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INTERFERENCE, OUTAGE, AND THROUGHPUT IN MOBILE WIRELESS

NETWORKS

Abstract

by

Zhenhua Gong

This dissertation characterizes the geometry of mobile wireless networks and

their performance. In mobile networks, distance variations caused by node mobility

generate fluctuations of the channel gains. Such fluctuations can be treated as another

type of fading besides multi-path effects. Interference statistics in mobile random net-

works are characterized by incorporating the distance variations of mobile nodes to

the channel gain fluctuations. The mean interference is calculated at the center and

at the border of a finite mobile network. The network performance is evaluated in

terms of the outage probability. Compared to a static network, the interference in a

single snapshot does not change under uniform mobility models. However, random

waypoint mobility increases (decreases) the interference at the center (at the border).

Due to the correlation of node locations (in mobile or static networks), the inter-

ference and outage are temporally and spatially correlated. We quantify the tem-

poral correlation of the interference and outage in mobile Poisson networks in terms

of the correlation coefficient of the interference and conditional outage probability,

respectively. The results show that it is essential that routing, MAC scheduling, and

retransmission schemes need to be smart (i.e., correlation-aware) to avoid bursts of

transmission failures.

For communication between two neighboring nodes in wireless networks, the local
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delay, which is defined as the time it takes a node to successfully transmit a packet,

is an important quantity. Previous research focuses on the local delay in static or

infinitely mobile Poisson networks with ALOHA. In this dissertation, we extend the

local delay results to Poisson networks with finite mobility. Bounds of the local

delay in mobile Poisson networks are derived for different mobility and transmission

models. Although mobility helps reduce the local delay, its impact depends on the

particular mobility model. The phase transition that marks the jump of the local

delay from finite to infinite is also characterized.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

There are two fundamental aspects of wireless networks that make the design

and analysis challenging and interesting. First is the phenomenon of fading: the

time variation of the channel strengths due to small-scale effects (multi-path fading),

as well as large-scale effects (path-loss) via distance attenuation, and shadowing by

obstacles. Second, unlike in the wired world where each transmitter-receiver pair can

usually be thought of as an isolated point-to-point link, wireless nodes communicate

over the air and share common resources. The competition among different users is

thus severe, since the resources are limited. The interference can be between different

transmitter-receiver pairs, between transmitters communicating with a common re-

ceiver, or between signals from a single transmitter to multiple receivers. Hence,

fading and interference are two central elements we need to consider in the network

performance analysis [1].

There are four major sources of randomness that affect the interference in large

networks. The first element is fading, which has been described previously. The

second one is node placement. In mobile networks, a random model of spatial lo-

cations is necessary to facilitate the network analysis. A well-accepted model for

the node distribution in wireless networks is the homogeneous Poisson point process

(PPP) [2, 3, 4], where the number of nodes in a certain region of area A is Poisson

distributed with parameter λ0A, where λ0 is defined as node intensity. The numbers
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of nodes in disjoint regions are mutually independent. The third one is data traffic. In

cellular networks, for example, base stations schedule the data transmission to reduce

the interference. On the other hand in distributed medium access control (MAC)

protocols, ALOHA [5, 6, 7] and CSMA [8, 9, 10] are two classes of well-accepted

protocols. The fourth one is transmit power. Power control helps in the management

of interference (ensuring efficient spectral reuse and desirable user experience), energy

optimization (minimizing overall energy expense), and connectivity (maintaining

logical connectivity) [11, 12, 13]. When power control is implemented locally, the

receiver is not aware of the power levels of other, interfering transmitters, the power

levels hence become a source of randomness in wireless networks.

For the sake of mathematical tractability and simplicity, the above four sources

of randomness are often assumed identically and independently distributed (i.i.d.).

For example, the channels are often assumed to be memoryless; if mobility is at

all considered, the nodes in a network are infinitely mobile so that the realizations

of node locations are independent in different time slots; the node activities are

not affected by previous activities. Are those assumptions realistic? In wireless

networks, the i.i.d. assumptions for multi-path channel realizations, transmit power

levels, and data traffic statistics are reasonable, if nodes transmit in short bursts.

Furthermore, some broadband transmission techniques, such as frequency-hopping

spread-spectrum, nullify the channel memories as well. For node placement, however,

the situation is different. The correlation between node locations in different time

slots is zero only if a completely new realization of the node placement is drawn in

each time slot. Network models assuming independent realizations are impractical

since the node velocities cannot be infinite. If the node placement follows a certain

type of distribution such as a PPP in each time slot and the nodes do not have infinite

mobility, the node locations in different time slots are correlated. An extreme case is

the static but random network, where the nodes’ positions are completely correlated,
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since the nodes do not move after their initial placement.

How does mobility affect network structure and performance? First, it is well

known that multi-path fading is induced by microscopic mobility. A slight position

change of a node induces the randomness in channel gain. On the other hand,

when distance is considered in a wireless transmission, a significant change in the

transmission distance, which is called macroscopic mobility, gives rise to another

degree of uncertainty: path-loss uncertainty. We denote the multi-path fading simply

as fading and large-scale path-loss uncertainty as large-scale fading. Both types of

fading are induced by mobility. Second, mobility affects temporal and spatial corre-

lation. The locations of a node always show a certain degree of correlation in different

time slots, since the node speed is finite. The quantification of such correlation is

worthwhile. Third, mobility induces spatial diversity. Due to the nature of multi-

path fading, a node observes multiple uncorrelated channel realizations in mobile

environment. Deep fading locations can thus be avoided.

It is fundamentally necessary that every node is able to successfully transmit

messages to at least one other node in the network in a finite amount of time. Hence,

the local delay, which is defined in [14, 15] as the average time (in numbers of time

slots) until a packet is successfully transmitted, is an important quantity. The local

delay and its phase transition condition in static Poisson networks are analyzed in [14].

The local delay in power- and interference-limited networks is presented in [15]. Only

two extreme cases are considered in their analysis: the network is either completely

static (nodes do not move after initial placement), or infinitely mobile (a new and

independent Poisson point process (PPP) is drawn in each time slot). However, no

work has analyzed the local delay under practical (finite) mobility models, which is

the important intermediate regime between the two extreme cases.
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1.2 Related Work

There is a growing body of literature of large wireless networks with randomly

distributed nodes. Stochastic geometry [2, 4] and the theory of random geometric

graphs [16] are two increasingly widely used analysis tools. Interference and outage

statistics are obtained in the case where nodes are Poisson distributed without multi-

path fading [17, 18] and in the presence of fading [19, 20]. For the node placement mo-

dels other than homogeneous Poisson, distance statistics in finite uniformly random

networks are obtained in [21]. Interference and outage in clustered ad hoc networks

are discussed in [22]. Interference results for ad hoc networks with general motion-

invariant node distribution are presented in [23, 24, 25]. The interference distribution

in doubly Poisson cognitive networks is analyzed in [26]. In [27], the hardcore point

process is approximated by a non-homogeneous PPP to evaluate the outage. The

performance of spatial relay networks is analyzed in [28, 29]. Routing in ad hoc net-

works is discussed in [19, 30, 31, 32]. The throughput and capacity in interference-

limited networks have been derived in [33, 34, 35]. The spatio-temporal correlation

of the interference and outage in static random networks has been studied in [36].

The spatial distribution of link outages in static random networks has been derived

in [37]. The temporal correlation properties of the interference in static networks

has been discussed in [38] in terms of the node locations, Rayleigh block fading, and

traffic. In [39], the interference correlation is shown to induce diversity loss in Poisson

neworks with multi-antenna receivers.

Related work on mobile networks includes [40], where a network of mobile nodes

is mapped to a network of stationary nodes with dynamic links. Mobility is shown

to increase the capacity of ad hoc networks by exploiting multi-user diversity [41].

In [42], different mobility models and their effects to ad hoc networks are compared.

The stochastic properties of random walk and random waypoint mobility models

are analyzed in [43] and [44, 45, 46, 47], respectively. Another way of combining
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micro- and macroscopic path loss uncertainty has been explored in [48], where small-

scale fading is interpreted as a distortion of the point process in modeling the node

locations.

Besides the local delay analysis in static and infinitely mobile Poisson networks

[14, 15], the local delay in clustered networks is analyzed in [49]. A set of power

control policies are provided in [13] to minimize the local delay in static Poisson

networks. The interference correlation due to long transmission duration and the

corresponding local delay are evaluated in [50] using joint interference statistics.

The throughput/delay and power/delay tradeoffs for mobile ad hoc networks have

been evaluated in [51, 52] and [53], respectively. A delay analysis for two-hop relay

networks is presented in [54]. The delay in buffered ALOHA networks has been

analytically characterized in [55].

1.3 Organization of the Dissertation

In this dissertation, we present the analysis of mobile wireless networks from

theoretical perspective. In Chapters 2 and 3, we analyze the interference and outage

in mobile random networks. We start with single-snapshot analysis of interference

and outage in Chapter 2. The temporal correlation of the interference and outage is

analyzed in Chapter 3. We calculate the correlation coefficient of the interference and

the conditional outage probability. The contents in Chapter 2 and 3 form [56]. In

Chapter 4, the local delay in mobile Poisson networks is analyzed and conrete results

of either exact expressions or bounds are obtained. The content of Chapter 4 forms

[57]. Chapter 5 summarizes the contributions and discusses several future directions.
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CHAPTER 2

INTERFERENCE AND OUTAGE IN MOBILE RANDOM NETWORKS:

SINGLE-SNAPSHOT ANALYSIS

2.1 Introduction

Multi-path fading models, e.g., the Rayleigh and Nakagami models, have been

frequently employed to characterize wireless channels, treating small-scale fading,

which is induced by microscopic mobility, as a stochastic component. On the other

hand, power decay with distance or large-scale path loss is typically modeled as a

deterministic component, given that the locations of a transmitter and a receiver

are known or that the location uncertainty compared to the transmission distance

is negligible. However, macroscopic mobility, which generates macroscopic changes

in the transmission distance, also induces fluctuations of the channel gains. Hence,

it can be viewed as another source of fading (path-loss uncertainty) in wireless en-

vironments, in addition to the multi-path effects. To make the definitions clear, we

define the channel as

G � h · g(x), (2.1)

where h is the multi-path fading and g(x) is the path loss function.

Understanding the large-scale fading induced by macroscopic mobility is essential

to deal with random networks because nodes are mobile in many applications. In

[40], a network of mobile nodes is mapped to a network of stationary nodes with

dynamic links. Path loss and fading uncertainties are treated jointly for single-hop

connectivity and broadcasting in [48]. Previous research has only considered the
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distance uncertainty in the analysis. Interference in mobile networks remains an

open problem. However, interference is one of the main issues in wireless networks,

since it often limits network performance [1]. Closed-form results for the interference

and signal-to-interference ratio (SIR) distributions in static random networks are

available in [12, 17, 19]. To the best of our knowledge, no work has focused on the

interference statistics in mobile random networks.

In this chapter, we characterize the interference distribution in mobile networks.

Several well-accepted mobility models are considered in the analysis. The outage

probability is used as a performance metric. In order to get closed-form expressions

of the interference distribution and the outage probability, we approximate the total

interference by only considering the contribution of the nearest interferer to a receiver.

To illustrate how macroscopic mobility and large-scale fading are related, we start

with a simple motivating example. The received power is exponentially distributed,

if the channel is subject to the Rayleigh fading. As a consequence, the SNR is

exponential, as well as the SIR for constant interference power I. Next, we consider

an infinite Poisson network with node intensity λ0. Nodes are infinitely mobile, which

means that a new realization of the homogeneous PPP is drawn in every time slot.

At a receiver, if we only focus on the interference from its nearest neighbor, the SIR

η = 1/I = Rα
1 , where R1 is the distance between the receiver and its nearest neighbor,

and α is the path loss exponent. From [48], we have the pdf of R1 as

fR1(r) = 2λ0πre−λ0πr2
, r � 0. (2.2)

Evidently, the pdf of η is given by

fη(x) = δλ0πxδ−1e−λ0πxδ

, x � 0, (2.3)
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where δ � 2/α. η follows a Weibull distribution. For δ = 1, we obtain

fη(x) = λ0πe−λ0πx, (2.4)

which is an exponential distribution. Hence, the distance variation leads the receiver

to have the same SIR distribution as in the Rayleigh fading case! In other words, the

receiver observes fading effects through the wireless channels due to the macroscopic

mobility. It can be treated as another source of dynamics. In this example, the

fading is more severe, when δ < 1. Based on this observation, we characterize the

interference distribution in mobile networks by mapping the distance variations of

mobile nodes to the received power fluctuations in wireless channels.

The rest of the chapter is organized as follows. System and mobility models are

introduced in Section 2.2. In Section 2.3, the mean interference at the center and at

the border of a finite mobile network is calculated. The single-snapshot analysis of

the interference and outage in mobile random networks is discussed in Section 2.4.

Section 2.5 concludes the chapter.

2.2 System model

2.2.1 Network model

We consider the link between a transmitter-receiver pair in a wireless network with

the receiver at the origin o. Without loss of generality, the link distance is normalized

to one (equivalently, we can say that the path-loss component is compensated for in

the desired link). Other potential interferers are randomly distributed1. The initial

node placement follows a PPP Φ̃ on a domain D ⊆ R
2 with intensity λ0. In a finite

network as shown in Fig. 2.1 (left), D = B(o, R), where B(o, R) is a disk of radius

1We do not consider the assigned receivers of interfering transmitters, since they do not affect
the network geometry in our analysis.
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(a) Finite network (b) Infinite network

Figure 2.1. Illustrations of finite and infinite mobile networks. The small
circles denote mobile nodes and the arrows show the directions in which
they will move in the next time slot. In (a), the nodes bounce back when

they reach the boundary. In (b), all nodes move freely.

R centered at o. The number of nodes M inside B(o, R) is Poisson distributed with

mean λ0πR2. In an infinite network as shown in Fig. 2.1 (right), D = R
2.

The nodes move independently of each other by updating their positions at the

beginning of each time slot. In a finite network, nodes bounce back when they reach

the boundary so that M remains constant. In an infinite network, all nodes move

freely. In both cases, the locations of potential interferers follow a homogeneous or

non-homogeneous PPP Φ(t) = {xi(t)} at any time t ∈ N.

2.2.2 Mobility models

Different mobility models lead to different spatial properties of the networks and,

in turn, affect the network performance differently [42]. In this part, we introduce

several well-accepted models. For a fair comparison between different models, we

first define the average speed of the nodes and set it to the same level. The speed of

node i in one time slot is defined as vi(t) = ‖xi(t) − xi(t − 1)‖, where t ∈ N and ‖·‖

9



is the Euclidean distance. We define vi(t) � ‖xi(t) − xi(t − 1)‖. Let

v̄i(t) � E [vi(t)] , ∀t ∈ Z.

Due to ergodicity and point process homogeneity, the mean speed averaged over all

nodes for a fixed time t is equal to the mean speed averaged over time for a fixed

node. Hence, we drop i and t, and simply denote by v̄ the mean speed of the node.

The time slot is measured at the time scale of mobility, which is indicated Fig. 2.2(a).

The mean distance that a node travels in one time slot is assumed larger than the

radio signal wavelength. The communication time scale, which will be introduced in

the next sub-section, is much shorter or at the level of the mobility (see Fig. 2.2(b)

and 2.2(c)).

2.2.2.1 Constrained i.i.d. mobility (CIM)

The CIM model is first introduced in [40]. Here, we consider an identical model

except for the first time slot at t = 0. The node location xi(t) is

xi(t) = yi + v̄wi(t), (2.5)

where the home locations of the nodes are Φ̃ = {yi}; wi(t) is uniformly at random in

B(yi, v̄RCIM). Using the results from [47], we calculate the normalized mobility range2

RCIM = 45π/128 ≈ 1.1045. The CIM model is non-Markov. However conditioning

on yi, we have xi(t) and xi(t + s) are i.i.d. for all t, s > 0.

2The term "normalized" means that the average node speed is equal to one.
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  t                                  t+1                             t+2                      

  t                                  t+1                             t+2                           

  t                                  t+1                             t+2                    

Transmission
duration

(a)

. . .

. . .

(b)

. . .

(c)

Figure 2.2. Mobility and transmission time scales. The mobility (time)
slots are indicated in (a). If a node is scheduled to transmit, each

transmission period, which is presented in gray, is assumed to start at the
beginning of each mobility slot. In (b), the transmission duration is much

shorter than the mobility (time) slot; in (c), the length of transmission time
is comparable to the mobility slot.
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2.2.2.2 Random walk (RW)

Under the RW model, a mobile node selects a new direction and speed randomly

and independently in each time slot. Hence, the spatial node distribution remains

uniform [43]. Mathematically, the location of node i at time t + 1 for t ∈ N is

xi(t + 1) = xi(t) + v̄wi(t), (2.6)

where the distribution of wi(t) is uniformly at random in B(xi(t), v̄RRW). The

normalized mobility range RRW = 1.5, which is straightforward.

2.2.2.3 Discrete-time Brownian motion (BM)

Under the discrete-time BM model, the node location at time t + 1 for t ∈ N is

xi(t + 1) = xi(t) + v̄wi(t), (2.7)

where wi(t) = [wi,1(t), wi,2(t)]T and wi,1(t) and wi,2(t) are i.i.d. normally distributed

i.e., wi,1(t), wi,2(t) ∼ N (0, σ2
1). After normalization, we have σ1 =

√
2/π.

Remark. From [19], [43, Lemma 2.2], and [58], the above mobility models with the

bouncing behavior in a finite network3 preserve the uniform properties of the node

distribution. Consequently for any t, if the initial PPP is homogeneous, the PPP

Φ(t) remains homogeneous. We categorize CIM, RW, and BM models as uniform

mobility models (UMM).

3A more detailed discussion on the border behavior and effects in mobile networks is presented
in [44].
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2.2.2.4 Random waypoint (RWP)

This model is only strictly defined in a finite region. Each node uniformly chooses

a destination in the region and moves towards it with randomly selected speed4. A

new direction and speed are chosen only after the node reaches the destination.

Otherwise, it keeps the same direction and speed for several time slots. The steady-

state node distribution is a non-uniform distribution [45]. We denote the distance of

a typical node to the origin at steady state by L. For D = B(o, R), the probability

density function (pdf) of L is given by

fL(r) =
1

R2

(
−4r3

R2 + 4r

)
. (2.8)

The intensity measure of the point process follows as

Λ(B(o, r)) � E(Φ(B(o, r))) = 2λ0πr2 − λ0πr4

R2 ,

where r � R. The intensity function is thus given by

λ(x) � λ∞(x) = 2λ0 − 2λ0 ‖x‖2

R2 . (2.9)

2.2.3 Channel access scheme

We assume that transmissions start at the beginning of each time slot and that

each transmission is finished within one time slot as shown in Fig. 2.2(b) and 2.2(c).

The next transmission (if the node is scheduled to transmit) starts at the beginning

of the next mobility (time) slot. Slotted ALOHA is assumed as the MAC protocol. In

every time slot t, each node determines whether to transmit or not independently with

probability p. This channel access scheme minimizes the correlation. Note that the

4In the simulations, the speed is chosen so that the travel distance is a multiple of the speed.
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model is also suitable for the case where not all transmissions start at the beginning

of a mobility time slot, since spreading out the transmissions using time division

scheduling reduces the density of interferers. This case is modeled by reducing the

transmit probability p by an appropriate factor.

2.2.4 Channel model

The attenuation in the wireless channel is modeled as the product of a large-scale

path-loss component and a small-scale fading component. The path-loss function

g(x) is given by

g(x) = 1
ε +‖x‖α , ε � 0, (2.10)

where α is the path loss exponent. Two categories of models are usually considered:

the singular path-loss model where ε = 0 and the non-singular path-loss model where

ε > 0. rg(r) = r/ (ε + rα) is assumed to be integrable, i.e.,

∫ ∞

ν
rg(r)dr < ∞, ∀ν > 0.

α > 2 is necessary and sufficient to satisfy the integrability condition.

For the multi-path fading, we consider a deterministic model (i.e., no fading) and

the Rayleigh and Nakagami fading models in the desired link and the interfering

links. In Rayleigh fading, the pdf of the power fading gain h is given by

fh(x) = exp(−x).

In the more general Nakagami-m fading model, the pdf of the power fading gain is

given by

fh(x) =
mmxm−1 exp(−mx)

Γ(m)
, m > 0.

If the transmission duration is relatively long, i.e., comparable to the length of

14



the mobility (time) slot (Fig. 2.2(c)), the packet may observe a large number of

realizations, since the node covers many wavelengths in distance. With interleaving,

the fading will then have a negligible effect corresponding to a large m or even m → ∞
(no fading). If the transmissions are short (Fig. 2.2(b)), on the other hand, fading

needs to be accounted for using the Rayleigh or Nakagami models with small m.

2.2.5 Total interference and outage probability

At time t, the total interference at the receiver (located at z) is given by

I(t) =
∑

x∈Φ(t)
Tx(t)hx(t)g(x − z), (2.11)

where the random variables Tx(t) are i.i.d. Bernoulli with parameter p due to ALOHA;

hx(t) is the multi-path fading with mean Eh = 1. The family of random variables

I(t), t ∈ Z, are exchangeable [59].

The outage probability po is one of the fundamental performance metrics in

wireless networks. In interference-limited channels, an outage occurs if the signal-to-

interference ratio (SIR) at a receiver is lower than a certain threshold θ i.e.,

po � P(SIR < θ). (2.12)

2.3 Mean Interference

In this section, we calculate the mean interference in a network under either UMM

or RWP mobility. For ε > 0 and α = 4, it is known [12] that the mean interference

at the origin under UMM is given by

E[Io,UMM] =
πpλ0√

ε
arctan

R2
√

ε
. (2.13)
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We have the following proposition about the mean interference at the origin under

the RWP model.

Proposition 2.1. For α = 4, a finite network of radius R, and ALOHA with

parameter p, The mean interference at the origin under the RWP model is given

by

E[Io,RWP] =
2πpλ0√

ε
arctan

R2
√

ε
− pλ0π

R2 ln
(

1 +
R4

ε

)
. (2.14)

As R → ∞,

E[Io,RWP] � 2E[Io,UMM], (2.15)

where “�” denotes an upper bound with asymptotic equality.

Proof. Under the RWP model, we have from Campbell’s theorem

E[Io,RWP] = 4πpλ0

∫ R

0

(
r

ε + r4 − r3

ε + r4

)
dr.

The rest of the calculation is straightforward.

For ε = 0, we ignore the interfering nodes which are very close to the origin by

setting a guard zone5 B(0, ν), for any ν > 0. We have the following proposition about

the mean interference at the origin.

Proposition 2.2. For a finite network of radius R and ALOHA parameter p, the

mean interference at the origin under UMM is given by

E[Io,UMM] =
2pλ0π

α − 2
(
ν−α+2 − R−α+2

)
, (2.16)

where ν is the guard radius in the singular path-loss model. For α = 4, the mean

5The guard zone is set to keep the mean interference finite.
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interference at the origin under the RWP model is given by

E[Io,RWP] = 2pλ0π
(
ν−2 − R−2

)
− 4pλ0π

R2 ln
R

ν
. (2.17)

For α �= 4, we have

E[Io,RWP] = 4pλ0π

α − 2

( 1
να−2 − 1

Rα−2

)

− 4pλ0π

(α − 4)

( 1
να−4R2 − 1

Rα−2

)
. (2.18)

As R → ∞, we obtain again,

E[Io,RWP] � 2E[Io,UMM].

Proof. Under UMM,

E[Io,UMM] = 2πpλ0

∫ R

ν
r−α+1dr.

and under the RWP model,

E[Io,RWP] = 4πpλ0

∫ R

ν
r−α+1 − r−α+3

R2 dr.

The rest of the calculation is straightforward.

From Proposition 2.1 and 2.2, we find that the mean interference at the origin

under the RWP model is asymptotically twice the mean interference under UMM

when the radius R grows large.

Next we evaluate the mean interference at the border of a network (i.e., at any z

with ‖z‖ = R). For UMM, we have the following proposition.

Proposition 2.3. For α = 4, a finite network of radius R, and ALOHA parameter
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p, the mean interference at a border location z with ‖z‖ = R under UMM is given by

E[IR,UMM] =
pλ0√

ε

∫ 1

0

arctan 4R2√
ε

x2
√

1 − x2 dx, ε > 0. (2.19)

When R → ∞, we have

lim
R→∞

E[IR,UMM] = pλ0π
2

4
√

ε
, ε > 0. (2.20)

Under the RWP model, we have

lim
R→∞

E[IR,RWP] = 0. (2.21)

Proof. We have

E[IR,UMM] = pλ0

∫
B((R,0),R)

g(x)dx

= pλ0

∫ π/2

−π/2

∫ 2R cos θ

0
rg(r)drdθ,

which equals (2.19). For the RWP model, the mean interference at the border is

given by

E[IR,RWP] = p
∫

B(0,R)
λ(x)g(x − z)dx

=
2pλ0

R2

∫ π/2

−π/2

∫ 2R cos θ

0

2Rr2 cos θ − r3

ε + rα
drdθ.

Letting R → ∞, we obtain (2.21).

The following corollary follows from (2.13) and (2.20).

Corollary 2.4. Assume UMM, α = 4, and a finite network of radius R. When
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R → ∞,

E[IR,UMM] � 1
2
E[Io,UMM]. (2.22)

Fig. 2.3 shows the mean interference at the origin o and at the border under the

non-singular path-loss model. Both UMM and RWP model are considered. E[IR,RWP]

decreases with R since the node intensity at the border decreases with increasing R.

2.4 Single-snapshot analysis of interference and outage

In this section, we evaluate the network performance in a single snapshot. We

assume that ε = 0. The mobility models in Section 2.2.2 are separated into two

categories: uniform and non-uniform.

2.4.1 Interference in uniformly mobile networks

Because of the uniformity of the mobility, the mobile network in any time t can

be treated as a correlated realization of a static network. Hence the existing results

of the interference and outage in static networks in [12, 17] also apply to uniformly

mobile networks.

2.4.2 Interference in non-uniformly mobile networks

2.4.2.1 Interference in finite networks without fading

We consider RWP and set D = B(o, R). We evaluate the interference at the origin

o, since the interferer density decreases with the distance to the origin o (see (2.9)),

which leads to a lower bound of the network performance. As we are only interested

in the interference distribution in a single time slot, we can drop the dependence on

t and focus on the generic random variable

I =
∑
x∈Φ

Tx ‖x‖−α . (2.23)
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There is no closed-form expression for the pdf of the interference in most cases.

However, since the received power decays according to a power law, only considering

the interference from the nearest interferer to the receiver provides a good approxi-

mation, if the path-loss exponent α is not too close to 2 [12]. Therefore, the inter-

ference power is approximately

I ≈ I1 = R−α
1 , (2.24)

where R1 is the distance between the origin to its nearest interferer. Given a total

number of nodes M , we have

P (R1 � r | M) = 1 − (1 − FL(r))M

= 1 −
(

1 −
(

2r2

R2 − r4

R4

))M

,

where FL(r) =
∫ r

0 fL(x)dx and fL(x) is given in (2.8). Since M is Poisson distributed

with mean pλ0πR2, the pdf of R1 is thus given by

fR1(r) =
dEM [P (R1 � r | M)]

dr

= pλ0π

(
4r − 4 r3

R2

)
e

−pλ0π

(
2r2− r4

R2

)
. (2.25)

From (2.24) and (2.25), we obtain the pdf of I1:

fI1(x) = 2pλ0πδ

(
x−δ−1 − x−2δ−1

R2

)
e

−pλ0π

(
2x−δ− x−2δ

R2

)
, (2.26)
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where δ � 2/α. With deterministic channels, a simple lower bound on the outage

probability is derived using the nearest-interferer approximation:

pnf
o (θ) � P

(1
I

< θ
)

� P

( 1
I1

< θ
)

= 1 − FI1(θ−1) � pnf(θ).

Calculating explicitly, we have

pnf(θ) = 1 − exp
(

−pλ0π

(
2θδ − θ2δ

R2

))
. (2.27)

2.4.2.2 Interference in finite networks with fading

When channels are subject to multi-path fading, the interference power from the

nearest interferer is h1I1, where h1 is the multi-path fading coefficient. Then a lower

bound of the outage probability is given by

pf(θ) = EH

[
P

(
I1 >

H

θ
| H
)]

,

where H � h/h1 and h is the fading gain in the desired link. In the Rayleigh fading

case, the pdf of H is given by

fH(x) =
1

(x + 1)2 .

We then obtain

pf(θ) = 1 −
∫ ∞

0

exp
(
−pλ0π

(
2θδx−δ − θ2δx−2δ

R2

))
(x + 1)2 dx. (2.28)

The lower bounds of the outage probabilities and the simulation results are presented

in Fig. 2.4. For comparison, the lower bounds and simulation results under the RW
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Figure 2.4. Simulation results versus the corresponding lower bounds of the
outage probability for different fading and mobility models.

model are also included. The expected number of nodes in the region E[M ] = 10π ≈
31. From the figure, we find that the nearest-interferer approximation provides a

close approximation in terms of the outage probability, in particular in the lower

threshold regime (small θ), which is the regime of practical interest. Furthermore,

multi-path fading is harmful to the link connections in mobile networks.

2.4.2.3 Interference in infinite networks

In infinite networks (D = R
2), the RWP model cannot be properly defined.

However, we can derive the Laplace transform of the total interference if the node

distance distribution follows (2.8). The Laplace transform of the interference is first

calculated under a finite radius R, and then we let R → ∞. Since the mobility model

itself can not be defined, such a result is not the interference characterization under
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the RWP model in infinite networks, but it provides an asymptotic expression as R

gets large.

Proposition 2.5. For R → ∞, the Laplace transform of the total interference under

RWP converges to

LI(s) = exp
(
−2πλ0psδ

E[hδ]Γ (1 − δ)
)

. (2.29)

Proof. We start with a finite network of radius R. From (2.9), the radial transmitter

intensity function is given by

λ(r) = 4pλ0πr − 4pλ0πr3

R2 .

Using the probability generating functional (pgfl) to calculate the Laplace transform,

we obtain

LI(s) = exp

⎛
⎝−Eh

⎡
⎣∫ R

0

(
1 − exp

(
−shr−α

))
λ(r)dr︸ ︷︷ ︸

⎤
⎦
⎞
⎠ . (2.30)

A(h)

For the integral A(h), we have

A(h) =
∫ R

0
4πpλ0r

(
1 − e−shr−α

)
dr − pλ0π

R−2

(
1 − e−shR−α

)

−
∫ R

0

αpλ0πshr−α+3

R2 e−shr−αdr.

Letting R → ∞ and using the L’Hopital’s rule, we obtain

lim
R→∞

1 − e−shR−α

R−2 = αshR−α−1e−shR−α

−2R−3
(a)= 0,
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where (a) holds for α > 2, and

lim
R→∞

∫ R

0

r−α+3

R2 e−shr−αdr = lim
R→∞

R−α+2e−shR−α

2
= 0.

Therefore, we have

lim
R→∞

A(h) = 2λ0πsδhδΓ(1 − δ).

Inserting this into (2.30) yields the result.

Comparing (2.29) with [17, (18)], we notice that at the center of a large disk, the

interference generated by RWP nodes is asymptotically equivalent to the interference

generated by nodes of uniformly mobility with doubled node intensity as the disk

radius R → ∞, which is in agreement with (2.15). Without fading, the outage

probability (α = 4) is given by

pnf
o (θ) = P(I > θ−1) = erf

(
pπ

3
2
√

θλ0
)

, (2.31)

where erf(x) = 2
∫ x

0 e−t2dt/
√

π is the error function.

Fig. 2.5 shows the outage probabilities for RWP nodes with different radii R by

simulations versus the asymptotic bound. The bound, which is exact for R → ∞,

is calculated using (2.31). The simulation curves approach the bound quickly as

R increases. Hence, (2.31) can be viewed as the upper bound and the asymptotic

expression of the outage probability for large R. For Rayleigh fading, since E[hδ] =

Γ(1 + δ),

pf
o(θ) = 1 − LI(θ) = 1 − exp

(
−2pπ2λ0δθδ

sin(πδ)

)
. (2.32)

The same extra factor 2 is obtained as we compare (2.32) to the homogeneous case

[34, (6)], which confirms that RWP mobility increases the interference and outage at

the origin.
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2.4.3 Tightness of the outage lower bound

In this part, we evaluate the tightness of the outage lower bound we have obtained

in finite networks. For deterministic or Rayleigh fading channel, we have the following

proposition.

Proposition 2.6. When θ → 0, the outage probability po(θ) and the outage lower

bound p(θ) have the following relationship

p(θ) ∼ po(θ). (2.33)

Proof. First we consider the case without multi-path fading. With similar steps in

[17], the ccdf of the interference in the infinite case is given by

FI(x) = 1
π

∞∑
k=1

Γ(αk)
k!

(
2λ0pπΓ(1 − δ)

xδ

)k

sin(kπ(1 − α)). (2.34)

The term 2λ0 in (2.34) instead of λ0 in [17, (23)] is the difference between the RWP

and uniform mobility cases. We then have

lim
θ→0

pnf(θ)
pnf

o (θ)
=lim

θ→0

1 − exp
(
−pλ0π

(
2θδ − θ2δ

R2

))
1
π

∑∞
k=1

Γ(αk)
k! (2λ0pπΓ(1 − δ)θδ)k

(a)=lim
θ→0

pλ0π
2
(
2δθδ−1− 2δθ2δ−1

R2

)
e

−pλ0π

(
2θδ− θ2δ

R2

)
∑∞

k=1
Γ(αk)

k! δkθδk−1 (2λ0pπΓ(1 − δ))k

(b)=1,

where (a) holds because of the L’Hopital’s rule; (b) holds because of the dominance

of the term for k = 1 in the Taylor series expansion.
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Second, we consider Rayleigh fading. From (2.28) and (2.32), we have

lim
θ→0

pf(θ)
pf

o(θ)

(a)= lim
θ→0

∫∞
0

x−δ

(x+1)2 exp
(
−pλ0π

(
2θδx−δ − θ2δx−2δ

R2

))
dy

πδ
sin(πδ) exp

(
−2pπ2λ0δθδ

sin(πδ)

)
= 1, (2.35)

where (a) holds because of L’Hopital’s rule.

2.5 Summary

In this section, we summarize the results we have obtained in this chapter and

draw conclusions.

• Macroscopic mobility: We treat macroscopic mobility from a large-scale fading

perspective. Fluctuations of the path loss induced by mobility constitute an-

other type of fading in wireless channels besides multi-path effects. To make

the difference clear, we may speak of fading induced by microscopic mobility

(multi-path fading) and fading induced by macroscopic mobility.

• Mean interference: The mean interference at the center under the RWP model

is asymptotically twice the interference under UMM, while the interference at

the border is lower. Also for RWP, the interference at the border decreases

to zero as the network radius goes large. These observations lead us to an

important research direction: the design of location-aware routing algorithms.

However, the decreasing interference is due to the smaller node intensity near

the border, which means that fewer nodes can be chosen as receivers. The

trade-off between the locations of destinations (or relays) and the interference

should be considered.
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• Interference distribution and outage probability: The uniform mobility models

do not affect the interference distribution compared to the static network.

However, the RWP nodes generate more interference at the origin, which leads

to higher outage probability. The nearest-interferer approximation provides a

tight lower bound on the outage probability especially in low threshold regime.
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CHAPTER 3

INTERFERENCE AND OUTAGE IN MOBILE RANDOM NETWORKS:

TEMPORAL CORRELATION

3.1 Introduction

The interference statistics in mobile networks in a single time slot have been

studied in the previous chapter, with concrete results also for the outage statistics.

However, only investigating the interference in a single time slot is insufficient to

design the transmission and routing schemes in wireless networks, since the inter-

ference is temporally and spatially correlated. Such correlation, which is caused by

the locations of mobile nodes, affects retransmission and routing strategies greatly.

For example in an ARQ (Automatic Repeat reQuest) retransmission mechanism, a

packet is retransmitted after a timeout or after a negative acknowledgment (NACK)

received. Intuitively when a link is in outage and correlation is high, blind re-

transmissions lead to a higher failure rate than for independent interference. Quan-

tifying such correlation is hence necessary. In this chapter, we consider uniform

mobility models only and focus on infinite networks (D = R
2). We assume that ε > 0

in the path-loss expression in (2.10), since for ε = 0 some integrals (such as the mean

interference) are infinite.

In [36], the spatio-temporal correlations of the interference and outage in static

networks have been studied. The spatial distribution of link outages in static networks

has been derived in [37]. To our knowledge, there is no prior work on the correlation

of the interference in mobile networks. In this chapter, we mainly focus on mobile
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Poisson networks. We quantify the temporal correlations of the interference and

outage in terms of the correlation coefficient of the interference and conditional outage

probability, respectively, under various mobility models.

The rest of the chapter is organized as follows. The temporal correlation of the

interference in Poisson networks is presented in Section 3.2. Outage correlation is

discussed in Section 3.3. Section 3.4 summarizes the chapter.

3.2 Temporal correlation of interference

In this section, we analyze the temporal correlation of the interference. The spatio-

temporal correlation can be treated similarly. Because of the spatial stationarity of

the point process, it is sufficient to consider the interference at the origin. The total

interference in (2.11), I(t), is identically distributed for any t ∈ N. We denote the

temporal correlation coefficient of the interference between time s and t as ρτ �

ρI(t)I(s), where τ = |t − s|. We have the following proposition about ρτ .

Proposition 3.1. The temporal correlation coefficient of the interferences I(s) and

I(t), where s �= t, is given by

ρτ = p
∫
R2 g(x)Ewτ [g(x + v̄wτ )]dx

E[h2]
∫
R2 g2(x)dx

� p

E[h2]
, (3.1)

where v̄wτ is the location difference of a node between time s and t.

Proof. Since I(s) and I(t) are identically distributed, we have

ρτ � Cov(I(t), I(s))
Var[I(t)]

=
E[I(t)I(s)] − E[I(t)]2

E[I(t)2] − E[I(t)]2
. (3.2)
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The mean product of I(t) and I(s) (t �= s) is given by

E[I(t)I(s)]

=E

⎡
⎣ ∑

x∈Φ(t)
Tx(t)hx(t)g(x)

∑
y∈Φ(s)

Ty(s)hy(s)g(y)

⎤
⎦

=E

⎡
⎣ ∑

x∈Φ(s)
Tx(t)hx(t)g(x + v̄wτ )

∑
y∈Φ(s)

Ty(s)hy(s)g(y)

⎤
⎦

=E

⎡
⎣ ∑

x∈Φ(s)
Tx(t)Tx(s)hx(t)hx(s)g(x + v̄wτ )g(x)

⎤
⎦+

E

⎡
⎣ x �=y∑

x,y∈Φ(s)
Tx(t)Ty(s)hx(t)hy(s)g(x + v̄wτ )g(y)

⎤
⎦ , (3.3)

where v̄wτ is the location difference of a node between time s and t. Conditioning

on wτ and following the proof of Lemma 1 in [36], we have the conditional temporal

correlation coefficient ρ(τ | wτ) as

ρ(τ | wτ ) =
p
∫
R2 g(x)g(x + v̄wτ )dx

E[h2]
∫
R2 g2(x)dx

. (3.4)

Deconditioning on wτ yields (3.1). Exploring Ewτ [g(x+ v̄wτ )] in (3.1), we obtain that

ρτ decreases monotonically with v̄. Hence ρτ is upper bounded by

ρτ � lim
v̄→0

p
∫
R2 g(x)Ewτ [g(x + v̄wτ )]dx

E[h2]
∫
R2 g2(x)dx

= p

E[h2]
.

Proposition 3.1 is then proved.

The spatio-temporal correlation coefficient of the interference at two given lo-

cations is provided in [36, (11)]. For mobile networks, the random position difference

of the nodes in different time slots needs to be averaged out. The difference between

the static and mobile networks is that in a static network, the path loss g(x) does

not change in one realization, while g(x(t)) is time variant in a mobile network. The
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correlation coefficient is independent of the intensity λ0, since the interference scales

linearly with λ0.

For a time difference τ , we express the pdf of wτ as the sum of an atmoic and a

diffuse part:

fwτ (z) =
K∑

i=1
aiδ(z − zi) + f̃(z), (3.5)

where ∑i ai � 1 and ai (ai > 0) are the probability masses of wτ at zi; zi are ordered

according to the Euclidean distance to the origin (0 � ‖z1‖ � ‖z2‖ � · · · ); δ(·) is an

impulse function; f̃(z) is right-continuous at z.

We also let dH � H(supp(wτ)), where H(·) is the Hausdorff dimension and

supp(x) is the support of the random variable x. We restrict ourselves to dH ∈
{0, 1, 2}. We now have the following theorem about the scaling property of ρτ .

Theorem 3.2. If K � 1 and z1 = 0, we have

ρτ ∼ a1p

E[h2]
, v̄ → ∞, (3.6)

where a1 = P(wτ = 0). If fwτ (0) = 0 and K = 0, we have

ρτ ∈ o
(
v̄−dH
)

. (3.7)

If fwτ (0) > 0, we have

ρτ ∈ Ω
(
v̄−dH
)

. (3.8)

For K = 0 and fwτ (0) > 0, we have

ρτ ∈ Θ
(
v̄−dH
)

. (3.9)
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For dH = 2 and K = 0, we have

ρτ v̄2 ∼ pfwτ (0)δεδπ2

E[h2](1 − δ) sin(πδ)
. (3.10)

Proof. Rewriting Ewτ [g(x + v̄wτ )], we have

Ewτ [g(x + v̄wτ )]=
K∑

i=1
aig(x+v̄zi)+

∫
Rd

f̃(z)
ε + ‖x + v̄z‖α dz

=
K∑

i=1
aig(x+v̄zi)+

1
v̄d

∫
Rd

f̃(t/v̄)
ε + ‖x + t‖α dt

(3.11)

Inserting this in (3.1) yields (3.6), (3.7), (3.8), and (3.9). For dH = 2 and z1 > 0, we

have

lim
v̄→∞ρv̄2 = pfwτ (0) (

∫
R2 g(x)dx)2

E[h2]R2g2(x)dx
,

which yields (3.10), since

∫
R2

g(x)dx = δπ2

ε1−δ sin(πδ)
,

and ∫
R2

g2(x)dx = δ(1 − δ)π2

ε2−δ sin(πδ)
.

Theorem 3.2 is then proved.
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If a node stays in the same location in time s and t with positive probability, ρτ

converges to a constant when v̄ goes large, since the static portion asymptotically

dominates the temporal correlation. On the other hand, if a node moves to other

locations with probability 1, the decay of ρτ depends on the Hausdorff dimension dH

and fwτ (0). Given τ = 1, Fig. 3.1 shows ρ1 versus v̄ under different artificial mobility

models, which are described in Table 3.1.

Fig. 3.2 shows ρτ versus ε. When ε is small, ρτ increases with α. For α not too

close to 2, interferers close to the origin dominate the interference. Such dominance

is more prominent with larger α and hence causes higher temporal correlation of the

interference. However, ρτ decreases with α when ε is large. More nodes contribute

to the interference in this case. For large ε, the smaller the path loss exponent, the

more correlated the interference is.

The integral
∫
R2 g(x)Ewτ [g(x + v̄wτ )]dx in (3.1) depends on the mobility models.

In the next several subsections, we discuss different mobility models individually.

3.2.1 Constrained i.i.d. mobility (CIM)

Corollary 3.3. The temporal correlation coefficient under the CIM model ρτ,CIM,

where τ � 1, is upper bounded by

ρτ,CIM � p

E[h2]
· min

{
1,

δπεδ

(1 − δ)R2
CIM sin(πδ)v̄2

}
, (3.12)

where RCIM = 45π/128.

Proof. From (3.11) and the fact that fwτ (0) � fwτ (x),

Ewτ [g(x + v̄wτ )] � 1
v̄2

∫
R2

fwτ (0)
ε + ‖x + t‖α dt. (3.13)

(3.12) follows from Theorem 3.2 after several steps of calculation, since fwτ (0) =
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Figure 3.1. The temporal correlation coefficient ρ1 versus the mean speed v̄
under different mobility models.
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Figure 3.3. Numerical evaluation (from (3.1)) of the temporal correlation
coefficient ρτ versus the mean node speed v̄ with the corresponding upper

bound (from (3.12)). The mobility model is CIM.

1/πR2
CIM.

Fig. 3.3 shows the numerical evaluation of ρτ,CIM from (3.1) (solid curves) together

with the upper bound from (3.12) (dashed curves). The curves converge to the upper

bound fast as v̄ increases.

From (3.1) and (3.12), we find that the temporal correlation under the CIM model,

ρτ,CIM, is independent of τ . This observation is in agreement with the definition of the

CIM model. For the Nakagami-m fading model, we have E[h2] = m+1
m

. In particular,

E[h2] = 2 for Rayleigh fading (m = 1), and E[h2] = 1 for no fading (m → ∞). ρτ,CIM

increases with m, as well as with the MAC scheme parameter p. Both fading and

random MAC scheduling schemes reduce the temporal correlation of the interference.
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Figure 3.4. Numerical evaluation (from (3.1)) of the temporal correlation
coefficient ρ1 versus the mean node speed v̄ with the corresponding upper

bound (from (3.14)). The mobility model is RW.
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3.2.2 Random walk (RW)

Under the RW model, we focus on the temporal correlation of the interference

between two successive time slots, i.e., ρ1. By a similar derivation as for the CIM

model, we have the following corollary about ρ1,RW.

Corollary 3.4. The temporal correlation coefficient under the RW model ρ1,RW is

upper bounded by

ρ1,RW � p

E[h2]
· min

{
1,

4δπεδ

9(1 − δ) sin(πδ)v̄2

}
. (3.14)

Proof. The calculation is straightforward following the proof of Corollary 3.3 since

fw1(0) = 1/πR2
RW.

Fig. 3.4 displays the numerical evaluation of ρ1,RW from (3.1) and its upper bound

from (3.14). Again the convergence is fast.

3.2.3 Discrete-time Brownian motion (BM)

Under the BM model, we have

wτ =
τ∑

i=1
w(i) (d)=

√
τw0,

where (d)= denotes the equality in distribution and w0 is a two-dimensional Gaussian

random variable, i.e., N (0, σ2
1I), where I is the 2-by-2 identity matrix. Hence, (3.1)

can be rewritten as

ρτ,BM = p
∫
R2 g (x)Ew0 [g(x +

√
τ v̄w0)] dx

E[h2]
∫
R

g2(x)dx
. (3.15)

Fig. 3.5 plots ρ1 versus the mean speed of nodes v̄ under three mobility models. As we

observe from the figure, ρ1 under these three models are asymptotically proportional
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to v̄−2. At an identical speed level, ρ1 under these three models are close. For large

τ , we have the following corollary about ρτ,BM.

Corollary 3.5. When the time difference τ → ∞, the temporal correlation coefficient

under the BM model is given by

ρτ,BM ∼ Cτ−1, (3.16)

where

C =
π2εδ

δ(1 − δ) sin(πδ)v̄2 ,

and ρτ,BM is upper bounded by

ρτ,BM � p

E[h2]
· min

{
1,

π2εδ

δ(1 − δ) sin(πδ)τ v̄2

}
. (3.17)

Proof. Based on Theorem 3.2, (3.16) and (3.17) follow from (3.15) after a few ele-

mentary steps.

3.3 Outage correlation

In the design of retransmission schemes in wireless networks, it is often assumed

that outage events are independent across time for the sake of mathematical sim-

plicity. However, due to the temporal correlation of the interference, link outage

events are temporally correlated as well. Intuitively speaking, a link in outage at a

given time indicates a higher outage probability in the next several time slots. Such

correlation affects retransmission and routing schemes greatly and thus needs to be

quantified. The correlation of link outage in static networks is examined in [36]. In

this section, we discuss the temporal correlation of the outage in mobile networks.

Rayleigh fading is assumed in the analysis.
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P(As, At) = P(h(s) < θI(s), h(t) < θI(t))
(a)= EI(s),I(t) [(1 − exp (−θI(s)))(1 − exp (−θI(t)))] ,
(b)= 1 − 2E[exp(−θI(t))] +

E

⎡
⎣exp

⎛
⎝−θ

∑
x∈Φ(s)

(Tx(s)hx(s)g(x) + Tx(t)hx(t)g(x + v̄wτ ))

⎞
⎠
⎤
⎦

(c)= 1 − 2LI(θ) +

E

⎡
⎣ ∏

x∈Φ(s)

(
p

1 + θg (x)
+ 1 − p

)(
p

1 + θg (x + v̄wτ )
+ 1 − p

)⎤⎦
(d)= 1 − 2LI(θ) + Ewτ

[
exp
(

−λ0

∫
R2

1 −
(

p

1 + θg (x)
+ 1 − p

)
·(

p

1 + θg (x + v̄wτ)
+ 1 − p

)
dx

)]
. (3.18)

————————————————————————————————————–

Let At denote the event that the link is in outage at time t, i.e.,

At �
{

SIR(t) =
h(t)
I(t)

< θ

}
,

where the distance of the desired link is normalized to one as indicated in Section

2.2.1. The joint probability of the events As and At is given in (3.18), where (a) follows

from the independence of h(s) and h(t); (b) follows from the identical distribution

of I(t) and I(s); (c) follows from the averaging over Tx and hx; (d) holds from the

probability generating functional (pgfl) of the PPP.

The direct evaluation of (3.18) seems hopeless, since the joint distribution of the

two correlated random variables I(t) and I(s) is hard to obtain. However, we find

that P(As, At) is upper bounded by the joint outage probability in static networks.

Proposition 3.6. The conditional outage probability P(At | As) is upper bounded by

P(At | As) � 1 − LI(θ) + (B − 1)L2
I(θ)

1 − LI(θ)
, (3.19)
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where

B � exp

⎛
⎝λ0p

2
∫
R2

(
θg(x)

1 + θg(x)

)2

dx

⎞
⎠

= exp
(

δπ2(1 − δ)θ2λ0p
2

(ε + θ)2−δ sin(πδ)

)
. (3.20)

Proof. We have

P(At | As) = P(At, As)
P(At)

� lim
v̄→0

P(At, As)
P(At)

.

The calculation of the joint outage probability in static networks (limv̄→0 P(As, At))

is similar to [36, Section IV] under the non-singular path-loss model.

Corollary 3.7. The conditional outage probability P

(
At | Ās

)
is lower bounded by

P

(
At | Ās

)
� 1 − BLI(θ), (3.21)

where B is from (3.20).

Proof. The proof is similar to the proof of Proposition 3.6.

Fig. 3.6 and 3.7 display the simulation evaluations of the conditional outage

probability versus the threshold θ and the MAC scheme parameter p, respectively,

together with the upper and lower bounds from (3.19) and (3.21). The CIM model

is used in the simulation. The unconditional outage probability P(At) is always

smaller than P(At | As). The outage evaluation in a single time slot ignores the

information about previous link states and thus provides an over-optimistic evaluation

of the network performance. On the other hand, P(At) > P

(
At | Ās

)
, as expected.

The discrepancy between P(At | As) and P(At) is larger when P(At) is low (or θ is

low), since the conditioning makes a larger difference in this regime. Conversely, the

discrepancy between P

(
At | Ās

)
and P(At) is larger when P(At) is high (θ is high).
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Figure 3.6. The conditional outage probabilities P(At | As) and P

(
At | Ās

)
together with the unconditional outage probability P(At) versus the

threshold θ under the CIM model. The dashed curve is the unconditional
outage probability; the dash-dotted curve is the upper bound of P(At | As)

from (3.19); the solid-line curve is the exact expression of P(At | As) via
simulations; the stars are P(At | Ās) via simulations; the × is the lower

bound of P
(
At | Ās

)
from (3.21).
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In the two extreme cases where the threshold θ → ∞ or θ → 0, the conditioning does

not make a difference any more.

3.4 Summary

In this section, we summarize the results we have obtained in this chapter and

draw conclusions.

• Temporal correlation of interference: The mobility models affect the correlation

coefficient of the interference ρ. The more degrees of freedom the node explores,

the faster ρ decays with the mobility range. Multi-path fading and random

MAC schemes also reduce the interference correlation.

• Temporal correlation of outage: Conditioned on the link being in outage at

time t, the outage probability in the next several time slots is higher compared

to the unconditional outage probability. On the other hand, if a transmission

is successful, the conditional success probability is higher in the next several

time slots. Hence, the design of new retransmission schemes with correlation-

awareness is important. For example, if a transmission is successful, the node

should transmit more often in successive time slots (higher transmit probability)

in order to take advantage of the outage (success) correlation. Conversely,

if a link is in outage, several silence slots should be added before the trans-

mitter starts another try, since blind retransmission worsens the network perfor-

mance. If fewer transmitters are concurrent, the success probability increases

due to the decreased interference power. It in turn lowers the number of

retransmissions. The trade-off between delay and network throughput, and

fairness and throughput should be explored as well.
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CHAPTER 4

THE LOCAL DELAY IN MOBILE RANDOM NETWORKS

4.1 Introduction

In a wireless network, it is fundamentally necessary that every node is able to

successfully transmit messages to at least one other node in the network in a finite

amount of time. The local delay hence becomes an important quantity. Previous

research in [14, 15] only focuses on two extreme cases, where the network is completely

static or infintely mobile. In this chapter, we extend the local delay results under

practical mobility models. Each node has a randomly chosen initial (home) location

and a mobility region. Due to the temporal correlation of the node locations and

interference, the events of successful transmission are temporally correlated, which

strongly affects the local delay. Mobility helps reduce the temporal correlation of the

interference and outage in large wireless networks [56]. Here, we evaluate its impact

on the local delay.

The rest of the chapter is organized as follows. We introduce the system model

in Section 4.2. The local delay for deterministic transmission distance is presented in

Section 4.3. The local delay for random static transmission distance is discussed in

Section 4.4. Section 4.5 presents the local delay for random time-variant transmission

distance. Conclusions are drawn in Section 4.6.

49



4.2 System model

4.2.1 Transmitter process

Recall the system model introduced in Section 2.2. The potential transmitters

in a network are randomly distributed on R
2. Each of them has a home location

and a mobility region. The home location process forms a PPP Φ̃ = {yi} ⊂ R
2 with

intensity λ0. Φ̃ is assumed temporally static. Nodes make an excursion in the mobility

region independently of each other at each time t ∈ Z with a certain probability. The

definition of the mobility models will be given in Section 4.2.3. Hence at all times,

the node location process forms another PPP Φt = {xi(t)} ⊂ R
2 (correlated with

Φ̃) with the same intensity λ0. If a transmitter is scheduled to transmit at time

t, we assume that the transmission starts at the beginning of that time slot. Each

transmission is finished within one time slot. Slotted ALOHA with parameter p > 0

is assumed as the MAC protocol.

4.2.2 Transmission scheme and receiver process

In Section 4.3 and 4.4, the receiver process does not affect the local delay calcu-

lation, since the transmission distance in the desired link is either deterministic or

random static. In Section 4.5, we consider three transmission schemes: random

bipolar, quasi-nearest-receiver, and nearest-receiver models. Different transmission

schemes lead to different local delays in the network.
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4.2.2.1 Random bipolar model

We assume that each transmitter has an assigned receiver. The receivers are

situated at the home locations of their assigned transmitters and stay fixed, i.e.,

the receiver process is given by Ψ = Φ̃. Those receivers can be thought of as ran-

domly placed base stations. Each transmitter keeps transmitting to the same receiver.

Figure 4.1(a) shows a realization of such a random bipolar network1.

4.2.2.2 Quasi-nearest-receiver model

Here each transmitter conveys a message to a node that is close to the transmitter.

We denote the receiver process as Ψ = {zi}, which is a PPP with intensity λ′ and

independent of the transmitter process Φt. (Those nodes in Φt that are not scheduled

to transmit are not available for reception.) Ψ is assumed temporally static. Each

transmitter xi chooses the receiver that is the closest to its home location yi ∈ Φ̃,

i.e.,

z∗
i = arg min

z∈Ψ
{‖z − yi‖} .

We use the term “quasi-” to indicate that the receiver selected is not always the

closest receiver to the transmitter’s current position. A realization of the Poisson

network with quasi-nearest-receiver transmission is shown in Figure 4.1(b).

4.2.2.3 Nearest-receiver model

Different from the quasi-nearest-receiver model, where the receiver is chosen based

on the distance to a transmitter’s home location, each transmitter xi(t) always picks

1The bipolar model usually has a fixed transmission distance (see Section 5.3 in [4]). In this
model, however, the transmission distance is a random variable due to mobility.
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the receiver that is the closest to it, i.e.,

z∗
i (t) = arg min

z∈Ψ
{‖z − xi(t)‖}

under the nearest-receiver model. A realization of the Poisson network with nearest-

receiver transmission is shown in Figure 4.1(c).

The validity of quasi-nearest-receiver and nearest-receiver models depends on the

frequency with which the nodes exchange their location information. If every node

exchanges its location information with other nodes in each time slot t, we choose

the nearest-receiver transmission scheme. If nodes do not (or seldom) exchange their

location information, the quasi-nearest-receiver model is more appropriate. Hence,

the difference between Figure 4.1(b) and 4.1(c) is that the transmitter keeps trans-

mitting to the same receiver under the quasi-nearest-receiver scheme while it changes

destinations in different time slots under the nearest-receiver scheme. Moreover, the

transmission distance is not necessarily the shortest among all the potential receivers

under the quasi-nearest-receiver scheme.

4.2.3 Mobility models

We use a constrained i.i.d. mobility (CIM) model, which was introduced in Section

2.2.2. Under CIM, the node locations in two different time slots are independent given

the node’s home location. We denote the pdf of the excursions by fw(x). Two specific

models are considered.

Definition 4.1. The node locations under the uniform mobility (UM) follow a uni-

form distribution in a ball of radius a0 centered at the home location, i.e.,

fw(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
πa2

0
‖x‖ � a0

0 otherwise,

(4.1)
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where ‖·‖ is the Euclidean distance.

The distance distribution between the home and the node locations is then given

by

fR(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2x
a2

0
x � a0

0 otherwise.

(4.2)

Definition 4.2. The node locations under normal mobility model (NM) follow a

symmetric normal distribution with variance σ2 centered at the home location, whose

pdf is given by

fw(x) =
1

2πσ2 exp
(

−‖x‖2

2σ2

)
. (4.3)

The distance distribution is given by the Rayleigh distribution

fR(x) = x

σ2 exp
(

− x2

2σ2

)
. (4.4)

We define vi(t) � ‖xi(t) − xi(t − 1)‖. Let

v̄i(t) � E [vi(t)] , ∀t ∈ Z.

Due to ergodicity and point process homogeneity, the mean speed averaged over all

nodes for a fixed time t is equal to the mean speed averaged over time for a fixed

node. Hence, we drop i and t, and simply denote by v̄ the mean speed of the node.

For UM, we have v̄ = 128a0/45π [47, (8)] and for NM, we obtain v̄ =
√

πσ. The

mean speed v̄ is proportional to a0 or σ. (a0 is the identical to RCIM in Chapter 3.)

The frequency at which nodes update their locations greatly affects the network

geometry and performance. If nodes update their locations independently at time

t with probability 1/K, where K > 1, i.e., xi(t) = yi + wi(t), where wi(t) is the

random excursion, and stay at their previous locations with probability 1 − 1/K,

i.e., xi(t) = xi(t − 1), we term this model block mobility. If the nodes update their
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locations in each time slot t, we then have xi(t) = yi + wi(t) (or K = 1 in the block

mobility case). In order to distinguish the cases where K > 1 and K = 1, we term

K = 1 fast mobility. In the analysis, the interfering transmitters are always assumed

mobile. The desired transmitter is assumed static in Section 4.3 and 4.4, and assumed

mobile in Section 4.5.

4.2.4 Local delay definition

Let S be the static elements of a network. Assume the desired receiver2 at the

origin o, we let CS be the event that the receiver is successfully connected to its

assigned transmitter in a single transmission conditioned on S. The conditional

success probability is given by

P(CS) = P(SIR > θ | S),

where θ is a given threshold. If the receiver fails to decode a packet, it is retransmitted

in the next scheduled transmission slot. Conditioned on S, the success indicator

random variables are temporally i.i.d. Hence, the distribution of the conditional

local delay is geometric with mean P(CS)−1. The local delay is then the expectation

with respect to (w.r.t.) S:

D � ES

(
1

P(CS)

)
. (4.5)

D denotes the average number of slots that it takes the transmitter to successfully

convey a packet to the receiver.

2In Section 4.3 and 4.4 the origin o does not belong to the receiver process Ψ. In Section 4.5,
however, we need to slightly change the definition of the local delay.
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4.3 Local delay for deterministic transmission distance

In this section, we present some basic results on the local delay, which will be

used in the following sections. For completeness, the conditional Laplace transform

of I(t) given S in static networks (v̄ = 0) is given by

L0(s | S) � LI(s | S = Φ) =
∏
x∈Φ

(
1 − ps

‖x‖α + s

)
, (4.6)

whose derivation is presented in [15], and the unconditional Laplace transform of I(t)

in infinitely mobile networks (v̄ = ∞) is given by

L∞(s) � LI(s | S = ∅) = exp
(

−δλ0pπ2sδ

sin(πδ)

)
, (4.7)

where δ � 2/α.

We assume that the transmission distance is R. The interfering transmitters

are mobile following the mobility models introduced in Section 4.2.3. Given R, we

calculate the conditional local delay for the receiver at the origin. Two cases are

considered: fast mobility and block mobility.

4.3.1 Fast mobility

If the excursions wi(t) are i.i.d. across time and space, the static elements of the

network are S = Φ̃. We have the following proposition about the conditional Laplace

transform of the interference and the conditional local delay.

Proposition 4.3. Given the static elements of a network S = Φ̃, the conditional
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Laplace transform of the interference Lv(s | S) is given by3

Lv(s |S) � LI(s | Φ̃) =
∏
y∈Φ̃

(
1−ps

∫
R2

fw(x)
‖y + x‖α + s

dx

)
, (4.8)

where fw(x) is the pdf of the excursion vector. Given a transmission distance R, the

conditional local delay is given by

Dv(θ | R) =
1
p

exp

⎛
⎝λ0

∫
R2

⎛
⎝ 1

1 − pθRα
∫
R2

fw(x)
‖y+x‖α+θRα dx

− 1

⎞
⎠dy

⎞
⎠ . (4.9)

Proof. From (2.11), the total interference at the origin is given by

I(t) =
∑

x∈Φt

Tx(t)hx(t) ‖x‖−α =
∑
y∈Φ̃

Ty(t)hy(t) ‖y + w‖−α .

The conditional Laplace transform of the interference given Φ̃ is thus given by

LI(s | Φ̃) = E

[
e−sI(t) | Φ̃

]
(a)= E

⎡
⎣exp

⎛
⎝−s

∑
y∈Φ̃

Tyhy ‖y + w‖−α

⎞
⎠
∣∣∣∣∣∣ Φ̃
⎤
⎦

(b)= exp

⎛
⎝∑

y∈Φ̃
log
(
1−ps

∫
R2

fw(x)
‖y + x‖α + s

dx

)⎞⎠
=
∏
y∈Φ̃

(
1 − ps

∫
R2

fw(x)
‖y + x‖α + s

dx

)
,

where (a) holds since the interferences I(t) are exchangeable; (b) follows from [3,

3Similar to L0(s | S) and L∞(s), the subscript v in Lv(s | S) indicates a mobile network, where
the nodes are with finite mean speed.
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Lemma 16.6.5] and averaging over the random excursions. Furthermore, we have

Dv(θ | R) � EΦ̃

(
1

pLI(s | Φ̃)

)∣∣∣∣∣
s=θRα

,

where the term pLI(s | Φ̃) is the probability that the scheduled transmitter suc-

cessfully transmits a packet. (4.9) is then imminent from (4.8) using the probability

generating functional (pgfl) of the PPP.

The following corollary is then straightforward.

Corollary 4.4. Given a transmission distance R, the local delay is lower bounded by

Dv(θ | R) � D∞(θ | R).

Proof. From the definition of the local delay, we have

Dv(θ | R)
(a)
� 1

pEΦ̃

(
LI(θ | Φ̃)

) =
1

pL∞(θ)
= D∞(θ | R), (4.10)

where (a) holds due to Jensen’s inequality.

The following proposition provides an upper bound of Dv(θ | R).

Proposition 4.5. Let a = a0 under UM and a =
√

2σ under NM. The conditional

local delay given a transmission distance R is upper bounded by

Dv(θ | R) �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
p

exp
(

λ0πpγa2R2

πa2−pγR2

)
aβ > R

D0(θ | R) otherwise,

(4.11)

where

D0(θ | R) = 1
p

exp
(

λ0pγR2

q1−δ

)
, (4.12)
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q = 1 − p, and

γ � δπ2θδ

sin(πδ)
(4.13)

is the spatial contention (see [15, (4)]), and β �
√

(1 − q1−δ) π/pγ.

Proof. We first prove a general (looser) upper bound that Dv(θ | R) � D0(θ | R).

Since

∫
R2

fw(x)
‖y + x‖α + θRα

dx � 1
‖y‖α + θRα

,

we have

Dv(θ | R) � lim
a→0

EΦ̃

(
1

pLI(θ | Φ̃)

)

= 1
p

exp
(

δπ2pλ0θ
δR2

q1−δ sin(πδ)

)
= D0(θ | R).

Next we prove a tighter upper bound for large a (a = a0 under UM, and a =
√

2σ

under NM). We first consider UM. From (4.1) and (4.9), we have

Dv(θ | R)

=1
p

exp

⎛
⎝λ0

∫
R2

⎛
⎝ 1

1 − pθRα
∫
R2

fw(z−y)
‖z‖α+θRα dz

−1

⎞
⎠dy

⎞
⎠

=
1
p

exp

⎛
⎝λ0

∫
B(0,a0)

⎛
⎝ 1

1− pθRα

πa2
0

∫
B(y,a0)

1
‖z‖α+θRα dz

− 1

⎞
⎠ dy

⎞
⎠ ·

exp

⎛
⎝λ0

∫
R2\B(0,a0)

⎛
⎝ 1

1− pθRα

πa2
0

∫
B(y,a0)

1
‖z‖α+θRα dz

− 1

⎞
⎠ dy

⎞
⎠ (4.14)

(a)
�1

p
exp

⎛
⎝λ0

∫
B(0,a0)

⎛
⎝ 1

1 − pθRα

πa2
0

∫
R2

1
‖z‖α+θRα dz

− 1

⎞
⎠ dy

⎞
⎠ ,

a0 >R

√
pγ

π
(4.15)

=
1
p

exp
(

λ0πa2
0pγR2

πa2
0 − pγR2

)
, a0 > R

√
pγ

π
, (4.16)
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where (a) holds when a0 > R
√

pγ/π due to the fact that o /∈ lima0→∞ B(ca0, a0) for

any c > 1; the second exponential component in (4.14) hence goes to 0 for large a0.

On the other hand, we have another upper bound Dv(θ | R) � D0(θ | R). Taking the

minimum of (4.16) and D0(θ | R) yields (4.11), since πa2(1 − q1−δ) > pγR2 implies

that πa2 > pγR2.

For NM, we have

Dv(θ | R)

=
1
p

exp

⎛
⎜⎝λ0

∫
R2

⎛
⎜⎝ 1

1− pθRα

2πσ2
∫
R2

exp(−‖z−y‖2/2σ2)
‖z‖α+θRα dz

− 1

⎞
⎟⎠ dy

⎞
⎟⎠

(a)
� 1

p
exp

⎛
⎝λ0

∫
R2

⎛
⎝ 1

1− pθRα

2πσ2
∫

B(y,
√

2σ)
1

‖z‖α+θRα dz
− 1

⎞
⎠ dy

⎞
⎠

(b)
� 1

p
exp
(

2λ0πσ2pγR2

2πσ2 − pγR2

)
, σ > R

√
pγ

2π
, (4.17)

where (a) holds since the non-negative function 1/ (‖x‖α + θ) is monotonically de-

creasing with the increase of ‖x‖, the fact that the indicator function 1(‖x‖ �
√

2σ) �

exp
(
− ‖x‖2 /2σ2

)
for ∀x ∈ B(0,

√
2σ), and

∫
R2

1(‖x‖ �
√

2σ)dx =
∫
R2

exp(− ‖x‖2 /2σ2)dx;

(b) follows from the proof of (4.16).

D0(θ | R) is identical to [15, (23)] and always finite for any given R and θ, so is

Dv(θ | R). When a � Rβ−1 (a = a0 under UM and a =
√

2σ under NM), we use

D0(θ | R) (the static case) to bound the local delay. If a > Rβ−1, a tighter upper

bound is provided in (4.11).

Propositions 4.3 and 4.5 present generalized expressions of the conditional Laplace
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transform of the interference I and the conditional local delay in mobile networks4

given a transmission distance. (4.10) and (4.11) are corresponding lower and upper

bounds, respectively, since the network realizations endure maximum temporal corre-

lation in the static case and are mutually independent in the infinitely mobile case.

To demonstrate the impact of even a very low level of mobility, we calculate the

slope of Dv(θ | R) at a = 0. Under UM, for example, the sensitivity of Dv(θ | R) at

a0 = 0 is given by
∂Dv(θ | R)

∂a0

∣∣∣∣∣
a0=0

= −∞.

This shows that the local delay decreases drastically with small excursions from the

interferers since the uncertainty induced by mobility greatly reduces the temporal

correlation of the interference. An identical result also holds for NM. Figure 4.2

shows the local delay as a function of the mean speed v̄ under UM and NM. The

simulation curves and upper bounds show the results for the intermediate mobility

regime between the static case and the infinitely mobile case. Random mobility of the

interferers positively affects the network performance (in terms of the local delay).

Long local delays are due to the high temporal correlation of the interference and thus

outage, and the random mobility reduces such correlation [56]. The more uncertainty

the mobility induces, the less correlated the outage. Therefore, fewer transmission

attempts are necessary. Both lower and upper bounds in (4.10) and (4.11) get tight

as the mean speed v̄ increases.

4.3.2 Block mobility

In the previous analysis we assumed fast mobility, where nodes update locations in

every time slot. However, this may not be an appropriate assumption for all networks.

In a heavy-traffic network, for example, a large number of packets are transferred

4Recall that mobility models only apply to interferers in this section.
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Figure 4.2. The conditional local delay Dv(θ | R) as a function of the mean
speed v̄ under UM and NM. v̄ = 128a0/45π for UM and v̄ =

√
πσ for NM.

The simulation result is the solid curve. The dashed curve is an upper
bound from (4.11). The dotted line is the infinitely mobile case, which

provides a lower bound. The static case (v = 0) is represented in a triangle.
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before a node makes a significant location change. Another example is a mobile

network with low speed. In these cases, it is reasonable to use the block mobility

model, which includes dwell slots. A node updates its location with probability 1/K,

where K > 1, and stays in its previous location with probability 1 − 1/K. K is

the average location coherence time. The multi-path fading component, however, is

i.i.d. in different time slots. Again, slotted ALOHA is assumed as the MAC scheme.

For any time t ∈ Z, we partition the transmitter process Φt into two PPPs,

Φt,1 = {xi(t) ∈ Φt : xi(t) �= xi(t − 1)}

and

Φt,2 = {xi(t) ∈ Φt : xi(t) = xi(t − 1)} .

The nodes in Φt,1 update their locations in time t while the nodes in Φt,2 do not move.

Φt,1 and Φt,2 are independent with intensities λ0/K and λ0(K − 1)/K, respectively,

due to the independent thinning of the PPP. The total interference is then given by

I(t) =
∑

x∈Φt,1

Txhx ‖x(t)‖−α +
∑

x∈Φt,2

Txhx ‖x(t)‖−α

=
∑

y∈Φ̃1

Tyhy ‖y + wy(t)‖−α +
∑

x∈Φt,2

Txhx ‖x(t)‖−α ,

where Φ̃1 is the home location process of the nodes in Φt,1. In this case, the static

elements S in the network are S = Φ̃1 ∪Φ2. We have the following corollary about the

conditional Laplace transform of the interference I and the conditional local delay

for a given R under the block mobility case.

Corollary 4.6. Given the static elements of a network S = Φ̃1∪Φ2, where Φ̃1 and Φ2

are independent, the conditional Laplace transform of the interference I(t) is given

by

LI(s | S) = Lv(s | Φ̃1)L0(s | Φ2), (4.18)
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where Lv(·) and L0(·) are from (4.8) and (4.6), respectively. Let a = a0 under UM

and a =
√

2σ under NM. Given the transmission distance R, the conditional local

delay is upper bounded by

DK(θ |R) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

D0(θ |R) · exp
(

λ0pγR2

K

(
πa2

πa2−pγR2 − 1
q1−δ

))
aβ > R

D0(θ | R) otherwise,

(4.19)

where the spatial contention γ is from (4.13), β �
√

(1 − q1−δ) π/pγ, and D0(θ | R)

is from (4.12).

Proof. LI(s | S) in (4.18) is straightforward due to the independence property of Φ̃1

and Φ2. For the local delay, we have

DK(θ |R) =
1
p
EΦ̃1

(
1

LI(s | Φ̃1)

)
EΦ2

(
1

LI(s | Φ2)

)∣∣∣∣∣
s=θRα

.

The rest of the steps follow the proofs of (4.9) and (4.11) in Propositions 4.3 and 4.5,

respectively.

Figure 4.3 shows the local delay as a function of the mean location coherence time

K under both UM and NM. The mean speed in the simulations is set at v̄ = 7/K.

The mean speed decreases with the increase of the mean coherence time K, since the

average hop length of nodes (if the node moves) is kept constant. The mean coherence

time K greatly affects the local delay in the low K regime, while its impact shrinks

in the high K regime. (4.19) provides a tight upper bound and thus can be used to

approximate the intermediate results between the static and fast mobility cases. For

the case where the dwell time is a constant, the local delay can be analyzed through

similar steps.
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Figure 4.3. The conditional local delay DK(θ | R) as a function of the mean
location coherence time K under UM and NM. The simulation and an

upper bound from (4.19) are marked by circles and solid curve,
respectively. The dashed line is the static case.
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4.4 Local delay for random static transmission distance

In the previous section, we evaluated the local delay for a given transmission

distance R. If R itself is a random variable, we can average over the random distance

by

Dv = ER [Dv (θ | R)] .

Note that we still do not consider mobility in the desired link (mobility models only

apply to the interferers). The randomness of R is due to the spatial averaging over

different network realizations. In the rest of the chapter, we assume fast mobility

at the interferers. Block mobility (K > 1) can be treated similarly by replacing

Dv(θ | R) by DK(θ | R). As already defined in Section 4.2.4, the desired receiver

is located at the origin o. If the location of the desired transmitter is uniformly

distributed, we have the following proposition about the local delay.

Proposition 4.7. Assume that the desired transmitter is uniformly distributed around

o with radius a0 so that R is distributed as given in (4.2), and the interferers follow

UM. The local delay for β =
√

(1 − q1−δ) π/pγ < 1 is upper bounded by

DFMOI,a0 � π

γp2

(
1 − q1−δec̄u(qδ−1−1)

)
+

πc̄ue−c̄u

γp2

(
Ei
(
c̄uqδ−1

)
− Ei(c̄u)

)
+

πq1−δ

γc̄up2

(
e

c̄upγ

πq1−δ − ec̄u(qδ−1−1)
)

, (4.20)

where Ei(x) � ∫ x
−∞ t−1etdt, c̄u � λ0πa2

0 is the mean number of nodes in a circular

region of radius a0, and “FMOI” is the abbreviation of “fast mobility only at inter-

ferers”.
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For β � 1, the local delay is upper bounded by

DFMOI,a0 � π

γp2

(
1 − (1 − pγ

π
)e

c̄upγ
π−pγ +

c̄ue−c̄u

(
Ei
(

πc̄u

π − pγ

)
− Ei(c̄u)

))
. (4.21)

The local delay is lower bounded by

DFMOI,a0 � π

γc̄up2

(
e

c̄upγ
π − 1

)
. (4.22)

Proof. For a given transmission distance R, an upper bound of the conditional local

delay Dv(θ | R) is given in (4.11). If the location of the desired transmitter is

uniformly distributed, we obtain

DFMOI,a0 �
∫ a0

0
fR(r)Dv(θ | r)dr

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
pa2

0

∫ β2a2
0

0 exp
(

c̄ux
πa2

0−pγx

)
dx+

1
a2

0

∫ a0
βa0 2xD0(θxα)dx β < 1

1
pa2

0

∫ a2
0

0 exp
(

c̄ux
πa2

0−pγx

)
dx β � 1,

where fR(r) is from (4.2). On the other hand,

DFMOI,a0 �
∫ a0

0
fR(r)D∞(θ | r)dr,

where D∞(θ | r) is from (4.10). The rest of the steps are straightforward.

Similarly we have the following proposition, if the location of the desired trans-

mitter is normally distributed.

Proposition 4.8. Assume that the desired transmitter is normally distributed around
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o with parameter σ so that the distribution of R is given in (4.4), and the interferers

follow NM. Let β =
√

(1 − q1−δ)π/pγ. The local delay is upper bounded by

DFMOI,σ <
π

γp2 exp
((

q1−δ − 1
)( π

pγ
− c̄nqδ−1

))
·(

1 − q1−δ + pγ

π − pγc̄nqδ−1

)
, (4.23)

if 2σ2 < q1−δ/λ0pγ, where c̄n � 2λ0πσ2, and lower bounded by

DFMOI,σ � π

p (π − c̄npγ)
, (4.24)

if 2σ2 < 1/λ0pγ. The local delay is infinite for 2σ2 > q1−δ/λ0pγ.

Proof. Similar to the proof of Proposition 4.7, the local delay is lower bounded by

DFMOI,σ �
∫ ∞

0

1
2σ2p

exp
(

− x

2σ2 + λ0pγx
)

dx.

The integral is bounded if 2σ2 < 1/λ0pγ. On the other hand, the local delay is upper

bounded by

DFMOI,σ

�
∫ 2β2σ2

0

1
2σ2p

exp
(

− x

2σ2 +
c̄npγx

2πσ2 − pγx

)
dx +

∫ ∞

2β2σ2

1
2σ2p

exp
(

− x

2σ2 +
λ0pγx

q1−δ

)
dx

(a)=
π exp

((
q1−δ − 1

) (
π
pγ

− c̄nqδ−1
))

p (π − pγc̄nqδ−1)
+

exp(− π
pγ

− c̄n)
2σ2p

∫ 2πσ2/pγ

2πσ2q1−δ/pγ
exp
(

x

2σ2 +
2c̄nσ2π

pγx

)
dx,
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where (a) holds when 2σ2 < q1−δ/λ0pγ. For small σ, we obtain

∫ 2πσ2/pγ

2πσ2q1−δ/pγ
exp
(

x

2σ2 +
2πσ2c̄n

pγx

)
dx

≈
2πσ2

pγ

(
1 − q1−δ

)
exp
(

πq1−δ

pγ
+ c̄nqδ−1

)
.

The local delay is always finite if the location of the desired transmitter is uni-

formly distributed, since the support of transmission distance R is finite. Figure

4.4 corroborates the observation. This observation can be extended to any pdf

of R via Proposition 4.5 as long as it has finite support. If the location of the

desired transmitter is normally distributed, however, the local delay is finite only if

2σ2 < q1−δ/λ0pγ. If the randomness of the transmission distance induces too much

uncertainty in the typical link, the local delay becomes heavy-tailed. The infinity of

the local delay does not imply that a node can not convey a message to other nodes

in the network in a finite time. However, it implies that the distribution of the local

delay is heavy-tailed.

The next proposition contrasts the local delay for mobility only at interferers with

the result for static networks.

Proposition 4.9. If the location of the desired transmitter is uniformly distributed,

the local delay in a static network is given by

Dstatic,a0 =
πq1−δ

c̄uγp2

[
exp
(

c̄upγ

πq1−δ

)
− 1
]

. (4.25)

If the location of the desired transmitter is normally distributed, the local delay is

finite if 2σ2 < q1−δ/λ0pγ and given by

Dstatic,σ =
πq1−δ

p (πq1−δ − c̄npγ)
. (4.26)
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Proof. In a static network, the static elements in the network are S = Φ. Given a

transmission distance R, the local delay is given by D0(θ | R), which is from (4.12).

Deconditioning on the random variable R in (4.12) using (4.2), we have

Dstatic,a0 =
∫ a0

0

2r

a2
0
D0(θ | r)dr,

which yields (4.25). Similarly for the Rayleigh pdf of R given in (4.4), we have

Dstatic,σ =
∫ ∞

0

r

pσ2 exp
(

λ0pγr2

q1−δ
− r2

2σ2

)
dr.

The integral is finite if 2σ2 < q1−δ/λ0pγ. (4.26) then follows from straightforward

calculations.

We denote by DFMOI,a0 and DFMOI,σ the upper bounds of the local delay given in

Proposition 4.7 and 4.8, respectively. We then have the following corollary.

Corollary 4.10. For a0 → ∞, DFMOI,a0 and Dstatic,a0 have the following relationship

DFMOI,a0 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Θ (Dstatic,a0) β < 1

o (Dstatic,a0) β � 1.

(4.27)

For σ =
√

q1−δ

2λ0pγ
, we have

DFMOI,σ

Dstatic,σ

∣∣∣∣∣
σ=
√

q1−δ

2λ0pγ

= 1. (4.28)

Proof. Based on (4.25), it is straightforward to find that for a0 → ∞,

Dstatic,a0 = Θ

⎛
⎝exp

(
c̄upγ

πq1−δ

)
c̄u

⎞
⎠ .
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For β < 1, DFMOI is given in (4.20). We have

lim
a0→∞

DFMOI,a0 c̄u

exp
(

c̄upγ
πq1−δ

) (a)= lim
a→∞

c̄2
u

∫ c̄uqδ−1

c̄u
exp(t)/tdt

exp
(

c̄u(πq1−δ+pγ)
πq1−δ

) +
πq1−δ

γp2

(b)= πq1−δ

γp2 < ∞,

where (a) and (b) hold due to L’Hopital’s rule and the fact that the parameter

β =
√

(1 − q1−δ)π/pγ < 1. Hence, we have

DFMOI,a0 = Θ (Dstatic,a0) , β < 1.

For β > 1, on the other hand, DFMOI is given in (4.21). It is straightforward to show

that

lim
a0→∞

DFMOI,a0 c̄u

exp
(

pγc̄u

πq1−δ

) = 0.

For β = 1, we have

lim
a0→∞

DFMOI,a0 c̄u

exp
(

c̄upγ
πq1−δ

)

= lim
a0→∞

πc̄u

∫ πc̄u/(π−pγ)
c̄u

exp(t)/tdt

γp2 exp (c̄u(πq1−δ + pγ)/πq1−δ)
−

lim
a0→∞

(
1 − pγ

π

)
πc̄u

γp2

(a)= 0,

where (a) holds due to the fact that π − pγ = πq1−δ. (4.27) is then proved.

For σ =
√

q1−δ/2λ0pγ, (4.28) is then immediate from (4.23) and (4.26) via

L’Hopital’s rule.

We define R̄ � E[R] as the mean transmission distance. Figures 4.4 shows the

local delay as a function of R̄ for both β < 1 and β � 1. We find that mobility at
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the interferers helps reduce the local delay. However, the local delay is dominantly

affected by the distribution of the transmission distance.

4.5 Local delay for random time-variant transmission distance

In this section, we evaluate the local delay under several transmission schemes.

Conditioned on o ∈ Φ̃, the success probability given the static element S is given by

P
o (CS) = P

o (SIR > θ | S) ,

where P
o(·) is the Palm distribution [4]. The local delay is then given by

D � E
o
S

(
1

Po(CS)

)
.

4.5.1 Random bipolar model

Here, we evaluate the local delay under the random bipolar model, which is

described in Section 4.2.2. It is complicated to analyze the case of fast mobility in

both desired and interfering links directly. Hence we consider a joint random variable

G � hR−α, since the macroscopic mobility in wireless networks can be treated as an-

other source of uncertainty in addition to multipath fading [48, 56]. Given the static

elements in the network S = Φ̃, the conditional success probability is

P
o(G > θI(t) | Φ̃) = EG

[
P

o
(
I(t) < θ−1G | G, Φ̃

)]
.

In order to evaluate the local delay, we need the following lemma.

Lemma 4.11. For a static network (the static elements in the network S = Φ), we
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Figure 4.4. The local delay as a function of the mean transmission distance
R̄ = E[R], where a0 = 45πR̄/128 and σ = R̄/

√
π. The solid curve shows

the simulation results for fast mobility only at interferers with their upper
and lower bounds in circles and dashed lines, respectively. The crosses are

the static case.
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have the following relationship of the conditional success probability

EG

[
P

o
(
I(t) < θ−1G | G, Φ

)]
� P

o
(
I(t) < θ−1

E[G] | Φ
)

. (4.29)

Proof. We have

∂2

∂G2P
o
(
I(t) < θ−1G | G, Φ

)

= ∂2

∂G2

∏
x∈Φ

(
1 − pθ−1G

‖x‖α + Gθ−1

)

= ∂

∂G

∑
xi∈Φ

⎛
⎝− pθ−1 ‖xi‖α

(‖xi‖α+ Gθ−1)2
∏

x∈Φ,x �=xi

(
1− pθ−1G

‖x‖α+ Gθ−1

)⎞⎠

=
∑

xi∈Φ

⎛
⎝ 2pθ−1 ‖xi‖α

(‖xi‖α + Gθ−1)3
∏

x∈Φ,x �=xi

(
1 − pθ−1G

‖x‖α + Gθ−1

)⎞⎠+

∑
xi∈Φ

∑
xj∈Φ,xj �=xi

⎛
⎝ ∏

x∈{xi,xj}

pθ−1 ‖x‖α

(‖x‖α + Gθ−1)2 ·

∏
x∈Φ\{xi,xj}

(
1 − pθ−1G

‖x‖α + Gθ−1

)⎞⎠
�0.

Hence (4.29) holds due to Jensen’s inequality.

Deconditioning on the point process leads to the following proposition.

Proposition 4.12. The local delay under the random bipolar model is always finite,

i.e.,

Dv = E
o
Φ̃

⎡
⎣ 1

pEG

[
Po
(
I(t) < θ−1G | G, Φ̃

)]
⎤
⎦ < ∞.
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Proof. The local delay under the random bipolar model is given by

E
o
Φ̃

⎡
⎣ 1

pEG

[
Po
(
I(t) < θ−1G | G, Φ̃

)]
⎤
⎦

� E
o
Φ

[
1

pEG [Po (I(t) < θ−1G | G, Φ)]

]
(a)
� E

o
Φ

[
1

pPo (I(t) < θ−1E[G] | Φ)

]

< ∞,

where (a) holds due to Lemma 4.11.

The simulation results under the fast mobility case are shown in Figure 4.5. For

comparison, we also show the conditional local delay for a given transmission distance

R, where R = 15πv̄/64, so that the mean transmission distance is at the identical

level in different cases. The benefit of fast mobility is obvious from the figure, since

the nodes take advantage of spatial diversity in the desired link and mobility reduces

the temporal correlation of interference in the interfering links. We notice from the

figures that the local delay increases with the mean speed v̄. This is because the

long transmission distance more than offsets the benefit of the spatial diversity of the

desired transmitter. An alternative way is to let a transmitter talk to the receiver

that is close to it, as explored in the next subsection.

4.5.2 Quasi-nearest-receiver (QNR) transmission

Here, we assume that each transmitter tries to talk to its quasi-nearest receiver

whose home location is the closest to the receiver. We only discuss UM. Recall from

Section 4.2.2.2 that the potential receiver process Ψ is a PPP with intensity λ′ = qλ0.

The assumption maintains the same density of receivers as the nodes that are not

scheduled for transmission. Ψ is independent of the transmitter process Φt. We

assume the typical transmitter has its home location at the origin o and denote by
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Figure 4.5. Local delay under the random bipolar model for UM and NM.
For comparison, the conditional local delay for a fixed transmission

distance R = 15πv̄/64 is also included, where the upper bound is from
(4.11) with R = 15πv̄/64.
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R0 the distance between the home location of the transmitter to its quasi-nearest

receiver. To calculate the local delay under the quasi-nearest-receiver transmission,

we need the following lemma.

Lemma 4.13. Let R0 denote the distance between the home location of the typical

transmitter to its quasi-nearest receiver and a0 denote the radius of the mobility

region of the transmitter. Given R0, upper and lower bounds of the local delay under

the quasi-nearest-receiver transmission are given by Dv(rmax) and D∞(rmin), where

rmax = R0 + a0 and rmin = max{0, R0 − a0}.

Proof. The lemma is proved by evaluating the local delay at two extreme points in

the mobility region.

Based on the Rayleigh distribution of R0 obtained in [60], we have the following

proposition.

Proposition 4.14. A lower bound of the local delay under quasi-nearest-receiver

transmission is given by

DQNR =
1
p

(
1 − e−qc̄u

)
− 2πqλ0

p
exp
(

pqγc̄u

qπ − pγ

)
·

φ

(
a0,

a0pγ

qπ − pγ
,
pγ − qπ

π

)
, (4.30)

if p < π/ (π + γ), where

φ(x, m, s) =
∫ ∞

x
t exp

(
s(t + m)2

)
dt,

= m

√
π

−s

(
1
2

erf
(

x√
2σ2

− 1
2

))
−

1
2s

exp
(
s (x + m)2

)
, s < 0. (4.31)
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For β � 1, an upper bound of the local delay is given by

DQNR =
2πqλ0

p
exp
(

pqγc̄u

q2−δπ − pγ

)
·

φ

⎛
⎝0,

pγa0

pγ − q2−δπ
,
λ0
(
pγ − q2−δπ

)
q1−δ

⎞
⎠ , (4.32)

if q2−δ/p > γ/π, where φ(x, m, s) is from (4.31).

For β > 1 , we have an upper bound

DQNR =
1
p

∫ (β−1)a0

0
ϕ(x)dx +

2πqλ0

p
exp
(

pqγc̄u

q2−δπ − pγ

)
·

φ

⎛
⎝(β − 1)a0,

pγa0

pγ − q2−δπ

λ0
(
pγ − q2−δπ

)
q1−δ

⎞
⎠ ,

(4.33)

if q2−δ/p > γ/π, where

ϕ(x) = fR0(x) exp
(

pγc̄u(x + a0)2

a2
0π − pγ(x + a0)2

)
(4.34)

and fR0(x) = 2πqλ0xe−πqλ0x2.

Proof. From Lemma 4.13, a lower bound of the local delay is

DQNR = 1
p

∫ a0

0
fR0(x)dx +

∫ ∞

a0
fR0(x)D∞(x − a0)dx.

The integral is finite if p < π/ (π + γ). On the other hand, an upper bound of the

local delay is given by

DQNR =
∫ ∞

0
fR0(x)Dv(x + a0)dx.
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The integral is finite if q2−δ/p > γ/π. The rest of the calculation is straightforward.

Figure 4.6 shows the local delay as a function of the MAC parameter p in mobile

networks under quasi-nearest-receiver transmission. For comparison, the local delay

in static networks is also included. From the figure, we observe that fast mobility

reduces the local delay (compared to the static case), but it helps little to keep the

local delay finite. This is due to the fact that the mobility induces limited diversity

under the quasi-nearest-receiver transmission. For other transmission schemes such

as quasi-nearest-neighbor transmission etc., we can calculate bounds of the local delay

in similar ways.

4.5.3 Nearest-receiver (NR) transmission

If each transmitter always tries to talk its nearest receiver, we have the following

proposition about the local delay.

Proposition 4.15. The local delay under nearest-receiver transmission DNR is lower

and upper bounded by

DQNR � DNR � DQNR, (4.35)

where DQNR is from (4.30).

Proof. Conditioned on that the quasi-nearest receiver of the typical transmitter is

at (R0, 0), there are no other receivers in the ball of B(o, R0), where the origin o

is the center of the ball and R0 is the radius. Hence, even if the typical trans-

mitter always chooses its nearest receiver, the transmission distance is not less than

rmin = max{R0 − a0, 0}, where a0 is the mobility radius of the transmitter. DNR is

then lower bounded by DQNR. On the other hand, the typical transmitter changes

the destination in different time t, if there is another receiver that is closer to the

transmitter than the quasi-nearest receiver when the transmitter moves. The spatial
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Figure 4.6. The local delay as a function of the transmission probability p
under quasi-nearest-receiver and nearest-receiver transmission schemes.

The crosses and circles are the simulation results of QNR and NR schemes,
respectively. The dotted line is an upper bound of the local delay under the

QNR scheme (see (4.32) and (4.33)). The dashed line is the static case.
The solid curve is a lower bound of the local delay under the QNR scheme

(see (4.30)).
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correlation of the interference at different receivers is (much) lower. Hence, the local

delay under nearest-receiver transmission is upper bounded by DQNR.

Figure 4.6 shows the simulation results of the local delay under nearest-receiver

transmission, which corroborates Proposition 4.15.

4.6 Conclusions

In this chapter, we have evaluated the local delay in mobile Poisson networks for

deterministic, random static, and random time-variant transmission distance. The

results provide generalized expressions in addition to the two previously explored

cases of static and infinitely mobile networks. Fast mobility has been shown to reduce

the local delay in Poisson networks since the mobility of the interferers decreases the

spatio-temporal correlation of the interference and outage, and mobility of the desired

transmitter induces spatial diversity during transmission. The uniform and normal

mobility models as specific examples lead to quantitively different local delay, even if

the mean speeds of the nodes under two models are at an identical level. The range

of network parameters under which a finite local delay can be achieved has also

been derived, which depends on different mobility models and transmission schemes.

Furthermore, the frequency with which the nodes make significant changes in lo-

cations greatly affects the local delay performance. The more frequently the nodes

update their location, the fewer attempts a transmitter needs for packet transmission.
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CHAPTER 5

SUMMARY AND FUTURE WORK

In this chapter, we summarize the theoretical work presented in previous chapters.

We also list the contributions we have made in the experimental work, which is not

included in this dissertation. Further, we discuss several possible directions for furture

work from both theoretical and experimental aspects.

5.1 Summary of contributions

5.1.1 Theoretical results

This work focuses on the geometry analysis of mobile wireless networks. The

theoretical contributions are summarized as follows.

• The fluctuations of the transmission distance in wireless networks have been

characterized from fading perspective. Such large-scale fading, which is induced

by macroscopic mobility, is viewed as another source of fading in wireless en-

vironments, in addition to the multi-path effects.

• The mean interference in a finite network has been calculated under different

mobility models in Chapter 2. Several well-accepted mobility models have been

separated into two categories: uniform and non-uniform. The mean interference

at the center of a network under uniform mobility models is twice of the inter-

ference at the border. The mean interference at the center under the random

waypoint model (as an example of non-uniform models) is asymptotically twice
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the interference under uniform mobility models. For random waypoint, the

interference at the border decreases to zero as the network radius goes large.

• A single-snapshot analysis of the network has been presented in Chapter 2 by

evaluating the interference distribution and outage probability. The uniform

mobility models do not affect the interference distribution compared to the

static network. However the random waypoint mobility increases the inter-

ference at the origin and thus leads to higher outage probability. The nearest-

interferer approximation has been applied to obtain a simple lower bound on

the outage probability. Such lower bound is tight in low threshold regime.

• The temporal correlation of interference has been characterized in Chapter 3

in terms of the correlation coefficient of the interference. The more degrees

of freedom the node explores, the faster the correlation coefficient decays with

the mobility ranges. Multi-path fading and random MAC schemes have been

shown to reduce the interference correlation as well.

• The temporal correlation of outage has been characterized in Chapter 3 in terms

of the conditional outage probability. Given that a link is in outage in a certain

time slot, the outage event in any other time slot is positively correlated.

• The local delay in mobile Poisson networks for deterministic, random static,

and random time-variant transmission distance has been calculated in Chapter

4, which provides generalized expressions in addition to the two extreme cases:

static and infinitely mobile networks. Mobility has been shown to reduce the

local delay in Poisson network since the mobility of the desired transmitter

induces spatial diversity and the mobility of the interferers decreases the corre-

lation of the locations and thus the interference and outage.
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5.1.2 Experimental results

This work focuses on the design and implementation of a software-defined radio

system for superposition coding. The details can be found in [61, 62]. The experimental

contributions are summarized as follows.

• A software-defined radio implementation of superposition coding has been pro-

posed. A complete physical layer of the system has been designed on the GNU

Radio / USRP platform.

• Sets of achievable rate-pairs (with different SNR conditions) under a packet

error constraint have been experimentally determined. The results suggest that

the superposition coding provides throughput gain over orthogonal schemes

such as time division multiplexing.

• Our experimental findings question the validity of treating inter-user inter-

ference as Gaussian noise in theoretical analyses.

5.2 Future directions

By the theoretical and experimental results we have obtained, our work can be

extended in several directions.

• As observed in Chapter 2 that the interference at the center of a finite network is

larger than the interference at the border, the design of location-aware routing

algorithms can be one of the research directions. We will try to explore when it

is worthwhile routing traffic through the boundary nodes (with a longer routing

path overall but less interference).

• Since the outage events are positively correlated (from Chapter 3), the design of

correlation-aware retransmission schemes is necessary to more efficiently utilize
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the network resource. If a link is in outage, several silence slots could be added

rather than retransmit immediately since the conditional outage probability is

higher. If fewer transmitters are concurrent, the success probability increases

due to the decreased interference power.

• Superposition coding performance in mobile environment. In wireless communi-

cation, the user terminals are often mobile. As superposition coding is one of the

possible solutions to increase the throughput, its performance results in mobile

environment are not (yet) available, since mobility brings extra uncertainty

in the channel estimation. Furthermore, the methods of grouping two users

(receivers) in a network need to be explored. For vehicular communications,

for example, the signal-to-noise ratios received at a vehicle (antennas assumed

outside the vehicle) and at the user terminal inside the vehicle usually have

several dB difference, which is reasonable environment for implementing super-

position coding. The effectiveness and efficiency of the methods grouping two

receivers need to be evaluated.
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