnitude of the interference significantly. Instead the fading becomes
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an important factor, and the distribution tail depends mainly on the tail of the

fading. We will use the following theorem that connects the convergence region

of the Laplace transform of a random variable and the decay of its CCDF.

Theorem 8 (Nakagawa). Let X be a non-negative random variable, and F (x) =

P(X ≤ x) be the probability distribution function of X. Let

LX(s) =

∫ ∞

0

e−sxdF (x), s = σ + jτ ∈ C (2.17)

be the Laplace-Stieltjes transform of F (x) and σ0 be the abscissa of convergence

of LX(s). We assume −∞ < σ0 < 0. If s = σ0 is a pole of LX(s), then we have

lim
x→∞

1

x
log P(X > x) = σ0. (2.18)

The above theorem is useful in dealing with fading distributions whose tail

decays exponentially. Since the conditional Laplace transform of the interference

is known, it can be used in conjunction with the above theorem to prove the

exponential decay of the interference tail when the fading is exponential. When

the fading distribution is heavy-tailed, we use the upper and the lower bounds on

the CCDF provided in Theorem 5 to prove that interference is also heavy tailed.

Theorem 9. Let ℓ(x) = 1/(1 + ‖x‖α). Then

1. If the fading has at-most an exponential tail, i.e., F̄h(x) < exp(−ax) for

large x, then the interference tail is also exponential. Formally: if ∃a > 0

s.t. F̄h(x) = Θ(e−ax), x→ ∞ implies F̄I(x) = Θ(e−ax).

2. If the fading has a polynomial or heavy tail the interference is heavy tailed.

F̄h(x) ∼ x−α ⇒ F̄I(x) ∼ x−α.

35



Proof. Case 1):Exponential fading: We will first show that the conditional Laplace

transform of the interference converges for s < σ, σ < 0 and diverges for s > σ.

We have

LIΦ(z)(s) = E
!o
∏

x∈Φ

k(s, x)

where k(s, x) = Lh(sℓ(x− z)). From the above equation we observe that LIΦ(z)(s)

is finite if and only if

η(s) = E
!o
∑

x∈Φ

| log k(s, x)| <∞.

We now show that the abscissa of convergence σ of LIΦ(z)(s) is strictly less than

zero, i.e., η(s) <∞ for some s < 0.

Let β(s, x, h) = exp
(

−sh
(1+‖x−z‖α)

)

. We have

η(s) = E
!o
∑

x∈Φ

| log k(s, x)|

=

∫

R2

|log (Eh[β(s, x, h)])| ρ(2)(x)dx.

When s > 0, it is trivial to see that η(s) < ∞. The rest of the proof can be

better understood by considering s < 0. Since F̄h(x) ∼ exp(−ax), x → ∞ it can

be assumed without any loss of generality that the PDF of the fading is equal to

f(x) = a exp(−ax), x > R, for some large R. We have

k(s, x) =

∫ R

0

β(s, x, t)dF (t)

+a

∫ ∞

R

exp

(

−t
[

a+
s

(1 + ‖x− z‖α)

])

dt (2.19)

The first term is always finite. Considering the second term, we observe that the
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term in the exponent will be positive for all x when s > −a. Hence the integral

converges when s > −a and k(s, x) is well defined (especially in the neighborhood

of z) 1.

Also observe that k(s, x) > 1 for s ∈ (−a, 0). Let b ∈ (−a, 0). We now prove

that η(b) <∞. Since k(b, x) > 1, we have log(k(b, x)) ≤ k(b, x) − 1. Hence

η(s) ≤
∫

R2

[k(b, x) − 1]ρ(2)(x)dx

=

∫

b(o,κ)

[k(b, x) − 1]ρ(2)(x)dx+

∫

b(o,κ)c

[k(b, x) − 1]ρ(2)(x)dx

for κ ∈ (0,∞). Since b > −a we observe that k(b, x) is a well behaved function,

i.e., bounded and smooth, and hence the first term in the above equation is

bounded for any κ < ∞. So if we prove that the second term is finite, then

η(b) < ∞. For large ‖x‖ we have ρ(2)(x) → λ2. Choose κ such that for all

‖x‖ > κ , ρ(2)(x) is very close to λ2. Hence ρ(2)(x) is essentially a constant and

proving
∫

b(o,κ)c

(k(b, x) − 1)dx <∞

will be sufficient. We have

∫

b(o,κ)c

(k(b, x) − 1)dx =

∫

b(o,κ)c

∫ R

0

[β(−|b|, x, t) − 1] f(t)dtdx

︸ ︷︷ ︸

A

+

∫

b(o,κ)c

∫ ∞

R

[β(−|b|, x, t) − 1] f(t)dtdx

︸ ︷︷ ︸

B

.

1Observe the importance of 1 in the denominator of the second term. If the one wasn’t
present, then ∀s < 0, k(s, x) would be become undefined on an open neighborhood of z.
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Considering the first term A, we can increase κ such that

β(−|b|, x, t) = exp

( |b|t
(1 + ‖x− z‖α)

)

≈ 1 +
|b|t

(1 + ‖x− z‖α) . (2.20)

This can be done since t < R. Hence we have

A =

∫

b(o,κ)c

∫ R

0

|b|t
(1 + ‖x− z‖α)f(t)dtdx <∞.

Considering the second integral B, substituting for the PDF of the fading and

after some algebraic manipulation, we have

B = e−aR
∫

b(o,κ)c

a(1 + ‖x− z‖α) (β(−|b|, x, R) − 1)

a(1 + ‖x− z‖α) − |b| dx

+e−aR
∫

b(o,κ)c

|b|
a(1 + ‖x− z‖α) − |b|dx.

Since κ is large, using the approximation (2.20), we observe that B < ∞. So we

have shown that η(b) < ∞ for all b ∈ (−a,∞). We also observe that η(s) = ∞

for s < −a. So the abscissa is equal to −a < 0. Using Theorem 3 in (26), we have

that the tail falls exponentially with parameter a.

Case 2: F̄h ∼ h−a is a heavy tailed distribution: In this case k(s, x) = ∞ for

all s < 0, and hence (26, Thm. 3) cannot be applied. We will use Theorem 5

that provides upper and lower bounds for the CCDF of the interference. We first

evaluate G̃
[

Fh

(
y

ℓ(.−z)

)]

for large y:

G̃
[

Fh

(
y

ℓ(.− z)

)]

= G̃ [1 − [1 − Fh (y(1 + ‖x− z‖α))]]
(a)∼ G̃

(
1 − [y(1 + ‖x− z‖α)]−a

)

(b)∼ 1 − y−a
∫

R2

[(1 + ‖x− z‖α)]−a ρ(2)(x)dx
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where (a) follows by the continuity of G̃ and large y. (b) follows from an argument

similar to Theorem 7. We also have from Theorem 5, that ϕ(y) = y−aE!o[IΦ(z)a].

Here E
!o[IΦ(z)a] <∞ because of the bounded nature of ℓ(x) and its fast decaying

tail. So from the upper bound in Theorem 5, we have

P(IΦ(z) > y) < y−a
[∫

R2

[(1 + ‖x− z‖α)]−α ρ(2)(x)dx+ E
!o[IΦ(z)a]

]

,

and from the lower bound

P (IΦ(z) > y) > y−a
∫

R2

[(1 + ‖x− z‖α)]−α ρ(2)(x)dx.

So the tail decays like y−a.

We now show that the distribution of interference decays exponentially fast at

origin. The basic idea is that there is some contribution from some point of the

process, however small it is.

Theorem 10. The CDF of the interference decays faster than any polynomial at

the origin, i.e., ∀n ∈ N,

P(IΦ(z) < y) = o(yn)

as y → 0.

Proof. Find a such that Fh(x) = o(xa). Choose k ∈ N such that k > n/a. From

Theorem 5, we have

P(IΦ(z) < y) < G̃
(

Fh

(
y

ℓ(.− z)

))

= E
!o

[
∏

x∈Φ

Fh

(
y

ℓ(x − z)

)

|Φ has at least k points

]

.
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Multiply both sides by y−n and take the limit y → 0. On the right hand side,

the limit can be moved inside the expectation by the dominated convergence

theorem. Since there are at least k points almost surely on the plane (because Φ

is stationary), we have that the limit on the right goes to zero by our choice of

k.

2.5 Examples and Simulation Results

In this section we give examples of the interference for different point processes

and fading distributions. We specifically concentrate on three different point pro-

cess: the PPP, the Thomas cluster process and the shifted lattice process.

Poisson point process:

1) ℓ(x) = ‖x‖−α

From Section 2.2.1, the Laplace transform of the interference is given by, LIΦ(s) =

exp(−λπsδE[hδ]Γ(1 − δ)). Observe that the Laplace transform is independent of

z and hence the distribution is independent of the location z. Also LIΦ(s) is the

Laplace transform of a stable random variable with parameter δ and hence heavy

tailed.

2) ℓ(x) = (1 + ‖x‖α)−1

We first consider the case exponential fading i.e., f(x) = µ exp(−µx). In this

case,

LIΦ(s) = exp

(

−λπ2δ csc(πδ)
s

(µ+ s)1−δ

)

.

Observe that LIΦ(s) is well defined for s > −µ. Let νIΦ(x) denote the PDF

of interference, we then have by the final value theorem, limx→∞ eµ1xνIΦ(x) =

lims→0 LIΦ(s − µ1) < ∞ for all µ1 < µ. So the PDF is a combination of many
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Figure 2.3. CCDF of the interference for Rayleigh fading and path loss
α = 4, z = (3, 0)

decaying exponentials. In Figure 2.3, we plot the CCDF of Poisson interference

with Rayleigh fading. We observe the heavy tailed distribution for ℓ(x) = ‖x‖−α

and the exponential decay when ℓ(x) = (1 + ‖x‖α)−1.

Thomas cluster processes: We proved in (27, Lemma 3) that the inter-

ference has a heavy tailed distribution for ℓ(x) = ‖x‖−α with parameter δ.

Shifted lattice process: The interference results for this process are verified

by simulation. In Figure 2.4, we plot the CCDF for different values of z and

with Rayleigh fading. We observe that the tail properties depend heavily on

z. When ‖z‖ < 1, we have that ρ(2)(z) = 0 (actually the associated measure

K2(A) = 0, ∀A ⊂ b(o, 1)). So here the effective path loss model is bounded and

hence the interference tail follows that of the fading. When ‖z‖ > 1, there is

a positive probability that a transmitting node can be arbitrarily close to z and

hence the interference follows a heavy tail distribution.
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Figure 2.4. CCDF of the interference for exponential power fading and
path loss α = 4 when the point process is the lattice process.

Approximation of the distribution of interference: From the previous

theorems, we have the following observations:

1. The CDF FI(y) of the interference decays faster than any polynomial as

y ↓ 0.

2. When ℓ(x) = (1 + ‖x‖α)−1, α > 2, the mean interference is finite, and the

CCDF tail decays like that of the fading distribution.

3. When ℓ(x) = ‖x‖−α , the mean diverges, and the CDF has a heavy tail.

Observation 1 eliminates the use of Gaussian distribution to model the interference

except when the mean µ = E[IΦ] is very large (but finite), so that exp(−µ2/2σ2)

is small. We choose three probability distributions which have these properties.

The gamma distribution, and the inverse Gaussian distribution.
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1. Gamma distribution: f(x) = xk−1 exp(−x/a)/Γ(k)ak. Mean : ka, Variance:

ka2.

2. Inverse Gaussian :

f(x) =
[ ν

2πx3

]1/2

exp

(

−κ(x− ν)2

2ν2x

)

Mean: ν, Variance: ν3/κ.

3. Inverse Gamma :

f(x) = βax−a−1 exp (−β/x) Γ(a)−1

Mean: β/(a− 1), Variance: β2/((a− 1)2(a− 2)).

Observe that in the inverse Gaussian distribution, the mean and variance can be

chosen independently of each other. Observe that the gamma distribution only

has a (k − 1)th order of decay at the origin and has an exponential tail. On

the other hand, the inverse Gaussian distribution has an exponential decay at

origin and a slightly super exponential tail. In Figure 2.5, we have plotted2

the PDF of the interference using Monte-Carlo simulation when the underlying

node distribution is PPP and the fading is Rayleigh with a non-singular path loss

model. We observe that the normal fit performs the worst. Both the gamma and

inverse Gaussian give us a good fit. Also the inverse gamma PDF is a bad fit since

it has a fourth-order decaying tail, while the fading is exponentially decaying. In

finite networks, where the number of nodes is finite and fixed and the nodes are

distributed on a bounded subset of the Euclidean plane, the interference does not

2We have used a square of size 40 × 40 for simulation and averaged over 200000 instances.
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parameter 1.

decay infinitely fast at the origin, but only goes to zero like yna where n is the

number of transmitters and a the decay of the fading at origin.

2.6 Chapter Summary

The statistical properties of interference caused by transmitters that are ar-

ranged as a general motion-invariant process are analyzed. Bounds of the CCDF

have been provided that are asymptotically tight. We make the following obser-

vations:

1. The distribution of the interference is greatly influenced by the path-loss

model.

2. If one assumes a singular path-loss, i.e., ℓ(x) = ‖x‖−α the interference is

a heavy tailed distribution irrespective of the fading. This heavy-tailed
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nature of the interference stems mainly from the contribution of the nearest

interferer to the receiver.

3. With a bounded path-loss model, the interference distribution is dictated

by fading. For example, when the fading is exponential the tail of the

interference also decays exponentially.

4. Modeling interference by a Gaussian distribution is not appropriate and we

have have shown by simulations and reasoned that distributions like gamma,

inverse gamma or the inverse Gaussian provide a better fit.
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CHAPTER 3

SPATIAL AND TEMPORAL CORRELATION OF THE INTERFERNCE IN

ALOHA AD HOC NETWORKS.

Interference in a wireless ad hoc network is a spatial phenomenon which de-

pends on the set of transmitters, the path loss, and the fading. The presence

of common randomness in the locations of the interferers induces temporal and

spatial correlations in the interference, even for ALOHA. These correlations affect

the retransmission strategies and the routing. In the literature, these correlations

are generally neglected for the purpose of analytical tractability and because these

correlations do not change the scaling behavior of an ad hoc wireless network. For

example, in (12) and (28), the spatial correlations are neglected for the purpose of

routing. Also extending results like the transmission capacity (17) from a single-

hop to a multi-hop scenario requires taking the spatio-temporal correlations into

account.

From Chapter 2, we observe that the interference distribution in a Poisson

network does not depend on the spatial location. This is because of the station-

arity of the Palm measure of the PPP. Even tough the interference distribution is

identical on the entire plane, the interference is not independent across the plane.

This is because the interference is caused by the common randomness, i.e., the

point process Φ. Since each node in a wireless network uses a MAC protocol to

decide whether to transmit or receive, the transmitting set Φk changes with time

46



k, and since Φk ⊂ Φ, the interference becomes correlated over time because of the

common randomness Φ. In this section we consider ALOHA as the MAC proto-

col in which each node transmits with probability p and receives with probability

1 − p independently of other nodes. We observe that ALOHA as a MAC pro-

tocol introduces no correlations since the transmitters are independently chosen.

Nevertheless the presence of the common randomness Φ causes interference to be

temporally correlated. The temporal and the spatial correlation of the interfer-

ence makes the outages correlated temporally (important for retransmissions) and

spatially correlated (important for routing).

In this chapter we quantify the temporal and spatial correlation of the interfer-

ence in a wireless ad hoc network whose nodes are distributed as a Poisson point

process on the plane when ALOHA is used as the multiple-access scheme.

3.1 System Model

We model the location of the nodes (radios) as a Poisson point process (PPP)

Φ = {x1, x2, . . .} ⊂ R
2 of density λ. We assume that all the nodes transmit with

unit power and that the fading is spatially and temporally independent with unit

mean. The (power) fading coefficient between two pairs of nodes x and y at time

instant n is denoted by hxy[n]. The large scale path loss function ℓ(x) is assumed

to follow an additional constraint of integrability:

∫ ∞

0

xℓ(x)dx <∞. (3.1)

For example, a valid path loss model is given by

ℓǫ(x) =
1

ǫ+ ‖x‖α , ǫ ∈ (0,∞), α > 2. (3.2)
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We can model the standard singular path loss model ℓ(x) = ‖x‖−α by considering

the limit limǫ→0 ℓǫ(x). The interference at time instant k and (spatial) location z

is given by

Ik(z) =
∑

x∈Φ

1(x ∈ Φk)hxz[k]ℓ(x− z). (3.3)

where Φk denotes the transmitting set at time k. We assume that the MAC

protocol used is ALOHA where each node decides to transmit independently with

probability p in each slot.

3.2 Spatio-Temporal Correlation of Interference

In a wireless system the transmitting set changes at every time slot because of

the MAC scheduler. Since the transmitting sets at different time slots are chosen

from Φ (a common source of randomness), the interference exhibits temporal and

spatial correlation. Since ALOHA chooses the transmitting sets identically across

time, Ik(u) is identically distributed for all k. Since nodes transmit independently

of each other in ALOHA, the transmitting set Φk ⊂ Φ is also spatially stationary,

and hence Ik(u)
d
= Ik(o) where

d
= denotes equality in distribution and o denotes

the origin in R
2. Hence we have

EIk(u) = EIk(o)

(a)
= E

∑

x∈Φ

1(x ∈ φk)hxo[k]ℓ(x)

(b)
= pλ

∫

R2

ℓ(x)dx, (3.4)
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where (a) follows from Campbell’s theorem (3) and (b) follows since E[h] = 1.

The second moment of the interference is given by

E[Ik(o)
2] = E





(
∑

x∈Φk

hxo[k]ℓ(x)

)2




= E

∑

x∈Φk

hxo[k]
2ℓ2(x) + E

x 6=y
∑

x,y∈Φk

hxo[k]hyo[k]ℓ(x)ℓ(y)

(a)
= pE[h2]λ

∫

R2

ℓ2(x)dx+ p2
E[h]2λ2

∫

R2

∫

R2

ℓ(x)ℓ(y)dxdy. (3.5)

where (a) follows from the independence of hxo[k] and hyo[k] and the second-order

product density formula of the Poisson point process (3). When the fading follows

a Nakagami-m1 distribution and the path loss model is given by ℓǫ(x), the variance

of the interference follows from (3.4) and (3.5) and is given by

Var [Ik(o)] =
2π2(α− 2)pλ

ǫ2−2/αα2 sin(2π/α)

m+ 1

m
,

and the mean product of Ik(u) and Il(v) at times k and l, k 6= l is given by

E[Ik(u)Il(v)] = E

[
∑

x∈Φk

hxu[k]ℓ(x − u)
∑

y∈Φl

hyv[l]ℓ(y − v)

]

= p2
E[h]2λ

∫

R2

ℓ(x− u)ℓ(x− v)dx

+E

x 6=y
∑

x,y∈Φ

1(x ∈ Φk)1(y ∈ Φl)hxu[k]hyv[l]ℓ(x)ℓ(y).

1The distribution is given by

F (x) = 1 − Γic(m,mx)

Γ(m)
,

where Γic denotes the incomplete gamma function.

49



By Campbell’s theorem and the second order product density of a PPP, we have

E[Ik(u)Il(v)] = p2
E[h]2λ

∫

R2

ℓ(x− u)ℓ(x− v)dx

+λ2p2
E[h]2

∫

R2

∫

R2

ℓ(x)ℓ(y)dxdy

= p2λ

∫

R2

ℓ(x− u)ℓ(x− v)dx+ λ2p2

(∫

R2

ℓ(x)dx

)2

. (3.6)

Lemma 4. The spatio-temporal correlation coefficient of the interferences Ik(u)

and Il(v), k 6= l, when the path loss function ℓ(x) satisfies (3.1) is given by

ζ(u, v) =
p
∫

R2 ℓ(x)ℓ(x− ‖u− v‖)dx
E[h2]

∫

R2 ℓ2(x)dx
. (3.7)

Proof. Since Ik(u) and Il(v) are identically distributed, we have

ζ(u, v) =
E[Ik(u)Il(v)] − E[Ik(u)]

2

E[Ik(u)2] − E[Ik(u)]2
.

Since Ik(u)
d
= Ik(o) and by substituting for the above quantities we have,

ζ(u, v) =
p
∫

R2 ℓ(x− u)ℓ(x− v)dx

E[h2]
∫

R2 ℓ2(x)dx

(a)
=

p
∫

R2 ℓ(x)ℓ(x− ‖u− v‖)dx
E[h2]

∫

R2 ℓ2(x)dx
, (3.8)

where (a) follows by using the substitution y = x − u and the fact that ℓ(x)

depends only on ‖x‖.

We have the following result about the temporal correlation by setting ‖u −

v‖ = 0.

Corollary 8. The temporal correlation coefficient with ALOHA as the MAC pro-
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tocol is given by

ζt =
p

E[h2]
. (3.9)

When the fading is Nakagami-m, the correlation coefficient is ζt = pm
m+1

. In par-

ticular, for m = 1 (Rayleigh fading), the temporal correlation coefficient is p/2

and for m→ ∞ (no fading), the temporal correlation coefficient is p.

We first observe that the correlation increases with increasing m, i.e., fading

decreases correlation which is intuitive. Further, the correlation coefficient does

not depend on λ, since, unlike the ALOHA parameter p which introduces addi-

tional randomness between time slots, it just uniformly scales the interference.

Observe that in the above derivation,
∫

R2 ℓ
2(x)dx is not defined when ℓ(x) =

‖x‖−α, but we can use gǫ(x) and take ǫ→ 0. We now find the correlation for the

singular path-loss model as a limit of ℓǫ(x).

Corollary 9. Let the path loss model be given by ℓǫ(x) = 1/(ǫ+ ‖x‖α). We then

have

lim
ǫ→0

ζ(u, v) = 0, u 6= v.

Proof. We have

ζ(u, v) = lim
ǫ→0

p
∫

R2 ℓǫ(x− u)ℓǫ(x− v)dx

E[h2]
∫

R2 ℓ2ǫ(x)dx

(a)
= lim

ǫ→0

p
∫

R2
1

1+‖x−uǫ−1/α‖α
1

1+‖x−vǫ−1/α‖α dx

E[h2]
∫

R2

(
1

1+‖x‖α

)2

dx

= 0,

where (a) follows from change of variables.

The correlation coefficient being 0 is an artifact of the singular path loss model.
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Figure 3.1. Spatial correlation ζ(u, v)/p versus ‖u− v‖, when the
path-loss model is given by ℓǫ(x), λ = 1 and α = 4. We observe that

ζs(u, v) → 0, u 6= v, for ǫ→ 0.

When the path loss is ‖x‖−α, the nearest transmitter is the main contributor to

the interference. So for u 6= v, the interference as viewed by u is dominated by

transmitters in a disc B(u, δ), δ > 0 of radius δ centered at u and for v dominated

by transmitters in B(v, δ) for small δ. The transmitters locations being indepen-

dent in B(v, δ) and B(u, δ) for a PPP, makes the correlation-coefficient go to zero.

A more powerful metric like mutual information would be better able to capture

the dependence of interference for the singular path loss model. In Figure 3.1, the

spatial correlation is plotted as a function of ‖u− v‖ for different ǫ.
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3.3 Temporal Correlation of Link Outages

In the standard analysis of retransmissions in a wireless ad hoc system, the link

failures are assumed to be uncorrelated across time. But this is not so, since the

interference is temporally correlated. We now provide the conditional probability

of link formation assuming a successful transmission.

We assume that a transmitter at the origin has a destination located at z ∈ R
2.

Let Ak denote the event that the origin is able to connect to its destination z at

time instant k, i.e.,

SIR =
hoz[k]ℓ(z)

Ik(z)
> θ.

For simplicity we shall assume the fading is Rayleigh (similar methods can be used

for Nakagami-m). We now provide the joint probability of success P(Ak, Al), k 6=

l. We have

P(Ak, Al) = P (hoz[k] > θzIk(z), hoz[l] > θzIl(z))

(a)
= E [exp(−θzIk(z)) exp(−θzIl(z))]

= E[exp(−θz
∑

x∈Φ

ℓ(x)[1(x ∈ Φk)hxz[k] + 1(x ∈ Φl)hxz[l]]

(b)
= E

[
∏

x∈Φ

(
p

1 + θzℓ(x)
+ 1 − p

)2
]

(3.10)

(c)
= exp

(

−λ
∫

R2

1 −
(

p

1 + θzℓ(x)
+ 1 − p

)2

dx

)

,

where θz = θ/ℓ(z). (a) follows from the independence of hoz[k] and hoz[l], k 6= l,

(b) follows by taking the average with respect to hxz[k], hxz[l] and the ALOHA, (c)
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follows from the probability generating functional of the PPP. Similarly we have

P(Al) = exp

(

−λ
∫

R2

1 −
(

p

1 + θzℓ(x)
+ 1 − p

)

dx

)

.

So the ratio of conditional and the unconditional probability is given by

P(Ak|Al)
P(Al)

=
P(Ak, Al)

P(Al)2

= exp

(

λp2

∫

R2

(
θzℓ(x)

1 + θzℓ(x)

)2

dx

)

> 1. (3.11)

When ℓ(x) = ‖x‖−α, we have

P(Ak|Al)
P(Al)

= exp

(

2λθ2/α‖z‖2p2π2α− 2

α2
csc

(
2π

α

))

. (3.12)

In Figure we plot the conditional and the unconditional link success probabilities.

We make the following observations:

1. From (3.11), we observe that the link formation is correlated a cross time.

2. If a transmission succeeds at a time instant m, there is a higher probability

that a transmission succeeds at a time instant n.

3. From (3.11), we also have P(Ack|Acl ) > P(Acl ). So a link in outage is always

more likely to be in outage and hence the retransmission strategy should

reduce the rate of transmission or change the density of transmitters rather

than retransmit ”blindly”.

4. We observe that P(Ak|Al)
P(Al)

always increases with θ, p. The increase in p is

because of the larger transmit set due to which the probability of the same

54



0 0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p

α=4, λ =1, θ=1, z=0.5

 

 

Unconditional: P(A
l
)

Conditional: P(A
k
|A

l
)

Figure 3.2. P(Ak|Al) and P(Al) versus the ALOHA parameter p. λ = 1,
ℓ(x) = ‖x‖−4, z = 0.5, θ = 1.

sub-set of nodes transmitting at different times increases, thereby causing

more correlation. When θ is large, the outage is a result of the interfer-

ing transmissions caused by a larger number of nodes. Hence by a similar

reasoning as above, the correlation increases.

5. P(Ak|Al)
P(Al)

increases with λ when ℓ(x) = ‖x‖−α since the link distance z is not

scaled with λ. Indeed, by normalizing the link distance by 1/
√
λ, we observe

that (3.12) does not depend on λ.

3.4 Chapter Summary

We obtained the spatial and temporal correlations of interference in an ALOHA

wireless network when the nodes are Poisson distributed. We can see that the

path-loss model is critical in the spatial correlation and metrics like KL-distance
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are required to understand the spatial dependence of the interference when the

path-loss model is singular. We observe that that the link outages are temporally

correlated and this information should be taken into account when analyzing ad

hoc network performance and designing retransmission strategies.
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CHAPTER 4

INTERFERENCE AND OUTAGE IN CLUSTERED NETWORKS.

4.1 System Model

The location of the transmitting nodes is modeled as a stationary and isotropic

Poisson cluster process Φ on R
2. See Section 6.1.2 for more details. We further

focus on more specific models for the representative cluster, namely Matern cluster

processes and Thomas cluster processes. In these processes the number of points

in the representative cluster is Poisson distributed with mean c̄. For the Matern

cluster process each point is uniformly distributed in a ball of radius σ around the

origin. So the density function ζ(x) is given by

ζ(x) =







1
πσ2 , ‖x‖ ≤ σ

0 otherwise.

(4.1)

In the Thomas cluster process each point is scattered using a symmetric normal

distribution with variance σ2 around the origin. So the density function f(x) is

given by

ζ(x) =
1

2πσ2
exp

(

−‖x‖2

2σ2

)

.

A Thomas cluster process is illustrated in Fig.4.1. When the number of points

in the representative cluster is Poisson with mean c̄, as in the case of Matern
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Figure 4.1. Illustration of transmitters and receivers. Cluster density is
1. Transmitter density in each cluster is 3. The spread of each cluster is
Gaussian with standard deviation σ = 0.25. Observe that the intended

receiver for the transmitter at the origin is not a part of the cluster
process. The transmitter at the origin is a part of the cluster located

around the origin.
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Figure 4.2. (Left) Thomas cluster process with parameters λp = 1, c̄ = 5
and σ = 0.2. The crosses indicate the parent points. (Right) PPP with

the same intensity λ = 5 for comparison.

and Thomas cluster processes, the moment generating function of the number of

points in the cluster is ,

M(z) = exp(−c̄(1 − z)).

The second order product density of the Matern and the Thomas cluster processes

(3, Sec. 5.3) is

ρ(2)(z) = λpc̄
2[(ζ ∗ ζ)(z) + λp]. (4.2)

See Section 6.1.2 and (3, Sec. 5.3) for a detailed description of clustered point

processes.
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4.2 Interference in Poisson Clustered Process (PCP)

In this section, we will derive the statistical characteristics of the interference

when the transmitters are distributed as a PCP. As shall be evident in the next

section, we will derive the interference properties conditioning on a transmitter

being at the origin (the desired transmitter). Differently from a PPP, placing

an additional transmitter at the origin (even though it does not contribute to

the interference) makes the distribution of the interference non-stationary, i.e.,

the interference IΦ(z) distribution depends on z. From Lemma 1 the average

interference (conditioned on the event that there is a point of the process at the

origin is given by) is equal to

E
!o[IΦ(z)] =

E[h]

λ

∫

R2

ℓ(x− z)ρ(2)(x)dx (4.3)

Example: Thomas Cluster Process. In this case, from (3, Pg. 160)

ρ(2)(x)

λ2
= 1 +

1

4πλpσ2
exp

(−‖x‖2

4σ2

)

where λ = λpc̄. We obtain

E
!o[IΦ(z)] = EIPoi (λ) +

c̄E[h]

4πσ2

∫

R2

ℓ(x− z) exp

(−‖x‖2

4σ2

)

dx (4.4)

Where EIPoi (λ) is the average interference seen by a receiver located at z,

when the nodes are distributed as a PPP with intensity λ. EIPoi (λ) is finite

only when ℓ(x) is bounded at the origin. The above expression also shows that

the mean interference is indeed larger than for the PPP. We also observe that

E
!o[IΦ(z)] → EIPoi(z) when ‖z‖ → ∞, which is intuitive since the effect of the
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Figure 4.3. λp = 2, c̄ = 3, σ = 0.25, α = 4, ‖z‖ = 0.3: Comparison of the
interference CCDF for different path loss models and different fading.

cluster at the origin reduces as ‖z‖ increases. From Chapter 2, we observe that

the interference is heavy-tailed when ℓ(x) = ‖x‖−α and the interference follows

the fading for a bounded distribution. In Figure 4.3 curves #1 and #2 correspond

to ℓ(x) = (1+ ‖x‖α)−1. Curve #1 corresponds to Rayleigh fading and exhibits an

exponential decay. Curve #2 for which h is distributed as generalized Pareto1 with

parameters k = 1, θ = 0, σp = 1 (a hypothetical power fading distribution which

exhibits power law decay) exhibits a power law decay. Curves #3 (generalized

Pareto ) and #4 (Rayleigh) correspond to ℓ(x) = ‖x‖−α and exhibit a heavy tail

for both fading distributions.

1The PDF of the generalized Pareto distribution is f(x) = σ−1
(
1 + k x−θ

σ

)
−1−1/k
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4.2.1 Conditional Probability Generating Functional of a PCP

Theorem 11. Let 0 ≤ v(x) ≤ 1. The conditional generating functional of the

Thomas and Matern clustered processes is

G̃[v] = G[v]

∫

R2

Gc[v(· − y)]ζ(y)dy,

where

Gc[v] = exp

(

−c̄
[

1 −
∫

R2

v(x)ζ(x)dx

])

is the generating functional of the representative cluster for a Matern (or Thomas)

process.

Proof. Let Yx = Y + x. From Theorem 16, we have

Ω̃!o(Y ) =
1

c̄
E

(∑

x∈No

1Yx
(No \ {x})

)

(4.5)

Let Ω() denote the probability distribution of the representative cluster. Using

the Campbell-Mecke theorem (3, Pg. 119), we get

Ω̃!o(Y ) =
1

c̄

∫

R2

∫

N

1Yx(No)Ω
!x(dNo)c̄ζ(x)dx

=

∫

R2

∫

N

1Yx(No)Ω
!x(dNo)ζ(x)dx (4.6)

Since the representative cluster has a Poisson distribution of points, by Slivnyak’s

theorem we have Ω!
x(.) = Ω(.). Hence

Ω̃!o(Y ) =

∫

R2

∫

N

1Yx(No)Ω(dNo)ζ(x)dx

=

∫

R2

Ω(Yx)ζ(x)dx (4.7)
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For notational convenience let ψ denote No and let ψy = ψ+ y. Let N denote the

set of finite and simple sequences on R
2 (see Chapter 6). Using Theorem 15, we

have

G̃[v] =

∫

N

∫

N

∏

x∈φ∪ψ
v(x)P(dφ)Ω̃!o(dψ)

=

∫

N

∏

x∈Φ

v(x)P(dφ)

∫

N

∏

x∈ψ
v(x)Ω̃!o(dψ)

= G[v]

∫

N

∏

x∈ψ
v(x)Ω̃!o(dψ) (4.8)

G̃[v]
(a)
= G(v)

∫

N

∏

x∈ψ
v(x)

∫

R2

Ω(dψy)ζ(y)dy

= G[v]

∫

R2

∫

N

∏

x∈ψ
v(x)Ω(dψy)ζ(y)dy

= G[v]

∫

R2

∫

N

∏

x∈ψ
v(x− y)Ω(dψ)ζ(y)dy

(b)
= G[v]

∫

R2

Gc[v(· − y)]ζ(y)dy

(a) follows from (4.7), and (b) follows from the definition of G(.).

The above result can be interpreted as follows: The Palm measure of the

clustered process is the independent superposition of the original process and a

cluster at the origin which is randomly translated by an amount drawn from the

density ζ(y). Hence the resultant conditional PGFL is the product of the PGFL

of the clustered process and the PGFL of the representative cluster shifted by y
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and averaged by the density ζ(y). So from the above lemma, we have

G[v] = exp

(

−λp
∫

R2

1 −M

[∫

R2

v(x+ y)ζ(y)dy

]

dx

)

×
∫

R2

M

[∫

R2

v(x− y)f(x)dx

]

ζ(y)dy (4.9)

Since ζ(x) = ζ(−x), then
∫

R2 v(x+ y)f(y)dy =
∫

R2 v(x− y)ζ(y)dy = v ∗ ζ, so

G[v] = exp

(

−λp
∫

R2

1 −M [(v ∗ ζ)(x)]dx
)∫

R2

M [(v ∗ ζ)(y)]ζ(y)dy (4.10)

Likelihood and nearest neighbor functions of the Poisson cluster process, which

involve similar calculations with Palm distributions are provided in (29). One can

obtain the nearest-neighbor distribution functions of Thomas or Matern cluster

process as D(r) = G(1B(o,r)c(.)). In some other cases the number of points per

cluster may be fixed rather than Poisson.

We now derive the conditional Laplace transform in a Poisson cluster process,

when the number of points in each cluster c̄ ∈ N is fixed. We also assume that

each point is independently distributed with density f(x). In this case the moment

generating function of the number of points in the representative cluster is given

by

M(z) = zc̄
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As in the previous definition, we have

G̃[v] = G[v]

∫

N

∏

x∈ψ
v(x)Ω̃!o(dψ)

= G[v]

∫

N

∏

x∈ψ
v(x)

∫

R2

Ω!y(dψy)ζ(y)dy

= G[v]

∫

R2

∫

N

∏

x∈ψ
v(x)Ω!y(dψy)ζ(y)dy

(a)
= G[v]

∫

R2

(∫

R2

v(x− y)ζ(x)

)c̄−1

ζ(y)dy (4.11)

where (a) follows from the fact that the points are independently distributed and

we are not counting the point at the origin. In this case G[v] is given by

G[v] = exp

{

−λp
∫

R2

1 −
(∫

R2

v(x+ y)ζ(y)dy

)c̄

dx

}

.

4.3 Outage Analysis

Let the desired transmitter be located at the origin and the receiver at location

z at distance R = ‖z‖ from the transmitter. With a slight abuse of notation we

shall be using R to denote the point (R, 0). From Theorem 1, the probability of

success for this pair is given by

Ps = P
!0
(

hozℓ(z)

σ2 + IΦ(z)
≥ θ
)

(4.12)

We now assume Rayleigh fading, i.e., the received power is exponentially dis-

tributed with mean µ. Then by Corollary 7, we have

Ps = L!o
IΦ(z)(θ/ℓ(z)) exp(−σ2θ/ℓ(z)) , (4.13)
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Lemma 5. [Success probability] The probability of successful transmission between

the transmitter at the origin and the receiver located at z ∈ R
2 with Rayleigh fading

and σ2 = 0 (no noise), is given by

Ps = exp
{

− λp

∫

R2

[

1 − exp(−c̄β(z, y))
]

dy
}

︸ ︷︷ ︸

T1

∫

R2

exp(−c̄β(z, y))ζ(y)dy

︸ ︷︷ ︸

T2

where

β(z, y) =

∫

R2

ℓ(x− y − z)
ℓ(z)
θ

+ ℓ(x− y − z)
ζ(x)dx (4.14)

Proof. From (4.13) and Theorem 11.

The success probability, when the number of nodes in each cluster is fixed, can

be calculated by using (4.11) and (4.13).

Remarks:

Observe that the interference can be written as a sum of two independent terms,

one being the interference caused at the receiver by the transmitter’s own cluster

and the other being the interference caused by other clusters.

IΦ(z) = IΦ\Tx-cluster(z) + ITx-cluster(z) (4.15)

Since we are considering a Poisson cluster process, these two terms are indepen-

dent. The contribution of the interference in the success probability is L!o
IΦ(z)(θ/ℓ(z)).

Since the Laplace transform of the sum of independent random variables is the

product of the individual Laplace transforms, we have the product of two terms in

Theorem 5. The term T1 in (4.12) captures the interference without the cluster at

the origin (i.e., without conditioning); it is independent of the position z since the

original cluster process is stationary which can be verified by change of variables
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y1 = y+ z. The second term T2 is the contribution of the transmitter’s cluster; it

is identical for all z with ‖z‖ = R since ζ and ℓ are isotropic (i.e., do not depend

on the direction). So the success probability itself is the same for all z at distance

R. This is because the Palm distribution is always isotropic when the original

distribution is motion-invariant (3, Eq. 4.4.8).

From the above argument we observe that P(success) depends only on ‖z‖ = R

and not on the angle of z. So the success probability should be interpreted as

an average over the circle ‖z‖ = R, i.e., the receiver may be uniformly located

anywhere on the circle of radius R around the origin. We now derive closed-form

upper and lower bounds on P(success).

Lemma 6 (Lower bound).

Ps ≥ Pp(λ)Pp(c̄ζ̂
∗) (4.16)

where Pp(λ) denotes the success probability when Φ is a PPP, ζ̂∗ = supy∈R2(ζ ∗

ζ)(y), and λ = λpc̄.

Proof. The first factor in (4.12), T1 can be lower bounded by the success proba-

bility in the standard PPP Pp(λ), and the second factor can be lower bounded by

Pp(c̄ζ̂
∗). From (4.12) and the fact that 1 − exp(−δx) ≤ δx, δ ≥ 0, we have

Ps ≥ exp
(

− λpc̄

∫

R2

β(R, y)dy
)

︸ ︷︷ ︸

Term1

∫

R2

exp(−c̄β(R, y))ζ(y)dy

︸ ︷︷ ︸

Term2
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Term1 = exp
(

− λ

∫

R2

β(R, y)dy
)

(a)
= exp

(

− λ

∫

R2

ℓ(y)
ℓ(R)
θ

+ ℓ(y)
dy
)

= Pp(λ) (4.17)

(a) follows from change of variables, interchanging integrals and using
∫
ζ(x)dx =

1.

Term2 =

∫

R2

exp(−c̄β(R, y))ζ(y)dy

Since exp(−x) is convex and ζ(x) > 0,
∫
ζ(x)dx = 1, Using Jensen’s inequality

(Eζ(x) ≥ ζ(E(x))) we have,

Term2 ≥ exp
(

− c̄

∫

R2

β(R, y)ζ(y)dy
)

Changing variables and using ζ(x) = ζ(−x),we get,

Term2 ≥ exp
(

− c̄

∫

R2

ℓ(x)
ℓ(R)
θ

+ ℓ(x)

∫

R2

ζ(x+ z − y)ζ(y)dydx
)

≥ exp
(

− c̄

∫

R2

ℓ(x)
ℓ(R)
θ

+ ℓ(x)
(ζ ∗ ζ)(x+ z)dx

)

(4.18)

Hence

Term2 ≥ Pp(c̄ζ̂
∗)

Since ζ ∈ Lp , by Young’s inequality (30) we have ζ̂∗ ≤ ‖ζ‖p‖ζ‖q, where

1/p + 1/q = 1 (conjugate exponents). For a ≥ 1/
√
π (Matern) and σ ≥ 1/

√
2π
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(Thomas), we get Ps ≥ Pp(λ)Pp(c̄). In general, ζ̂∗ ≤ ‖ζ‖∞‖ζ‖1, which is 1/πa2 for

Matern and 1/2πσ2 for Thomas processes. In the latter case, when ζ is Gaussian,

ζ ∗ ζ is also Gaussian with variance 2σ2, hence ζ̂∗ ≤ 1/4πσ2. From (12), we get

(by change of variables):

Pp(λ) = exp

(

−λ
∫

R2

β(R, y)dy

)

. (4.19)

We have

• for ℓ(x) = ‖x‖−α, Pp(λ) = exp(−λR2θ2/αC(α)), where C(α) =
(
2πΓ(2/α)Γ(1−

2/α)
)
/α = 2π2

α
csc(2π/α). See (12).

• for ℓ(x) = (1 + ‖x‖α)−1, Pp(λ) = exp(−λθC(α)(θ + ℓ(R))2/α−1ℓ(R)−2/α).

Let βI =
∫

R2 β(R, y)dy, β̂ = supy∈R2 β(R, y) and ζ̂ = supy∈R2 ζ(y). By Hölders

inequality we have β̂ ≤ min{1, ζ̂βI(R)}. Also let κ =
∫

R2 β(R, y)ζ(y)dy.

Lemma 7. [Upper bound]

Ps ≤ Pp

(
λ

1 + c̄β̂

)

(4.20)

Proof. Neglecting the second term T2 and using exp(−δx) ≤ 1/(1 + δx), we have

Ps ≤ exp
(

− λp

∫

R2

[

1 − 1

1 + c̄β(R, y)

]

dy
)

= exp
(

− λp

∫

R2

c̄β(R, y)

1 + c̄β(R, y)
dy
)

≤ exp
(

− λpc̄

1 + c̄β̂

∫

R2

β(R, y)dy
)
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From the above two lemmata, we get

Pp(λ)Pp(c̄ζ̂
∗) ≤ Ps ≤ Pp

(
λ

1 + c̄β̂

)

(4.21)

from which follows Ps → Pp(λ) as c̄
σ
, c̄
a
→ 0 as expected. In Lemma 7, we have

neglected the contribution of the transmitter’s cluster. We derive the following

upper bound in the proof of Lemma 9,

Ps ≤ Pp(λ) exp
(

λβIν(c̄β̂)
) [

1 −
(

1 − ν(c̄β̂)
)

c̄κ
]

(4.22)

where ν(x) = (exp(−x) − 1 + x)/x. Substituting for ν(x), we have

Ps ≤ Pp

(

λ(1 − exp(−c̄β̂))

c̄β̂

)[

1 −
(

1 − exp(−c̄β̂)
) κ

β̂

]

(4.23)

(4.23) is a tighter bound than the bound in Lemma 7, but not easily computable

due to the presence of κ (for a given R, θ and σ, κ and β∗ are constants). In

(4.23), the outage due to the interference by the transmitting cluster is also taken

into account.

The proof of Lemmata 6 and 7 also indicates that it is only by conditioning

on the event that there is a point at the origin that the success probability of

Neyman-Scott cluster processes can be lower than in the Poisson process of the

same intensity. This implies that the cluster around the transmitter causes the

maximum “damage”. So as the receiver moves away from the transmitter, the

Neyman-Scott cluster process has a better success probability than the PPP. So,

it is not true in general that cluster processes have a lower success probability

than PPPs of the same intensity. For example from Figure 4.4, we see that for
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Figure 4.4. Comparison of success probability for cluster and Poisson
process of intensity 2 and 2.5.

R < 0.8, the PPP has a better success probability than the Matern process. In

Subsection 4.3.1 we give a more detailed analysis, which reveals that a PPP with

intensity λpc̄ has a lower success probability than a clustered process of the same

intensity for large transmit-receiver distances. On the other hand, for small R,

the success probability of the PPP is higher.

4.3.1 Clustering Gain G(R)

In this subsection we compare the performances of a clustered network and a

Poisson network of the same intensity with Rayleigh fading. We deduce how the

clustering gain depends on the transmitter receiver distance. We use the following
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notation,

P1(R, c̄, λp)
∆
= exp

(

− λp

∫

R2

1 − exp(−c̄β(R, y))dy
)

(4.24)

P2(R, c̄)
∆
=

∫

R2

exp(−c̄β(R, y))ζ(y)dy (4.25)

So Ps = P1(R, c̄, λp)P2(R, c̄). P2 is the probability of success due to the presence

of the cluster at the origin near the transmitter. P1 is the probability of success in

the presence of other clusters. Interference from these other clusters contributes

more to the outage when R is large. This is also intuitive, since as the receiver

moves away from the transmitting cluster, the interference from the other clusters

starts to dominate. We define the clustering gain G(R) as

G(R) =
P1(R, c̄, λp)P2(R, c̄)

Pp(λpc̄)

The fluctuation of G(R) around unity indicates the existence of a crossover point

R∗ below which the PPP performs better than clustered process and vice versa.

The values of G(R) at the origin and infinity indicate the gain of scheduling

transmitters as clusters instead of being spread uniformly on the plane. So it is

beneficial to induce logical clustering of transmitters by MAC if G(R) > 1.

We first consider G(R) for large R, i.e., limR→∞G(R). By the dominated

convergence theorem and (1.1), we have

lim
R→∞

P2(R, c̄) =

∫

R2

exp
(

− c̄

∫

R2

lim
R→∞

ζ(x)

1 + ℓ(R)
θℓ(x−y−R)

dx
)

ζ(y)dy

= exp
( −c̄

1 + θ−1

)

(4.26)

Also from the derivation of upper bound we have P1(R, c̄, λp) ≤ Pp

(
λ

1+c̄β̂

)

. Hence
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from the definition of Pp(x) we have, limR→∞ P1(R, c̄, λp) = 0. Hence for large R,

P1(R, c̄, λp) < P2(R, c̄) (4.27)

So for large R, most of the damage is done by transmitting nodes other than the

cluster in which the intended transmitter lies.

Lemma 8.

lim
R→∞

Pp(λpc̄)

P1(R, c̄, λp)
= 0 (4.28)

Proof.

Pp(λpc̄)

P1(R, c̄, λp)
= exp

[

− λpc̄

∫

R2

β(R, y)dy + λp

∫

R2

(1 − exp[−c̄β(R, y)])dy
]

= exp
[

− λp

∫

R2

{c̄β(R, y) − 1 + exp
[

− c̄β(R, y)
]

︸ ︷︷ ︸

ν(R,y)

}dy
]

(4.29)

Since 1 − exp(−ax) ≤ ax, we have that ν(R, y) > 0. We also have from the

dominated convergence theorem and (1.1)

lim
R→∞

ν(R, y) =
c̄

1 + θ−1
− 1 + exp

(

− c̄

1 + θ−1

)

> 0

which is a constant. So using Fatou’s lemma (30) (lim inf
∫
fn ≥

∫
(lim inf fn), fn >

0), we have

lim
R→∞

Pp(λpc̄)

P1(R, c̄, λp)
= exp[−λp lim

R→∞

∫

R2

ν(R, y)dy]

≤ exp[−λp
∫

R2

lim
R→∞

ν(R, y)dy]

= exp[−λp∞] = 0 (4.30)
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Hence for large R, Pp(λpc̄)

P1(R,c̄,λp)
≤ exp( −c̄

1+θ−1 ). From (4.26) we have Pp(λpc̄) ≤

P1(R, c̄, λp)P2(R, c̄), for large R, i.e., G(R) > 1 for large transmit-receive distance.

We have limR→∞G(R) = ∞. Hence the Poisson point process with intensity λpc̄,

has a lower success probability than the clustered process of the same intensity for

large link distances.

For small R, G(R) depends on the behavior of the path loss function, ℓ(x) at

‖x‖ = 0. We consider the two cases when the channel function is singular at the

origin or not.

4.3.1.1 Singular Path-Loss Model: lim‖x‖→0 ℓ(x) = ∞

In this case we observe that G(0) = 1. But at small R, G(R) is less than 1.

We have the following lemma.

Lemma 9. If (ζ ∗ ζ)(x) > ‖x‖ for small ‖x‖ and ℓ(x) = ‖x‖−α, then for small R,

Ps ≤ Pp(λpc̄) (4.31)

Proof. From (4.37), the probability of success is

Ps = Pp(λpc̄) exp
[

λpc̄

∫

R2

β(R, y)η(c̄, R, y)dy
]

︸ ︷︷ ︸

T1

P2(R, c̄)
︸ ︷︷ ︸

T2

(4.32)

where η(c̄, R, y) = ν(c̄β(R, y)) and

ν(x) =
exp(−x) − 1 + x

x

74



an increasing function of x. From Young’s inequality (30, Sec. 8.7) we have

β(R, y) ≤ min{1, sup{ζ(x)}R2θ2/αC(α)}. Hence

η(c̄, R, y) ≤ ν(c̄min{1, sup{ζ(x)}R2θ2/αC(α)})

With a slight abuse of notation, let η(c̄, R) = ν(c̄min{sup{ζ(x)}R2θ2/αC(α), 1}).

Hence

T1 ≤ exp[λpc̄

∫

R2

β(R, y)η(c̄, R)dy]

= exp[λpc̄θ
2/αR2η(c̄, R)C(α)] (4.33)

Also observe that η(c̄, R) / R2. So T1 / exp(R4).

T2 =

∫

R2

1 − c̄β(R, y) + c̄β(R, y)
∞∑

k=2

(−1)n

n!
(c̄β(R, y))n−1ζ(y)dy

≤
∫

R2

[1 − c̄β(R, y) + c̄β(R, y)η(c̄, R)]ζ(y)dy

= 1 − [1 − η(c̄, R)]c̄

∫

R2

β(R, y)ζ(y)dy (4.34)

If one considers x and y as identical and independent random variables with

density functions ζ, we then have

∫

R2

β(R, y)ζ(y)dy = E

[

1

1 + ℓ(R)
θ
‖x− y −R‖α

]

.
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Let 0 < κ < 1 be some constant. Using the Chebyshev inequality we get

E

[

1

1 + ℓ(R)
θ
‖x− y −R‖α

]

≥ κP

[

1

1 + ℓ(R)
θ
‖x− y −R‖α

≥ κ

]

= κP

[

‖x− y −R‖ ≤
(

1

κ
− 1

)1/α

Rθ1/α

]

The PDF of z = x−y is given by (ζ ∗ζ)(z), since y is rotation-invariant. Choosing

κ = θ/(1 + θ) we have

κP

[

‖x− y −R‖ ≤
(

1

κ
− 1

)1/α

Rθ1/α

]

=
θ

1 + θ

∫

B(R,R)

(ζ ∗ ζ)(x)dx

≥ θ

1 + θ

∫

B(R,R)

‖x‖dx

= R3 θ

1 + θ

∫

B(1,1)

‖x‖dx
︸ ︷︷ ︸

C2

(4.35)

So we have

P2 ≤ 1 − [1 − η(c̄, R)]R3C2

/ 1 −R3 +R5 (4.36)

Also we have T1 / exp(R4) / 1 + 1.01R4. So we have P2T1 / 1 − R3 + R5 −

1.01R7 + 1.01R9 < 1 for small R 6= 0. Hence for small R we have Ps ≤ Pp(λpc̄).

Note that ζ(x) for Matern and Thomas cluster process have the required prop-

erty. Hence when ℓ(x) = ‖x‖−α, the PPP with intensity λpc̄, has a higher success

probability than the clustered process of the same intensity for small transmit re-
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ceiver distance. Lemma 9 and the fact that G(∞) = ∞ also indicate the existence

of a crossover point R∗ between the success curves of the PPP and the cluster

process. So it is not true in general that the performance of the clustered process

is better or worse than that of the Poisson process. This is because, for the same

intensity, a clustered process will have clusters of transmitters (where interference

is high) and also vacant areas (where there are no transmitters and interference

is low), whereas in a Poisson process, the transmitters are uniformly spread.

4.3.1.2 Bounded Path-Loss Model: lim‖x‖→0 ℓ(x) = ℓ̂ <∞

P1(R, c̄, λp) can be written as

P1(R, c̄, λp) = Pp(λpc̄) exp
(

λp

∫

R2

∞∑

n=2

(−1)n

n!
c̄nβ(R, y)n

︸ ︷︷ ︸

>0

dy
)

Hence G(R) can also be written as follows

G(R) = P2(R, c̄) exp

(

λpc̄

∫

R2

β(R, y)η(c̄, R, y)dy

)

(4.37)

where η(c̄, R, y) = ν(c̄β(R, y)), with ν(x) = (exp(−x) − 1 + x)/x. Observe that

0 ≤ η(c̄, R, y) ≤ 1,∀x > 0. If the total density of the transmitters is fixed i.e.,

λ = λpc̄ is constant, how does G(R) behave with respect to c̄? We have the

following lemma which characterizes the monotonicity of G(R) with respect to c̄.

Lemma 10. Given λ = λpc̄ is constant, G(R) is decreasing with c̄, i.e., dG(R)
dc̄

≤

0 , ∀c̄ > 0 iff λ ≤ λ∗(R, T ), where

λ∗(R, T ) =
2
∫

R2 β(R, y)ζ(y)dy
∫

R2 β(R, y)2dy
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Proof. From (4.37),

G(R) = P2(R, c̄) exp

[

λpc̄

∫

R2

β(R, a)η(c̄, R, a)da

]

=

∫

R2

exp
(

− c̄β(R, y) + λ

∫

R2

β(R, a)η(c̄, R, a)da
)

ζ(y)dy (4.38)

We have dη(c̄,R,z)
dc̄

|c̄=0 = β(R, z)/2 and dη(c̄,R,z)
dc̄

is decreasing in c̄.

dG(R)

dc̄
=

∫

R2

[

−β(R, y) + λ

∫

R2

β(R, a)
dη(c̄, R, a)

dc̄
da

]

exp
(

− c̄β(R, y) + λ

∫

R2

β(R, a)η(c̄, R, a)da
)

ζ(y)dy

= exp[λ

∫

R2

β(R, a)η(c̄, R, a)da]

∫

R2

[

− β(R, y) + λ

∫

R2

β(R, z)
dη(c̄, R, a)

dc̄
da
]

exp
(

− c̄β(R, y)
)

ζ(y)dy

︸ ︷︷ ︸

T2(c̄)

Since η′(c̄, R, z) is decreasing in c̄, we have T2(c̄) is decreasing in c̄. So a necessary

and sufficient condition for dG(R)
dc̄

≤ 0 ∀c̄ > 0 is T2(0) ≤ 0. We want

T2(0) =

∫

R2

[

−β(R, y) +
λ

2

∫

R2

β2(R, z)dz

]

ζ(y)dy ≤ 0

⇒ λ ≤ 2
∫

R2 β(R, y)ζ(y)dy
∫

R2 β2(R, z)dz
(4.39)

Remarks:

1. Since β(0, y) 6= 0, we have that, G(0) is increasing with λp (like exp(λp)),

and hence will be greater than 1 at some λp for a fixed c̄.

2. We have limc̄→0G(R) = 1 and specifically G(0) = 1 at c̄ = 0.
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3. From Lemma 10 and Remark 2 we can deduce G(R) < 1, ∀c̄ > 0 if λ <

λ∗(R, θ) i.e., the gain G(R) decreases from 1 with increasing c̄ if the total

intensity of transmitters is less than λ∗(R, θ).

4. Since G(R) is continuous with respect to R, G(R) is close to G(0) for small

R.

5. From Figure 4.6, we observe that G(R) increases monotonically with R.

In Figure 4.5, λ∗(0, θ) is plotted against θ. We provide some heuristics as to when

logical clustering does not perform better than a uniform distribution of points:

• The exact value of R at which G(R) crosses 1 is difficult to find analytically

due to the highly nonlinear nature of G(R). If such a crossover point exists

(depends on the path-loss model) we will denote it by R∗.

• If ℓ(x) = ‖x‖−α, it is better to induce logical clustering by the MAC scheme

if the link distance is larger than R∗. Otherwise it is better to schedule the

transmissions so that they are scattered uniformly on the plane.

• If ℓ(0) < ∞ and for a constant intensity λpc̄, it is always beneficial to

induce clustering for long-hop transmissions. When R is small the answer

depends on the total intensity λpc̄. If λpc̄ < λ∗(0, θ) then G(0) < 1 by

observation 3, and hence G(R) < 1 for small R by observation 4. Also when

λpc̄ < λ∗(0, θ), it is better to reduce logical clustering by decreasing c̄ and

increasing λp, since G(0) is a decreasing function of c̄. From Figure 4.5 we

observe that λ∗(0, 0.5) ≈ 1.26 when ℓ(x) = (1 + ‖x‖4)−1 and σ = 0.25. In

Figure 4.6, G(R) is plotted for λpc̄ = 0.75, 9 for the same values of σ, α and

the same channel function as of Figure 4.5. When λpc̄ = 9 > λ∗(0, 0.5),
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we observe that the gain curve G(R) is approximately 10 at the origin and

increases. When λpc̄ = 0.75 < λ∗(0, 0.5), G(R) starts around 0.25 and

crosses 1 at R ≈ 1.2. We also observe that G(R), for the non-singular ℓ(x),

seem to increase monotonically. We also observe that the gain function for

ℓ(x) = ‖x‖−α decreases from 1 initially and then increases to infinity.

• For DS-CDMA, the value of θ is smaller by a factor equal to the spreading

gain. From Figure 4.5, we observe that the threshold λ∗(0, θ) for clustering

to be beneficial at small distances increases with decreasing θ. Hence for a

constant intensity of transmissions λpc̄, the benefit of clustering decreases

with increasing spreading gain for small link distances. So for DS-CDMA

(for a large spreading gain) it is better to make the transmissions uniform

on the plane for smaller link distances and cluster the transmitters for long-

range communication.

• For FH-CDMA, the total number of transmissions λpc̄ is reduced by the

spreading gain while θ remains constant (see Figure 4.5). Hence λpc̄ <

λ∗(0, θ) for small distances and one can draw similar conclusions as for DS-

CDMA. The relative gain between FH-CDMA and DS-CDMA with cluster-

ing is more difficult to characterize analytically.

4.4 Transmission Capacity of Clustered Transmitters

Transmission capacity was introduced in (15; 17; 31) and is defined as the

product of the maximum density of successful transmissions and their data rate,

given an outage constraint. More formally, if the intensity of the contending

transmitters is λ with an outage threshold θ and a bit rate b bits per second per
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Figure 4.5. λ∗(0, θ) versus θ for ℓ(x) = (1 + ‖x‖4)−1, σ = 0.25. The
region below the curve consists of all the pairs of (θ, λ = λpc̄) such that
G(0) < 1. “Normal operating point” denotes a pair (θ, λ) that lies above
the curve (θ, λ∗(0, θ)). Suppose we use FH-CDMA, the total intensity
decreases by a factor of spreading gain and hence we move vertically

downwards into the G(0) < 1 region. If DS-CDMA is used, the threshold
θ decreases by a factor of spreading gain and hence we move horizontally

towards the left into the G(0) < 1 region.
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threshold λ∗(0, 0.5) ≈ 1.26. Hence the gain curve for this case starts
below unity at R = 0 and then increases. For the gain curve #1 the

total intensity is 9 > 1.26. By chance, in the present case the gain curve
#1 starts around 10 and increases.
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hertz, then the transmission capacity at a fixed distance R is given by

C(ǫ, θ) = b(1 − ǫ) sup
λ
{λ : Ps(λ, θ) ≥ 1 − ǫ} (4.40)

where Ps(λ, θ) denotes the success probability of a given transmitter receiver pair

(explicit inclusion of the dependence on θ and λ). More discussion about the

transmission capacity and its relation to other metrics like transport capacity is

provided in (31). Note that the results proved in (15; 17; 31) are for Poisson

arrangement of transmitters.

In this section we evaluate the transmission capacity when the transmitters

are arranged as a Poisson cluster process. We prove that for small values of

ǫ, the transmission capacity of the clustered process coincides with that of the

Poisson arrangement of nodes. We also show that care should be taken in defining

transmission capacity for general distribution of nodes. For notational convenience

we shall assume b = 1. For the clustered process, Ps(λ, θ) denotes the success

probability of the cluster process with intensity λ = λpc̄ and threshold θ. Let

Pl(λ, θ), Pu(λ, θ) denote lower and upper bounds of the success probability Ps(λ, θ)

and the corresponding sets Al, Au defined by Aχ := {λ : Pχ(λ, θ) ≥ 1 − ǫ} for

χ ∈ {l, u}. We then have Al ⊂ A ⊂ Au which implies

supAl ≤ supA ≤ supAu. (4.41)

Let Cl(ǫ, θ) = supAl and Cu(ǫ, θ) = supAu denote lower and upper bounds to the

transmission capacity.

For a PPP we have from (4.19), Pp(λ, θ) = exp(−λβI) (βI does not depend on
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λ). Hence the transmission capacity of a PPP denoted by Cp(ǫ, θ) is given by

Cp(ǫ, θ) =
1 − ǫ

βI
ln

(
1

1 − ǫ

)

≈ ǫ(1 − ǫ)

βI
, ǫ≪ 1 (4.42)

For Neyman-Scott cluster processes, the intensity λ = λpc̄. We first to try to

consider both λp and c̄ as optimization parameters for the transmission capacity,

i.e.

C(ǫ, θ) := (1 − ǫ) sup{λpc̄ : λp > 0, c̄ > 0, outage-constraint} (4.43)

without individually constraining the parent node density or the average number

of nodes per cluster.

Lemma 11. The transmission capacity of Poisson clustered processes is lower

bounded by the transmission capacity of the PPP,

C(ǫ, θ) ≥ Cl(ǫ, θ) = Cp(ǫ, θ) (4.44)

Proof. From Lemma 6, we have Pl(λ, θ) = Pp(λpc̄)Pp(c̄ζ̂
∗). So to get a lower

bound, from (4.41) we have to find

sup
{

λpc̄ : λpc̄+ c̄ζ̂∗ ≤ 1

βI
ln

(
1

1 − ǫ

)

=
Cp(ǫ, θ)

1 − ǫ

}

(4.45)

This maximum value of λpc̄ is attained when, λp → ∞, while c̄ → 0, such that

c̄λp = Cp(ǫ, θ)(1 − ǫ)−1. So we have Cl(ǫ, θ) = Cp(ǫ, θ).

Also observe that λp → ∞ and c̄ → 0. This corresponds to the scenario in
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which the clustered process degenerated to a PPP. We also have the following

upper bound.

Lemma 12. Let ρ(θ) = k/β̂ with k =
∫
β(R, y)ζ(y)dy. For ǫ < 1 − e−ρ(θ), we

have

C(ǫ, θ) ≤ Cu(ǫ, θ) = Cp(ǫ, θ) (4.46)

Proof. We find Cu(ǫ, θ) and hence upper bound the transmission capacity. We

have from the derivation of Lemma 9

Ps(λ, θ) ≤ Pp(λpc̄) exp[λpc̄βIη(c̄, R)]P2(R, c̄) = Pu(c̄λp, θ), (4.47)

where η(c̄, R) = (exp(−c̄β̂) − 1 + c̄β̂)/c̄β̂. With Au = {λpc̄, Pu(λpc̄, θ) ≥ 1 − ǫ},

it is sufficient to prove supAu ≤ Cp(ǫ, θ). Also observe that Pu(c̄λp, θ) → 0 as

c̄ → ∞ independent of λp . Hence we can assume c̄ is finite for the proof. We

proceed by contradiction.

Let supAu > Cp(ǫ, θ). Hence there exists a δ > 0, λp ≥ 0, c̄ ≥ 0 such that

λpc̄ = (Cp(ǫ, θ)/(1 − ǫ)) + δ ∈ Au. At this value of λpc̄ we have

1 − ǫ ≤ Pu(c̄λp, θ) = (1 − ǫ)Pp(δ) exp

[

η(c̄, R)

{

ln

(
1

1 − ǫ

)

+ δβI

}]

P2(R, c̄)

= (1 − ǫ)1−η(c̄,R)
Pp(δ(1 − η(c̄, R)))
︸ ︷︷ ︸

T1

P2(R, c̄) (4.48)

From the derivation of Lemma 9, we have P2(R, c̄) ≤ 1 − [1 − η(c̄, R)]c̄k, with

equality only when c̄ = 0. Hence we have

Pu(c̄λp, T ) ≤ T1(1 − ǫ)1−η(c̄,R)(1 − [1 − η(c̄, R)]c̄k) (4.49)
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Since exp(−x)−(1−x)
x

≤ x
1+x

, we have η(c̄, R) ≤ c̄β̂/(1 + c̄β̂). Using the upper bound

for η(c̄, R)

Pu(c̄λp, θ) ≤ T1(1 − ǫ)(1 − ǫ)
− c̄β̂

1+c̄β̂

(

1 −
[

1 − c̄β̂

1 + c̄β̂

]

c̄β̂ρ(θ)

)

= T1(1 − ǫ) (1 − ǫ)
− c̄β̂

1+c̄β̂

(

1 − c̄β̂ρ(θ)

1 + c̄β̂

)

︸ ︷︷ ︸

T2

(4.50)

Using the inequality 1 − ay ≤ (1 − b)y, b ≤ 1 − e−a, y ≥ 0, substituting y =

c̄β̂

1+c̄β̂
, b = ǫ, a = ρ(θ), we get T2 ≤ 1. Hence we have

Pu(c̄λp, θ) ≤ (1 − ǫ)Pp(δ(1 − η(c̄, R))) (4.51)

So if δ > 0, and c̄ finite, we also have Pp(δ(1 − η(c̄, R))) < 1. So we have a

contradiction from (4.48) and (4.51). Hence there exists no such δ and hence

supAu ≤ Cp(ǫ, θ). We can achieve Cu(ǫ, θ) = Cp(ǫ, θ), by using λp = nCp(ǫ,θ)

1−ǫ −

1, c̄ = 1/n for n very large. As n→ ∞,Pu(c̄λp, θ) → Pp(c̄λp, θ) .

Theorem 10. For ǫ ≤ 1 − e−ρ(θ) we have C(ǫ, θ) = Cp(ǫ, θ).

Proof. Follows from Lemmata 11 and 12.

From the above two proofs, when ǫ is small, the transmission capacity is equal

to the Poisson process of same intensity. This capacity is achieved when λp → ∞

and c̄→ 0. This is the scenario in which the cluster process becomes a PPP. This

is due to the definition of the transmission capacity as C(ǫ, θ) := sup{λpc̄ : λp >

0, c̄ > 0, outage-constraint} where we have two variables to optimize over.

Instead we may fix λp as constant and find the transmission capacity with
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respect to c̄. So we define constrained transmission capacity as

C∗(ǫ, θ) := λp(1 − ǫ) sup{c̄ : c̄ > 0, outage-constraint} (4.52)

We have the following bounds for C∗(ǫ, θ)

Theorem 11.

λpCp(ǫ, θ)

λp + ζ̂∗
≤ C∗(ǫ, θ) ≤ λpCp(ǫ, θ)

max
{

0, λp − β̂
βI

ln
(

1
1−ǫ
)} (4.53)

Proof. From the lower bound on Ps, we have to find

sup
{

c̄ : λpc̄+ c̄ζ̂∗ ≤ 1

βI
ln

(
1

1 − ǫ

)

=
Cp(ǫ, θ)

1 − ǫ

}

(4.54)

So we have C∗
l (ǫ, θ) = Cp(ǫ, θ)/(ζ̂

∗ + λp).

From the upper bound on Ps, we have to find

sup
{

c̄ :
λpc̄

1 + c̄β̂
≤ 1

βI
ln

(
1

1 − ǫ

)

=
Cp(ǫ, θ)

1 − ǫ

}

(4.55)

One can also derive an order approximation to the constrained transmission

capacity when ǫ is very small. We have the following order approximation to

transmission capacity.

Proposition 2. When λp is fixed, the constrained transmission capacity is given

by

C∗(ǫ, θ) = (1 − ǫ)

(
ǫλp

λpβI + k
+ o(ǫ)

)

(4.56)
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0.25, ǫ = 0.1, λp = 1

when ǫ→ 0.

Proof. Let γ(c̄) denote the outage probability, i.e.,

γ(c̄) = 1 − exp
{

− λp

∫

R2

1 − exp[−c̄β(R, y)]dy
}∫

R2

exp(−c̄β(R, y))ζ(y)dy

We have dγ(c̄)/dc̄ > 0, which implies γ(c̄) is increasing and invertible and hence

C∗(ǫ, θ) = λp(1 − ǫ)γ−1(ǫ). We approximate γ−1(ǫ) for small ǫ by the Lagrange

inversion theorem. Observe that γ(c̄) is a smooth function of c̄ and all derivatives

exist. Expanding γ−1(ǫ) around ǫ = 0 by the Lagrange inversion theorem and

88



using γ(0) = 0 yields

γ−1(ǫ) =
∞∑

n=1

dn−1

dc̄n−1

(
c̄

γ(c̄)

)n ∣
∣
∣
∣c̄=0

ǫn

n!
(4.57)

=
c̄ǫ

γ(c̄)
|c̄=0 + o(ǫ)

(a)
=

ǫ

λpβI + k
+ o(ǫ)

where (a) follows by applying de L’Hôpital’s rule.

We have the following observations

1. The constrained transmission capacity increases (slowly) with λp.

2. We also observe that the constrained transmission capacity for the cluster

process is always less than that of a Poisson network (see Figure 4.7) and

approaches Cp(ǫ, θ) as λp → ∞.

3. When FH-CDMA with intra-cluster frequency hopping is utilized, we have

the cluster intensity c̄ reduced by a factor M (spreading gain). One can

easily obtain the constrained transmission capacity of this system to be

C∗
FH(ǫ, θ) = (1 − ǫ)

(
ǫλpM

λpβI + k
+ o(ǫ)

)

When DS-CDMA is used, the constrained transmission capacity is C∗
DS(ǫ, θ) =

C∗(ǫ, θ/M). When the transmitters are spread as a Poisson point process,

we have from (32; 33)

ln

(
CFH(ǫ, θ)

CDS(ǫ, θ)

)

= (1 − 2/α) ln(M).
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In Figure 4.8, we plot ln(C∗
FH(ǫ, θ)/C∗

DS(ǫ, θ))/ ln(M) with respect to spread-

ing gain M , when the path loss function is ℓ(x) = ‖x‖−α and ǫ = 0.01. From

the figure, we observe a similar M1−2/α gain, even in the case of clustered

transmitters.
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4.5 Chapter Summary

The main focus of this chapter is the probability of success for a typical source-

destination pair when the transmitters are spatially distributed as a Poisson cluster

process (PCP). A fundamental contribution is the derivation of the conditional
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probability generating functional for the Thomas and the Matern PCP’s and its

use to derive the outage probability. We make the following observations:

1. The performance gain of clustering the transmitters as compared to random-

izing the transmitters depends on the source-destination distance R and also

critically on the path-loss model. When one considers a singular path-loss

model, the gain is always less than one for small R and tends to ∞ for larger

R. For a non-singular path-loss model, we have provided criterion for the

gain to be larger than unity for small R.

2. The transmission capacity of network when the nodes are distributed as PCP

is equal to a network where the nodes are located as a PPP. The equality

occurs since PPP can be regarded as a limiting case of a PCP.
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CHAPTER 5

TWO-HOP CELLULAR SYSTEMS

5.1 Introduction

Cellular systems are the most widely deployed wireless systems and provide

reliable communication services to billions around the world. Cellular systems

consist of base stations that serve a geographical area called cell. In most of the

present cellular systems, the base station (BS) communicates directly with the

mobile users (MS) in its cell. This single-hop architecture makes it is difficult for

the BSs to communicate with MSs at the cell boundary because of the distance

and the inter-cell interference. So a base station will have to increase its power

to maintain the rate of transmission. The dead spots problem can be countered

by using more base stations, and thereby increasing the spatial reuse. But in-

creasing the number of base stations would increase the interference and degrade

the performance of the overall system. This problem can be addressed more ef-

fectively by moving away from the paradigm of single-hop communication and

permitting the base station to communicate with mobile stations at the boundary

by using the other intermediate MSs in its cell in a sequence of hops. Although

such multi-hopping requires some significant changes in the present cellular sys-

tem architecture, it may help to effectively combat the dead spots problem, and

hence the cellular multi-hopping problem is worthy to investigate (34; 35). In this
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chapter, we analyze the benefits of two-hop cellular communication by comparing

its performance with a traditional single-hop cellular system. A two-hop system,

• May provide significant benefits over single-hop communication.

• Does not have the implementation complexity of larger number of hops (in

terms of routing and scheduling) and hence is more tractable.

When a BS transmits, multiple MSs will be able to receive the information,

and hence these mobile nodes can help the BS to transmit information to the cell

edge. Since more than one MS can act as a relay, it is not clear how to choose a

subset of these relays in a distributed fashion so as to reduce the interference and

increase the probability of packet delivery. In this chapter, we analyze simple relay

selection schemes and compare their performance with direct transmission. We

account for the inter-cell interference and the spatial structure of the transmitting

nodes in the analysis.

We use methods from stochastic geometry and point process theory to model

and study the two-hop cellular system. We will provide techniques to use the

probability generating functional of a point process to analyze the outage prob-

abilities and also provide asymptotic results for the outage at high SNR and low

BS density. The techniques presented in this chapter can be extended to analyze

more complicated relay selection schemes, power control mechanisms and other

multi-hop techniques. The major emphasis of the chapter is in the methodology

and the techniques of the analysis rather than the specifics of the communication

system. For example we concentrate only on three specific relay selection methods

although many more methods have been proposed in the literature.
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5.1.1 Previous Work

The problem of two-hop cellular system has been studied extensively, and a

provision for a multi-hop technique has been included in the A-GSM standard

(34; 35). In (36), a MS is selected to help the BS depending on the large-scale

path-loss on the BS-relay link, and the relay-destination link. (37) considers a

similar problem, but the MSs that can act as relays are assumed to be located on

a circle around the BS, and the authors provide various power allocation schemes

and verify their performance by simulations. The present problem is also very

similar to the problem of opportunistic relay selection. In (38; 39) a detailed

analysis for obtaining full diversity order using distributed space-time codes has

been proposed. But a distributed space-time code requires very tight coordination

and precise signaling among the relays, which increases the overhead and com-

plexity in the system. An alternate approach is to choose the best relay, and in

opportunistic relaying (OR) (40) a relay is chosen so as to maximize the minimum

SNR of the source-relay and the relay-destination links. In selection cooperation

(SC)(41; 42) the relay with maximum relay-destination SNR is chosen. It has

been shown that SC and OR provide a similar diversity order. In (39; 40; 41; 42),

distributed relay selection schemes are analyzed and asymptotes of the outage are

provided for high SNR. The asymptotes provided are functions of the means of

fading coefficients between the source, relays and the destination. Averaging these

results with respect to the spatial distribution of the nodes is difficult and hence

we use an alternative approach. In our approach we model the node locations in a

statistical manner and incorporate this information in the analysis from the start

rather than averaging over the spatial locations at the end.

The chapter is organized as follows: In Section 5.2 the system model is intro-
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duced, assumptions stated and the metrics used in the chapter defined. In Section

5.3 the outage probability in the direct connection between the BS and its desti-

nation is analyzed. In Sections 5.5 and 5.6 the outage probability of the two-hop

schemes employing different relay selection schemes are analyzed. The asymptotic

gain of using the two-hop schemes over the direct connection is also analyzed in

these sections. In Section 5.7 simulation results are provided and compared to the

theory.

5.2 System Model

We assume that the BSs (cell towers) are arranged on a lattice. More precisely

the base station locations are

Φb =

{
x√
λb
, x ∈ Z

2

}

,

which is a lattice of density λb. The analysis in this chapter generalizes in a

straightforward manner to any deterministic arrangement of BS. We assume that

nx MSs are available to assist a BS x ∈ Φb. More precisely, the locations of

the mobile stations that assist the base station x form a Poisson point process

(? ) (PPP) Φx of density λx(y) = η(y − x). For example choosing η(y) =

1y([−1/2, 1/2]2) and λb = 1 would lead to a square coverage area for each base

station. We use 1x(A) to denote the indicator function of set A. See Figure 5.1.

Observe that it is not necessary for a MS to be associated to its nearest BS, i.e.,

some MSs may be outside the Voronoi cell of their BS. We also make the following

assumptions:
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1. The average number of MS that each BS serves is finite, i.e.,

N =

∫

R2

η(x)dx <∞.

This assumption implies that Φx cannot be homogeneous (2? ).

2. The locations of the mobile users associated with different base stations are

independent.

Since the number of MSs in each cell is Poisson with mean N , each cell is empty

with probability exp(−N). We shall use µ to denote the probability that a cell

is not empty, i.e., µ = 1 − exp(−N). Independent Rayleigh fading is assumed

between any pair of nodes and also across time, and the power fading coefficient

between a node x and node y is denoted by hxy. Hence hxy is an exponential

random variable with unit mean. The path-loss model is denoted by ℓ(x) : R
2 \

{o} → R
+ and is a continuous, positive, non-increasing function of ‖x‖ which

satisfies
∫

R2\B(o,ǫ)

ℓ(x)dx <∞, ∀ǫ > 0,

where B(a, r) denotes a disc of radius R centered around a. ℓ(x) is usually taken

to be a power law in the form

1. Singular path-loss model: ‖x‖−α.

2. Non-singular path-loss model: (1 + ‖x‖α)−1 or min{1, ‖x‖−α}.

The integrability condition, requires α > 2 in all the above models. Assuming sim-

ple linear receivers and treating interference as noise, the communication between
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Figure 5.1. Illustration of the cellular system with λb = 1 and
η(y) = 50 · 1y([−0.25, 0.25]2). So on a average there are 12.5 MS per cell.
The bold dots represent the BSs and the smaller dots the MSs. In this

figure the white spaces between the cells may consist of other cells which
transmit at a different frequency. We may model the case where the

neighboring cells use the same frequency by choosing
η(y) = 1y([−0.5, 0.5]2).

x and y is successful if

SINR(x, y,Φ) =
pxhxyℓ(x− y)

σ2 +
∑

z∈Φ pzhzyℓ(z − y)
> θ. (5.1)

We also assume θ > 1 which implies at most one transmitter can connect to

a receiver. Here Φ is the set of interfering transmitters and pz represents the

transmission power used by a transmitter located at z. σ2 represents the additive

white Gaussian noise power at the receiver. We make the following assumptions:

1. In the two-hop schemes that will be analyzed, we assume BSs transmit in

the even time slots and the MSs transmit in the odd time slots across all
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cells.

2. Each base station x has an additional at r(x) with ‖r(x)−x‖ = R, to which

the BS wants to transmit information. This additional node just receives

and never transmits.

3. All the BSs transmit with equal power P .

Notation:

• Define

1(x→ y | Φ) = 1(SINR(x, y,Φ) > θ).

1(x → y | Φ) is the indicator random variable that is equal to one if a

transmitter at x is able to connect to a receiver y when the interfering set

is Φ.

• Define

Φ̂(x) = {y ∈ Φx : 1(x→ y | Φb \ {x})} .

Φ̂(x) is the set of MSs in the cell of BS x to which the BS x is able to connect

in the first hop (even time slots).

Metric: Let Pd denote the probability that a BS can connect to its destination

directly in the first hop. Since all BSs are identical, we define

Pd = E1(o→ r(o) | Φb \ {o}). (5.2)

where o denotes the origin (0, 0). A BS can connect to multiple MSs in its cell,

and these connected MS are the potential transmitters in the second hop. In the

relay selection methods studied in the next section, a subset of these potential
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transmitters Rx ⊆ Φ̂(x) are selected for each x ∈ Φb to transmit in the next

hop. Let the probability that a relay can connect to its intended destination

(determined by the source to which it connects in the first hop) in the second hop

be Pr, i.e.,

Pr = 1 − E

∏

x∈Ro

1 − 1(x → r(o) | Ψ \ {x}), (5.3)

where Ψ =
⋃

x∈ΦB
Rx is the set of all transmitters in the second hop. Here we

are assuming no cooperative communication between nodes which have the same

information, and hence relays belonging to the same cluster also interfere with

each other in the second hop. Since θ > 1, at most one transmitter can connect

to a receiver and thus

Pr = E

∑

x∈Ro

1(x → r(o) | Ψ \ {x}). (5.4)

Hence the probability of success for the two-hop scheme is

Ps = 1 − (1 − Pd)(1 − Pr).

The BS can potentially transmit in the second hop instead of using the MS as in-

termediate relays. This retransmission scheme will be used as the base reference,

and the performance of the relay selection schemes will be compared with this

retransmission scheme. The gain in using the two-hop scheme over the retrans-

mission scheme can be characterized as

G(SNR, λb) =
(1 − Pd)

2

(1 − Pd)(1 − Pr)
=

1 − Pd

1 − Pr
, (5.5)
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where

SNR =
Pℓ(R)

σ2

is the received SNR for the direct transmission. To compare the direct transmis-

sion with the relay selection scheme, power is allocated across the selected relays

in the second hop so that the total power is equal to P . Another pertinent metric

to capture the performance of the network is the diversity gain, defined as

d(λb) = − lim
SNR→∞

log(1 − Ps)

log(SNR)
.

From the definition of the diversity and the gain, the following relation follows:

d2(λb) − dd(λb) = lim
SNR→∞

log(G(SNR, λb))

log(SNR)
,

where dd is the diversity gain for the single-hop retransmission scheme and d2

is the diversity gain of the two-hop scheme. From the definition of Ps it can

be observed that the information received in the two time slots is being decoded

independently.

In the next sections, we will analyze the success probability Pr and the diversity

order of the relay selection schemes. It is easy to observe that the probability Pr

of any relay selection scheme does not tend to one by increasing the SNR because

of the interference caused by transmissions in other cells. So as to evaluate the

asymptotic performance of the system, we scale the BS density as

λb = SNR
−β, β ≥ 0. (5.6)

100



As will be evident in the next section, if the signal to interference ratio is defined

as

SIR =
ℓ(R)

∑

x∈Φb\{o} ℓ(x − r(o))
, (5.7)

the scaling in (5.6) translates to

SIR ∼ SNR
αβ
2
ℓ(R)

C(α)
,

where C(α) is a constant defined in Lemma 13. So the system is interfernce-limited

when β < 2/α and noise-limtied otherwise. Hence the scaling in (5.6) helps us in

evaluating the performance of the system by varying β. In practice this scaling

can be achieved by frequency planning and decreasing the spatial resuse factor.

We now begin with the analysis of the direct transmission scheme.

5.3 First Hop: Base Station Transmits

5.3.1 Direct Connection

When the BSs transmit, the inter-cell interference, fading and the noise may

cause the transmission to fail. The probability of direct connection is given by

Pd = E1(o→ r(o) | Φb \ {o}) (5.8)

= P

(

hxyℓ(R)
σ2

P
+
∑

y∈ΦB\{o} hyr(o)ℓ(y − r(o))
> θ

)

= exp

(

− θσ2

Pℓ(R)

)
∏

y∈Φb\{o}

1

1 + θ
ℓ(R)

ℓ(y − r(o))

= exp

(

− θ

SNR

)

∆(r(o)) (5.9)

101



where

∆(x) =
∏

y∈Φb\{o}

1

1 + θ
ℓ(x)

ℓ(y − x)
.

The following lemma is required to analyze the asymptotics of the success proba-

bility.

Lemma 13. When ℓ(x) = ‖x‖−α or ℓ(x) = 1/(1 + ‖x‖α),

lim
λb→0

1 − ∆(x)

λ
α/2
b

=
θC(α)

ℓ(x)
,

where

C(α) =
ξ(α/2, 0) [ξ(α/2, 1/4) − ξ(α/2, 3/4)]

2α−2
. (5.10)

ξ(s, b) =
∑∞

k=0,k 6=−b(k + b)−s is the generalized Riemann zeta function.

Proof. We consider the case of ℓ(x) = ‖x‖−α; the other case follows similarly.

From the definition of ∆(x) it follows that

exp
(

− θℓ(x)−1
∑

y∈Φb\{o}
ℓ(y − x)

)

≤ ∆(x) ≤
(

1 + θℓ(x)−1
∑

y∈Φb\{o}
ℓ(y − x)

)−1

.

We have

∑

y∈Φb\{o}
ℓ(y − x) =

∑

y∈Z2\{o}
ℓ

(
y√
λb

− x

)

= λ
α/2
b

∑

y∈Z2\{o}
ℓ(y − x

√

λb).

Dividing both sides by λα/2 and taking the limit, the result follows from the

definition of the Epstein zeta function (43).

We have C(3) ≈ 9.03362 and C(4) ≈ 6.02681. From the derivation of the
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above lemma we observe that SIR ∼ SNR
αβ/2ℓ(R)C(α)−1 where the definition of

SIR is provided in (5.7). Using the above lemma, the asymptotic expansion of Pd

for λb = SNR
−β, β 6= 0 at high SNR is

Pd ∼







1 − θSNR
−1 αβ > 2

1 − θ (1 + C(α)ℓ(R)−1) SNR
−1 αβ = 2

1 − θC(α)ℓ(R)−1SNR
−αβ/2 0 < αβ < 2,

(5.11)

and the diversity gain of the direct transmission is

dd(SNR
−β) = min

{

1,
βα

2

}

.

So for the direct transmission, β < 2/α corresponds to the interference-limited

regime and β > 2/α corresponds to the noise-limited regime. From Figure 5.2 we

observe that the asymptotes in (5.11) are close to the true 1−Pr even at moderate

SNR. In the scaling law provided, observe that the distance of the receiver from

the BS is fixed.

5.3.2 Properties of the Potential Relay Sets Φ̂(x), x ∈ Φb.

In this subsection, the properties of the node set that the BS at the origin is

able to connect to are analyzed. When the BSs transmit, the interference seen

by two MSs is independent. So the set of MSs to which the BS at the origin can

connect to is an independent thinning of Φo. Hence Φ̂(o) is also a PPP and since

the thinning depends on the position, the resulting process is inhomogeneous.

Hence the intensity of Φ̂(o) is

δ(x) = η(x)E1(o→ x | Φb \ {o}).
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Figure 5.2. Outage probability 1 − Pd versus SNR for λb = SNR
−β with

different β. The system parameters are α = 4, θ = 1.5, r(o) = (0.5, 0.5)
and ℓ(x) = (1 + ‖x‖4)−1. The dashed lines are the asymptotes derived in
(5.11). Observe the difference in the slopes of the error curve for β < 0.5

and β ≥ 0.5.

Following a procedure similar to the derivation of (5.9), the intensity is given by

δ(x) = η(x) exp

(

− θ

SNR

ℓ(R)

ℓ(x)

)

∆(x). (5.12)

The average number of MSs which the BS is able to connect to is

E

∑

x∈Φo

1(o→ x | Φb \ {o}) =

∫

R2

δ(x)dx, (5.13)
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which follows from the Campbell-Mecke theorem (? ). The average distance over

which the BS at the origin can connect is

L =
E
∑

x∈Φo
‖x‖1(o→ x | Φb)

E
∑

x∈Φo
1(o→ x | Φb)

(5.14)

=

∫

R2 ‖x‖δ(x)dx
∫

R2 δ(x)dx
. (5.15)

In the second hop, a subset of the MSs which were able to receive information

in the first-hop transmit. In the next sections we analyze the following three

strategies to select a subset Rx ⊂ Φ̂(x) to transmit in the second hop (odd time

slots):

• All MSs that receive information in the first hop transmit in the second hop.

In this relay selection method MSs do not need to have location information

or any channel state information.

• The MS closest to the destination and that has received information in the

first hop transmits in the second hop. This strategy requires nodes to know

their respective locations.

• The MS with the best channel (fading and path-loss) to the destination that

has received information in the first hop transmits. This strategy requires

the relays to have channel state information.

5.4 Method 1: All Potential Relay Nodes Transmit

We first analyze the scenario in which all the nodes which receive information

in the first hop transmit, i.e., Rx = Φ̂(x). This method also introduces the

technique to analyze the success probability.
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Equal power transmission: We first analyze the scenario in which all the relays

that received information in the first hop transmit with equal power P1. From

(5.13), the average power used in the second hop is

P1

∫

R2

δ(x)dx. (5.16)

To compare this scheme with the direct transmission we choose P1 so that the total

power to transmit information in the second hop is equal to P = σ2SNR/l(R) (i.e.,

power used by the direct transmission). Hence the power P1 is set as

P1 =
SNRσ2

ℓ(R)
∫

R2 δ(x)dx
. (5.17)

From (5.4) we have,

Pr = E

∑

x∈Ro

1(x→ r(o) | Ψ),

and in this case

Ψ =
⋃

y∈Φb

Ry =
⋃

y∈Φb

Φ̂y.

where each Φ̂y is a PPP with density δ(x− y). In this case we have

1(x→ r(o) | Ψ) = 1

(

hxr(o)ℓ(x− r(o))

σ2/P1 +
∑

y∈ψ\{x} hyr(o)ℓ(y − r(o))

)

.

By the Campbell-Mecke theorem it follows that

Pr =

∫

R2

δ(x)E!x1(x→ r(o) | ψ)dx, (5.18)

where E
!x is the expectation with respect to the reduced Palm measure (3). Since

the individual clusters Rx are independent, centered around the lattice points,
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and are inhomogeneous PPPs, we have E
!x = E. From a similar procedure as in

the derivation of Pd we have

E1(x→ r(o) | ψ) = exp

(

− θσ2

P1ℓ(x− r(o))

)

E

∏

y∈ψ

1

1 + θ
ℓ(x−r(o))ℓ(y − r(o))

︸ ︷︷ ︸

p(x)

.

where

p(x)
(a)
=

∏

a∈Φb

E

∏

y∈Ra

1

1 + θ
ℓ(x−r(o))ℓ(y − r(o))

(b)
=

∏

a∈Φb

exp

(

−
∫

R2

δ(y − a)

1 + ℓ(x−r(o))
θ

ℓ(y − r(o))−1
dy

)

= exp

(

−
∫

R2

∑

a∈Φb
δ(y − a)

1 + ℓ(x−r(o))
θ

ℓ(y − r(o))−1
dy

)

(a) follows from the independence of Ra for a ∈ Φb and (b) follows from the

probability generating functional of the PPP. Hence

Pr =

∫

R2

δ(x)p(x) exp

(

− θσ2

P1ℓ(x− r(o))

)

dx.

Since there is a finite probability that a cell can be empty,

Pr ≤ 1 − exp

(

−
∫

R2

η(x)dx

)

.

When the cell is empty, the two-hop technique does not work. The probability of

success in two hops conditioned on the event that there the cell is not empty is
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obtained as follows:

Pr = (Pr | (no > 0))P(no > 0) + (Pr | (no = 0))P(no = 0)

= (Pr | (no > 0))

(

1 − exp

(

−
∫

R2

η(x)dx

))

.

Hence the success probability when the cell is not empty, i.e., |Φx| > 0 is equal to

Pr | (no > 0) =
Pr

µ
. (5.19)

We now analyze the asymptotic gain of this scheme.

Lemma 14. The gain

G(SNR, SNR
−β) → 0

as SNR → ∞ for all β > 0.

Proof. The success probability Pd in the direct connection becomes one when

the inter-cell interference becomes zero and SNR becomes infinite. The success

probability Pr does not approach one even when the inter-cell interference becomes

zero and SNR becomes infinite. This is because of the intra-cell interference when

all the nodes transmit. Indeed when SNR → ∞ and λb → 0

Pr =

∫

R2

η(x) exp

(

−
∫

R2

η(y)

1 + θ−1ℓ(x− r(o))ℓ(y − r(o))−1
dy

)

dx.

In Figure 5.3 the outage probability of this two-hop scheme is plotted. We

observe a non-monotonic behavior with increasing SNR: when the SNR is low

only a few relays close to the BS can decode and hence in the second hop there
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might be no potential relays. On the other hand, at high SNR many relays will

be able to decode the information but would interferer with each other in the

second hop. Hence we can observe that there is a sweet spot at some intermediate

SNR. From the above lemma we observe that there is no gain when the inter-
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Figure 5.3. Outage probability 1 − Pr | (no > 0) versus SNR for
λb = SNR

−β and different β. We have α = 4, θ = 1.5, z = (0.5, 0.5),
ℓ(x) = (1 + ‖x‖4)−1 and η(y) = 51y([−0.5, 0.5]2).

cell interference becomes zero. So the diversity achieved when all the relays that

received information transmit in the second hop is equal to zero. Observe that
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in these methods the information from the direct path is not combined with the

information received from the relay. The diversity is 0 on the relay-to-destination

connection because of the presence of interference in the second hop, and increas-

ing the SNR will not change the interference. From the above derivation, it can

be observed that thinning the MS that transmit in the second hop would not

improve the diversity. In essence the second hop is interference-limited, i.e., the

probability of error never approaches zero even for a large SNR. In contrast, if the

BS at o directly transmits the same information to the MS at z for two time slots

it would achieve a first order diversity with majority decoding and second order

diversity when MRC is used. When the destination does not receive a packet from

the direct transmission, it would in general send a NACK (assuming that it knows

it should receive something). This NACK can be used by the MS to estimate the

large-scale path-loss from the destination to themselves. If channel reciprocity is

assumed the MS can estimate the path-loss gain to the destination and each MS

can compensate for the large scale path-loss to the destination, i.e., each x ∈ Ro

chooses a power equal to σ2ℓ(x− r(o))−1.

Theorem 12 (Power compensation). When each MS that successfully received

information from some BS does a power compensation to their respective destina-

tion, the probability of success is

Pr = ̺ exp

(

−θ − θ

1 + θ

∫

R2

δ(x)dx

)∫

R2

δ(x)dx,

where

̺ = exp



−
∑

a∈Φb\{o}

∫

R2

δ(y − a)

1 + ℓ(y−r(a))−1

θ
ℓ(y − r(o))−1

dy



 .
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Proof. Let the number of points in Ro be equal to n. For notational convenience

let hi represent the fading coefficient hxir(o). Conditioned on the number of points

in Ro,

Pr = E

n∑

i=1

1

(

hi

1 +
∑

k 6=i hk + I
> θ

)

= n exp(−θ)
(

1

1 + θ

)n−1

E exp(−θI).

I is the interference caused by the MS in the cells other than the one at the origin.

E exp(−θI) can be calculated by a method similar to the derivation of the success

probability without power compensation. Since n is a Poisson random variable

with mean
∫
δ(x)dx, taking the average with respect to n, the result follows.

The total average power used in the second hop is

σ2
SNR

∫

R2

δ(x)

ℓ(x− r(o))
dx.

5.5 Method 2: Nearest Relay to the Destination Transmits

In this relay selection method, the node x ∈ Φ̂(a), a ∈ Φb closest to r(a) is

selected to transmit in the second hop. To do this each node should contain its own

location and each packet should have location information about its destination.

For fair comparison with the direct transmission we assume that the selected

relay transmits with power SNRσ2/ℓ(R). The probability of success in this relay

selection method is equal to

Pr = P
(
hx,r(o)ℓ(r) > θ(σ2 + I)

)
,
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where I is the inter cell interference at r(o). r is the distance from the relay in

the set Φ̂(o) that is nearest to r(o). More precisely

r =







infx∈Φ̂(o) ‖x− r(o)‖, |Φ̂(o)| > 0

∞, |Φ̂(o)| = 0.

Φ̂(o) can be empty because of the following two reasons:

1. The cell has no MS to begin with. The probability of this happening is equal

to 1 − µ.

2. The BS was not able to connect to any MS in the first time slot.

For a fair comparison with direct transmission, we condition on the cell at the

origin having at least one MS to begin with, i.e., no > 0. So

Pr | (no > 0) = Prµ
−1.

Let Fo(r, SNR, λb) denote the CDF of the first contact distribution of Φ̂(o) from

r(o). It is given by

Fo(r, SNR, λb) = 1 − exp

(

−
∫

B(r(o),r)

δ(x)dx

)

. (5.20)

Observe that Fo(r, SNR, λb) is a defective distribution, i.e., F0(∞, SNR, λb) < 1.

Let

fo(r, SNR, λb) = − ∂

∂r
Fo(r, SNR, λb)
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denote the PDF of the first contact distribution. Hence

Pr =

∫ ∞

0

exp

(

− θℓ(R)

SNRℓ(r)

)

E

(

exp

(

− θℓ(R)

SNRσ2ℓ(r)
I

))

︸ ︷︷ ︸

T1(λb,r)

fo(r, SNR, λb)dr.

where I is the interference at r(o) by transmitters in other cells. Even though
∫
fo(r, SNR, λb)dr < 1 the above average is correct since the integrand is zero

at r = ∞ where the remaining mass of the first contact distribution lies. We

now evaluate T1(λb, r). Let fa(x), a 6= 0, x ∈ R
2, denote the PDF of the nearest

neighbor of r(a) in the set Φ̂(a) relative to a conditioned on the event |Φ̂(a)| > 0.

We then have

T1(λb, r) =
∏

a∈Z2\{o}

∫

R2

E

[

fa(x)

1 + θ
ℓ(r)

ℓ( a√
λb

+ x− r(o))1(|Φ̂(a)| > 0)

]

dx

Taking the average with respect to |Φ̂(a)| we have

∏

a∈Z2\{o}

∫

R2

E

[

1 − 1(|Φ̂(a)| > 0) +
fa(x)1(|Φ̂(a)| > 0)

1 + θ
ℓ(r)

ℓ( a√
λb

+ x− r(o))

]

dx

∏

a∈Z2\{o}
1 −

∫

R2

fa(x)(1 − exp(−
∫
δ(y)dy))

1 + ℓ(r)
θ
ℓ( a√

λb
+ x− r(o))−1

dx.

fa(x) depends on the geometry of each cell, δ(x), r(a) and is easy to calculate

once these quantities are known. We now calculate the asymptotic of Pr and the

asymptotic gain.

Asymptotic gain: In this part we scale the BS density as λb = SNR
−β. It is easy

to observe that the average number of MS in each cell that are potential relays,
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i.e.,
∫
δ(x)dx scales as

∫

δ(x)dx ∼
∫

η(x)dx− θℓ(R)

SNR

∫
η(x)

ℓ(x)
dx− θC(α)

SNR
αβ/2

∫
η(x)

ℓ(x)
dx. (5.21)

It can also be verified that

sup
r

|Fo(r, SNR, SNR
−β) − Fo(r,∞, 0)| → 0

as SNR → ∞, which implies Fo(r, SNR, SNR
−β) converges uniformly to Fo(r,∞, 0).

Hence we can interchange the derivative and the limit in the asymptotic analysis.

We have

fo(r, SNR, SNR
−β) = exp

(

−
∫

B(r(o),r)

δ(x)dx

)
∂

∂r

∫

B(r(o),r)

δ(x)dx.

From (5.21) and the fact that exp(−x) ∼ 1 − x for small x it follows that,

fo(r, SNR, SNR
−β) ∼







exp (−f(r))
(
∂
∂r
f(r) − θℓ(R)

SNR
g(r)

)

αβ > 2

exp (−f(r))
(
∂
∂r
f(r) − θC(α)

SNR
αβ/2 g(r)

)

αβ < 2

where

g(r) =
∂

∂r

∫

B(r(o),r)

η(x)

ℓ(x)
dx−

∫

B(r(o),r)

η(x)

ℓ(x)
dx

∂

∂r
f(r),

and

f(r) =

∫

B(r(o),r)

η(x)dx.

The following limit follows similar to the asymptotic analysis of Pd

lim
SNR→∞

1 − T1(SNR
−β, r)

SNR
−βα/2 =

θC(α)µ

ℓ(r)
,
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where C(α) is given by (5.10). By some basic algebraic manipulations the asymp-

totic expansion of the error probability with respect to SNR with λb = SNR
−β, β >

0 is equal to

1−P2 | (no > 0) ∼







θℓ(R)
SNRµ

∫∞
0

exp (−f(r))
{
g(r) + ℓ(r)−1 ∂

∂r
f(r)

}
dr αβ > 2

θC(α)

SNR
αβ/2µ

∫∞
0

exp (−f(r))
{
g(r) + µℓ(r)−1 ∂

∂r
f(r)

}
dr αβ < 2.

(5.22)

These asymptotes are plotted in Figure 5.4. From (5.22) the asymptotic gain is

asymptotically equal to







µℓ(R)−1
(∫∞

0
exp (−f(r))

{
g(r) + ℓ(r)−1 ∂

∂r
f(r)

}
dr
)−1

αβ > 2

µℓ(R)−1
(∫∞

0
exp (−f(r))

{
g(r) + µℓ(r)−1 ∂

∂r
f(r)

}
dr
)−1

αβ < 2.

Remarks:

• We observe that the gain is higher in the interference-limited regime than

the noise-limited regime. This is because in this relay selection method,

some of the cells may not be able to transmit because they do not contain

any MS and this happens with probability 1 − µ.

• Since the gain does not scale with SNR, the diversity of this scheme is also

equal to min{1, βα/2}. See Figure 5.4 for the error plot obtained by Monte

Carlo simulations and the above asymptotes obtained theoretically.

5.6 Method 3: Relay With Best Channel to the Destination (Selection Cooper-

ation) Transmits.

In this selection procedure, the fading between a potential relay and the des-

tination is also included in the criterion for the relay selection. The relay with
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Figure 5.4. Outage probability 1 − Pr | (no > 0) versus SNR for
λb = SNR

−β for different β. The system parameters are α = 4, θ = 1.5,
r(o) = (0.5, 0.5), ℓ(x) = (1 + ‖x‖4)−1 and η(y) = 51y([−0.5, 0.5]2). The
dashed lines are the asymptotes derived in (5.22). The dashed lines are

the asymptotes derived in (5.22) and are approximately equal to
10.351SNR

−0.5 (interference-limited) and 1.387SNR
−1 (noise-limited).

the best channel to the destination is selected. This method of relay selection is

called selection cooperation. In the second hop, each relay of the set Φ̂(o) can

send a channel estimation packet to the destination in an orthogonal fashion and

the destination can choose the relay with the best channel. Otherwise if channel

reciprocity is assumed, the relays can estimate the channel between themselves

and the destination using a NACK and use this information to elect the best relay

in a distributed fashion.
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As in the previous section we shall find the success probability conditioned on

the cell at the origin being non-empty, i.e., Pr | no > 0. As indicated earlier

Pr | no > 0 = µ−1
Pr.

Hence we shall first calculate the unconditional probability Pr and then multiply

it with µ−1. The relay that is selected is mathematically described by

arg maxx∈Φ̂(o){hxr(o)ℓ(x− r(o))}.

The exact analysis of this relay selection in the presence of interference is difficult

and hence our aim in this section is to obtain the scaling of G(SNR, SNR
−β/2). Let

k denote the cardinality of the set Φ̂(o). Since the connectivity in the first hop is

independent across relays, k is a binomial random variable with mean

E[k] =

∫

R2

δ(x)dx.

To make the comparison with the direct transmission easier, we assume that each

node transmits with power P = SNRσ2/ℓ(R). The probability of error is

1 − Pr = P

(

P max
x∈Φ̂(o)

{hxr(o)ℓ(x− r(o))} < θ(I + σ2)

)

,

where I is the interference at r(o) caused by concurrent transmissions in other
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cells. Conditioning on the point set Φ̂(o) we have

1 − Pr | Φ̂(o) = P

(

P max
x∈Φ̂(o)

{hxr(o)ℓ(x− r(o))} < θ(I + σ2) | Φ̂(o)

)

= E




∏

x∈Φ̂(o)

1 − exp

(

− θ(σ2 + I)

Pℓ(x− r(o))

)

| Φ̂(o)



 .

Since Φ̂(o) is a PPP with intensity function δ(x), conditioning on there being k

points in the set, each node in the set is independently distributed with density

κ(x) = δ(x)
R

R2 δ(y)dy
. Removing the conditioning on the locations of Φ̂(o), we obtain

1 − Pr | (|Φ̂(o)| = k) = E

[

1 −
∫

R2

exp

(

− θ(σ2 + I)

Pℓ(x− r(o))

)

κ(x)dx

]k

(5.23)

Using binomial expansion,

1−Pr | (|Φ̂(o)| = k) = E

[
k∑

m=0

(−1)m
(
k

m

)

E

[∫

R2

exp

(

− θ(σ2 + I)

Pℓ(x− r(o))

)

κ(x)dx

]m
]

︸ ︷︷ ︸

ak

.

Hence 1 − Pr | (|Φ̂(o)| = k) is equal to

k∑

m=0

(−1)m
(
k

m

)∫

R2m

ν(x1, . . . , xm) exp

(

−θσ
2
∑m

b=1 ℓ(xb − r(o))−1

P

)

·
m∏

b=1

κ(xb)dx1 . . . dxm,
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where

ν(x1, . . . , xm) = E

[
m∏

b=1

exp

(

− Iθ

ℓ(xb − r(o))

)]

= E [exp (−Iθ̺(xm1 ))]

= E

[

exp

(

−θ̺(xm1 )
∑

a∈Z2

hy(a)r(o)ℓ(y(a) − r(o))1(|Φ̂(a)| > 0)

)]

where y(a) denotes the location of the selected relay in the cell at a and ̺(xm1 ) =
∑m

b=1 ℓ(xb − r(o))−1. Let ga(x) denote the PDF of a− x where

x = arg maxx∈Φ̂(a){hxr(a)ℓ(x− r(a))}.

ga(x) is difficult to calculate and is the reason of resorting to asymptotics. Since

hy(a)r(o) is exponential it follows that

ν(x1, . . . , xm) =
∏

a∈Z2

1 −
∫

R2

ga(y)(1 − exp(−
∫
δ(x)dx)

1 + θ−1̺(xm1 )−1ℓ(y + a√
λb

− r(o))−1
dy.

Hence the unconditional probability of error is

Pr = µ−1

[

1 − exp

(

−
∫

R2

δ(x)dx

) ∞∑

k=0

ak
(
∫
δ(x)dx)k

k!
.

]

Asymptotic gain: The above expansion is too unwieldy to yield any asymptotics.

We shall use (5.23) to obtain the gain in the high SNR and low interference regime.

Removing the conditioning in (5.23) we have

1 − Pr = E exp

[

−
∫

R2

exp

(

− θ(σ2 + I)

Pℓ(x− r(o))

)

δ(x)dx

]

.

The above result follows from the generating function of a Poisson random
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variable. Hence the required conditional probability is

Pr | no > 0 = µ−1

(

1 − E exp

[

−
∫

R2

exp

(

− θ(σ2 + I)

Pℓ(x− r(o))

)

δ(x)dx

])

.

An upper bound follows from Jensen’s inequality:

Pr | (no > 0) ≤ µ−1

(

1 − exp

[

−
∫

R2

E exp

(

− θ(σ2 + I)

Pℓ(x− r(o))

)

δ(x)dx

])

.

Similarly a lower bound can be obtained by using the inequality exp(−x) ≥ 1−x:

Pr | (no > 0) ≥ µ−1

(

1 − exp

(

−
∫

R2

δ(x)dx

)

E exp

(∫

R2

θ(σ2 + I)

Pℓ(x− r(o))
δ(x)dx

))

.

To evaluate the upper and lower bounds we observe that we will have to find

E[exp(−sI)], which follows from the derivation similar to ν(x1, . . . , xm):

E[exp(−sI)] =
∏

a∈Z2

1 −
∫

R2

ga(y)(1 − exp(−
∫
δ(x)dx)

1 + s−1ℓ(y + a√
λb

− r(o))−1
dy.

Recall that δ(x) is equal to

η(x) exp

(

− θ

SNR

ℓ(R)

ℓ(x)

)
∏

y∈Z2\{o}

1

1 + θ
ℓ(x)

ℓ(y/
√
λb − x)

.

We now find the asymptotic lower and upper bound when λb = SNR
−β for large

SNR. We first observe that

δ(x) ∼ η(x)

(

1 − θℓ(R)

ℓ(x)
SNR

−1 − θ

ℓ(x)
C(α)SNR

−αβ/2
)

.
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It is also easy to obtain that

E[exp(−sI)] ∼ 1 − µsC(α).

After basic algebraic manipulation, it is established that both the upper and the

lower bounds exhibit the same scaling which is

Pr | (no > 0) ∼







1 − SNR
−1
(

1−µ
µ

)

θℓ(R)
∫

R2

[
1

ℓ(x−r(o)) + 1
ℓ(x)

]

η(x)dx αβ > 2

1 − SNR
−αβ/2

(
1−µ
µ

)

θC(α)
∫

R2

[
µ

ℓ(x−r(o)) + 1
ℓ(x)

]

η(x)dx αβ < 2.

(5.24)

Hence the gain is

lim
SNR→∞

G(SNR, SNR
−β) =







µ
1−µℓ(R)−1

[∫

R2

[
1

ℓ(x−r(o)) + 1
ℓ(x)

]

η(x)dx
]−1

αβ > 2

µ
1−µℓ(R)−1

[∫

R2

[
µ

ℓ(x−r(o)) + 1
ℓ(x)

]

η(x)dx
]−1

αβ < 2

(5.25)

Hence the diversity of this scheme is

d2(SNR
−β) = min

{

1,
αβ

2

}

.

In the above analysis we assumed that the cell is non-empty and hence obtained

a maximum diversity of 1.

5.7 Simulation Results and Observations

In this section the gain of the proposed methods over direct transmission is

obtained by Monte-Carlo simulations. For the purpose of simulation we truncate

the BS lattice to λ
−1/2
b {−2,−1, 0, 1, 2}2 and θ = 1.5 is used as the decoding

threshold. The cells are modeled as squares and the destination of each BS is
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Figure 5.5. Outage probability 1 − Pr | (no > 0) versus SNR for
λb = SNR

−β and various β. The system parameters are α = 4, θ = 1.5,
z = (0.5, 0.5), ℓ(x) = (1 + ‖x‖4)−1 and η(y) = 51y([−0.5, 0.5]2). The

dashed lines are the asymptotes derived in (5.24) and are approximately
equal to 0.812SNR

−0.5(interference limited) and 0.108SNR
−1 (noise

limited).

located at a random vertex of the square. The spatial density used is equal to

η(y) = λm1y([−L/2, L/2]2).

If not specified we use λm = 5 and L = 1.

In Figures 5.4 and 5.5 the error probability of the schemes employing near-

est relay to the destination and the best relay are plotted. We observe that the
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Figure 5.6. G(SNR, SNR
−β) versus SNR for various β. Relay closest to

the destination is selected.

asymptotes obtained from theory match perfectly with the simulation results. As

predicted by theory, the diversity obtained is 1 when αβ > 2 and is equal to

αβ/2 otherwise. From Figure 5.6 and 5.7, it can be seen that the gain reaches a

constant when SNR → ∞. We observe that the best-relay selection scheme

performs the best. In Figure 5.9, we observe that the asymptotic gain

increases exponentially with λm because of the (1− µ)/µ factor in the expression

for the asymptotic gain. Setting λb = SNR
−β reduces the spatial reuse factor as

the SNR increases. The effective throughput density of the network is equal to

P2 log(1 + θ)SNR
−β and the maximum of this throughput density is the transmis-

sion capacity. In Figure 5.10, we plot (P2 | no > 0) log(1+θ)SNR
−β versus SNR for

various β. We observe that for each SNR there is an operating β which maximizes

the throughput density, and that as SNR → ∞, the maximizing β tends to 0,
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Figure 5.9. Asymptotic gain versus λm

which is intuitive. The figure indicates that a throughput density of ≈ 0.1bps/m2

is achieved at low SNR and it increases with SNR.

5.8 Chapter Summary

In this chapter we have analyzed the outage in a two-hop cellular systems

inclusive of all the node location statistics. In particular we have analyzed two

relay selection schemes in the context of cellular architecture. We have provide

the success probability using tools from stochastic geometry and point process

theory. We also have provided asymptotics of the outage with respect to SNR

when the density of BSs scale like λb = SNR
−β and proved that the diversity in

the two relay selection schemes is min{1, αβ/2} where α is the path-loss exponent.

We provided computable asymptotic results for the error probability and verified

them with simulations. From simulations we observe that there is substantial
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Figure 5.10. (P2 | no > 0) log2(1 + θ)SNR
−β versus SNR for various β.

The best relay selection scheme is used.

gain in using two-hop architecture compared to direct retransmissions and the

gain increases with the BS-destination distance. The techniques introduced in

this chapter can be easily extended for the spatial analysis of other relay selection

schemes.
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CHAPTER 6

MATHEMATICAL PRELIMINARIES

6.1 Point Processes

Let N be the set of all sequences of points in R
d, such that any sequence φ ∈ N:

• is finite, i.e., has only a finite number of points in any bounded subset of R
d

• is simple, i.e., x 6= y for any x, y ∈ φ.

Point process. We shall use the notation φ(B), φ ∈ N and B ⊂ R
d, to denote the

number of points of φ in B. Let N denote the smallest sigma algebra so that the

maps φ→ φ(B) are measurable for all Borel subsets B of R
d. N is the equivalent

of the Borel sigma algebra on the real line for the set of point sequences N.

Definition 12. A point process Φ on R
d is a measurable mapping from a proba-

bility space (Ω,A,P) to (N,N ), i.e.,

Φ : Ω → N

So a point process is a random variable that takes values in the set of sequences

N. Each elementary outcome ω ∈ Ω determines an entire point sequence Φ(ω).

The distribution of Φ is

P(E) = P ◦ Φ−1(E) = P(Φ ∈ E) ∀E ∈ N .
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Measurability requires that N−1(E) ∈ A. An element of N is an event and can

be viewed as a property of the point sequence. For example in a wireless network,

Y ∈ N may represent the event that there are 10 wireless nodes in a unit ball

around the origin, or it can represent the event that the minimum distance between

any pair of nodes is greater than unity.

6.1.1 Poisson Point Process (PPP)

A stationary PPP of density (or intensity) λ is characterized by the following

two properties:

• The number of points in any set B ⊂ R
d is a Poisson random variable with

mean λ|B|.

• The number of points in disjoint sets are independent random variables.

From the definition we observe that

P(Φ(B) = k) = exp(−λ|B|)(λ|B|)k
k!

,

and in particular the void probability is given by exp(−λ|B|). The thinning of

a PPP (i.e., selecting a point of the process with probability p independently of

the other points and discard it with probability 1− p) results in two independent

PPP’s of intensity measures pλ and (1−p)λ. An inhomogeneous PPP of intensity

measure Λ is defined in a similar manner as the stationary PPP, except that the

number of points in a set B is a Poisson random variable with mean Λ(B). For

example using Λ(B) = (2π)−1
∫

B
exp(−‖x‖2/2)dx results in a PPP with Gaussian

density. A PPP with density λ, restricted to bounded domain A results in an
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inhomogeneous PPP with Λ(B) = λ|A ∩ B|. Observe that a stationary PPP is a

special case of the inhomogeneous PPP with Λ(B) = λ|B|.

6.1.2 Poisson Cluster Process (PCP)

A PCP consists of a parent PPP Φp = {x1, x2, . . .} of density λp. The clusters

are of the form N xi = Ni + xi for each xi ∈ Φp. The Ni are a family of identical,

independently distributed point sets and also independent of the parent process.

The complete process Φ is given by

Φ =
⋃

x∈Φp

N x.

The daughter points of the representative cluster No are scattered independently

and with a identical spatial distribution

Ξ(A) =

∫

A

ζ(x)dx,A ⊂ R
2

around the origin. The number of points in a cluster may be random and we denote

its mean by c̄. We now provide some basic definitions and intensity measures

associated with point processes.

Definition 13. A point process Φ = {xn} is said to be stationary if

P(Φ ∈ Y ) = P(Φx ∈ Y )

for all Y ∈ N , where Φx = {xn + x}. A point process Φ is said to be isotropic if

P(Φ ∈ Y ) = P(Φx ∈ rY ),
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where r is a rotation in R
d.

A point process which is both stationary and isotropic is said to be motion-

invariant. From the above definition we observe that a BPP is not a stationary

point process, and that it is rotationally invariant when the domain is rotationally

invariant. A PPP with constant intensity measure, i.e., Λ = λ is stationary and

also rotationally invariant. We now define an equivalent of the mean of random

variables for the point processes.

Definition 14. The intensity measure of a point process Φ is equal to the average

number of points in a set B ⊂ R
d.

Λ(B) = E(Φ(B))

If Φ is stationary, then Λ(B) = λ|B| where λ is called the intensity (density)

of the stationary point process Φ. We have

• For a stationary PPP, the intensity measure is equal to λ|B|.

• For a PCP, the intensity measure is equal to λpc̄|B|.

The next theorem helps in evaluating sums of function over the point process.

Theorem 13. Campbell’s Theorem: Let f(x) : R
d → [0,∞] be a measurable

function. Then

E

(∑

x∈Φ

f(x)
)

=

∫

Rd

f(x)Λ(dx).

When Φ is stationary with intensity λ the right side is equal to λ
∫

Rd f(x)dx.

Definition 15. The second order product density ̺(2) of a point process is defined
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by the following relation:

E

( 6=
∑

x1,x2∈Φ

f(x1, x2)

)

=

∫

Rd

∫

Rd

f(x1, x2)̺
(2)(x1, x2)dx1dx2

for any non-negative and measurable function f .

∑6=
x,y represents summation over distinct x and y. When Φ is stationary,

̺(2)((x1, x2) depends only on x1 − x2. ̺
(2)(x1, x2)dx1dx2 can be interpreted as the

probability that there exists two points of Φ in the infinitesimal regions dx1 and

dx2. We now provide an equivalent of the moment generating functional for the

point process.

Definition 16 (Probability generating functional (PGFL)). Let ν(x) : R
d →

[0,∞) be measurable. The PGFL of the point process Φ is defined as

G[ν] = E

∏

x∈Φ

ν(x).

Observe that the PGFL is a functional, i.e., acts on a function and when the

function is a multivariate, a dot ’· ’ is used to represent the variable that the PGFL

acts on. For example G[v(· + y)] = E
∏

x∈Φ v(x + y). The probability generating

functional of a PPP it is equal to

G[ν] = exp

(

−
∫

Rd

(1 − ν(x))Λ(dx)

)

. (6.1)

The probability generating functional of the PCP is given by

G[ν] = exp

(

−λp
∫

Rd

1 −M

(∫

Rd

ν(x+ y)ζ(x)dx

))

(6.2)
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where M(z) is the moment generating function of the number of points in the

representative cluster. In general, Campbell’s theorem is used to evaluate the

average of a sum and the PGFL for the average of a product of a function over

the point process. In the next section, we provide the equivalent of conditional

probability for the point process.

6.2 Palm Distributions

Palm distributions are the counterparts to the conditional distributions for the

point processes, and they arise when the point process is conditioned to have a

point at x ∈ R
d. The use of Palm measures arises in a wireless network when we

calculate outage probabilities which requires conditioning on either the receiver or

the transmitter location. We provide the definition of Palm distribution in terms

of the Campbell measure, which is a measure on R
d × N.

Definition 17. The reduced Campbell measure of a point process is defined as

C !(A× Y ) = E

[
∑

x∈Φ∩A
1(Φ \ {x} ∈ Y )

]

for any Borel set A ⊂ R
d and Y ∈ N .

An immediate consequence of this definition is the following theorem:

Theorem 14 (Mecke). Let f(x, φ) be a measurable function on R
d × N. Then

E

∑

x∈Φ

f(x,Φ \ {x}) =

∫

Rd

∫

N

f(x, φ)dC !(x, φ)
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When C(.× Y ) is absolutely continuous with respect to the intensity measure

Λ, we have by the Radon-Nikodym theorem

C !(A× Y ) =

∫

Rd

P!x(Y )dΛ(x) (6.3)

P!x is called the reduced Palm measure of the process Φ. Intuitively this is equal

to conditioning on the point process having a point at the origin but not counting

it. From (6.3), Mecke’s theorem and the definition of the Campbell measure, we

have

E

∑

x∈Φ

f(x,Φ \ {x}) =

∫

Rd

E
!x(f(x,Φ))Λ(dx). (6.4)

We now provide a brief description of the reduced Palm probability measure for

PPP and PCP conditioned on a point being at the origin.

Theorem 15 (Slivnyak). The Palm measure of a PPP is given by

P!o = P.

This is also a complete characterization of the PPP. It says that an additional

point at o does not change the distribution of the other points of the PPP. Hence

for a stationary PPP, the Mecke theorem reads as:

E

∑

x∈Φ

f(x,Φ \ {x}) = λ

∫

Rd

Ef(x,Φ)dx.

Theorem 16. The Palm measure of a PCP is given by

P!o = P ∗ Ω!o,

133



where Ω!o is the reduced Palm measure of the representative cluster No, and is

given by

Ω!o(Y ) =
1

c̄
E

∑

x∈No

1Y ((No − x) \ {o}).

∗ denotes the convolution of the distributions, which corresponds to the superpo-

sition of the two point measures.

Definition 18. For a point process φ, the second order moment measure is defined

as

K2(B) = E
!o
∑

x∈Φ

1B(x) (6.5)

for any Borel set B ⊂ R
d.

It is equal to the average number of points in the set B given that there is a

point at the origin but without counting the point. We also have the following

relation between the second order moment measure and the second order product

measure

λ2K2(B) =

∫

B

ρ(2)(x)dx. (6.6)

An important characteristic of a stationary point process is Ripley’s K-function

defined as K(r) = K(b(o, r)). For a PPP is equal to cdr
d, where cd is equal to

the volume of the unit ball in d-dimensions. For any stationary point process

K(r) ∼ cdr
d, r → ∞. Similar to the reduced second moment measure, the

reduced n-th factorial moment measure (2; 3) of a point process Φ, is defined as

λn−1Kn(B) = E
!o





xi 6=xj∑

x1,...,xn−1∈Φ

1B(x1, . . . , xn−1)



 , (6.7)

where B = B1 × . . . × Bn−1, Bi ⊂ R
2. When Kn(B) are absolutely continuous

with respect to the Lebesgue measure, we denote the densities(44? ) as ρ(n), the
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exact relation being (in the stationary case)

Kn(B) =
1

λn

∫

B

ρ(n)(x1,, x2, . . . , xn−1)dx. (6.8)

Similar to the definition of the PGFL, the conditional PGFL is defined as :

Definition 19 (Conditional PGFL). Let v(x) : R
d → (0,∞). The conditional

PGFL is

G̃[v] = E
!o

[
∏

x∈Φ

v(x)

]

. (6.9)

For a PPP, by the Slivnyak theorem the conditional PGFL is equal to the

PGFL, i.e.,

G̃[v] = exp

(

−
∫

Rd

(1 − v(x))Λ(dx)

)

.
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