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COVERAGE PERFORMANCE IN CELLULAR NETWORKS:

SPATIAL STOCHASTIC MODEL FITTING AND ASYMPTOTIC

DEPLOYMENT GAIN

Abstract

by

Anjin Guo

The spatial structure of base stations (BSs) in cellular networks plays a key role in

evaluating the downlink performance. The BSs are usually assumed to form a lattice

or a Poisson point process (PPP). In reality, however, they are deployed neither fully

regularly nor completely randomly.

Accordingly, in this thesis, we first use different spatial stochastic models, includ-

ing the PPP, the Poisson hard-core process (PHCP), the Strauss process (SP), and

the perturbed triangular lattice, to model the spatial structure by fitting them to

the locations of BSs in real cellular networks obtained from a public database. We

propose the coverage probability (the probability that the signal-to-interference-plus-

noise-ratio (SINR) exceeds a threshold) as the criterion for the goodness-of-fit, and

provide two general approaches for fitting. One approach is fitting by the method

of maximum pseudolikelihood. As for the fitted models, the SP provides a better fit

than the PPP and the PHCP. The other approach is fitting by the method of mini-

mum contrast that minimizes the average squared error of the coverage probability.

This way, fitted models are obtained whose coverage performance matches that of

the given data set very accurately.

Second, we consider the very general class of motion-invariant point processes as
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models for the BSs and theoretically analyze the behavior of the outage probability.

(complement of the coverage probability). We show that, remarkably, the slope of the

outage probability (in dB) as a function of the threshold (also in dB) is the same for

essentially all motion-invariant point processes, as the threshold goes to zero. The

slope merely depends on the fading statistics. Using this result, we introduce the

notion of the asymptotic deployment gain (ADG), which characterizes the horizontal

gap between the coverage probability of the PPP and another point process in the

high-reliability regime (where the coverage probability is near 1). To demonstrate

the usefulness of the ADG for the characterization of the coverage, we investigate the

coverage probabilities and the ADGs for different point processes and fading statistics

by simulations.
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the experimental data and the triangular lattice when α takes different
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CHAPTER 1

INTRODUCTION

1.1 Motivation

In cellular networks, as the power of received signals and interferences depends

on the distances between the receiver and base stations (BSs), the downlink perfor-

mance is affected by the spatial structure. System engineers and researchers often

use a regular triangular lattice or a square lattice [1–3] to model the structure de-

terministically. But in reality, the topology of the BSs is not so ideal but depends

on many natural or man-made factors, such as the landscape, topography, bodies of

water, population densities, and traffic demands. As a consequence, the BSs are more

suitably modeled as deployed randomly instead of deterministically, and stochastic

geometry is an efficient tool to analyze this kind of geometrical configurations and

provide theoretical insights [4, 5]. Recently, it was shown in [8] that a completely

irregular point process, the Poisson point process (PPP) [4, 5], may be used without

loss in accuracy (compared to the lattice) but significant gain in analytical tractabil-

ity. Observations of real BS locations in UK, however, show that real deployments

fall somewhere in between the two extremes of full regularity (the triangular lattice)

and complete randomness (the PPP). They exhibit some degree of repulsion between

the BSs, as expected, since the operators do not place the BSs closely together.

A natural question is whether there is a point process model that is better in

modeling the BS topology than the PPP. The critical first step to answer the question

is to collect data of real BS locations, investigate some regular (or repulsive) point

1



processes and the PPP by fitting them to the data, and then evaluate the goodness-of-

fit. Those works will be discussed in Chapter 2. The answer to the question is positive.

The Poisson hard-core process (PHCP), the Strauss process (SP), and the perturbed

triangular lattice can provide better fitting results than the PPP, in term of the

coverage probability, which is defined as the complementary cumulative distribution

function of the signal-to-interference-plus-noise ratio (SINR), i.e., Pc(θ) , P(SINR >

θ).

The next question is how we can deal with those non-Poisson point processes,

i.e., whether we can obtain good analytical results from them by applying them to

wireless networks. Generally speaking, the analysis of non-Poisson point processes

is significantly more difficult than the analysis of the PPP, since dependencies exist

between the locations of the BSs. We are not aware of any tractable analytical

methods that are applicable in general. In Chapter 3, we will provide an indirect

approach to evaluate the coverage probability of cellular networks, where BSs follow

a general class of point process models, using the asymptotic deployment gain (ADG).

The ADG characterizes the horizontal gap between the coverage probability of the

PPP and another point process in the high-reliability regime.

Therefore, our work in this thesis can be divided into two separate parts, which

are, briefly speaking, the spatial stochastic model fitting and the coverage analysis

using the asymptotic deployment gain.

1.2 Spatial Stochastic Model Fitting

Our work on spatial stochastic model fitting is based on the real deployment of

BSs; we have several point sets that denote the actual locations of BSs collected

from the Ofcom1 - the independent regulator and competition authority for the UK

1Ofcom website: http://sitefinder.ofcom.org.uk/search

2
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communications industries, where the data are open to the public. Table 1.1 gives

the details of the three point sets used in this thesis, and Figs. 1.1-1.3 visualize these

point sets. Note that these point sets all represent the BSs of the operator Vodafone

with frequency band 900 MHz (GSM). Although the data sets of certain operators

in the Ofcom are almost 10 years old, the data set of the operator Vodafone, is quite

up-to-date, since its last update in the Ofcom database occurred in October 2011.

3



TABLE 1.1

DETAILS OF THE THREE POINT SETS

Operator Area (m×m) Center Location (latitude, longitude) Number of BSs

Urban region Vodafone 1500× 1050 (51.515◦ N, -0.132◦ W) 64

Rural region 1 Vodafone 78200× 48200 (52.064◦ N, -1.381◦ W) 62

Rural region 2 Vodafone 66700× 50000 (52.489◦ N, 0.704◦ W) 69
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Figure 1.1. The locations of the BSs (the urban region).

The main objective of the model fitting is to find an accurate point process to

model the real deployment of BSs. To accomplish it, we have to first define the

metrics to evaluate the goodness of different models. Some classical statistics in

stochastic geometry, such as the J function and the L function [5], can be used as

the metrics. Nevertheless, simulations show they are not sufficient to discriminate

between different models. Since we study the point processes in the context of wireless

networks, it is natural to instead use a key performance metric of cellular systems,

namely the coverage probability [5, Ch. 13], [8, 9].
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As [8] indicates, the PPP model and the lattice provide a lower bound and an

upper bound on the coverage probability, respectively. Since the point sets appear to

be regular and their coverage probabilities lie between the PPP’s and the lattice’s,

we are interested in point process models that lie in between the two in terms of

regularity, such as the Poisson hard-core process (PHCP), the Strauss process (SP),

and the perturbed triangular lattice. In order to find the desired point process, we

use two different fitting methods. The first one is the method of maximum pseudo-

likelihood [22], which is the usual method for model fitting in stochastic geometry.

The second one is the method of minimum contrast [23], which is used to find the

fitted model that minimizes the average squared error of the coverage probability.

Using the first method, we fit the PPP, the PHCP, and the SP to the point sets

and determine the best fitted model. Simulations indicate that the SP is the best, fol-

lowed by the PHCP and then the PPP. But there is still a gap between the coverage

probabilities of the SP and the corresponding point set. The perturbed triangu-

lar lattice is not considered, since its likelihood and pseudolikelihood are generally

unknown.

In the second method, the intensity is assumed to be fixed to the density of the

given point sets. The PPP is not considered, since it would result in the same model

as with the first method. The fitted models of the SP, the PHCP, and the perturbed

triangular lattice for the point sets are obtained. They exhibit quite exactly the same

coverage performance as the given point sets. Note that this method is not limited to

the average squared error minimization of the coverage probability; it can be applied

to many other performance metrics in wireless networks and second-order statistics

in stochastic geometry.

Using the two fitting methods, we can find a fitted model that describes the given

point set accurately. Although the SP, the PHCP and the perturbed triangular lattice

are not as tractable as the PPP, they still have many useful properties. By studying

8



the fitted model, we can obtain properties for a class of point sets.

For some applications where the chief concern is the coverage evaluation of the

point sets rather than their spatial structure, there is a simple way of the evaluation

using a novel metric we propose, which is called the deployment gain; it measures how

close the coverage curve of a point set or a point process model is to that of the PPP.

A larger deployment gain means the point set or the model provides better coverage.

For example, the deployment gains of the three point sets are: urban region > rural

region 1 > rural region 2, which is also the rank of their coverage curves from top

to bottom. The deployment gain provides a simple yet highly accurate way of using

the analytical results available for the PPP for the analysis of more realistic point

process models.

The main contributions on the spatial stochastic model fitting are summarized as

follows:

1. We use the coverage probability as a metric to compare different point processes
and publicly available point sets, which is shown to be more effective than the
classical statistics in stochastic geometry for the data sets we used;

2. Through fitting the PPP, the PHCP, and the SP to the given point set using
the method of maximum pseudolikelihood, we discover that the SP has the best
coverage performance, while the PPP has the worst;

3. Through fitting the SP, the PHCP, and the perturbed triangular lattice by min-
imizing the average squared error of the coverage probability, we find that the
fitted models have nearly the same coverage probability as the given point set,
and thus, in terms of the coverage probability, they are accurate models of the
real deployments of the BSs;

4. We propose the deployment gain to analytically compare the coverage probability
performances of different point sets or different models and to show how results
for the PPP can be applied to more accurate point process models.
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1.3 Asymptotic Deployment Gain

In our work on the ADG, we provide an indirect approach to the coverage prob-

ability analysis of an arbitrary motion-invariant (isotropic and stationary2) point

process [5, Ch. 2] by comparing its coverage probability to the coverage probabil-

ity of the PPP. To validate this approach, we establish that the outage probability

1− Pc(θ) of essentially all motion-invariant (m.i.) point processes, expressed in dB,

as a function of the SINR threshold θ, also in dB, has the same slope as θ → 0.

The slope depends on the fading statistics. This result shows that asymptotically

the coverage curves Pc(θ) of all m.i. models are just (horizontally) shifted versions of

each other in a log-log plot, and the shift can be quantified in terms of the horizontal

difference Ĝ along the θ (in dB) axis. Since the coverage probability of the PPP is

known analytically, the PPP is a sensible choice as a reference model, which then

allows to express the coverage probability of an arbitrary m.i. model as a gain relative

to the PPP. This gain is called the asymptotic deployment gain (ADG).

We introduced the concept of the deployment gain (DG) in our work on the spatial

stochastic model fitting. It measures how close a point process or a point set is to

the PPP at a given target coverage probability. Here we extend the DG to obtain a

quantity that does not depend on a target coverage probability, formally define its

asymptotic counterpart—the ADG.

The work on the ADG makes the following contributions:

1. We introduce the asymptotic deployment gain.

2. We formally prove its existence for a large class of m.i. point processes.

3. We show how the asymptotic slope of the outage probability depends on the fading
statistics.

4. We demonstrate through simulations how the ADG can be used to quantify the

2Stationarity implies that the coverage probability does not depend on the location of the typical
user.
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coverage probability of several non-Poisson models, even if the SINR threshold θ
is not small.
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CHAPTER 2

SPATIAL STOCHASTIC MODEL FITTING

In this chapter, we discuss in detail how to find an accurate point process to model

the real deployment of BSs, using the method of maximum pseudolikelihood and the

method of minimum contrast. Moreover, we introduce the deployment gain.

This chapter is organized as follows. In Section 2.1, we discuss related works.

In Section 2.2, basic concepts of point processes are introduced. In Section 2.3,

the PPP, the PHCP, and the SP are fitted to the point sets using the method of

maximum pseudolikelihood, and some classical statistics, the coverage probability

and the average ergodic rate are used to test the goodness of fitted models. In

Section 2.4, the SP, the PHCP, and the perturbed triangular lattice are used to

model the given point set by the method of minimum contrast. The deployment gain

is introduced in Section 2.5. Conclusions are drawn in Section 2.6.

2.1 Related work

Since the Poisson point process (PPP) [4–7] is highly tractable, it is frequently

used to model a variety of networks, such as cellular networks [8–12], mobile ad

hoc networks [4–6], cognitive radio networks [13] and wireless sensor networks [14].

For cellular networks, in [8], the authors assume the distribution of BSs follows a

homogeneous PPP and derive theoretical expressions for the downlink signal-to-

interference-plus-noise-ratio (SINR) complementary cumulative distribution function

(CCDF) and the average ergodic rate under some assumptions. [9] is an extension of

[8], in which the authors model the infrastructure elements in heterogeneous cellular
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networks as multi-tier independent PPPs. In [10], the BSs locations are also modeled

as a homogenous PPP, and the outage probability and the handover probability are

evaluated. Although many useful theoretical results can be derived in closed form for

the PPP, the PPP may not be a good model for real BSs’ deployments in homogenous

networks, as will be shown in this chapter.

Indeed, the BS locations appear to form a more regular point pattern than the

PPP, which means there exists repulsion between points, hence the hard-core pro-

cesses and the Strauss process might be better to describe them. The Matérn hard-

core processes [5–7] are often used to model concurrent transmitters in CSMA net-

works [15–17]. In [17], the author uses them to determine the mean interference in

CSMA networks, observed at a node of the process. In [18], a modified Matérn hard-

core process is proposed to model the access points in dense IEEE 802.11 networks.

But to the best of our knowledge, no prior work has modeled the BSs in cellular

networks using hard-core processes.

The Strauss process has not been used in wireless networks, but its generalization,

the Geyer saturation process [19], is fitted to the spatial structures of a variety of

wireless network types using the method of maximum pseudolikelihood in [20]. The

difference between the two processes is that the Strauss process is a regular (or

soft-core) process, while the Geyer saturation process can be both clustered and

regular depending on its parameters. To evaluate the goodness-of-fit in [20], the

authors compare the statistics of the original data and the fitted model, such as

the nearest-neighbor distance distribution function, the empty space function, the

J function, the L function, and the residuals of the model. Though these statistics

verify that the Geyer saturation process is suitable to model the data set, they may

not be sufficient to discriminate between different point processes in terms of a metric

specific to wireless networks. In this chapter, all the processes mentioned above are

studied comprehensively, and we use different statistics to compare their suitability
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as models for cellular networks.

The perturbed lattice, which is another soft-core model and thus less regular than

the lattice, can also be used to model the BS locations. In [21], the authors consider

the BSs as a perturbed lattice network and analyze the fractional frequency reuse

technique. The degree of the perturbation is assumed to be a constant. But this

constant may not be consistent with real configurations of the BSs. In our work,

perturbed lattice networks with different levels of the perturbation are investigated.

2.2 Spatial Point Process Models

2.2.1 Overview

The spatial point processes we considered lie in the Euclidean plane R2. Infor-

mally, a point process is a countable random collection of points in R2. If it is simple

(there is only one point at each location a.s.), it can be represented as a countable

random set Φ = {x1, x2, . . .}, where xi ∈ R2 are the points. Usually, it is character-

ized by a random counting measure N ∈ N , where N is the set of counting measures

on R2. (N ,N) is the measurable space, where N is the σ-algebra of counting mea-

sures. N(B) is a random variable that denotes the number of points in set B ⊂ R2

for a point process Φ. Instead of N(B), the notation Φ(B) is frequently used, since

it makes the connection of the point process to the counting measure explicit. A

concrete realization of Φ is denoted as ϕ. Hence ϕ(B) is a deterministic counting

measure that denotes the number of points in B. See [5, Ch. 2] for details.

There are many kinds of point processes, such as the PPP, cluster processes,

hard-core processes and Gibbs processes [5, Ch. 3]. They can be placed into three

categories, the complete spatial randomness (i.e., the PPP), clustered processes, and

regular processes. Clustering means there is attraction between points, while regu-

larity means there is repulsion. So the probability of having a nearby neighbor in
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regular processes is smaller than in the PPP and clustered processes. Since regularity

is good for interference minimization and coverage optimization in wireless networks

and the deployment of BSs appears to be regular according to the point sets we col-

lected, some regular point processes, including the PHCP, the SP and the perturbed

triangular lattice, are considered. We focus on the motion-invariant case of the PPP,

the PHCP, and the SP, and the stationary case of the perturbed triangular lattice.

A point process is stationary if its distribution is translation-invariant and isotropic

if its distribution is rotationally invariant with respect to rotations about the origin.

If a point process is both stationary and isotropic, then it is motion-invariant. A

stationary PPP is motion-invariant and also said to be homogeneous [5].

2.2.2 The Poisson Point Process

Definition 1 (Poisson point process). The PPP with intensity λ is a point process

Φ ∈ R2 so that 1) for every bounded closed set B, Φ(B) follows a Poisson distribution

with mean λ|B| (where | · | is the Lebesgue measure in two dimensions and λ is the

expected number of points per unit area), 2) Φ(B1),Φ(B2), . . . ,Φ(Bm) are independent

if B1, B2, . . . , Bm are disjoint.

2.2.3 The Strauss Process

The SP constitutes an important class of Gibbs processes. Loosely speaking,

Gibbs processes can be obtained by shaping the distribution of a PPP using a density

function f(ϕ) on the space of counting measures N . The density function is also

called the likelihood function. Suppose f(ϕ) is a function such that f(ϕ) > 0 implies

f(ϕ′) > 0 whenever ϕ′ ⊆ ϕ, and Q is the distribution of a PPP with intensity λ = 1.

Regarding ϕ as a counting measure, we have
∫
N Q(dϕ) = 1. If

∫
N f(ϕ)Q(dϕ) = 1,

then the probability measure P (Y ) on the measurable space (N ,N) that satisfies

P (Y ) =
∫
Y
f(ϕ)Q(dϕ), ∀Y ∈ N, is the distribution of a Gibbs process.
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Definition 2 (Strauss process). The SP is a Gibbs process with a density function

f : N 7→ R+ with

f(ϕ) = caϕ(R2) exp(−btR̃(ϕ)), (2.1)

where a, R̃ > 0, b ∈ R+ ∪∞, c is a normalizing constant, and tR̃(ϕ) is the number

of point pairs {x, y} of ϕ with ‖x− y‖ < R̃.

R̃ is called the interaction radius. b determines the strength of repulsion between

points, which makes the SP suitable for modeling regular point sets. In other words,

the SP is a soft-core process.

2.2.4 The Poisson Hard-core Process

Just as the name implies, the distance between any two points of the PHCP is

larger than a constant R, which is called the hard-core distance.

Definition 3 (Poisson hard-core process). The PHCP is a special case of the SP. Its

density function is obtained by setting b =∞ in (2.1), i.e.,

f(ϕ) =

 0 if tR(ϕ) > 0

caϕ(R2) if tR(ϕ) = 0.
(2.2)

2.2.5 The Perturbed Triangular Lattice

Definition 4 (Triangular lattice). The triangular lattice L ⊂ R2 is defined as

L = {u ∈ Z2 : Gu}, (2.3)

where G = η

[
1 1/2

0
√

3/2

]
, η ∈ R+, is the generator matrix.

The area of each Voronoi cell is V = | det G| = η2
√

3/2, and the density of the

triangular lattice is λtri = V −1.
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The triangular lattice is obviously not stationary. However, we can make it sta-

tionary by translating the lattice by a random vector uniformly distributed over the

Voronoi cell of the origin. In the rest of the chapter, the triangular lattices considered

are all assumed to be stationary.

Definition 5 (Stationary triangular lattice). Let V (o) be the Voronoi cell of the

origin o in L. The stationary triangular lattice is

Φ = {u ∈ Z2 : Gu+ Y }, (2.4)

where Y is uniformly distributed over V (o).

The perturbed triangular lattice is based on the stationary triangular lattice and

is also stationary.

Definition 6 (Perturbed triangular lattice). Let (Xu), u ∈ Z2, be a family of i.i.d.

random variables, uniformly distributed on the disk b(o,R). The perturbed triangular

lattice, i.e. the triangular lattice with uniform perturbation on the disk b(o,R), is

defined as

Φ = {u ∈ Z2 : Gu+ Y +Xu}. (2.5)

2.3 Fitting By Pseudolikelihood Maximization

In this section, in order to find an accurate model, different point processes (the

PPP, the PHCP, and the SP) are fitted to the point sets in Table 1.1 using the

method of maximum pseudolikelihood, which is a common fitting method in stochas-

tic geometry. The reason of using this method is that the definitions of the PHCP

and the SP are based on their likelihood functions, thus maximizing the likelihood

or pseudolikelihood is the most direct way for fitting. Since the likelihood function

of the perturbed triangular lattice is generally unknown, it is not considered in this

17



section. The fitting metric, which is used to compare the models, may be drawn from

the classical statistics in stochastic geometry or some statistics relevant in wireless

networks.

2.3.1 Fitting Method

For the PPP, the method of maximum pseudolikelihood coincides with maximum

likelihood [22, 24]. The likelihood function for the PPP is f(ϕ) = e−(λ−1)|W |λϕ(W ),

where λ is the intensity and W is the sampling region. The maximum likelihood

estimate is λ̂ = ϕ(W )/|W |.

For the PHCP, R is decided by the method of maximum profile pseudolikelihood

[22], which means for different values of R, we obtain their corresponding fitted PHCP

models by the method of maximum pseudolikelihood and select the value of R whose

fitted PHCP model has the largest maximum pseudolikelihood. The other parameters

in (2.2) are obtained by fitting using the method of maximum pseudolikelihood given

R.

For the SP, R̃ is selected from the range [R, 4R] by the method of maximum profile

pseudolikelihood. By fitting, a and b in the SP model (2.1) can then be obtained. We

choose the lower bound to be R because the maximum pseudolikelihood of the SP

model with R̃ < R would be smaller than that of the model with R̃ = R, where R is

the minimum distance between each two point of the point set. We choose the upper

bound to be 4R because: 1) the base stations in the data sets we considered are

located in a finite region and the SP model with an R̃ that is too large is inaccurate

to model the data; 2) 4R is a large enough upper bound, since, for the fitted SP

model, the optimum value is always in the range [R, 4R].

The reason why we use the method of maximum pseudolikelihood instead of max-

imum likelihood is that the likelihood is intractable for the PHCP and the SP, while,

except for the computation of an integral over the sampling region, which can be
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approximated by a finite sum, the pseudolikelihood is known. As the conditional

intensities take an exponential family form, the pseudolikelihood can then be max-

imized using standard statistical software for generalized linear or additive models.

The simulations are all done with the software R [25].

We use the function ppm of the package “Spatstat” in R to perform the fitting,

which contains the implementation of the method of maximum pseudolikelihood. It is

closely related to the model fitting functions in R such as lm (for linear models) and

glm (for generalized linear models). The method is computationally efficient. Details

are provided in [22]. The computation times depend on the fitting model type and

the number of points. The following are typical times for a standard computer (2.3

GHz processor, 4 GB memory). Consider the point set of the urban region. Fitting

the PPP to the 64 points takes about 0.02 seconds; fitting the PHCP (with known R)

takes about 0.06 seconds; fitting the SP (with known R̃) takes about 0.05 seconds. In

the same region of the point set, fitting the PPP to 640 randomly generated points

takes about 0.03 seconds; fitting the PPP to 6400 randomly generated points takes

about 0.52 seconds. These numbers indicate that the complexity is O(n2), perhaps

even O(n log n), as the number of points n grows.

We use the function profilepl of the package “Spatstat” in R, which uses the

method of maximum profile pseudolikelihood, to find the optimal values of the in-

teraction radius R̃ for the SP and the hard-core distance R for the PHCP that give

the best fit. In the fitting, we search over a vector whose columns contain values of

R̃ or R to find the optimum. Then with the optimal value of R̃ or R, we use the

function ppm to get the values of other parameters in the equations (1) or (2). The

complexity of the fitting is in proportion to that of the function ppm.
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2.3.2 Classical Statistics

Many statistics can be used to characterize the structure of a point process or a

point set, such as the nearest-neighbor distance distribution function G(r) and the

empty space function F (r). The J function, J(r) = (1−G(r))/(1− F (r)), measures

how close a process is to a PPP. For the PPP, J(r) ≡ 1. J(r) > 1 at some r

indicates the points are regular at these distances, while J(r) < 1 means the points

are clustered. Hence, we can easily tell by visual inspection of J(r) whether a point

set or a point process is regular or clustered. But it is hard to get more information

that can be used to discriminate different regular point processes.

Different from the J function that is related to the inter-point distance, Ripley’s

K function is related to point correlations. It is a second-order statistic and can be

defined as K(r) = E[Φ(b(x, r)) − 1 | x ∈ Φ]/λ, for r ≥ 0, where λ is the intensity.

λK(r) can be interpreted as the mean number of points y ∈ Φ that satisfy 0 <

‖y − x‖ ≤ r, given x ∈ Φ. For the PPP, K(r) = πr2.

The L function is defined as L(r) =
√
K(r)/π. L(r) < r at some r indicates the

points are regular at distance r, while L(r) > r means the points are clustered.

Consider the point set of the urban region. The L function of the point set is

plotted in Figs. 2.1-2.3 (black solid line). It is seen that the point set is regular for

r < 140,1 since L(r) < r for r < 140. Clearly, L(r) = 0 for r < 39, which means no

two points are closer than 39. Hence, the point set may be regarded as a realization of

a hard-core process with hard-core distance R = 39. The grey regions in these figures

are the pointwise maximum and minimum of 99 realizations of the fitted PPP, the

fitted PHCP and the fitted SP, respectively. The values of the parameters obtained

by fitting are λ̂ = 4.06 × 10−5 for the PPP, R = 39 for the PHCP and R̃ = 63 for

the SP. Note that for the fitted PHCP, the R value coincides with that obtained by

1The unit of all distances in this chapter is meter.
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Figure 2.1. L function of BSs of the urban region (the solid line) and the
envelope of 99 realizations of the fitted PPP model. The dashed line is the

theoretical L function of the PPP.
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Figure 2.2. L function of BSs of the urban region (the solid line) and the
envelope of 99 realizations of the fitted PHCP model. The dashed line is
the average value of the L functions of 99 realizations of the fitted PHCP

model.
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Figure 2.3. L function of BSs of the urban region (the solid line) and the
envelope of 99 realizations of the fitted SP model. The dashed line is the
average value of the L functions of 99 realizations of the fitted SP model.
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visual inspection.

According to the figures, the PPP is not an appropriate model, as the L function

of the point set is not within the envelope of the PPP. But the PHCP and the SP

fit well. Although the L function is more powerful than the J function when used to

compare the three models, it cannot distinguish which of the PHCP and the SP is

better. Other statistics are needed.

2.3.3 Definition of Coverage Probability

It is sensible to use a statistic that is related with a standard metric used in

wireless networks to decide on the best model. For the three point sets, by evaluating

the coverage probabilities of the point sets and fitted models through simulations, we

find that the coverage probability is such a statistic that has two desirable properties:

it has enough discriminative power to distinguish between different models, and it

is relevant to cellular systems. Generally speaking, the coverage probability is the

probability that a randomly located user achieves a given SINR threshold with respect

to one of the BSs.

A mobile user is assumed to attempt to communicate with the nearest BS, while

all other BSs act as interferers (the frequency reuse factor is 1). The received power,

the interference, and, in turn, the coverage probability, depend on the transmit power

of the BSs, the power loss during propagation, and the random channel effects. We

make the following assumptions: (i) the transmit power of all BSs is constant 1; (ii)

the path loss exponent α = 4; (iii) all signals experience Rayleigh fading with mean

1; (iv) the shadowing effect is neglected; (v) the thermal noise W is ignored, i.e.

SNR =∞, and the SINR reduces to the SIR.

Under these assumptions, the SIR has the form

SIRz =
h0‖x0‖−α∑

i:xi∈Φ\{x0} hi‖xi − z‖−α
, (2.6)
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where {h0, h1, ...} ∼ exponential(1) and independent, and x0 = arg minx∈Φ ‖x − z‖.

We assume that the location z is in coverage if SIRz > θ.

Definition 7 (Coverage probability). For a stationary process, P(SIRz > θ) does not

depend on z, and we call it the coverage probability:

Pc(θ) = P(SIR > θ). (2.7)

It is the CCDF of the SIR and can also be interpreted as the average area fraction

in coverage.

The theoretical expression of Pc(θ) for the PPP with intensity λ has been derived

in [8]:

Pc(θ) =
1

1 +
√
θ arctan(

√
θ)
. (2.8)

Since the coverage probability of the PPP does not depend on the intensity, no

fitting method based on adjusting the intensity is possible. On the other hand, the

intensity is easily matched to the intensity of a given point set.

2.3.4 Results for Coverage Probability

The regions where the BSs reside are not infinite. Thus, for the fitted point

process, which is stationary, we only consider a finite region that has the same area

and shape as the point set under consideration.

In the finite region, Pc(θ) can be estimated by determining the average fraction

of the whole area where SIR > θ. In the following simulations, Pc(θ) is obtained by

evaluating 3,000,000 SIR values. In order to mitigate the boundary effect, we only

use the central [2
3
length× 2

3
width] area of the entire region to compute Pc(θ). For the

point sets, the SIRs of 3,000,000 randomly chosen locations (uniformly distributed)

are computed. For point processes, 3,000 realizations are generated and for each
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realization, 1,000 randomly chosen locations are generated. The SIR is evaluated at

all chosen locations.
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Figure 2.4. Left axis: the coverage curves of the experimental data of the
urban region and different fitted point process models. Right axis: the
difference between the coverage curve of the PPP and the other curves.

Consider the point set of the urban region. The coverage curves of the exper-

imental data and the fitted models of the PPP, the PHCP, and the SP are shown

in Fig. 2.4. The left axis shows the coverage curves, while the right axis shows the

difference between the coverage curve of the PPP and the other curves. Clearly, the
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Figure 2.5. Left axis: the coverage curves of the experimental data of the
rural region 1 and different fitted point process models. Right axis: the
difference between the coverage curve of the PPP and the other curves.
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curves of three models are all below the curve of the experimental data. Among the

three point processes, the SP provides the best fit, followed by the PHCP and then

the PPP.

We use the other two point sets in Table 1.1 to test the statistic. For the fitted

models, the hard-core distances in the two rural regions are R1 = 1194 and R2 = 1474

and the interaction radii are R̃1 = 2120 and R̃2 = 5490. Figs. 2.5 and 2.6 show the

coverage curves of the two point sets. The PPP still performs the worst. In Fig. 2.6,

the SP is better than the PHCP, while in Fig. 2.5, the curves of the SP and the PHCP

are quite close, thus, the two processes can be considered equivalent when fitted to

that point set. Generally, it depends on the given point set. The SP is often better.

Note that this is not because the PHCP is a special case of the SP. The method of

maximum pseudolikelihood is used to do the fittings, but a larger pseudolikelihood

does not imply a better matching coverage probability.

2.3.5 Average Rate

We can also distinguish the best fitted model in terms of the average ergodic rate.

Similar results are obtained. The average ergodic rate (or Shannon throughput) is

defined as γ̄ = E[ln(1 + SIR)], which is measured in nats/s/Hz. Denote γ̄e, γ̄p, γ̄h, γ̄s

as the average ergodic rates of the experimental data, the PPP, the PHCP, and the

SP respectively. Let the simulation parameters remain the same. For the point set

of the urban region, γ̄e ≈ 1.786, γ̄p ≈ 1.513, γ̄h ≈ 1.635, γ̄s ≈ 1.682. For the point set

of the rural region 1, γ̄e ≈ 1.679, γ̄p ≈ 1.506, γ̄h ≈ 1.566, γ̄s ≈ 1.572. For the point

set of the rural region 2, γ̄e ≈ 1.634, γ̄p ≈ 1.515, γ̄h ≈ 1.581, γ̄s ≈ 1.605. So we have

γ̄p < γ̄h < γ̄s < γ̄e.

The theoretical average ergodic rate of the PPP is γ̄′p ≈ 1.49, which is smaller

than the values of simulations of the PPP. The reason is that the theoretical average

ergodic rate of the PPP considers all the points on the whole plane R2, while in the
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simulations, we only consider the points of the PPP in the same region of the given

point set, which leads to the fact that the SIR value at any location is larger than

the theoretical value at the same location and thus the theoretical average ergodic

rate is smaller than the simulation values.

2.4 Fitting Using the Coverage Probability

We have fitted the PPP, the PHCP, and the SP to the given point sets by the

method of maximum pseudolikelihood, but none of these models precisely describes

the coverage probability of the data, and all their coverage curves are below the

actual curve of the point set. If we want to find a point process that has a similar

performance as the given point set, we cannot just use the three fitted models, because

they are all not regular enough due to the limitation of the fitting methods. In this

section, we adopt the method of minimum contrast as a fitting method and fit the

SP, the PHCP, and the perturbed triangular lattice to the point sets in Table 1.1.

2.4.1 Fitting Method

In the method of minimum contrast, there is a suitable summary statistic S and a

point process model with some adjustable parameters {θi}. Ideally the chosen point

process model has analytically tractable expressions for the summary statistic S as

a function of {θi}.

Here, the summary statistic is the coverage probability, and the chosen models

are the SP, the PHCP and the perturbed triangular lattice. But there are no analyt-

ically tractable expressions for the coverage probability of the SP and the PHCP. For

different values of the adjustable parameters, the coverage probabilities are estimated

through simulations.

We assume the intensity of the fitted model is the same as the given point set.

By this method, the coverage curve of the fitted model should have the minimum
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difference from that of the given point set.

Definition 8 (Average squared error of the coverage probability). The average

squared error of the coverage probability, denoted as E, measures the difference be-

tween two coverage curves. It is defined as:

E(a, b) =
1

b− a

∫ b

a

(
Pc1(t)− Pc2(t)

)2

dt, (2.9)

where a, b ∈ R, t is the SIR threshold in dB, and Pc1(t), Pc2(t) denote two coverage

curves.

The average squared error of the coverage probability is used as the contrast

criterion of the method of minimum contrast. Under the condition of the fixed

intensity, the relevant parameters in the model are adjusted to find the model that

has the minimum average squared error between its coverage curve and the given

point set’s. Here, we set a = −9.38 dB and b = 16.07 dB (for the PPP, Pc(a) = 0.9

and Pc(b) = 0.1), because [0.1, 0.9] is the coverage probability range where the curves

differ the most and [−10, 16] dB is a reasonable SIR interval for practical systems.

This fitting method is not restricted to the contrast criterion defined by the cov-

erage probability. The criteria defined by other performance metrics in wireless net-

works and second-order statistics in stochastic geometry can also be used. Similarly,

the method is not limited to Rayleigh fading either, when we simulate the network.

Other fading types can also be applied depending on the propagation environment.

2.4.2 The SP and the PHCP

In the fitting method, the intensity of the fitted model is fixed. Thus, the PPP

is not considered. As the accurate intensity values of the SP and the PHCP are

unknown for given values of the parameters in (2.1) and (2.2), it is not quite suitable

to use the method for the two processes. But there are some approximations of the
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intensity for the SP [26], e.g.,

λ ≈ W (aΓ)/Γ, (2.10)

where W (x) is the principle branch of the Lambert W function [27] and Γ =
(
1 −

exp(−b)
)
πR̃2. This is the Poisson-saddlepoint approximation [26], which is more

accurate than the mean field approximation.

If we use the approximated intensity (2.10) in the fitting method for the SP, we

have to adjust the three parameters a, b, and R̃ in (2.1) to minimize the average

squared error of the coverage probability. Note that, as b increases, the strength

of the repulsion between the points in the SP increases, and as R̃ increases, the

repulsion range increases. Both adjustments increase the regularity of the process.

From (2.10), we have a ≈ λ exp(λΓ). a increases as b and R̃ increase with λ fixed. So

in order to increase the regularity of the SP with fixed intensity, we can fix b, increase

R̃ and a, or fix R̃, increase b and a according to (2.10). We can also first increase a,

and then adjust b and R̃. But in this way, the regularity may not increase, or even

decrease for some b and R̃. To get a more regular model, we can compare models

with different settings of b and R̃ in simulations. The above three methods are used

to obtain the fitting results of the SP in simulations.
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TABLE 2.1

FITTING RESULTS OF THE STRAUSS PROCESS

Parameters a b R̃ Actual intensity λ̂ Desired intensity λ λ̂/λ− 1

Urban region 1× 10−4 3.745 85 3.737× 10−5 4.063× 10−5 −8.02%

Rural region 1 2.44× 10−8 1.892 3000 1.622× 10−8 1.645× 10−8 −1.40%

Rural region 2 5.00× 10−8 0.599 5490 2.086× 10−8 2.069× 10−8 0.82%
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Given a point set, to obtain a fitted SP, we can first fit the SP to the point

set using the method of the maximum pseudolikelihood, and then, based on the

parameters we get, increase the regularity to minimize the average squared error of

the coverage probability. Table 2.1 shows the fitting results of the SP for the three

point sets in Table 1.1. As shown in Fig. 2.7, for each fitted model, the coverage curve

matches the one of the corresponding point set very closely. Note that the simulation

is not perfectly accurate, since the number of realizations of the point process used

to calculate the coverage probability is limited to 3,000; also, when calculating the

average squared error of the coverage probability, we only compute the average over a

finite number of sample points on the coverage curve; and when we increase b and R̃,

the step width is not infinitesimal. We say an SP model has the “minimum” average

squared error of the coverage probability, if E < 10−5.

The fitted SP is not unique. For some different values of a, we can find different

fitted models that satisfy E < 10−5, by adjusting b and R̃. For instance, the SP with

a = 1.1× 10−4, b = 2.547, R̃ = 92 is also a fitted model for the urban region, which

is shown as the curve of another fitted SP model in Fig. 2.7.

Since the PHCP is a special case of the SP, its approximated intensity can be

obtained by setting b =∞ in (2.10), λ ≈ W (aπR2)/(πR2). To increase the regularity

of the PHCP with fixed intensity, we can increase R. Table 2.2 shows the fitting

results of the PHCP for the three point sets. The coverage curves of the fitted

models and their corresponding point sets are visually indistinguishable, as shown in

Fig. 2.8.

Although the models are fitted well to the point sets, there are two main short-

comings of the fitting for the SP and the PHCP. One is that the actual intensity is

not the same as the density of the given point set as shown in Tables 2.1 and 2.2, and

the difference can be as large as 10%. Note that each value of the actual intensity is

obtained by averaging over 10,000 independent realizations of the model.
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Figure 2.7. The coverage curves of the experimental data and the fitted SP
models. The curves of the rural region 1, not shown in this figure, are very

similar to those of the rural region 2.
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TABLE 2.2

FITTING RESULTS OF THE POISSON HARD-CORE PROCESS

Parameters a R Actual intensity λ̂ Desired intensity λ λ̂/λ− 1

Urban region 9.38× 10−5 78 3.885× 10−5 4.063× 10−5 −4.38%

Rural region 1 2.28× 10−8 2500 1.626× 10−8 1.645× 10−8 −1.16%

Rural region 2 2.37× 10−8 2000 1.864× 10−8 2.069× 10−8 −9.91%

The other drawback is that we may not get a well fitted model for some point

sets. In simulations, we use the function rStrauss in the R package “Spatstat” [28]

to generate realizations for the SP and the function rHardcore for the PHCP. In

rStrauss and rHardcore, the coupling-from-the-past (CFTP) algorithm [29] is used,

but it is not practicable for all parameter values. Its computation time and storage

increase rapidly with a, R̃ and R. For example, for a point set that has a coverage

curve close to that of the triangular lattice, we cannot get the fitted SP or PHCP,

due to the limited storage and time. It turns out, though, that the three point sets

in Table 1.1 are not too regular to use rStrauss and rHardcore.

2.4.3 The Perturbed Triangular Lattice

There are no such shortcomings described in the previous subsection when the

perturbed triangular lattice is fitted by the method of minimum contrast. The reasons

are 1) the intensity is fixed once η is fixed; 2) as R increases from 0 to∞, the coverage

curve of the perturbed triangular lattice degrades from that of the triangular lattice

to that of the PPP, and we can easily get the realizations of the perturbed triangular

lattice for all values of η and R. To do the fitting, we first compute η and then

36



10 5 0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SINR Threshold (dB)

C
o
v
e
ra

g
e
 P

ro
b
a
b
ili

ty

 

 

The fitted PHCP (Urban region)

Experimental data (Urban region)

The fitted PHCP (Rural region 2)

Experimental data (Rural region 2)

Figure 2.8. The coverage curves of the experimental data and the fitted
PHCP models. The curves of the rural region 1, not shown in this figure,

are very similar to those of the rural region 2.
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increase R from 0 to find the fitted model.

Consider the point set of the urban region. The intensity of the point set is

λ̂ = 4.06× 10−5. Equating λtri = λ̂, we get η = 168.57. Fig. 1.1 shows the locations

of the BSs in the urban region. Figs. 2.9-2.11 give the realizations of the fitted

PPP, the triangular lattice, and the triangular lattice with uniform perturbation on

the disk b(o, 0.52η), respectively. Note that the fitted PPP means that the intensity

of the PPP is estimated by the method of maximum likelihood. To compute the

coverage probability of the triangular lattice with η = 168.57, the lattice is generated

on the same region as the point set. Under the same simulation conditions as those

in Section III, the coverage probability is obtained, which is shown in Fig. 2.12. As

expected, the coverage probability of the lattice is larger than that of the given point

set. The lattice provides an upper bound on the coverage probability.

To compare the coverage performances of the perturbed triangular lattices with

the PPP and the triangular lattice, we simulate the cases with R = 0.2η, 0.5η and

0.8η. Fig. 2.13 shows the coverage curves. As expected and observed in the figure, the

coverage probability degrades as R increases. As R → ∞, the perturbed triangular

lattice approaches the PPP with intensity λ = 4.06× 10−5. Therefore, the coverage

curves of the perturbed triangular lattices with different R span the region between

the PPP and the triangular lattice. It is thus guaranteed that we can obtain the

desired perturbed triangular lattice that is fitted tightly to a point set.

For the point set of the urban region, the fitting value of R is R = 0.52η. Fig.

2.10 indicates that the disks centered at the triangular lattice points with radii 0.52η

overlap slightly, as the distance between each two triangular lattice points is η. In

Fig. 2.11, a realization of this perturbed triangular lattice is shown. The coverage

curves of this perturbed triangular lattice and the point set closely overlap, as shown

in Fig. 2.12. For the point sets of the rural region 1 and the rural region 2, the fitting

values are R1 = 0.70η and R2 = 0.74η, respectively. So the point set of the urban
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Figure 2.9. A realization of the PPP fitted to the urban data set.
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Figure 2.11. A realization of the triangular lattice with uniform
perturbation on the disk b(o, 0.52η) fitted to the urban data set.
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Figure 2.12. The coverage curves of the experimental data (the urban
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perturbation on the disk b(o, 0.52η) and the PPP.
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region is the most regular of the three, followed by the point set of the rural region

1 and then the point set of the rural region 2.
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Figure 2.13. The coverage curves of the triangular lattice, the perturbed
triangular lattices and the PPP.

To obtain a point set from the model that has approximately the same perfor-

mance of the coverage probability as the given point set, we can generate a realization

of the triangular lattice with uniform perturbation on the disk b(o,R). Although the

coverage curve of the realization may have some deviations, its average, the coverage

probability, is quite exactly that of the point set.
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Thus, we can model the given point set as a realization of the triangular lat-

tice with uniform perturbation on the disk b(o,R), where R can be determined by

minimizing the average squared error of the coverage probability, which is of great sig-

nificance in practice. When analyzing performance metrics that are related with the

distribution of the BSs in real cellular networks, we can use the perturbed triangular

lattice instead of the lattice or the PPP to model the BSs. Although the perturbed

triangular lattice is not as tractable as the PPP, it still has some desirable properties.

For the PPP, the distribution of the area of the Voronoi cell is usually approximated

by a generalized gamma function [11, 30, 31]. The area is unbounded for the PPP,

while for the perturbed triangular lattice, the area is bounded and depends on R.

2.5 Deployment Gain

Here we define a metric that measures how close the point set is to the PPP.

This metric can be considered as a “distance” between the point set and the PPP

whose coverage curve only depends on the SIR threshold θ. We call this metric the

deployment gain. It is a function of the coverage probability and is a gain in SIR,

relative to the PPP, provided by the deployment.

Definition 9 (Deployment gain). The deployment gain, denoted by G(pt), is the SIR

difference between the coverage curves of the given point set and the PPP at a given

target coverage probability pt.

As such, it mimics the notion of the coding gain2 commonly used in coding theory.

We can evaluate different deployment gains at different pt, for different considerations.

In the rest of the chapter, we choose pt = 0.5. At this target probability, the coverage

curves are steep, and the gap between curves is easy to observe. More importantly,

2Coding gain [32, Ch. 1], always a function of the target bit-error-rate (BER), is a measure to
quantify the performance of a given code, and is defined by the difference in minimum signal-to-
noise-ratio (SNR) required to achieve the same BER with and without the code.
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G(0.5) gives a good approximation of the average deployment gain, which is the

value by which the coverage curve of the PPP is right shifted such that the difference

between the new curve and the curve of the point set is minimized.

Definition 10 (Average deployment gain). Let the difference between two curves be

the average squared error defined in (2.9). The average deployment gain, denoted by

Ŝg, is then defined as:

Ŝg = arg min
x

∫ b

a

(
P th

c (t− x)− P ed
c (t)

)2

dt, (2.11)

where a = −9.38 dB and b = 16.07 dB, P th
c (t) is the theoretical value of the cov-

erage probability for the PPP, and P ed
c (t) is the experimental value of the coverage

probability for the data.

For fixed α, the theoretical expression of the coverage probability of the PPP [8]

is

P th
c (θ) =

1

1 + ρ(θ, α)
, (2.12)

where ρ(θ, α) = θ2/α
∫∞
θ−2/α 1/(1 + uα/2)du. For α = 4, P th

c (θ) is equal to Pc(θ) in

(2.8).

The average deployment gain Ŝg is a measure of regularity. The point set with a

larger average deployment gain has a better performance than the one with a smaller

value. For the triangular lattice, when α = 4, Ŝlg = 4.38 dB, which is the maximal

value of the average deployment gain. Similar to Ŝg, G(0.5) is also a measure of

regularity and satisfies that |G(0.5)− Ŝg|/Ŝg < 5%, which is verified in simulations.

Hence, we can evaluate G(0.5) instead of Ŝg in practice, since G(0.5) is much easier

to obtain.

Fig. 2.14 shows the coverage curves of the experimental data and the PPP and

the right shifted curves of the PPP by the average deployment gains, when α = 4. As

the figure shows, the right shifted curve of the PPP and the curve of the point set are
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Figure 2.14. The coverage curves of the experimental data and the PPP
and the curves of the PPP right shifted by 2.09 dB and 1.10 dB, which are

the average deployment gains (α = 4). The coverage curve of the
experimental data (Rural region 1) and the curve of the PPP right shifted
by 1.28 dB are not shown in this figure, but they are well matched, similar

to the cases of the other two regions.
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well matched. For the point sets of the urban region, the rural region 1 and the rural

region 2, the average deployment gains are, respectively, Ŝg0 = 2.09 dB, Ŝg1 = 1.28

dB and Ŝg2 = 1.10 dB. While, the deployment gains at pt = 0.5 are, respectively,

G0(0.5) = 2.07 dB, G1(0.5) = 1.26 dB and G2(0.5) = 1.08 dB, which are very close

to the average deployment gains. Because G0(0.5) > G1(0.5) > G2(0.5), in terms of

the deployment gain, the deployment of the point set of the urban region is the best,

followed by the point set of the rural region 1 and then the point set of the rural

region 2.
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Figure 2.15. The coverage curves of the experimental data (the urban
region) and the curves of the PPP right shifted by the corresponding

average deployment gains Ŝg = 2.93, 2.36, 2.11, 2.09, 2.10, 2.19 (dB) under
different values of α = 2.5, 3, 3.5, 4, 4.5, 5.
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In the above case, the path loss exponent α = 4 is fixed. If the value of α

varies, G(0.5) and Ŝg will also change. Fig. 2.15 shows the coverage curves of the

experimental data (the urban region) and the curves of the PPP right shifted by

the corresponding Ŝg under different values of α. For the triangular lattice, as the

parameter η of the triangular lattice in the SIR can be eliminated, the coverage

probability and the average deployment gain do not depend on η. Fig. 2.16 shows

the deployment gains G(0.5) and the average deployment gains Ŝg of all point sets

and the triangular lattice when α takes different values, which indicates that Ŝg and

G(0.5) are not monotonic as a function of α, but first decrease and then increase as

α increases from 2.5 to 5. In this figure, the lines or dashed lines indicate the average

deployment gains, and the marks indicate the deployment gains. The inequality

|G(0.5) − Ŝg|/Ŝg < 5% is also satisfied here. The figure also reveals that G0(0.5) >

G1(0.5) > G2(0.5) for all α ∈ {2.5, 3, 3.5, 4, 4.5, 5}, and the deployment gain of the

triangular lattice gives an upper bound.

We have demonstrated that in all cases considered, the coverage probability is

very closely approximated by the coverage curve of the PPP, right shifted along the

SIR axis by the deployment gain. This general behavior has important implications

for the analysis of point process models that are more accurate than the PPP. For the

coverage performance evaluation of an arbitrary cellular model, we may take the value

analytically obtained for the PPP, and adjust the SIR threshold θ by the deployment

gain. Since the coverage probability (or the SIR distribution) affects most first-order

metrics, the deployment gain can be used to estimate other metrics (e.g. the average

ergodic rate), according to their definitions. Of course, the deployment gain of a

model or point set first needs to be established.

One important implication is the estimation of the average ergodic rate of the

network using the deployment gain. Since the coverage probability is the CCDF of

the SIR and the average ergodic rate only depends on the PDF of the SIR, we can
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first obtain the approximated CDF of the SIR by the deployment gain, and then

compute the average ergodic rate. Using the definition of the average ergodic rate γ̄

and the theoretical expression of Pc(θ) for the PPP in (2.8), γ̄ can be expressed as

γ̄ = E[ln(1 + SIR)]

= −
∫ ∞

0

ln(1 +Gx)dPc(x)

(a)
=

∫ ∞
0

Pc

(
ex − 1

G

)
dx, (2.13)

where the unit of G is 1, not dB. (a) follows since the CCDF of the random variable

X = ln(1+G·SIR) is P(X > x) = P
(
SIR > (exp(x)−1)/G

)
= Pc

(
(exp(x)−1)/G

)
and

the expectation of a positive random variable can be expressed as the integral over the

CCDF. Numerically evaluating the above integral, we can obtain the approximated

average ergodic rate of the three point sets. For the point set of the urban region,

γ̄ ≈ 1.770. For the point set of the rural region 1, γ̄ ≈ 1.660. For the point set of the

rural region 2, γ̄ ≈ 1.6311. Compared with the values obtained in Section III-E, the

difference is smaller than 2%.

2.6 Summary

We proposed a general procedure for point process fitting and applied it to publicly

available base station data. To the best of our knowledge, this is the first time

public data was used for model fitting in cellular systems. We also introduced the

deployment gain, which is a metric on the regularity of a point set or a point process

and greatly simplifies the analysis of general point process models.

Two methods are used to fit different point processes to real deployments of BSs

in wireless networks in the UK. One is the method of maximum pseudolikelihood,

the other is the method of minimum contrast, which minimizes the average squared

error of the coverage probability between the point process model and the point set.
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Using the former method for fitting, we can decide which model fits best in terms

of the coverage probability. But the fitted model cannot perfectly fit the coverage

probability—there is still a significant gap between the fit and the data. Conversely,

using the latter method, the fitted model fits the data perfectly with respect to the

metric.

The deployment gain can be used to evaluate the coverage probability and com-

pare the coverage performances of different point sets analytically. It has considerable

practical significance in system design. For example, it can help guide the placement

of additional BSs and judge the goodness of a concrete deployment of BSs, which

includes recognizing how much better the deployment is than the PPP and how much

the deployment could be improved theoretically.

Our work sheds light on real BSs modeling in cellular networks in terms of cov-

erage. For a specified BS data set, we can use the methodology in this chapter to

model it. The SP, the PHCP and the perturbed triangular lattice are shown to be

accurate models. However, for detailed theoretical analyses, these models may not be

suitable. They do not have the tractability of the PPP, since their probability gen-

erating functionals are unknown. We can carry out the analysis for the PPP instead

and then add the deployment gain to the coverage curve to evaluate the performance

of the real deployments.
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CHAPTER 3

ASYMPTOTIC DEPLOYMENT GAIN

In this chapter, we propose a novel approach to evaluate the coverage probability

of cellular networks, where BSs follow a general class of point processes, using the

ADG.

This chapter is organized as follows. In Section 3.1, related works are discussed.

In Section 3.2, we introduce the system model and the ADG. We investigate the

existence of the ADG and study the asymptotic properties of the outage probability

in Section 3.3. Some potential applications of the ADG are provided in Section

3.4. In Section 3.5, we show simulation results for some specific network models.

Conclusions are drawn in Section 3.6.

3.1 Related Work

The spatial configuration of the BSs (or transmitters) plays a critical role in

the performance evaluation of cellular networks (or general wireless networks), since

the SINR critically relies on the distances between BSs and users (or transmitters

and receivers). Network performance analysis using stochastic geometry have drawn

considerable attention [4, 8, 17, 20, 33–47]. Recent related works can be roughly

divided into two categories. One is based on the assumption of modeling the BSs or

access points as Poisson-based point processes (e.g., the PPP and the Poisson cluster

process) in cellular networks, e.g. [8, 34–37]. The other one is dealing with general

point processes in non-cellular networks, especially in wireless ad hoc networks, e.g.

[42–46]. Of course, there are some other types of works, such as the type of using the
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Poisson-based point processes in non-cellular networks, e.g. [38–40], and the type of

using non-Poisson point processes in non-cellular networks, e.g. [17, 41], but they

are not related with our concern in this chapter. Our focus is applying general point

processes to cellular networks, which has seldom been studied.

Regarding the first category, in cellular networks, the PPP is advantageous for

modeling the BSs configuration [8, 34–36], due to its analytical tractability. Poisson-

based processes, especially Poisson cluster processes, e.g. in [37], have been used

to model the small cell tier in heterogeneous cellular networks, where the BS tier is

still modeled as the PPP. Non-Poisson processes, such as hard-core processes, are

less studied in cellular networks, due to the absence of an analytical form for the

probability generating functional and the Palm characterization of the point process

distribution. But recently, there are some works dealing with that topic [20, 47]. In

[47], the authors applied the β-Ginibre point process, where points exhibit repulsion,

in cellular networks. In [20], the Geyer saturation process was used to model the real

cellular service site locations.

As for the second category, general point processes have been used to model the

transmitting nodes in non-cellular networks, e.g. [43–46]. In [43], the authors ana-

lyzed the success probability in an asymptotic regime where the density of interferers

goes to 0 in wireless networks with general fading and node distribution. The paper

[44] provided an in-depth study of the outage probability of general ad hoc networks,

where the nodes form an arbitrary motion-invariant point process, under Rayleigh

fading as the density of interferers goes to 0. In [45], the tail properties of interfer-

ence for any motion-invariant spatial distribution of transmitting nodes were derived.

In [46], dealing with a wide range of point processes, the authors provided accurate

approximations of the transmission capacity in the low-outage regime based on the

second-order product density of the node distribution in wireless ad hoc networks.

In this chapter, we consider a general class of point processes for modeling possible
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BS configurations. In homogeneous cellular networks, each user is usually serviced

by its nearest BS, though not necessarily. When general point processes are applied

in such networks, one of the main emerging difficulties is that the point process

distribution conditioned on an empty ball around the user is unknown. Moreover, the

empty space function has to be considered, resulting in the growth of the complexity.

Tackling those difficulties directly is seldom seen in the literature.

3.2 System Model and Asymptotic Deployment Gain

3.2.1 System Model

We consider a cellular network that consists of BSs and mobile users. The BSs

are modeled as a general m.i. point process Φ of intensity λ on the plane. We

assume that Φ is mixing [5, Def. 2.31], which implies that the second moment density

ρ(2)(x1, x2) → λ2 as ‖x1 − x2‖ → ∞. Intuitively, ρ(2)(x1, x2) is the probability that

there are two points of Φ at x1 and x2 in the infinitesimal volumes dx1 and dx2.

Rigorously, it is the density (with respect to the Lebesgue measure) pertaining to the

second factorial moment measure [5, Def. 6.4], which is given by

α(2)(A×B) = E
( 6=∑
x,y∈Φ

1A(x)1B(y)
)

=

∫
A×B

ρ(2)(y − x)dxdy,

where A,B are two compact subsets of R2, and the 6= symbol indicates that the sum

is taken only over distinct point pairs. Since the point processes considered are m.i.,

ρ(2)(x1, x2) only depends on ‖x1 − x2‖. Without ambiguity, we let ρ(2)(x2 − x1) ,

ρ(2)(x1, x2). Similarly, the nth moment density ρ(n)(x1, x2, . . . , xn) is the the density

pertaining to the nth-order factorial moment measure α(n), and we let ρ(n)(x2 −

x1, . . . , xn − x1) , ρ(n)(x1, . . . , xn).

We assume all BSs are always transmitting and the transmit power is fixed to
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1. Each mobile user receives signals from its nearest BS, and all other BSs act as

interferers (the frequency reuse factor is 1). Every signal is assumed to experience

path loss and fading. We consider both non-singular and singular path loss models,

which are, respectively, `(x) = (1 + ‖x‖α)−1 and `(x) = ‖x‖−α, where α > 2. (Since

`(x) only depends on ‖x‖, in this chapter, `(x) and `(‖x‖) are equivalent.) We assume

that the fading is independent and identically distributed (i.i.d.) for signals from all

BSs. The fading can be small-scale fading, shadowing or a combination of the two.

We mainly focus on Nakagami-m fading, which includes Rayleigh fading as a special

case, and the combination of Nakagami-m fading and log-normal shadowing. The

thermal noise is assumed to be additive and constant with power W . We define the

mean SNR as the received SNR at a distance of r = 1, where its value is 1/(2W ) for

the non-singular path loss model and 1/W for the singular path loss model.

To formulate the SINR and the coverage probability, we first define the nearest-

point operator NPϕ for a point pattern ϕ ⊂ R2 as

NPϕ(x) , arg min
y∈ϕ

{‖y − x‖}, x ∈ R2. (3.1)

If the nearest point is not unique, the operator picks one of the nearest points uni-

formly at random. The SINR at location z ∈ R2 has the form

SINRz =
hu`(u− z)

W +
∑

x∈Φ\{u} hx`(x− z)
, (3.2)

where u = NPΦ(z) and hx denotes the i.i.d. fading variable for x ∈ Φ with CDF Fh

and PDF fh. For a m.i. point process, the coverage probability P(SINRz > θ) does

not depend on z, and we define

Pc(θ) = P(SINR > θ). (3.3)
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Hence, without loss of generality, we focus on the coverage probability at the origin

o. Since each user communicates with its nearest BS, the interference at o only

comes from the BSs outside the open disk b(o, r) , {x ∈ R2 : ‖x‖ < r}, where

r = ‖NPΦ(o)‖. The total interference, denoted by I(Φ), is

I(Φ) =
∑

x∈Φ\NPΦ(o)

hx`(x). (3.4)

3.2.2 Asymptotic Deployment Gain

In Section 2.5, we introduced the deployment gain (DG). Here we redefine the

DG rigorously.

Definition 11 (Deployment gain). The deployment gain, denoted by G(pt), is the

ratio of the θ values between the coverage curves of the given point process (or point

set) and the PPP at a given target coverage probability pt, i.e.,

G(pt) =
P−1

c (pt)

(PPPP
c )−1(pt)

(3.5)

where PPPP
c (θ) and Pc(θ) are, respectively, the coverage probabilities of the PPP and

the given point process Φ.

This definition is analogous to the notion of the coding gain commonly used in

coding theory [32, Ch. 1].

Fig. 3.1 shows the coverage probability of the PPP, the Matérn cluster process

(MCP) [5, Ch. 3], and the randomly translated triangular lattice. The intensities of

all the three point processes are the same. We observe that for pt > 0.3, the DG is

approximately constant, e.g. the DG of the MCP is about −3 dB. In Fig. 3.1, the

coverage probability curves of the PPP that are shifted by G(0.6) (in dB) of the MCP

and the triangular lattice are also drawn. We see that the shifted curves overlap quite

exactly with the curves of the MCP and the triangular lattice, respectively, for all
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pt > 0.3. It is thus sensible to study the DG as pt → 1 and find out whether the DG

approaches a constant. To do so, analogous to the notion of the asymptotic coding

gain, we define the asymptotic deployment gain (ADG).

Definition 12 (Asymptotic deployment gain). The ADG, denoted by Ĝ, is the de-

ployment gain G(pt) when θ → 0, or, equivalently, when pt → 1:

Ĝ = lim
pt→1

G(pt). (3.6)

Note that, the ADG may not exist for some point processes and fading types. In

the following section, we will provide some sufficient conditions for the existence of

the ADG. For Rayleigh fading, the ADG of the MCP exists.

Similar to the DG, the ADG measures the coverage probability but characterizes

the difference between the coverage probability of the PPP and a given point process

as the coverage probability approaches 1 instead of for a target coverage probability,

and by observation from Fig. 3.1, the ADG closely approximates the DG for all

practical values of the coverage probability. Hence, given the ADG of a point process,

we can evaluate its coverage probability by shifting (in dB) the corresponding PPP

results, that is to say, Pc(θ) ≈ PPPP
c (θ/Ĝ) and Pc(θ) ∼ PPPP

c (θ/Ĝ), θ → 0. In

Fig. 3.1, we observe that Ĝ ≈ 2.4 for the triangular lattice and Ĝ ≈ 0.5 for the

MCP. Note that the ADG relative to the PPP permits an immediate calculation of

the ADG between two arbitrary point processes.

3.3 Existence of the Asymptotic Deployment Gain

In this section, we derive several important asymptotic properties of the SINR

distribution, given some general assumptions about the point process and the CDF

of the fading variables. These asymptotic properties, in turn, prove the existence of

the ADG.
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Figure 3.1. The coverage probability of the PPP with intensity λ = 0.1, the
MCP with λp = 0.01, c̄ = 10 and rc = 5, and the triangular lattice with

density λ = 0.1 (see Section III-B for an explanation of these parameters)
for Rayleigh fading, path loss model `(x) = (1 + ‖x‖4)−1 and no noise,
which are simulated on a 100× 100 square. The lines are the coverage

probability curves of the three point processes, while the markers indicate
the coverage probability curves of the PPP shifted by the deployment gains

of the MCP and the triangular lattice at pt = 0.6.
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First we give several notations, based on which we introduce the precise class

of point processes we focus on. We define the contact distance ξ , ‖NPΦ(o)‖, and

define the supremum of ξ as

ξmax , sup
x∈R2

min
y∈Φ
{‖x− y‖}. (3.7)

Due to the ergodicity of the point process (which follows from the mixing property)

[5, Ch. 2], ξmax does not depend on the realization of Φ. ξmax = ∞ in many mixing

point processes.

We define Φζ
o , (Φ | NPΦ(o) = ζ), where ζ ∈ R2 \ {o}, as the conditional point

process that satisfies NPΦ(o) = ζ, which implies ζ ∈ Φζ
o and Φζ

o(b(o, ‖ζ‖)) = 0.1 So

given that ζ is the closest point of Φ to o, the total interference is I(Φζ
o). However, it is

tricky to directly handle the conditional point process conditioned on that there is an

empty disk, if the point process is not the PPP. Thus, we compare the interference in

Φζ
o with the interference from a point process where the desired BS ζ is not necessarily

the closest one. To this end, we define Φζ , (Φ | ζ ∈ Φ) and consider its interference

outside a disk of radius ‖ζ‖/2 around the origin:

Î(Φζ) =
∑

x∈Φζ
⋂
Bζ/2\{ζ}

hx`(x), (3.8)

where Bζ/2 , R2 \ b(o, ‖ζ‖/2). Note that it is not necessary to let the radius of the

disk be ‖ζ‖/2 and, in fact, the radius could be any quantity that is smaller than ‖ζ‖.

Since we can use Palm theory [5] for Φζ , it is easier to deal with Φζ than Φζ
o.

To better understand the above notations, we give an illustration of them in

Fig. 3.2. Both Φζ
o and Φζ have a point at ζ, and we let ‖ζ‖ = y. All points of Φζ

o are

located in the striped region (outside b(o, y)), and I(Φζ
o) is the interference from all

1For a point process Φ, Φ(B) is a random variable that denotes the number of points in set
B ⊂ R2.
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these points except ζ. In contrast, Φζ may have points throughout the whole plane,

but Î(Φζ) is the interference only from the points of Φζ in the shaded region (outside

b(o, y/2)) except ζ.

 
!

 
!

 

 
!

 
!

Figure 3.2. An illustration of Φζ
o, Φζ , I(Φζ

o) and Î(Φζ), where ‖ζ‖ = y.

Using the above notations, we define a general class of point process distributions

that we use to rigorously state our main result on the SINR distribution.

Definition 13 (Set A). The set A = {PΦ} is the set of all m.i. point process

distributions PΦ that are mixing and that satisfy the following four conditions. If a

point process Φ is distributed as PΦ ∈ A,

1. for all n ≥ 2, the nth moment density of Φ is bounded, i.e., ∃qn < ∞, such that
ρ(n)(x1, . . . , xn) < qn, for x1, . . . , xn ∈ R2;

2. for all y > 0, ∃ζ ∈ R2 with ‖ζ‖ = y, such that P(Φζ(b(o, y)) = 0) 6= 0;

3. ∃y0 > 0, such that for all y > y0 and ζ ∈ R2 with ‖ζ‖ = y, Î(Φζ) stochastically
dominates I(Φζ

o), i.e., P(I(Φζ
o) > z) ≤ P(Î(Φζ) > z), for all z ≥ 0;
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4. ∀n ∈ N, the n-th moment of the contact distance ξ is bounded, i.e., ∃bn <∞, s.t.
E(ξn) < bn.

To have a better understanding of the definition, we have the following remarks

with respect to each condition:

1. By the mixing property, we have that ρ(2)(x1, x2)→ λ2, as ‖x1− x2‖ → ∞, which
indicates that when ‖x1 − x2‖ is large enough, ρ(2)(x1, x2) is bounded. The first
condition means more than that. It guarantees that the nth moment measure of
Φ is absolutely continuous with respect to the Lebesgue measure, which, in turn,
implies that Φ is locally finite [5, Ch. 2.2]. A point process is locally finite if and
only if Φ(B) <∞ a.s., for any B ⊂ R2 with ν(B) <∞, where ν(·) is the Lebesgue
measure. The locally finiteness is a standard assumption in point process theory.
Note that, the first condition is stronger than the locally finiteness. This condition
excludes some extreme cases, such as the Gauss-Poisson point process as described
in [5, Sec. 3.4].

2. Since Φ is a m.i. point process, the second condition is equivalent to requiring
that for all y > 0, ∀ζ ∈ R2 with ‖ζ‖ = y, such that P(Φζ(b(o, y)) = 0) 6= 0. That
is to say, if ζ ∈ Φ (‖ζ‖ 6= 0), the probability of no points of Φ being located in
b(o, ‖ζ‖) is larger than zero. The condition also implies that ξmax = ∞. Because
if ξmax < ∞, there surely is at least one point of Φ in B(o, ξmax), which leads
to a contradiction that ∀ζ ∈ R2 with ‖ζ‖ > ξmax, P(Φζ(b(o, ξmax)) > 0) = 1.
Therefore, the condition excludes the m.i. and mixing point processes where there
exists r0 > 0, such that for all x ∈ R2, there is at least one point in the region
b(x, r0). Those point processes may be constructed, but are rarely considered in
the context of wireless networks.

3. The third condition is based on the two random variables I(Φζ
o) and Î(Φζ), whose

expressions contain the fading variables. But, in fact, the condition is independent
of the fading type, since the fading variables are i.i.d. and their expectation is
bounded. The condition means that there exists y0 > 0, such that for all y > y0

and ζ ∈ R2 with ‖ζ‖ = y, the CCDF of the interference from Φζ
⋂
Bζ/2 \ {ζ} is

always no smaller than the CCDF of the interference from Φζ
o \ {ζ}. Most point

processes meet the condition, since an extra region b(o, y) \ b(o, y/2) is included
in Î(Φζ), but not in I(Φζ

o). Some point processes, which are seldom considered,
may violate the condition. For example, albeit somewhat artificial, in the point
process Φ, for small ε > 0, the expectation of Φζ

o(b(o, ‖ζ‖ + ε)) is much greater
than that of Φζ(b(o, ‖ζ‖ + ε)), which, at last, leads to the violence of the third
condition. Such kind of point processes are beyond our consideration.

4. The fourth condition is satisfied by most point processes that are considered. One
sufficient condition of the fourth condition is that F c

ξ (x) < exp(−c0x), as x→∞,
where F c

ξ is the CCDF of ξ and c0 ∈ R+. One simple example is the PPP with
intensity λ, whose CCDF of ξ is F c

ξ (x) = exp(−λπx2).
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In summary, the four conditions in Def. 13 are quite mild; they are satisfied by

most point processes that are usually considered in wireless networks and in stochastic

geometry, such as the PPP, the MCP and the Matérn hard-core process (MHP) [5,

Ch. 3]. The triangular lattice is not included, since it is not mixing and ξmax < ∞.

We will prove that the laws of the PPP, the MCP and the MHP belong to A in

Section 3.3.3.

3.3.1 Main Results

Before presenting the main theorems of this section, we state a property of the

distribution of I(Φζ
o).

Lemma 1. Assume the fading variable h satisfies that ∀n ∈ N, E(hn) < +∞. For a

point process Φ with PΦ ∈ A, the following statements hold:

1. for `(x) = (1 + ‖x‖α)−1, all moments of the interference I(Φζ
o) are bounded, i.e.,

∀n ∈ N, ∃cn ∈ R+, such that E(I(Φζ
o)
n) < cn, where cn does not depend on ζ;

2. for `(x) = ‖x‖−α, all moments of the interference are bounded, and ∀n ∈ N,
∃cn ∈ R+, such that E(I(Φζ

o)
n) < cn max{1, ‖ζ‖2−αn}.

Proof. See Appendix A.1.

Since I(Φζ
o) can be interpreted as the total interference at o if the nearest base

station to o is at ζ, Lemma 1 shows that all moments of the total interference are

bounded. If the path loss model is non-singular, the bound can be chosen to be

independent of ‖ζ‖, the location of the nearest base station. However, if the path

loss model is singular, the bound depends on ‖ζ‖, and if ‖ζ‖ goes to 0, it can be

proved that the mean interference becomes arbitrarily large for some BS processes,

e.g., the PPP.

Now we are equipped to state our main result: if the CDF of the fading variable h

decays polynomially around 0 and all moments of h are bounded, then as a result of
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the boundedness of the moments of the interference, the outage probability 1−Pc(θ)

expressed in dB, as a function of the SINR threshold θ, also in dB, has the same

slope as θ → 0, for all Φ with PΦ ∈ A.

Theorem 1. For a point process Φ with PΦ ∈ A, if the fading variable satisfies

1. ∃m ∈ (0,+∞), s.t. Fh(t) ∼ atm, as t→ 0, where a > 0 is constant,

2. ∀n ∈ N, E(hn) < +∞,

then we have

1− Pc(θ)

θm
→ κ, as θ → 0, (3.9)

where 0 < κ <∞ does not depend on θ and is given by

κ =

∫ ∞
0

EI(Φζo)

[
a`(y)−m

(
I(Φζ

o) +W
)m]

fξ(y)dy (3.10)

(‖ζ‖ = y) and fξ is the PDF of ξ.

Proof. See Appendix A.2.

Theorem 1 shows that the ADG exists and how it depends on the other network

parameters. The following theorem quantifies the ADG.

Corollary 1. Under the same condition as in Theorem 1, the ADG of Φ exists and

is given by

Ĝ =
(κPPP

κ

) 1
m
, (3.11)

where κPPP is the value for the PPP and κ is the value for Φ. For the PPP with

intensity λ,

κPPP = 2λπ

∫ ∞
0

EIr
[mm−1

Γ(m)
`(r)−m

(
Ir +W

)m]
r exp(−λπr2)dr, (3.12)

where Ir =
∑

x∈Φ
⋂
b(o,r)c hx`(x).
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Proof. Given a target coverage probability pt, define θ1 , P−1
c (pt) and θ2 , (PPPP

c )−1(pt).

As pt → 1, we have θ1 → 0 and θ2 → 0. By Theorem 1, 1 − Pc(θ1) ∼ κθm1 and

1 − PPPP
c (θ2) ∼ κPPPθm2 . Since pt = Pc(θ1) = PPPP

c (θ2), as pt → 1, κθm1 = κPPPθm2 .

Thus, Ĝ = limpt→1 θ1/θ2 = (κPPP/κ)1/m.

Note that Rayleigh fading meets the requirements in Theorem 1 with m = 1. For

the special case of the PPP with intensity λ, no noise and Rayleigh fading, it has

been obtained in [8] that

Pc(θ) =

(
1 + θδ

∫ ∞
θ−δ

1

1 + u1/δ
du

)−1

, (3.13)

where δ , 2/α. It follows that κPPP = limθ→0
1−Pc(θ)

θ
= 2

α−2
. For α = 4, Pc(θ) =

1/(1 +
√
θ arctan

√
θ), and κPPP = 1.

A point process has different ADGs depending on the value of m. So it is sensible

to compare the ADGs of different point process models only under the same fading

assumption.

We have proved that the ADG exists with certain constrains on the fading and

point processes. In the rest of this section, we consider some special cases for the

point processes and fading distributions.

3.3.2 Special Cases - Fading Types

Regarding the fading, we mainly consider Nakagami-m fading and composite fad-

ing, which is a combination of Nakagami-m fading and log-normal shadowing.

3.3.2.1 Nakagami-m Fading

The fading variable h ∼ gamma(m, 1/m). On the one hand, we have

lim
t→0

Fh(t)

tm
= lim

t→0

(mt)m−1 exp(−mt)
Γ(m)tm−1

=
mm−1

Γ(m)
< +∞. (3.14)
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On the other hand, since F c
h(x) has an exponential tail, all moments of h are finite.

Thus, Nakagami-m fading meets the requirements in Theorem 1.

In addition, we find an interesting phenomenon that for a point process Φ with

PΦ ∈ A, the behavior of the CCDF of the fading at the tail determines the behavior

of the CCDF of the interference I(Φζ
o) at the tail. The following corollary presents

the property. As usual, f(x) = Ω(g(x)), as x→∞ means lim supx→∞
∣∣f(x)
g(x)

∣∣ > 0.

Corollary 2. For a point process Φ with PΦ ∈ A, if the fading has at most an

exponential tail, i.e., − logF c
h(x) = Ω(x), x → ∞, where F c

h(x) is the CCDF of

the fading variable h, then the interference tail is bounded by an exponential, i.e.,

− logF c

I(Φζo)
(x) = Ω(x), x→∞, where F c

I(Φζo)
(x) is the CCDF of I(Φζ

o).

Proof. See Appendix A.3.

A similar property has been derived in [45], namely, that in ad hoc networks

modeled by m.i. point processes, an exponential tail in the fading distribution implies

an exponential tail in the interference distribution. The result cannot be directly

applied to cellular networks, because in the cellular network that we consider, each

user communicates with its nearest BS u and thus no interferers can be closer than

u, while the authors in [45] assume the receiver communicates with a transmitter

with a fixed location and there can be some interferers closer to the receiver than the

transmitter.

3.3.2.2 Composite Fading

The signals from all BSs experience both Nakagami-m fading and log-normal

shadowing. A similar kind of fading has been investigated in [48, 49], where the

fading was composed of Rayleigh fading and log-normal shadowing. Denote the

fading variable with respect to Nakagami-m fading by h̃ and the fading variable
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with respect to log-normal shadowing by ĥ. The composite fading variable can be

represented as h = h̃ĥ, where h̃ and ĥ are independent.

For the log-normal shadowing, we use the definition from [53]. Without loss of

generality, we assume ĥ = 10X/10, where X ∼ N(0, σ2). The CDF of ĥ, denoted by

Fĥ(t), is

Fĥ(t) =
1

2
erfc

(
− 10 log t

σ
√

2 log 10

)
=

1√
π

∫ ∞
− 10 log t

σ
√

2 log 10

exp(−v2)dv, (3.15)

where erfc is the complementary error function. It is straightforward to obtain that

E[ĥ] = exp(( log 10
10

)2 σ2

2
) and E[ĥ2] = exp(( log 10

10
)22σ2).2 We can easily show that as

t → ∞, F c
ĥ
(t) decays faster than t−n for any n ∈ N, but slower than exp(−at) for

any a > 0.

For the composite fading, we have the following lemma about the distribution of

h.

Lemma 2. If h̃ ∼ gamma(m, 1
m

), 10 log ĥ/ log 10 ∼ N(0, σ2), and h̃ is independent

of ĥ, the distribution of h = h̃ĥ has the following properties:

1. Fh decays polynomially around 0 and

lim
t→0

Fh(t)

tm
=

∫ ∞
0

10mm−1

σ log 10
√

2πΓ(m)um+1
exp

(
−
( 10 log u

σ
√

2 log 10

)2
)
du <∞; (3.16)

2. F c
h(t) = o(t−n), as t→∞, for any n ∈ N, and − logF c

h(t) = o(t), t→∞.

Proof. See Appendix A.4.

The two properties in Lemma 2 indicate that the composite fading retains the

asymptotic property of Nakagami-m fading for t → 0 and that of log-normal shad-

2Note that the mean of ĥ is not 1. Actually, we can normalize it to 1 and replace it with the
normalized variable in our results, but since it does not affect our results, for convenience, we just
leave it as it is.
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owing for t→∞, respectively. They also imply that the composite fading meets the

requirements in Theorem 1.

Regarding the distribution of the interference at the tail, we also have the following

corollary.

Corollary 3. For a point process Φ with PΦ ∈ A and composite fading, the in-

terference tail is upper bounded by a power law with arbitrary parameter β, i.e.,

F c

I(Φζo)
(y) = o(y−β), ∀β ∈ N, as y → +∞.

Proof. We can simply apply the Markov inequality and have that ∀β ∈ N,

P(I(Φζ
o) > y) ≤ E(I(Φζ

o)
β)

yβ
. (3.17)

Hence, using Lemma 1, we have F c

I(Φζo)
(y) = o(y−β), ∀β ∈ N, as y → +∞.

3.3.3 Special Cases - Point Processes

As for the point processes, we specifically concentrate on the PPP, the MCP and

the MHP. We first give an introduction to the three point processes, then we will

present the asymptotic properties with respect to the fading types.

Poisson Point Process : The PPP is the simplest model of point processes, which

exhibits complete spatial randomness. The points in the PPP are stochastically

independent, which makes the PPP the most tractable point process.

Matérn Cluster Process : As a class of clustered point processes on the plane

built on a PPP, the MCPs are doubly Poisson cluster processes, where the parent

points form a uniform PPP Φp of intensity λp and the daughter points are uniformly

scattered on the ball of radius rc centered at each parent point xp with intensity

λ0(x) =
c̄

πr2
c

1B(xp,rc)(x), (3.18)
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where B(xp, rc) , {x ∈ R2 : ‖x − xp‖ ≤ rc} is the closed disk of radius rc centered

at xp. The mean number of daughter points in one cluster is c̄. So the intensity of

the process is λ = λpc̄.

Matérn Hard-core Process : The MHPs are a class of repulsive point processes,

where points are forbidden to be closer than a certain minimum distance. There are

several types of MHPs. Here we only consider the MHP of type II [5, Ch. 3], which

is generated by starting with a basic uniform PPP Φb of intensity λb, adding to each

point x an independent random variable m(x), called a mark, uniformly distributed

on [0, 1], then flagging for removal all points that have a neighbor within distance

rh that has a smaller mark and finally removing all flagged points. The intensity of

the MHP is λ =
1−exp(−λbπr

2
h)

πr2
h

. The highest density λmax = 1/(πr2
h) is achieved as

λb →∞.

Lemma 3. The distributions of the PPP, the MCP and the MHP belong to the set

A.

Proof. See Appendix A.5.

By Lemma 3, regarding Nakagami-m fading and composite fading, we have the

following corollary directly from Theorem 1.

Corollary 4. If the fading is Nakagami-m or the composite fading, then for the PPP,

the MCP and the MHP,

1− Pc(θ)

θm
→ κ, as θ → 0, (3.19)

where κ > 0 is given by

κ =

∫ ∞
0

EI(Φζo)

[
a`(y)−m

(
I(Φζ

o) +W
)m]

fξ(y)dy (3.20)
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(‖ζ‖ = y) and fξ is the PDF of ξ. For Nakagami-m fading, a = mm−1

Γ(m)
; for the

composite fading, a =
∫∞

0
10mm−1

σ log 10
√

2πΓ(m)um+1 exp(−( 10 log u

σ
√

2 log 10
)2)du.

3.4 Applications of the Asymptotic Deployment Gain

Since the ADG characterizes the gap of the coverage probability between a point

process and the PPP, any statistic that depends on the distribution of the SINR (e.g.,

the average ergodic rate and the mean SINR) can be approximated using the ADG.

In this section, we focus on the average ergodic rate and the mean SINR.

3.4.1 Average Ergodic Rate

We assume each mobile user adopts adaptive modulation/coding to achieve the

Shannon bound of the rate for the instantaneous SINR. That is to say, each user

adjusts its rate of transmission to γ = ln(1 + SINR). Using the same definition as in

Section 2.5, the average ergodic rate (expressed in nats) is γ̄ , E[ln(1 + SINR)].

Provided the ADG of Φ as Ĝ and the coverage probability of the correspond-

ing PPP as PPPP
c (θ), the coverage probability of Φ is approximated as PPPP

c (θ/Ĝ).

Similar to (2.13), the average ergodic rate can be expressed as

γ̄ ≈ −
∫ ∞

0

ln(1 + θ)dPPPP
c

(
θ

Ĝ

)
= −

∫ ∞
0

ln(1 + Ĝθ)dPPPP
c (θ) (3.21)

=

∫ ∞
0

PPPP
c

(
ex − 1

Ĝ

)
dx. (3.22)

In general, if each user adopts a certain type of modulation or coding instead

of adaptive modulation/coding, the rate can be approximated by adding a gap Gg,

i.e., γ ≈ ln(1 + SINR/Gg), where Gg ≥ 1. From (3.21), we observe that in fact, the

distribution of base stations has the same effect on the average ergodic rate as the
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modulation and coding. The modulation and coding degrade the level of the average

ergodic rate, but the distribution of base stations can either increase or decrease the

average ergodic rate, depending on whether the base stations are regular (Ĝ > 1) or

clustered (Ĝ < 1). If Ĝ = 1, the average ergodic rate approximates that of the PPP,

and as Ĝ grows, the average ergodic rate increases.

3.4.2 Mean SINR

Just as the coverage probability and the average ergodic rate, the mean SINR is

also an important criterion that has been discussed in wireless networks, e.g. in [50].

Denote MΦ as the mean SINR for Φ, and MPPP the mean SINR for the PPP with

the same intensity as that of Φ. It can be proved that the mean SINR for the PPP

is infinite if the path loss model is singular. Briefly, for ζ = NPΦ(o), letting y = ‖ζ‖,

we have

E(SINR) = E
(

`(ζ)

W + I(Φζ
o)

)
(a)

≥ Ey
(

`(ζ)

W + E[I(Φζ
o)]

)
(b)

≥ Ey
(

y−α

W + c1 max{1, y2−α}

)
=

∫ 1

0

x−α

W + c1x2−αf‖ζ‖(x)dx+

∫ ∞
1

x−α

W + c1

f‖ζ‖(x)dx

≥
∫ 1

0

x−1

W + c1

2πλe−λπx
2

dx+

∫ ∞
1

x−α

W + c1

f‖ζ‖(x)dx =∞, (3.23)

where f‖ζ‖(x) = 2πλxe−λπx
2

is the contact distance distribution for the PPP, (a)

follows from Jensen’s inequality, and (b) follows from Lemma 1.

So, we only consider the non-singular path loss model. We have E(SINR) =

E(h)E
( `(ζ)

W+I(Φζo)

)
≤ E(h)

W
E(`(ζ))<∞, where ζ = NPΦ(o). Given the ADG Ĝ of Φ, we

have a simple approximation for MΦ:

MΦ ≈ ĜMPPP.

Therefore, the ADG can also be interpreted as the approximate gain in the mean
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SINR.

Conditioned on a small SINR, the relationship becomes exact asymptotically:

Define M t
Φ = E(SINR | SINR < t). Since M t

Φ =
∫ t

0
Pc(θ)dθ − tPc(t), we have

M t
Φ ∼ ĜM t

PPP, as t→ 0, where M t
PPP is M t

Φ when Φ is the PPP.

3.5 Simulations

In this section, we perform simulations on a 100× 100 square, where we consider

the non-singular path loss model and fix the path loss exponent to α = 4 and the

intensity of the point processes to λ = 0.1. For the MCP, we let λp = 0.01, c̄ = 10

and rc = 5; for the MHP, we let λb = 0.263 and rh = 1.7. We present our results in

two subsections corresponding to the SINR distribution and the applications of the

ADG.

3.5.1 SINR Distribution

3.5.1.1 Nakagami-m Fading

In this part, we present simulation results of the outage probability for the PPP,

the MCP, and the MHP under Nakagami-m fading.

Fig. 3.3 shows the outage curves 1−Pc(θ) of the PPP for m ∈ {1, 2} and different

mean SNR values. Note that the SNR value here is the mean SNR measured at a unit

distance from the base station, and is 1/(2W ). As θ approaches 0, the slopes of the

curves for m = 1 are all 10 dB/decade, and the slopes for m = 2 are all 20 dB/decade,

in agreement with Corollary 4. We also observe that there is only a rather small gap

between the cases of SNR = 20 dB and SNR =∞, thus the thermal noise does not

significantly affect the asymptotic performance of the coverage probability. We will

neglect noise in the rest of this section.

In Fig. 3.4, we find that for the same point process, a different m implies a
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Figure 3.3. Nakagami-m fading: the outage probability 1− Pc(θ) vs. θ for
the PPP when m ∈ {1, 2} under different SNR settings.
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Figure 3.4. Nakagami-m fading: the outage probability 1− Pc(θ) vs. θ for
the PPP, the MCP and the MHP when m ∈ {1, 2, 4} (no noise).
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different asymptotic slope. In fact, the slope is 10m dB/decade, just as Corollary 4

indicates. For the same m, different point processes have the same asymptotic slope,

thus in the high-reliability regime, the coverage probability of a non-Poisson process

can be obtained accurately simply by shifting the coverage probability curve of the

PPP with the same intensity by the ADG. Besides, we observe that for any m, the

coverage probability of the MHP is the largest of the three processes, followed by

the PPP and then the MCP. Intuitively, the MHP has a better coverage probability

because it is more regular than the PPP. Similarly, the MCP has a poorer coverage

probability because it is more clustered than the PPP. In addition, since the value

of κ for the MCP and the MHP can be approximated through the simulation, by

Corollary 1, we can approximate their ADGs. Denote by ĜMCP
m the ADG for the

MCP with respect to m, and by ĜMHP
m that of the MHP. We obtain that for the

MCP, ĜMCP
1 ≈ 0.49, ĜMCP

2 ≈ 0.37 and ĜMCP
4 ≈ 0.29; for the MHP, ĜMHP

1 ≈ 1.58,

ĜMHP
2 ≈ 1.48 and ĜMHP

4 ≈ 1.41. Note that ĜMCP
1 is consistent with the approximated

value 0.49 obtained from Fig. 3.1.

3.5.1.2 Composite Fading

We consider the combination of Nakagami-m fading and log-normal shadowing

in this part. Fig. 3.5 shows the outage probability for the PPP when σ = 2 and

m ∈ {1, 2, 4}. As Corollary 4 indicates, the case of the composite fading has the

same asymptotic property as the case of Nakagami-m fading. As θ → 0, the slope of

the curve is 10m dB/decade.

In Fig. 3.6, the outage probabilities for the PPP, the MCP and the MHP are

exhibited. The MHP still has the best outage probability, followed by the PPP and

the MCP. We also observe that the value of σ does not affect the slope of the outage

curve as θ → 0, which is 10m dB/decade. The ADGs of the MCP and MHP can also

be estimated: for m = 1 and σ = 2, ĜMCP
1 ≈ 0.51 and ĜMHP

1 ≈ 1.55; for m = 2 and
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Figure 3.5. Compound fading: the outage probability 1− Pc(θ) vs. θ for
the PPP when m ∈ {1, 2, 4} and σ = 2 (no noise, α = 4).
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σ = 4, ĜMCP
2 ≈ 0.40 and ĜMHP

2 ≈ 1.37.
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Figure 3.6. Compound fading: the outage probability 1− Pc(θ) vs. θ for
the PPP, the MCP and the MHP when m = 1, σ = 2 and m = 2, σ = 4 (no

noise, α = 4).

3.5.2 Applications of the ADG

In this subsection, we evaluate the average ergodic rate and the mean SINR for

the PPP, the MCP and the MHP through simulations, and also estimate them using

the ADGs. The ADG values approximated by the DG values at pt = 1 − 10−4 for

the three point processes are presented in Table 3.1. We see that as a function of α,
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the ADG does not monotonically increase as α increases.

TABLE 3.1

THE ADGS FOR DIFFERENT α (RAYLEIGH FADING, NO NOISE)

ADG α = 2.5 α = 3.0 α = 3.5 α = 4 α = 4.5 α = 5

MCP 0.46 0.40 0.41 0.49 0.42 0.46

MHP 1.27 1.37 1.37 1.58 1.40 1.65

3.5.2.1 Average Ergodic Rate

In Fig. 3.7, the average ergodic rates γ̄ for the three point processes as a function

of α are shown as the lines. We also use the simulation results of the PPP and the

ADGs in Table 3.1 to estimate the average ergodic rates for the MCP and the MHP.

The estimated values are shown as the markers in Fig. 3.7. From the figure, we

verify that the average ergodic rates estimated using the ADGs provide fairly good

approximations to the empirical values. We also observe that γ̄ increases as α grows,

which is obvious since the interference decays much faster than the desired signal

power.

3.5.2.2 Mean SINR

In Fig. 3.8, the lines are the mean SINRs for the three point processes as a function

of α. The markers indicate the mean SINRs for the MCP and the MHP estimated
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Figure 3.7. The average ergodic rate γ̄ vs. α for the PPP, the MCP and
the MHP. The lines are the average ergodic rates obtained directly from
simulations, while the markers are the average ergodic rates estimated

using the ADGs.
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using the simulation results of the PPP and the ADGs. The approximations using

the ADGs are acceptable, although not quite good. The gaps between the values

estimated using the ADG and the empirical value are mainly due to the fact that

the ADG can provide accurate approximations of the CCDF of the SINR when the

SINR threshold θ is small enough, but when θ becomes large, the accuracy of the

approximation degrades.
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Figure 3.8. The mean SINR MΦ vs. α for the PPP, the MCP and the
MHP. The lines are the mean SINRs obtained directly from simulations,

while the markers are the mean SINRs estimated using the ADGs.
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3.6 Summary

We examined the asymptotic properties of the SINR distribution for a variety

of motion-invariant point processes, given some general assumptions on the point

process and general fading assumptions. The assumptions on the point process are

satisfied by many commonly used point processes, e.g. the PPP, the MHP and the

MCP. Similarly, the fading assumptions are satisfied by Nakagami-m fading and

composite fading. We proved that 1− Pc(θ) ∼ κθm, as θ → 0, which shows that the

ADG exists.

Under the same system configurations on the fading and path loss, different point

processes with the same intensity have different ADGs. Thus, the ADG can be used

as a simple metric to characterize the coverage probability. Given the ADG of a point

process, we can obtain the precise CCDF of the SINR near 1 by shifting the coverage

probability curve of the PPP with the same intensity by the ADG (in dB), and

numerical studies show that the shifted coverage probability curve is highly accurate

for all practical coverage probabilities.

80



CHAPTER 4

CONCLUSIONS AND FUTURE WORK

4.1 Conclusions

In this thesis, we first conducted spatial stochastic model fitting in cellular net-

works using real data sets of BS locations in the UK. It turned out that, the regular

point processes outperform the PPP in modeling the network topology, in term of the

coverage probability. But those models do not have the tractability of the PPP. As

a consequence, they are not widely considered in the literature on wireless networks.

By observations from the simulations, we proposed the deployment gain, which can

provide somewhat analytical power to those models by utilizing the analytical results

for the PPP.

Furthermore, based on the concept of the deployment gain, we studied the asymp-

totic deployment gain, and theoretically proved its existence for a general class of

point process models under general fading assumptions. We proposed it as a simple

metric to characterize the coverage probability, and used it to estimate other statistics

usually considered in the context of wireless networks, such as the average ergodic

rate and the mean SINR.

4.2 Future Work

Possible extensions of this thesis could be as follows:

• The ADG defined in this thesis is the deployment gain as the SINR threshold
θ goes to 0. We can explore whether the asymptotic gain exists as θ goes to
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∞. If it exists, we can use it together with the ADG we defined to improve the
estimations of the average ergodic rate and the mean SINR.

• In the cellular industry, the coverage (i.e., the CCDF of the SINR) is usu-
ally evaluated without consideration of small-scale fading. We can investigate
whether the ADG exists when only log-normal shadowing is taken into consid-
eration.

• We can study the coverage without fading by re-defining the SINR. In that
case, the coverage depends on the BS distribution, the path loss model and
the thermal noise. Verifying the existence of the ADG is the key problem. By
the study, we can give some insights on how the fading affects the coverage for
various BS distributions.

• For some point process models that are usually considered in wireless networks,
such as the Poisson cluster process and the Matérn hard-core process, we can
derive some closed-form bounds of the ADG.
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APPENDIX A

PROOFS

A.1 Proof of Lemma 1

Proof. We first prove that ∀n ∈ N, there exists a positive K0 <∞, s.t. E(I(Φζ
o)
n) ≤

K0E(Î(Φζ)n). Let ζ ∈ R2 and ‖ζ‖ = y. According to Def. 13, for y > y0, P(I(Φζ
o) >

z) ≤ P(Î(Φζ) > z), ∀z ≥ 0, hence E(I(Φζ
o)
n) ≤ E(Î(Φζ)n). For y ≤ y0, we have

E(Î(Φζ)n) ≥ E(Î(Φζ)n | Φζ(b(o, y)) = 0))P(Φζ(b(o, y)) = 0)

(a)

≥ E(I(Φζ
o)
n)P(Φζ′(b(o, y0)) = 0), (A.1)

where ζ ′ ∈ R2, ‖ζ ′‖ = y0, and (a) holds since Φ is motion-invariant, y0 ≥ y and thus

P(Φζ′(b(o, y0)) = 0) ≤ P(Φζ(b(o, y)) = 0). The second condition in Def. 13 implies

that for all y > 0, ∀ζ ∈ R2 with ‖ζ‖ = y, P(Φζ(b(o, y)) = 0) 6= 0. So, we have

P(Φζ′(b(o, y0)) = 0) 6= 0, letting K0 = max{1, 1/P(Φζ′(b(o, y0)) = 0)}, we have

E(I(Φζ
o)
n) ≤ K0E(Î(Φζ)n). (A.2)

Second, we prove that all moments of I(Φζ
o) are bounded. For n = 1, by the third
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condition in Def. 13, we have

E(I(Φζ
o)) ≤ K0E(Î(Φζ)) = K0EhE!ζ

( ∑
x∈Φ

⋂
Bζ/2

hx`(x)

)

= K0E!ζ

( ∑
x∈Φ

⋂
Bζ/2

E(hx)`(x)

)
(a)
= K0

E(h)

λ

∫
Bζ/2

`(x)ρ(2)(x− ζ)dx, (A.3)

where E!ζ(·) is the expectation with respect to the reduced Palm distribution P !ζ ,

which is the conditional expectation conditioned on ζ ∈ Φ but excluding ζ. (a)

follows from the Campbell-Mecke theorem.

For n ≥ 2, we have

E(I(Φζ
o)
n) ≤ K0EhE!ζ

( ∑
x∈Φ

⋂
Bζ/2

hx`(x)

)n
(a)
= K0EhE!ζ

[ ∑
x∈Φ

⋂
Bζ/2

(
hx`(x)

)n]
+K0

∑
k1+k2=n,k1≥k2>0

(
n

k1, k2

)

· EhE!ζ

[ 6=∑
x1,x2∈Φ

⋂
Bζ/2

(
hx1`(x1)

)k1
(
hx2`(x2)

)k2

]
+ · · ·

+K0

∑
∑n
j=1 kj=n,kn≥···≥k1>0

(
n

k1, ..., kn

)
EhE!ζ

[ 6=∑
x1,...,xn∈Φ

⋂
Bζ/2

n∏
j=1

(
hxj`(xj)

)kj]
(b)
= K0

E(hn)

λ

∫
Bζ/2

(`(x))nρ(2)(x− ζ)dx+
K0

λ

n∑
J=2

∑
∑J
j=1 kj=n,kJ≥···≥k1>0

(
n

k1, ..., kJ

)

·
( J∏

j=1

E(hkj)

)∫
Bζ/2

· · ·
∫
Bζ/2

J∏
j=1

(`(xj))
kjρ(J+1)(x1 − ζ, ..., xJ − ζ)dx1...dxJ ,

(A.4)

where (a) follows by the multinomial theorem and (b) follows from the Campbell-

Mecke theorem.

We discuss the cases of the non-singular and singular path loss models, separately.
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For `(x) = (1+‖x‖α)−1, when n = 1, since by Def. 13, there exists q2 <∞, such that

ρ(2)(x) < q2 for x ∈ R2, it yields that
∫
Bζ/2

`(x)ρ(2)(x)dx ≤
∫
R2 `(x)ρ(2)(x)dx < ∞

and thus by (A.3), there exists c1 ∈ R+, such that E(I(Φζ
o)) < c1. Similarly, when

n > 1, by (A.4), there exists cn ∈ R+, such that E(I(Φζ
o)
n) < cn, where cn does not

depend on ζ.

For `(x) = ‖x‖−α, when n = 1, we have that
∫
Bζ/2

`(x)ρ(2)(x)dx ≤ q2

∫
Bζ/2
‖x‖−αdx =

2πq2
(α−2)22−α‖ζ‖2−α ≤ 2πq2

(α−2)22−α max{1, ‖ζ‖2−α}, and hence by (A.3), there exists c1 ∈

R+, such that E(I(Φζ
o)) < c1 max{1, ‖ζ‖2−α}. When n > 1, for kj ∈ {1, 2, ..., n},∫

Bζ/2
(`(x))kjdx =

∫
Bζ/2
‖x‖−αkjdx = 2π

(αkj−2)22−αkj ‖ζ‖2−αkj , and therefore, we have∫
Bζ/2
· · ·
∫
Bζ/2

∏J
j=1(`(xj))

kjdx1...dxJ = (
∏J

j=1( 2π

(αkj−2)22−αkj ))‖ζ‖2J−αn. Further, we

have ‖ζ‖2J−αn ≤ max{1, ‖ζ‖2−αn}. Hence, by (A.4), there exists cn ∈ R+, such that

E(I(Φζ
o)
n) < cn max{1, ‖ζ‖2−αn}.

A.2 Proof of Theorem 1

Proof. We first consider the case when the noise power W = 0. Since Φ is m.i., we

assume ζ = (y, 0). Let ˆ̀(x) = 1/`(x). The coverage probability is

Pc(θ) = Eξ[P(SINR > θ | ξ)]

=

∫ ∞
0

P(hζ > θ ˆ̀(ζ)I(Φζ
o))fξ(y)dy

=

∫ ∞
0

EI(Φζo)[F
c
h(θ ˆ̀(ζ)I(Φζ

o))]fξ(y)dy, (A.5)

Thus,

lim
θ→0

1− Pc(θ)

θm
= lim

θ→0

∫ ∞
0

EI(Φζo)

[
Fh(θ ˆ̀(ζ)I(Φζ

o))

θm

]
fξ(y)dy. (A.6)

Assume G(t) , Fh(t)/t
m, for t > 0, and G(0) = limt→0 Fh(t)/t

m = a. ∀ε > 0,
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there exists τ > 0, such that for all t ∈ (0, τ), |G(t) − a| < ε. So, G(t) < a + ε for

t ∈ (0, τ). For t ≥ τ , G(t) = Fh(t)/t
m < τ−m. Letting A = max{a+ ε, τ−m}, we have

G(t) < A, for all t ≥ 0.

In the following, we discuss the cases of `(x) = (1 + ‖x‖α)−1 and `(x) = ‖x‖−α,

separately.

For `(x) = (1 + ‖x‖α)−1, by Lemma 1, we have that ∀n ∈ N, ∃cn ∈ R+, such that

E(I(Φζ
o)
n) < cn. It follows that

H(y) , EI(Φζo)

[
Fh(θ ˆ̀(ζ)I(Φζ

o))

θm

]
< EI(Φζo)

[
A(ˆ̀(ζ)I(Φζ

o))
m

]
< Acm ˆ̀(y)m < +∞, (A.7)

and thus, by the fourth condition in Def. 13,

∫ ∞
0

H(y)fξ(y)dy < AcmEξ
(
ˆ̀(ξ)m

)
< +∞. (A.8)

For `(x) = ‖x‖−α, by Lemma 1, we have that ∀n ∈ N, ∃dn ∈ R+, such that

E(I(Φζ
o)
n) < dn max{1, ‖ζ‖2−αn}. Therefore, H(y) < Ayαmdm max{1, y2−αm} < +∞,

and
∫∞

0
H(y)fξ(y)dy < AdmEξ

(
ξαm max{1, ξ2−αm}

)
≤ Adm

(
Eξ(ξαm) + Eξ(ξ2)

)
<

+∞.

Assume {θn} is any sequence that converges to 0. Consider `(x) = (1 + ‖x‖α)−1.

Define f̃(z) , a(ˆ̀(ζ)z)mfI(Φζo)(z), and f̃n(z) , Fh(θn ˆ̀(ζ)z)
θmn

fI(Φζo)(z), where fI(Φζo)(z) is

the PDF of I(Φζ
o). {f̃n} is a sequence of functions and f̃n → f̃ , as n → ∞. Let

g(z) , A(ˆ̀(ζ)z)mfI(Φζo)(z). We have that f̃n ≤ g, for all n, and (A.7) indicates

g(z) is integrable. By the Dominated Convergence Theorem, we have
∫∞

0
f̃(z)dz =

limn→∞
∫∞

0
f̃n(z)dz. Similarly, define f̂(y) , EI(Φζo)

[
a(ˆ̀(ζ)I(Φζ

o))
m
]
fξ(y), f̂n(y) ,

EI(Φζo)

[Fh(θn ˆ̀(ζ)I(Φζo))
θmn

]
fξ(y) and ĝ(z) , Acm ˆ̀(y)mfξ(y). By the Dominated Conver-
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gence Theorem, we have
∫∞

0
f̂(y)dy = limn→∞

∫∞
0
f̂n(y)dy. By the same reason-

ing, the Dominated Convergence Theorem can also be applied twice for the case

`(x) = ‖x‖−α. Thus, for both cases of `(x), we obtain that

lim
θ→0

1− Pc(θ)

θm
=

∫ ∞
0

EI(Φζo)

[
lim
θ→0

Fh(θ ˆ̀(ζ)I(Φζ
o))

θm

]
fξ(y)dy

=

∫ ∞
0

EI(Φζo)

[
a(ˆ̀(ζ)I(Φζ

o))
m

]
fξ(y)dy. (A.9)

Note that by (A.8), (A.9) is finite.

Next, we consider the case when W > 0. In (A.6), we only need to replace I(Φζ
o)

with (I(Φζ
o) +W ) in the expectation EI(Φζo)(·) and the expectation becomes

H(y) = EI(Φζo)

[
Fh(θ ˆ̀(ζ)(I(Φζ

o) +W ))

θm

]
< EI(Φζo)

[
Aˆ̀(ζ)m(I(Φζ

o) +W )m
]
. (A.10)

By expanding (I(Φζ
o) +W )m, we observe that the right-hand side of (A.10) is finite.

Analogous to the case when W = 0, we can prove that Theorem 1 also holds for

W > 0.

A.3 Proof of Corollary 2

Proof. Consider the worst case, F c
h(x) ∼ exp(−ax), x→∞. First, we will show that

the Laplace transform of I(Φζ
o), denoted by LI(Φζo)(s), converges for s > τ0, where

τ0 < 0. Since LI(Φζo)(s) always converges for s ≥ 0, we only consider the case s < 0. To

prove the property, we need to derive an upper bound of LI(Φζo)(s) that only depends

on the Φζ . Similar to the proof of Lemma 1, we can prove the proposition that ∀s < 0,

there exists a positive K <∞, s.t. EI(Φζo)(exp(−sI(Φζ
o))) ≤ KEÎ(Φζ)(exp(−sÎ(Φζ))).
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Thus, we have

LI(Φζo)(s) = EI(Φζo)(exp(−sI(Φζ
o)))

≤ KEΦζ ,{hx}

( ∏
x∈Φζ

⋂
Bζ/2\{ζ}

exp(−shx`(x))

)

= KE!ζ

( ∏
x∈Φ

⋂
Bζ/2

Eh
(

exp(−sh`(x))
))

= KE!ζ
( ∏
x∈Φ

⋂
Bζ/2

Lh(s`(x))
)
, (A.11)

where Lh(s) denotes the Laplace transform of h.

Let k(s, x) , Lh(s`(x)). We have that LÎ(Φζ)(s) = E!ζ
(∏

x∈Φ
⋂
Bζ/2

k(s, x)
)

is

finite if and only if

η(s) = E!ζ
( ∑
x∈Φ

⋂
Bζ/2

| log k(s, x)|
)
<∞.

Now we show that τ0 is strictly less than 0. We have

η(s) = E!ζ
( ∑
x∈Φ

⋂
Bζ/2

| log k(s, x)|
)

(a)
=

1

λ

∫
Bζ/2

∣∣ log k(s, x)
∣∣ρ(2)(x− ζ)dx, (A.12)

where (a) follows from the Campbell-Mecke theorem.

Since F c
h(x) ∼ exp(−ax) for large x, without loss of generality, we assume for

some large H0, the PDF of h is fξ(x) = a exp(−ax) (x > H0). So,

k(s, x) =

∫ ∞
0

exp(−sy`(x))dFh(y)

=

∫ H0

0

exp(−sy`(x))dFh(y) +

∫ ∞
H0

a exp
(
− y(a+ s`(x))

)
dy. (A.13)
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Since x ∈ Φ
⋂
Bζ/2, by the Dominated Convergence Theorem, k(s, x) is bounded

for all x and s > −a`(‖ζ‖/2)−1. Also, for s ∈ (−a`(‖ζ‖/2)−1, 0), we have k(s, x) > 1

and log(k(s, x)) ≤ k(s, x) − 1. To show η(s) < ∞ for s ∈ (−a`(‖ζ‖/2)−1, 0), we

need to prove
∫
B(o,ω)c(k(s, x) − 1)ρ(2)(x)dx < ∞, for large ω. Since for large ‖x‖,

we have ρ(2)(x − ζ) → λ2, where λ is the intensity of Φ, we choose ω large enough

such that ρ(2)(x) is approximately λ2 for all ‖x‖ > ω. So we only need to show that∫
B(o,ω)c(k(s, x)− 1)dx <∞. We have

∫
B(o,ω)c

(k(s, x)− 1)dx

=

∫
B(o,ω)c

∫ H0

0

(exp(−sy`(x))− 1)dFh(y)dx+

∫
B(o,ω)c

∫ ∞
H0

(exp(−sy`(x))− 1)dFh(y)dx.

(A.14)

For large ω,

∫
B(o,ω)c

∫ H0

0

(exp(−sy`(x))− 1)dFh(y)dx =

∫
B(o,ω)c

∫ H0

0

(−sy`(x))dFh(y)dx <∞,

(A.15)

and

∫
B(o,ω)c

∫ ∞
H0

(exp(−sy`(x))− 1)dFh(y)dx

= exp(−aH0)

∫
B(o,ω)c

(
−s

a`(x) + s
+
a`(x)(exp(−sH0`(x))− 1)

a`(x) + s

)
dx <∞, (A.16)

Thus, η(s) < ∞ and LI(Φζo)(s) < ∞. Since I(Φζ
o) is nonnegative, according the

region of convergence (ROC) for Laplace transforms, there exists τ < −a`(‖ζ‖/2)−1,

such that LI(Φζo)(s) converges for s < τ and diverges for s > τ . τ is called the

abscissa of convergence. By Theorem 3 in [51], it follows that the interference has

an exponential tail. Therefore, if the fading has at most an exponential tail, the
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interference tail is bounded by an exponential.

A.4 Proof of Lemma 2

Proof. Since h̃ and ĥ are independent, we have

Fh(t) = P(h̃ĥ ≤ t) =

∫ ∞
0

P(h̃ ≤ t

u
| ĥ = u)fĥ(u)du

=

∫ ∞
0

Fh̃

( t
u

)
fĥ(u)du

=

∫ ∞
0

1√
πΓ(m)

(∫ mt
u

0

wm−1 exp(−w)dw

)
Vσ
u

exp(−V 2
σ (log u)2)du, (A.17)

where Vσ = 10
σ
√

2 log 10
.

To prove the first property, we have

lim
t→0

Fh(t)

tm
= lim

t→0

F ′h(t)

mtm−1

= lim
t→0

∫ ∞
0

Vσm
m−1

√
πΓ(m)um+1

exp

(
− mt

u

)
exp(−V 2

σ (log u)2)du

≤
∫ ∞

0

Vσm
m−1

√
πΓ(m)um+1

exp(−V 2
σ (log u)2)du. (A.18)

Since as u→ 0, exp(−V 2
σ (log u)2) = o(un) for any n ∈ N, (A.18) is bounded. Thus

we can apply the Dominated Convergence Theorem and obtain the first property.

For the second property, on the one hand, for any n ∈ N,

lim
t→∞

1− Fh(t)
t−n

= lim
t→∞

F ′h(t)

nt−n−1

= lim
t→∞

∫ ∞
0

Vσm
m

√
πΓ(m)um+1n

tn+m exp
(
− mt

u

)
exp(−V 2

σ (log u)2)du.

(A.19)

Assume H(t) = tn+m exp
(
− mt

u

)
. Since H ′(t) = tn+m−1

(
n+m− mt

u

)
exp

(
− mt

u

)
,

when t = u(n+m)
m

, H(t) achieves its maximum value and maxt>0H(t) =
(
u(n+m)

m

)n+m ·
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exp(−(n+m)). Thus,

lim
t→∞

1− Fh(t)
t−n

≤
∫ ∞

0

Vσu
n−1

√
πΓ(m)n

(n+m)n+m

mn
exp(−(n+m)) exp(−V 2

σ (log u)2)du

<∞. (A.20)

Applying the Dominated Convergence Theorem, we obtain limt→∞
1−Fh(t)
t−n

= 0

and thus F c
h(t) = o(t−n), as t→∞, for any n ∈ N.

On the other hand, for any a > 0,

lim
t→∞

1− Fh(t)
exp(−at)

= lim
t→∞

F ′h(t)

a exp(−at)

= lim
t→∞

∫ ∞
0

Vσm
m

√
πΓ(m)um+1a

tm−1 exp
((
a− m

u

)
t
)

exp(−V 2
σ (log u)2)du.

(A.21)

For any a > 0, there exists K̂ > 0, such that for u > K̂, exp(mt/u) < exp(at/3).

Hence, limt→∞
1−Fh(t)
exp(−at) =∞, for any a > 0. Thus, − logF c

h(t) = o(t), t→∞.

A.5 Proof of Lemma 3

Proof. Conditions 1 and 2 in Def. 13 hold for all the three point processes obviously.

For Conditions 3 and 4, we treat the three point processes separately.

For the PPP, Condition 3 holds, because the points in Φ are independent; Con-

dition 4 holds, because P(ξ > x) = P(Φ(b(o, x)) = 0) = exp(−λπx2).

For the MCP, we first prove that Condition 3 holds. For y > rc, the interference

I(Φζ
o) consists of two parts. One is the interference from the clusters with center

points inside the region B(o, y+ rc)\ b(o, y− rc), denoted by I1, and the other part is

the interference from the clusters with center points in B(o, y + rc)
c, denoted by I2.

I1 and I2 are independent. Similarly, Î(Φζ) consists of Î1 and Î2, where Î1 is from the

clusters with center points inside B(o, y + rc) \ b(o, y/2) and Î2 is from the clusters
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with center points in B(o, y + rc)
c.

Since the parent points are independent, I2 and Î2 have the same distribution.

For y � rc, we can easily prove that Î1 stochastically dominates I1. As P(I(Φζ
o) >

z) = P(I1 + I2 > z) = EI2 [P(I1 > z − I2 | I2)], we have P(I(Φζ
o) > z) ≤ P(Î(Φζ) > z)

for all z ≥ 0.

Then we prove Condition 4 holds for the MCP. For large y, let S be the set of

the parent points that are in B(o, y − rc), i.e., S = {x ∈ Φp : x ∈ B(o, y − rc)} and

Φ̃x be the daughter process for the cluster centered at x ∈ Φp. We have

P(ξ > y) = P(Φ(B(o, y)) = 0)

(a)

≤ P(Φ̃x(B(x, rc)) = 0, for all x ∈ S)

=
∞∑
k=0

(λpπ(y − rc)
2)k exp(−λpπ(y − rc)

2)

k!
exp(−c̄)k

= exp
(
− (1− exp(−c̄))λpπ(y − rc)

2
)
, (A.22)

where (a) follows since Φ(B(o, y)) = 0 implies Φ(B(x, rc)) = 0, for all x ∈ S. As

E(ξn) = −
∫
zndP(ξ > z), performing integration by parts, it follows that E(ξn) is

bounded.

For the MHP, to prove Condition 3, we consider Φζ
o and Φζ in term of the base

PPP Φb. Conditioned on Φb

⋂
(B(o, y+ 2rh)\B(o, y+ rh)), the interference from the

region B(o, y + 2rh)c in Φζ and that in Φζ
o are i.i.d.. So we only need to consider the

region B(o, y + 2rh) for large y. As y grows, E[Φζ(B(o, y) \B(o, y/2))] = Θ(y2), and

E[Φζ
o(B(o, y+2rh)\B(o, y))] = Θ(y).1 It can be proved that the portion of Î(Φζ) that

comes from the retained points in B(o, y + 2rh) \B(o, y/2) stochastically dominates

the portion of I(Φζ
o) that comes from the retained points in B(o, y + 2rh) \ B(o, y).

Hence, Condition 3 holds.

1f(x) = Θ(g(x)), if both f(x)/g(x) and g(x)/f(x) remain bounded as x→∞.
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To prove that Condition 4 holds for the MHP, we use the CCDF of ξ expressed

in the form (15.1.5) in [52]:

F c
ξ (x) =

∞∑
k=0

(−1)k

k!

∫
B(o,x)

· · ·
∫
B(o,x)

ρ(k)(y1, . . . , yk)dy1 · · · dyk (A.23)

=
∞∑
k=0

(−1)k

k!
α(k)[B(o, x)

⊗
k], (A.24)

where B(o, x)
⊗
k is the Cartesian product of k balls and α(k) is the kth-order factorial

moment measure. For the MHP, the nth moment density satisfies

ρ(n)(z1, . . . , zn) = λn, for (z1, . . . , zn) ∈ Sn(x), (A.25)

where Sn(x) , {(z1, . . . , zn) ∈ B(o, x)
⊗
n : ‖zi − zj‖ > 2rh,∀i 6= j}. The comple-

mentary set of Sn(x) with respect to B(o, x)
⊗
n is Sc

n(x) = B(o, x)
⊗
n \ Sn(x) =

{(z1, . . . , zn) ∈ B(o, x)
⊗
n : ∃i 6= j, s.t. ‖zi − zj‖ ≤ 2rh}. The Lebesgue measure of

Sc
n(x) satisfies ν(Sc

n(x)) = O(x2n−1). So, as x→∞,
∫
Sc
n(x)

ρ(n)(y1, . . . , yn)dy1 · · · dyn →

0. Since (A.23) can be rewritten as

F c
ξ (x) =

∞∑
k=0

(−1)k

k!

(∫
Sk(x)

ρ(k)(y1, . . . , yk)dy1 · · · dyk+
∫
Sc
k(x)

ρ(k)(y1, . . . , yk)dy1 · · · dyk
)
,

it follows that as x→∞,

F c
ξ (x) ∼

∞∑
k=0

(−1)k

k!

(∫
Sk(x)

ρ(k)(y1, . . . , yk)dy1 · · · dyk +

∫
Sc
k(x)

λkdy1 · · · dyk
)

=
∞∑
k=0

(−1)k

k!
(λπx2)k = exp(−λπx2).

Therefore, E(ξn) is bounded for all n and Condition 4 holds.
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