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SINR DISTRIBUTIONS IN CELLULAR NETWORKS:

SPATIAL STOCHASTIC MODEL FITTING AND ANALYSES

Abstract

by

Anjin Guo

In recent years, stochastic geometry theory has become a very promising tool to analyze

the performance of wireless networks. By taking into account the spatial structure of the

base stations (BSs) in homogeneous cellular networks, which plays a key role in evaluating

the downlink performance, the theory gives direct insights about how the geometry of

the BSs affect the network performance and enables tractable analyses on the signal-to-

interference-plus-noise-ratio (SINR) distributions. In this dissertation, we mainly study

the SINR distributions and their properties in cellular networks.

The BSs are usually assumed to form a lattice or a Poisson point process (PPP). In

reality, however, they are deployed neither fully regularly nor completely randomly. For the

first step of our analyses, we use different spatial stochastic models, including the PPP, the

Poisson hard-core process (PHCP), the Strauss process (SP), and the perturbed triangular

lattice, to model the spatial structure by fitting them to the locations of BSs in real cellular

networks obtained from a public database. We provide two general approaches for fitting

and find that fitted models can be obtained whose coverage performance matches that of

the given data set very accurately.

For the second step, through observations of the model fittings, we discover that the

shape of the complementary cumulative distribution function (CCDF) of the SINR for

essentially all motion-invariant and ergodic point processes is the same, which means the
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SINR distribution for general point processes (i.e., general BS distributions) can be ap-

proximated by applying a horizontal shift to the corresponding (simple or maybe tractable)

result of the PPP model. We demonstrate this finding by studying the lower tail of the

CCDF of the SINR, or equivalently, its high-reliability regime.

For the third step, we extend our theoretical asymptotic analyses to the upper tail of

the SINR and non-simple point processes (where points can be colocated).

For the fourth step, since the independent randomness in the positions of the base

stations (BSs) and the propagation conditions we usually assume does not comply with

the real procedure of BS deployments, we propose a new class of cellular model, where

BSs are deployed to make all users at cell edges achieve a minimum required signal power

level from the serving BS. The equalized received signal power at cell edges is the out-

come of both the spatial structure of the BSs and the propagation model of the signals.

We call such system models joint spatial and propagation (JSP) models and provide two

approaches to formulating the models. The SINR distribution is evaluated. Our results

show that networks with Poisson distributed BSs appear to the user like lattice networks

if the dependence between BS placement and propagation is accounted for.
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in (5.10), but is a constant 4. . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.6 The variance of K vs. α for E[K] = 1. . . . . . . . . . . . . . . . . . . . . 122

5.7 Comparison of the distributions of K and KLN if K and KLN have the same
mean 1 and the same variance. . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.8 The comparison of the numerical results of the SIR distribution between the
JSP model with redefined path loss model and the JSP model with redefined
shadowing model, for three parameter setting cases. . . . . . . . . . . . . 125

ix



ACKNOWLEDGMENTS

I would like to acknowledge my advisor Prof. Martin Haenggi. He has given me so

much inspiration and help. Without him, this work would not have been possible.

Finally, I would like to thank the NSF, for their generous grants, CNS 1016742 and

CCF 1216407, which allowed me to pursue my work.

x



SYMBOLS

Φ a point process

λ intensity of a point process

λp intensity of the parent point process

λb intensity of the basic point process

Po outage probability

Pc coverage probability

PPPP
c coverage probability of the PPP

PPPP
o outage probability of the PPP

PTL
c coverage probability of the triangular lattice

PTL
o outage probability of the triangular lattice

N the set of counting measures on R2

N the σ-algebra of counting measures

Φ(B) the number of points in set B ⊂ R2 for a point process Φ

ϕ a concrete realization of Φ

ϕ(B) deterministic counting measure that denotes the number of points in B

R̃ the interaction radius of the Strauss process

G(·) the nearest-neighbor distance distribution function

F (·) the empty space function

K(·) Ripley’s K function

α the path loss exponent

`(·) the path loss function

γ̄ the average ergodic rate

xi



G(pt) the deployment gain at pt
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CHAPTER 1

INTRODUCTION

1.1 Motivation

In cellular networks, as the power of received signals and interferences depends on

the distances between the receiver and base stations (BSs), the downlink performance is

affected by the spatial structure. System engineers and researchers often use a regular

triangular lattice or a square lattice [1–3] to model the structure deterministically. But in

reality, the topology of the BSs is not so ideal but depends on many natural or man-made

factors, such as the landscape, topography, bodies of water, population densities, and traffic

demands. As a consequence, the BSs are more suitably modeled as deployed randomly

instead of deterministically, and stochastic geometry is an efficient tool to analyze this kind

of geometrical configurations and provide theoretical insights [4, 5]. Recently, it was shown

in [8] that a completely irregular point process, the Poisson point process (PPP) [4, 5], may

be used without loss in accuracy (compared to the lattice) but significant gain in analytical

tractability. Observations of real BS locations in UK, however, show that real deployments

fall somewhere in between the two extremes of full regularity (the triangular lattice) and

complete randomness (the PPP). They exhibit some degree of repulsion between the BSs,

as expected, since the operators do not place the BSs closely together.

A natural question is whether there is a point process model that is better in modeling

the BS topology than the PPP. The critical first step to answer the question is to collect

data of real BS locations, investigate some regular (or repulsive) point processes and the

PPP by fitting them to the data, and then evaluate the goodness-of-fit. Those works will
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be discussed in Chapter 2. The answer to the question is positive. The Poisson hard-core

process (PHCP), the Strauss process (SP), and the perturbed triangular lattice can provide

better fitting results than the PPP, in term of the coverage probability, which is defined as

the complementary cumulative distribution function of the signal-to-interference-plus-noise

ratio (SINR), i.e., Pc(θ) , P(SINR > θ).

The next question is how we can deal with those non-Poisson point processes, i.e.,

whether we can obtain good analytical results from them by applying them to wireless

networks. Generally speaking, the analysis of non-Poisson point processes is significantly

more difficult than the analysis of the PPP, since dependencies exist between the locations

of the BSs. We are not aware of any tractable analytical methods that are applicable

in general. In Chapter 3, we will provide an indirect approach to evaluate the coverage

probability of cellular networks, where BSs follow a general class of point process mod-

els, using the asymptotic deployment gain (ADG). The ADG characterizes the horizontal

gap between the coverage probability of the PPP and another point process in the high-

reliability regime.

We are not limiting ourselves to the high-reliability regime, and extend our findings of

the horizontal gap to the upper tail of the SIR distribution in Chapter 4. Nevertheless, it

remains unknown whether the observation and the property still hold for other scenarios,

such as ad hoc networks. In order to obtain good approximations of the SIR distribution for

those scenarios, we analyze the asymptotic properties of the CCDF of the SIR distribution

for a variety of network models. Therefore, Chapter 4 summarizes the known asymptotic

properties, derives results for scenarios that have not been previously studied, and gives

insight about the factors that mainly determine the behavior of the SIR. We also assess

the impact of the nearest-interferer on the asymptotics.

The reasons that we focus on the asymptotic analysis are as follows.

• It captures succinctly the performance of the various network models (especially for
the high-reliability regime).
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• It permits the isolation of the key network properties that affect the SIR distribution.

• It gives insight into when it is safe to use the singular path loss model instead of a
bounded one.

• It shows when a nearest-interferer approximation is accurate.

After the analyses of the asymptotics of the SINR distributions for the conventional

cellular networks, in Chapter 5, we propose a new class of cellular models – joint spatial

and propagation (JSP) models, where BSs are deployed to make all users at cell edges

achieve a minimum required signal power level from the serving BS.

In all current models for cellular networks, independent randomness in the positions of

the base stations (BSs) and the propagation models (path loss and fading) is assumed, e.g.,

[8, 48, 60, 66]. In [8], the authors assumed a homogeneous Poisson distributed network and

the power-law path loss model `(x) = ‖x‖−α, where x ∈ R2 and calculated the coverage

probability, defined as the complementary cumulative distribution function (CCDF) of

the SINR, i.e., Pc(θ) = P(SINR > θ). Under the assumptions of Rayleigh fading, no

noise and α = 4, Pc(1) = 0.56 and Pc(10) = 0.20. The main reason why the result is so

pessimistic is that mobile users near the edge suffer from low signal strength in large cells.

In [48], the authors used the β-Ginibre point process, where points exhibit repulsion, to

model the spatial distribution of the BSs and considered the bounded power-law path loss

model `(r) = (max{r0, r})−α, where r0 is a positive constant and r ∈ R+. The coverage

probability is better than that of the Poisson network, since in the β-Ginibre network

(β > 0), BSs are less likely to be close to each other and thus severe interference from

nearby BSs is avoided. Moreover, the variance of the cell size is reduced.

In practice, when the goal of the BS deployment is to achieve good baseline coverage,

cellular operators place the BSs further apart if propagation is favorable, and vice versa.

Thus, a large cell implies smaller path loss or less severe shadowing, and vice versa. This

dependence between cell sizes and propagation has been completely ignored, despite (as

we shall see) having a significant impact on the performance. In large cells, users near
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cell edges usually suffer from unsatisfactory communication conditions with low received

signal power, in addition to being subject to relatively high interference. In reality, to

avoid those bad situations, cellular operators would place another BS to reduce the cell

size and improve the signal strength of edge users. The optimal situation would be that the

received signal strengths along all cell edges are equal and meet the minimum requirement.

1.2 Spatial Stochastic Model Fitting (Chapter 2)

1.2.1 Contributions

Our work on spatial stochastic model fitting is based on the real deployment of BSs;

we have several point sets that denote the actual locations of BSs collected from the

Ofcom1 - the independent regulator and competition authority for the UK communications

industries, where the data are open to the public. Table 1.1 gives the details of the three

point sets used in this thesis, and Figs. 1.1-1.3 visualize these point sets. Note that these

point sets all represent the BSs of the operator Vodafone with frequency band 900 MHz

(GSM). Although the data sets of certain operators in the Ofcom database are almost 10

years old, the data set of the operator Vodafone, is quite up-to-date, since its last update

in the Ofcom database occurred in October 2011.

The main objective of the model fitting is to find an accurate point process to model the

real deployment of BSs. To accomplish it, we have to first define the metrics to evaluate

the goodness of different models. Some classical statistics in stochastic geometry, such as

the J function and the L function [5], can be used. Nevertheless, simulations show they are

not sufficient to discriminate between different models. Since we study the point processes

in the context of wireless networks, it is natural to instead use a key performance metric

of cellular systems, namely the coverage probability [5, Ch. 13], [8, 9].

As [8] indicates, the PPP model and the lattice provide a lower bound and an upper

1Ofcom website: http://sitefinder.ofcom.org.uk/search
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TABLE 1.1

DETAILS OF THE THREE POINT SETS

Operator Area (m×m) Center Location Number of BSs

Urban region Vodafone 1500× 1050 (51.515◦ N, -0.132◦ W) 64

Rural region 1 Vodafone 78200× 48200 (52.064◦ N, -1.381◦ W) 62

Rural region 2 Vodafone 66700× 50000 (52.489◦ N, 0.704◦ W) 69

+ +

+

+

+

+

+

+

+ +
+

+

+

+ +

+

+

+
+ +

+

+
+

+

+

+

+

+

+

+ +

+

+

+

+

+

+ +

+

+

+

+

+

+

+ +

+

+

+
+

+

+

+

+

+

+

+

+

+

+
+

+

+
+

0 200 400 600 800 1000 1200 1400

−
2
0
0
0

−
1
8
0
0

−
1
6
0
0

−
1
4
0
0

−
1
2
0
0

−
1
0
0
0 The urban region (1500m x 1050m)

y

x

Figure 1.1. The locations of the BSs (the urban region).
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bound on the coverage probability, respectively. Since the point sets appear to be regular

and their coverage probabilities lie between the PPP’s and the lattice’s, we are interested in

point process models that lie in between the two in terms of regularity, such as the Poisson

hard-core process (PHCP), the Strauss process (SP), and the perturbed triangular lattice.

In order to find the desired point process, we use two different fitting methods. The first

one is the method of maximum pseudolikelihood [22], which is the usual method for model

fitting in stochastic geometry. The second one is the method of minimum contrast [23],

which is used to find the fitted model that minimizes the average squared error of the

coverage probability.

Using the first method, we fit the PPP, the PHCP, and the SP to the point sets and

determine the best fitted model. Simulations indicate that the SP is the best, followed by

the PHCP and then the PPP. But there is still a gap between the coverage probabilities of

the SP and the corresponding point set. The perturbed triangular lattice is not considered,

since its likelihood and pseudolikelihood are generally unknown.

In the second method, the intensity is assumed to be fixed to the density of the given

point sets. The PPP is not considered, since it would result in the same model as with the

first method. The fitted models of the SP, the PHCP, and the perturbed triangular lattice

for the point sets are obtained. They exhibit quite exactly the same coverage performance

as the given point sets. Note that this method is not limited to the average squared error

minimization of the coverage probability; it can be applied to many other performance

metrics in wireless networks and second-order statistics in stochastic geometry.

Using the two fitting methods, we can find a fitted model that describes the given point

set accurately. Although the SP, the PHCP and the perturbed triangular lattice are not

as tractable as the PPP, they still have many useful properties. By studying the fitted

model, we can obtain properties for a class of point sets.

For some applications where the chief concern is the coverage evaluation of the point

sets rather than their spatial structure, there is a simple way of the evaluation using a novel
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metric we propose, which is called the deployment gain; it measures how close the coverage

curve of a point set or a point process model is to that of the PPP. A larger deployment gain

means the point set or the model provides better coverage. For example, the deployment

gains of the three point sets are: urban region > rural region 1 > rural region 2, which is

also the rank of their coverage curves from top to bottom. The deployment gain provides

a simple yet highly accurate way of using the analytical results available for the PPP for

the analysis of more realistic point process models.

The main contributions on the spatial stochastic model fitting are summarized as fol-

lows:

• We use the coverage probability as a metric to compare different point processes and
publicly available point sets, which is shown to be more effective than the classical
statistics in stochastic geometry for the data sets we used;

• Through fitting the PPP, the PHCP, and the SP to the given point set using the
method of maximum pseudolikelihood, we discover that the SP has the best coverage
performance, while the PPP has the worst;

• Through fitting the SP, the PHCP, and the perturbed triangular lattice by minimizing
the average squared error of the coverage probability, we find that the fitted models
have nearly the same coverage probability as the given point set, and thus, in terms
of the coverage probability, they are accurate models of the real deployments of the
BSs;

• We propose the deployment gain to analytically compare the coverage probability
performances of different point sets or different models and to show how results for
the PPP can be applied to more accurate point process models.

1.2.2 Related Work

Since the Poisson point process (PPP) [4–7] is highly tractable, it is frequently used

to model a variety of networks, such as cellular networks [8–12], mobile ad hoc networks

[4–6], cognitive radio networks [13] and wireless sensor networks [14]. For cellular net-

works, in [8], the authors assume the distribution of BSs follows a homogeneous PPP

and derive theoretical expressions for the downlink signal-to-interference-plus-noise-ratio

(SINR) complementary cumulative distribution function (CCDF) and the average ergodic
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rate under some assumptions. [9] is an extension of [8], in which the authors model the

infrastructure elements in heterogeneous cellular networks as multi-tier independent PPPs.

In [10], the BSs locations are also modeled as a homogenous PPP, and the outage probabil-

ity and the handover probability are evaluated. Although many useful theoretical results

can be derived in closed form for the PPP, the PPP may not be a good model for real BSs’

deployments in homogenous networks, as will be shown in Chapter 2.

Indeed, the BS locations appear to form a more regular point pattern than the PPP,

which means there exists repulsion between points, hence the hard-core processes and the

Strauss process might be better to describe them. Matérn hard-core processes [5–7] are

often used to model concurrent transmitters in CSMA networks [15–17]. In [17], the author

uses them to determine the mean interference in CSMA networks, observed at a node of

the process. In [18], a modified Matérn hard-core process is proposed to model the access

points in dense IEEE 802.11 networks. But to the best of our knowledge, no work prior to

ours has modeled the BSs in cellular networks using hard-core processes.

The Strauss process has not been used in wireless networks, but its generalization, the

Geyer saturation process [19], is fitted to the spatial structures of a variety of wireless

network types using the method of maximum pseudolikelihood in [20]. The difference

between the two processes is that the Strauss process is a regular (or soft-core) process,

while the Geyer saturation process can be both clustered and regular depending on its

parameters. To evaluate the goodness-of-fit in [20], the authors compare the statistics of

the original data and the fitted model, such as the nearest-neighbor distance distribution

function, the empty space function, the J function, the L function, and the residuals of

the model. Though these statistics verify that the Geyer saturation process is suitable

to model the data set, they may not be sufficient to discriminate between different point

processes in terms of a metric specific to wireless networks. In Chapter 2, all the processes

mentioned above are studied comprehensively, and we use different statistics to compare

their suitability as models for cellular networks.
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The perturbed lattice, which is another soft-core model and thus less regular than the

lattice, can also be used to model the BS locations. In [21], the authors consider the BSs

as a perturbed lattice network and analyze the fractional frequency reuse technique. The

degree of the perturbation is assumed to be a constant. But this constant may not be

consistent with real configurations of the BSs. In our work, perturbed lattice networks

with different levels of the perturbation are investigated.

1.3 Asymptotic Deployment Gain (Chapter 3)

1.3.1 Contributions

In our work on the asymptotic deployment gain (ADG), we provide an indirect ap-

proach to the coverage probability analysis of an arbitrary motion-invariant (isotropic and

stationary2) point process [5, Ch. 2] by comparing its coverage probability to the coverage

probability of the PPP. To validate this approach, we establish that the outage probability

1 − Pc(θ) of essentially all motion-invariant (m.i.) point processes, expressed in dB, as a

function of the SINR threshold θ, also in dB, has the same slope as θ → 0 (or θ → −∞

dB). The slope depends on the fading statistics. This result shows that asymptotically the

coverage probability curves Pc(θ) of all m.i. models are just (horizontally) shifted versions

of each other in a log-log plot, and the shift can be quantified in terms of the horizontal

difference Ĝ along the θ (in dB) axis. Since the success probability of the PPP is known

analytically, the PPP is a sensible choice as a reference model, which then allows to express

the coverage probability of an arbitrary m.i. model as a gain relative to the PPP. This gain

is called the asymptotic deployment gain (ADG).

As a result, the SINR distribution of real BS deployments is approximately a shifted

version of that of the PPP. According to this result, we only need the coverage probability

at one SINR threshold in real BS deployments to estimate the whole coverage probability

2Stationarity implies that the coverage probability does not depend on the location of the typical user.
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curve using the commonly known results of the PPP. Similarly, given the mean SINR or

the average ergodic rate, we can also estimate the whole coverage probability curve, as will

be shown later. In other words, the analysis of the PPP can be carried out into the real

BS deployments by doing some simple conversion. The finding may help mobile network

providers to get some useful insights on the performance of the real BS deployments,

without complicated simulations or measurements.

We introduced the concept of the deployment gain (DG) in Section 1.2.1. It measures

how close a point process or a point set is to the PPP at a given target coverage probability.

Here we extend the DG to include noise and then, to obtain a quantity that does not depend

on a target coverage probability, formally define its asymptotic counterpart—the ADG.

Chapter 3 makes the following contributions:

• We introduce the asymptotic deployment gain.

• We formally prove its existence for a large class of m.i. point processes.

• We show how the asymptotic slope of the outage probability depends on the fading
statistics.

• We demonstrate through simulations how the ADG can be used to quantify the
coverage probability of several non-Poisson models, even if the SINR threshold θ is
not small.

1.3.2 Related Work

The spatial configuration of the BSs (or transmitters) plays a critical role in the per-

formance evaluation of cellular networks (or general wireless networks), since the SINR

critically relies on the distances between BSs and users (or transmitters and receivers).

Network performance analysis using stochastic geometry have drawn considerable atten-

tion [4, 8, 17, 20, 33–48]. Recent related works can be roughly divided into two categories.

One is based on the assumption of modeling the BSs or access points as Poisson-based point

processes (e.g., the PPP and the Poisson cluster process) in cellular networks, e.g. [8, 34–

37]. The other one is dealing with general point processes in non-cellular networks, espe-
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cially in wireless ad hoc networks, e.g. [42–46]. Of course, there are some other types of

works, such as those using the Poisson-based point processes in non-cellular networks, e.g.

[38–40], and using non-Poisson point processes in non-cellular networks, e.g. [17, 41], but

they are not closely related to this chapter. Our focus is applying general point processes

to cellular networks, which has seldom been studied.

Regarding the first category, in cellular networks, the PPP is advantageous for modeling

the BSs configuration [8, 34–36] due to its analytical tractability. Poisson-based processes,

especially Poisson cluster processes, e.g., in [37], have been used to model the small cell

tier in heterogeneous cellular networks, where the BS tier is still modeled as the PPP.

Non-Poisson processes, such as hard-core processes, are less studied in cellular networks,

due to the absence of an analytical form for the probability generating functional and

the Palm characterization of the point process distribution. Exceptions are the related

works in [20, 47, 48]. In [47] and [48], the 1-Ginibre point process and the β-Ginibre point

process, where points exhibit repulsion, are applied in cellular networks. In [20], the Geyer

saturation process was used to model the real cellular service site locations.

As for the second category, general point processes have been used to model the trans-

mitting nodes in non-cellular networks, see, e.g., [43–46]. In [43], the authors analyzed the

coverage probability in an asymptotic regime where the density of interferers goes to 0 in

wireless networks with general fading and node distribution. The paper [44] provides an

in-depth study of the outage probability of general ad hoc networks, where the nodes form

an arbitrary motion-invariant point process, under Rayleigh fading as the density of inter-

ferers goes to 0. In [45], the tail properties of interference for any motion-invariant spatial

distribution of transmitting nodes were derived. In [46], dealing with a wide range of point

processes, the authors provided accurate approximations of the transmission capacity in

the low-outage regime based on the second-order product density of the node distribution

in wireless ad hoc networks.

In Chapter 3, we consider a general class of point processes for modeling possible BS
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configurations. In homogeneous cellular networks, each user is usually serviced by its near-

est BS, though not necessarily. When general point processes are applied in such networks,

one of the main emerging difficulties is that the point process distribution conditioned on

an empty ball around the user is unknown. Moreover, the empty space function has to be

considered, resulting in the growth of the complexity. Tackling those difficulties directly

is seldom seen in the literature.

1.4 SIR Asymptotics in General Network Models (Chapter 4)

1.4.1 Contributions

In Chapter 4, we mainly derive the asymptotic properties of the success probability

Ps(θ), which is defined as the CCDF of the SIR, i.e. Ps(θ) , P(SIR > θ). Regarding the

transmitter/base station (BS) distributions, we do not restrict ourselves to simple point

processes (where there is only one point at one location as surely), which have always

been used by the literature, but also consider the “duplicated-2-point” point processes.

The duplicated-2-point point processes are defined as the point processes where there are

2 duplicated points at one location. The asymptotic properties of Ps(θ) are summarized

in Table 1.2 with respect to θ as θ → 0 and θ → ∞ for both singular and bounded path

loss models, both ad hoc models and cellular models, and both simple point processes and

duplicated-2-point point processes. Our results show that the asymptotic SIR behavior is

determined by two factors — m and δ. m is the Nakagami fading parameter and δ , 2/α,

where α is the path loss exponent.

Note that the shading indicate that the results have been derived in the literature

marked with the corresponding reference; the entries marked with (*) indicate that the

results are only proven for the Poisson case with Rayleigh fading and the entries marked

with (**) indicate that the results are only proven for the case of Rayleigh fading and the

duplicated-2-point point process where the distinct locations form a PPP.
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Besides, we study the impact of the nearest interferer on the asymptotic properties

of the SIR distribution, to see whether the nearest interferer plays a dominant role in

determining the asymptotics.

TABLE 1.2

ASYMPTOTIC PROPERTIES (“SIMPLE”: SIMPLE POINT PROCESSES;

“DUPLICATED”: DUPLICATED-2-POINT POINT PROCESSES)

Models θ → 0 θ →∞

Simple & Ad Hoc & Singular path loss 1− Ps(θ) = Θ(θδ) Ps(θ) = e−Θ(θδ) [5] (*)

Simple & Ad Hoc & Bounded path loss 1− Ps(θ) = Θ(θm) Ps(θ) = e−Θ(θδ) (*)

Simple & Cellular & Singular path loss 1− Ps(θ) = Θ(θm) Ps(θ) = Θ(θ−δ) [61]

Simple & Cellular & Bounded path loss 1− Ps(θ) = Θ(θm) Ps(θ) = e−Θ(θδ) (*)

Duplicated & Ad Hoc & Singular path loss 1− Ps(θ) = Θ(θδ) Ps(θ) = e−Θ(θδ) (**)

Duplicated & Ad Hoc & Bounded path loss 1− Ps(θ) = Θ(θm) Ps(θ) = e−Θ(θδ) (**)

Duplicated & Cellular & Singular path loss 1− Ps(θ) = Θ(θm) Ps(θ) = Θ(θ−δ−m)

Duplicated & Cellular & Bounded path loss 1− Ps(θ) = Θ(θm) Ps(θ) = e−Θ(θδ) (**)

1.4.2 Related Work

In the downlink of cellular networks, some asymptotic properties of the SIR distribution

have already been derived. In [60], a simple yet powerful and versatile analytical framework

for approximating the SIR distribution in the downlink of cellular systems was proposed
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using the mean interference-to-signal ratio. In [61], the authors considered general cellular

networks with general fading and singular path loss, and studied the asymptotic behaviors

of the SIR distribution both at 0 and at infinity.

In ad hoc networks, the corresponding asymptotic properties have only been derived for

a few very specific models, and some interesting and useful properties of the interference

and the SIR distribution have been studied. In [42], the interference in general ad hoc

networks has been analyzed. Considering both singular and bounded path loss models, it

provided several useful bounds on the CCDF of the interference and derived asymptotic

behavior of the interference distribution. [64] provided a general framework for the anal-

ysis of outage probabilities in the high-reliability regime in general ad hoc networks with

Rayleigh fading and both singular and bounded path loss models.

1.5 Joint Spatial and Propagation Models (Chapter 5)

In Chapter 5, we propose a new class of cellular models, where all users at the cell edges

achieve a minimum target signal power level from their serving BSs. The spatial structure

of the BSs is a result of the propagation environment and the target signal power. We

call such models joint spatial and propagation (JSP) models. One special case of the JSP

model is the triangular lattice (which has hexagonal cells) with the deterministic power-law

path loss model, where the path loss exponent is constant and the received signal power

at the cell edges is approximately the same.

In Chapter 5, we propose two approaches to formulating JSP models. In the first

approach, we redefine the path loss model. We assume the path loss still follows the power

law, but the path loss exponent is variable to satisfy the requirement of the target signal

power at the cell edges, given a distribution of the BSs. In the second approach, we redefine

the shadowing model. We assume that all cell shapes are disks with different sizes and

the “shadowing” parameter in each cell is the power attenuation factor that makes the

target signal power achieved at cell edges. We derive the coverage probability analytically
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and obtain simulation results for both approaches. To our best knowledge, this is the

first work that takes into account the dependence between cell sizes and shapes and signal

propagation.
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CHAPTER 2

SPATIAL STOCHASTIC MODEL FITTING

In this chapter, we discuss in detail how to find an accurate point process to model the

real deployment of BSs, using the method of maximum pseudolikelihood and the method

of minimum contrast. Moreover, we introduce the notion of the deployment gain.

This chapter is organized as follows. In Section 2.1, basic concepts of point processes

are introduced. In Section 2.2, the PPP, the PHCP, and the SP are fitted to the point sets

using the method of maximum pseudolikelihood, and some classical statistics, the coverage

probability and the average ergodic rate are used to test the goodness of fitted models. In

Section 2.3, the SP, the PHCP, and the perturbed triangular lattice are used to model the

given point set by the method of minimum contrast. The deployment gain is introduced

in Section 2.4. Conclusions are drawn in Section 2.5.

2.1 Spatial Point Process Models

2.1.1 Overview

The spatial point processes we consider lie in the Euclidean plane R2. Informally, a

point process is a countable random collection of points in R2. If it is simple (there is

only one point at each location a.s.), it can be represented as a countable random set

Φ = {x1, x2, . . .}, where xi ∈ R2 are the points. Usually, it is characterized by a random

counting measure N ∈ N , where N is the set of counting measures on R2. (N ,N) is

the measurable space, where N is the σ-algebra of counting measures. N(B) is a random

variable that denotes the number of points in set B ⊂ R2 for a point process Φ. Instead
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of N(B), the notation Φ(B) is frequently used, since it makes the connection of the point

process to the counting measure explicit. A concrete realization of Φ is denoted as ϕ.

Hence ϕ(B) is a deterministic counting measure that denotes the number of points in B.

See [5, Ch. 2] for details.

There are many kinds of point processes, such as the PPP, cluster processes, hard-core

processes and Gibbs processes [5, Ch. 3]. They can be placed into three categories, the

complete spatial randomness (i.e., the PPP), clustered processes, and regular processes.

Clustering means there is attraction between points, while regularity means there is repul-

sion. So the probability of having a nearby neighbor in regular processes is smaller than

in the PPP and clustered processes. Since regularity is good for interference minimization

and coverage optimization in wireless networks and the deployment of BSs appears to be

regular according to the point sets we collected, some regular point processes, including

the PHCP, the SP and the perturbed triangular lattice, are considered. We focus on the

motion-invariant case of the PPP, the PHCP, and the SP, and the stationary case of the

perturbed triangular lattice. A point process is stationary if its distribution is translation-

invariant and isotropic if its distribution is rotationally invariant with respect to rotations

about the origin. If a point process is both stationary and isotropic, then it is motion-

invariant. A stationary PPP is motion-invariant and also said to be homogeneous [5].

2.1.2 The Poisson Point Process

Definition 2.1 (Poisson point process). The PPP with intensity λ is a point process Φ ⊂

R2 so that 1) for every bounded closed set B, Φ(B) follows a Poisson distribution with mean

λ|B| (where | · | is the Lebesgue measure in two dimensions and λ is the expected number of

points per unit area), 2) Φ(B1),Φ(B2), . . . ,Φ(Bm) are independent if B1, B2, . . . , Bm are

disjoint.
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2.1.3 The Strauss Process

The SP constitutes an important class of Gibbs processes. Loosely speaking, Gibbs

processes can be obtained by shaping the distribution of a PPP using a density function

f(ϕ) on the space of counting measuresN . The density function is also called the likelihood

function. Suppose f(ϕ) is a function such that f(ϕ) > 0 implies f(ϕ′) > 0 whenever

ϕ′ ⊆ ϕ, and Q is the distribution of a PPP with intensity λ = 1. Regarding ϕ as a counting

measure, we have
∫
N Q(dϕ) = 1. If

∫
N f(ϕ)Q(dϕ) = 1, then the probability measure P (Y )

on the measurable space (N ,N) that satisfies P (Y ) =
∫
Y
f(ϕ)Q(dϕ), ∀Y ∈ N, is the

distribution of a Gibbs process.

Definition 2.2 (Strauss process). The SP is a Gibbs process with a density function

f : N 7→ R+ with

f(ϕ) = caϕ(R2) exp(−btR̃(ϕ)), (2.1)

where a, R̃ > 0, b ∈ R+∪∞, c is a normalizing constant, and tR̃(ϕ) is the number of point

pairs {x, y} of ϕ with ‖x− y‖ < R̃.

R̃ is called the interaction radius. b determines the strength of repulsion between points,

which makes the SP suitable for modeling regular point sets. In other words, the SP is a

soft-core process.

2.1.4 The Poisson Hard-core Process

Just as the name implies, the distance between any two points of the PHCP is larger

than a constant R, which is called the hard-core distance.

Definition 2.3 (Poisson hard-core process). The PHCP is a special case of the SP. Its

density function is obtained by setting b =∞ in (2.1), i.e.,

f(ϕ) =

 0 if tR(ϕ) > 0

caϕ(R2) if tR(ϕ) = 0.
(2.2)
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2.1.5 The Perturbed Triangular Lattice

Definition 2.4 (Triangular lattice). The triangular lattice L ⊂ R2 is defined as

L = {u ∈ Z2 : Gu}, (2.3)

where G = η

[
1 1/2

0
√

3/2

]
, η ∈ R+, is the generator matrix.

The area of each Voronoi cell is V = | det G| = η2
√

3/2, and the density of the triangular

lattice is λtri = V −1.

The triangular lattice is obviously not stationary. However, we can make it stationary

by translating the lattice by a random vector uniformly distributed over the Voronoi cell

of the origin. In the rest of the chapter, the triangular lattices considered are all assumed

to be stationary.

Definition 2.5 (Stationary triangular lattice). Let V (o) be the Voronoi cell of the origin

o in L. The stationary triangular lattice is

Φ = {u ∈ Z2 : Gu+ Y }, (2.4)

where Y is uniformly distributed over V (o).

The perturbed triangular lattice is based on the stationary triangular lattice and is also

stationary.

Definition 2.6 (Perturbed triangular lattice). Let (Xu), u ∈ Z2, be a family of i.i.d. ran-

dom variables, uniformly distributed on the disk b(o,R). The perturbed triangular lattice,

i.e., the triangular lattice with uniform perturbation on the disk b(o,R), is defined as

Φ = {u ∈ Z2 : Gu+ Y +Xu}. (2.5)
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2.2 Fitting by Pseudolikelihood Maximization

In this section, in order to find an accurate model, different point processes (the PPP,

the PHCP, and the SP) are fitted to the point sets in Table 1.1 using the method of

maximum pseudolikelihood, which is a common fitting method in stochastic geometry.

The reason of using this method is that the definitions of the PHCP and the SP are

based on their likelihood functions, thus maximizing the likelihood or pseudolikelihood is

the most direct way for fitting. Since the likelihood function of the perturbed triangular

lattice is generally unknown, it is not considered in this section. The fitting metric, which

is used to compare the models, may be drawn from the classical statistics in stochastic

geometry or some statistics relevant in wireless networks.

2.2.1 Fitting Method

For the PPP, the method of maximum pseudolikelihood coincides with maximum like-

lihood [22, 24]. The likelihood function for the PPP is f(ϕ) = e−(λ−1)|W |λϕ(W ), where

λ is the intensity and W is the sampling region. The maximum likelihood estimate is

λ̂ = ϕ(W )/|W |.

For the PHCP, R is decided by the method of maximum profile pseudolikelihood [22],

which means for different values of R, we obtain their corresponding fitted PHCP models

by the method of maximum pseudolikelihood and select the value of R whose fitted PHCP

model has the largest maximum pseudolikelihood. The other parameters in (2.2) are

obtained by fitting using the method of maximum pseudolikelihood given R.

For the SP, R̃ is selected from the range [R, 4R] by the method of maximum profile

pseudolikelihood. By fitting, a and b in the SP model (2.1) can then be obtained. We

choose the lower bound to be R because the maximum pseudolikelihood of the SP model

with R̃ < R would be smaller than that of the model with R̃ = R, where R is the minimum

distance between each two point of the point set. We choose the upper bound to be 4R

because: 1) the base stations in the data sets we considered are located in a finite region
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and the SP model with an R̃ that is too large is inaccurate to model the data; 2) 4R is a

large enough upper bound, since, for the fitted SP model, the optimum value is always in

the range [R, 4R].

The reason why we use the method of maximum pseudolikelihood instead of maximum

likelihood is that the likelihood is intractable for the PHCP and the SP, while, except for

the computation of an integral over the sampling region, which can be approximated by a

finite sum, the pseudolikelihood is known. As the conditional intensities take an exponen-

tial family form, the pseudolikelihood can then be maximized using standard statistical

software for generalized linear or additive models. The simulations are all done with the

software R [25].

We use the function ppm of the package “Spatstat” in R to perform the fitting, which

contains the implementation of the method of maximum pseudolikelihood. It is closely

related to the model fitting functions in R such as lm (for linear models) and glm (for

generalized linear models). The method is computationally efficient. Details are provided

in [22]. The computation times depend on the fitting model type and the number of

points. The following are typical times for a standard computer (2.3 GHz processor, 4 GB

memory). Consider the point set of the urban region. Fitting the PPP to the 64 points

takes about 0.02 seconds; fitting the PHCP (with known R) takes about 0.06 seconds;

fitting the SP (with known R̃) takes about 0.05 seconds. In the same region of the point

set, fitting the PPP to 640 randomly generated points takes about 0.03 seconds; fitting the

PPP to 6400 randomly generated points takes about 0.52 seconds. These numbers indicate

that the complexity is O(n2), perhaps even O(n log n), as the number of points n grows.

We use the function profilepl of the package “Spatstat” in R, which uses the method of

maximum profile pseudolikelihood, to find the optimal values of the interaction radius R̃

for the SP and the hard-core distance R for the PHCP that give the best fit. In the fitting,

we search over a vector whose columns contain values of R̃ or R to find the optimum.

Then with the optimal value of R̃ or R, we use the function ppm to get the values of other
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parameters in the equations (1) or (2). The complexity of the fitting is in proportion to

that of the function ppm.

2.2.2 Classical Statistics

Many statistics can be used to characterize the structure of a point process or a point

set, such as the nearest-neighbor distance distribution function G(r) and the empty space

function F (r). The J function, J(r) = (1−G(r))/(1−F (r)), measures how close a process

is to a PPP. For the PPP, J(r) ≡ 1. J(r) > 1 at some r indicates the points are regular at

these distances, while J(r) < 1 means the points are clustered. Hence, we can easily tell

by visual inspection of J(r) whether a point set or a point process is regular or clustered.

But it is hard to get more information that can be used to discriminate different regular

point processes.

Different from the J function that is related to the inter-point distance, Ripley’s K

function is related to point correlations. It is a second-order statistic and can be defined

as K(r) = E[Φ(b(x, r)) − 1 | x ∈ Φ]/λ, for r ≥ 0, where λ is the intensity. λK(r) can be

interpreted as the mean number of points y ∈ Φ that satisfy 0 < ‖y−x‖ ≤ r, given x ∈ Φ.

For the PPP, K(r) = πr2.

The L function is defined as L(r) =
√
K(r)/π. L(r) < r at some r indicates the points

are regular at distance r, while L(r) > r means the points are clustered.

Consider the point set of the urban region. The L function of the point set is plotted

in Figs. 2.1-2.3 (black solid line). It is seen that the point set is regular for r < 140,1 since

L(r) < r for r < 140. Clearly, L(r) = 0 for r < 39, which means no two points are closer

than 39. Hence, the point set may be regarded as a realization of a hard-core process with

hard-core distance R = 39. The grey regions in these figures are the pointwise maximum

and minimum of 99 realizations of the fitted PPP, the fitted PHCP and the fitted SP,

respectively. The values of the parameters obtained by fitting are λ̂ = 4.06× 10−5 for the

1The unit of all distances in this chapter is meter.
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Figure 2.1. L function of BSs of the urban region (the solid line) and the
envelope of 99 realizations of the fitted PPP model. The dashed line is the

theoretical L function of the PPP.
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Figure 2.2. L function of BSs of the urban region (the solid line) and the
envelope of 99 realizations of the fitted PHCP model. The dashed line is the
average value of the L functions of 99 realizations of the fitted PHCP model.
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Figure 2.3. L function of BSs of the urban region (the solid line) and the
envelope of 99 realizations of the fitted SP model. The dashed line is the
average value of the L functions of 99 realizations of the fitted SP model.
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PPP, R = 39 for the PHCP and R̃ = 63 for the SP. Note that for the fitted PHCP, the R

value coincides with that obtained by visual inspection.

According to the figures, the PPP is not an appropriate model, as the L function of

the point set is not within the envelope of the PPP. But the PHCP and the SP fit well.

Although the L function is more powerful than the J function when used to compare

the three models, it cannot distinguish which of the PHCP and the SP is better. Other

statistics are needed.

2.2.3 Definition of Coverage Probability

It is sensible to use a statistic that is related with a standard metric used in wireless

networks to decide on the best model. For the three point sets, by evaluating the coverage

probabilities of the point sets and fitted models through simulations, we find that the

coverage probability is such a statistic that has two desirable properties: it has enough

discriminative power to distinguish between different models, and it is relevant to cellular

systems. Generally speaking, the coverage probability is the probability that a randomly

located user achieves a given SINR threshold with respect to one of the BSs.

A mobile user is assumed to attempt to communicate with the nearest BS, while all

other BSs act as interferers (the frequency reuse factor is 1). The received power, the

interference, and, in turn, the coverage probability, depend on the transmit power of the

BSs, the power loss during propagation, and the random channel effects. We make the

following assumptions: (i) the transmit power of all BSs is constant 1; (ii) the path loss

exponent α = 4; (iii) all signals experience Rayleigh fading with mean 1; (iv) the shadowing

effect is neglected; (v) the thermal noise W is ignored, i.e. SNR =∞, and the SINR reduces

to the SIR.

Under these assumptions, the SIR has the form

SIRz =
h0‖x0‖−α∑

i:xi∈Φ\{x0} hi‖xi − z‖−α
, (2.6)
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where {h0, h1, ...} ∼ exponential(1) and independent, and x0 = arg minx∈Φ ‖x − z‖. We

assume that the location z is in coverage if SIRz > θ.

Definition 2.7 (Coverage probability). For a stationary process, P(SIRz > θ) does not

depend on z, and we call it the coverage probability:

Pc(θ) = P(SIR > θ). (2.7)

It is the CCDF of the SIR and can also be interpreted as the covered area fraction for

each realization of the BS point process.

The theoretical expression of Pc(θ) for the PPP with intensity λ and α = 4 has been

derived in [8]:

Pc(θ) =
1

1 +
√
θ arctan(

√
θ)
. (2.8)

Since the coverage probability of the PPP does not depend on the intensity, no fitting

method based on adjusting the intensity is possible. On the other hand, the intensity is

easily matched to the intensity of a given point set.

2.2.4 Results for Coverage Probability

The regions where the BSs reside are not infinite. Thus, for the fitted point process,

which is stationary, we only consider a finite region that has the same area and shape as

the point set under consideration.

In the finite region, Pc(θ) can be estimated by determining the average fraction of the

whole area where SIR > θ. In the following simulations, Pc(θ) is obtained by evaluating

3,000,000 SIR values. In order to mitigate the boundary effect, we only use the central

[2
3
length× 2

3
width] area of the entire region to compute Pc(θ). For the point sets, the SIRs

of 3,000,000 randomly chosen locations (uniformly distributed) are computed. For point

processes, 3,000 realizations are generated and for each realization, 1,000 randomly chosen

locations are generated. The SIR is evaluated at all chosen locations.
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Figure 2.4. Left axis: the coverage curves of the experimental data of the urban
region and different fitted point process models. Right axis: the difference

between the coverage curve of the PPP and the other curves.
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Figure 2.5. Left axis: the coverage curves of the experimental data of the rural
region 1 and different fitted point process models. Right axis: the difference

between the coverage curve of the PPP and the other curves.
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Figure 2.6. Left axis: the coverage curves of the experimental data of the rural
region 2 and different fitted point process models. Right axis: the difference

between the coverage curve of the PPP and the other curves.
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Consider the point set of the urban region. The coverage curves of the experimental

data and the fitted models of the PPP, the PHCP, and the SP are shown in Fig. 2.4. The

left axis shows the coverage curves, while the right axis shows the difference between the

coverage curve of the PPP and the other curves. Clearly, the curves of three models are

all below the curve of the experimental data. Among the three point processes, the SP

provides the best fit, followed by the PHCP and then the PPP.

We use the other two point sets in Table 1.1 to test the statistic. For the fitted models,

the hard-core distances in the two rural regions are R1 = 1194 and R2 = 1474 and the

interaction radii are R̃1 = 2120 and R̃2 = 5490. Figs. 2.5 and 2.6 show the coverage curves

of the two point sets. The PPP still performs the worst. In Fig. 2.6, the SP is better than

the PHCP, while in Fig. 2.5, the curves of the SP and the PHCP are quite close, thus,

the two processes can be considered equivalent when fitted to that point set. Generally, it

depends on the given point set. The SP is often better. Note that this is not because the

PHCP is a special case of the SP. The method of maximum pseudolikelihood is used to

do the fittings, but a larger pseudolikelihood does not imply a better matching coverage

probability.

2.2.5 Average Rate

We can also distinguish the best fitted model in terms of the average ergodic rate.

Similar results are obtained. The average ergodic rate (or Shannon throughput) is defined

as γ̄ = E[ln(1 + SIR)] and measured in nats/s/Hz. Denote γ̄e, γ̄p, γ̄h, γ̄s as the average

ergodic rates of the experimental data, the PPP, the PHCP, and the SP respectively.

Let the simulation parameters remain the same. For the point set of the urban region,

γ̄e ≈ 1.786, γ̄p ≈ 1.513, γ̄h ≈ 1.635, γ̄s ≈ 1.682. For the point set of the rural region 1,

γ̄e ≈ 1.679, γ̄p ≈ 1.506, γ̄h ≈ 1.566, γ̄s ≈ 1.572. For the point set of the rural region 2,

γ̄e ≈ 1.634, γ̄p ≈ 1.515, γ̄h ≈ 1.581, γ̄s ≈ 1.605. So we have γ̄p < γ̄h < γ̄s < γ̄e.

The theoretical average ergodic rate of the PPP is γ̄′p ≈ 1.49, which is smaller than the
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values of simulations of the PPP. The reason is that the theoretical average ergodic rate

of the PPP considers all the points on the whole plane R2, while in the simulations, we

only consider the points of the PPP in the same region of the given point set, which leads

to the fact that the SIR value at any location is larger than the theoretical value at the

same location and thus the theoretical average ergodic rate is smaller than the simulation

values.

2.3 Fitting Using the Coverage Probability

We have fitted the PPP, the PHCP, and the SP to the given point sets by the method

of maximum pseudolikelihood, but none of these models precisely describes the coverage

probability of the data, and all their coverage curves are below the actual curve of the point

set. If we want to find a point process that has a similar performance as the given point

set, we cannot just use the three fitted models, because none of them is regular enough due

to the limitation of the fitting methods. In this section, we adopt the method of minimum

contrast as a fitting method and fit the SP, the PHCP, and the perturbed triangular lattice

to the point sets in Table 1.1.

2.3.1 Fitting Method

In the method of minimum contrast, there is a suitable summary statistic S and a point

process model with some adjustable parameters {θi}. Ideally the chosen point process

model has analytically tractable expressions for the summary statistic S as a function of

{θi}.

Here, the summary statistic is the coverage probability, and the chosen models are the

SP, the PHCP and the perturbed triangular lattice. But there are no analytically tractable

expressions for the coverage probability of the SP and the PHCP. For different values of

the adjustable parameters, the coverage probabilities are estimated through simulations.

We assume the intensity of the fitted model is the same as the given point set. By this
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method, the coverage curve of the fitted model should have the minimum difference from

that of the given point set.

Definition 2.8 (Average squared error of the coverage probability). The average squared

error of the coverage probability, denoted as E, measures the difference between two cover-

age curves. It is defined as:

E(a, b) =
1

b− a

∫ b

a

(
Pc1(t)− Pc2(t)

)2

dt, (2.9)

where a, b ∈ R, t is the SIR threshold in dB, and Pc1(t), Pc2(t) denote two coverage curves.

The average squared error of the coverage probability is used as the contrast criterion of

the method of minimum contrast. Under the condition of the fixed intensity, the relevant

parameters in the model are adjusted to find the model that has the minimum average

squared error between its coverage curve and the given point set’s. Here, we set a = −9.38

dB and b = 16.07 dB (for the PPP, Pc(a) = 0.9 and Pc(b) = 0.1), because [0.1, 0.9] is the

coverage probability range where the curves differ the most and [−10, 16] dB is a reasonable

SIR interval for practical systems.

This fitting method is not restricted to the contrast criterion defined by the coverage

probability. The criteria defined by other performance metrics in wireless networks and

second-order statistics in stochastic geometry can also be used. Similarly, the method is

not limited to Rayleigh fading either, when we simulate the network. Other fading types

can also be applied depending on the propagation environment.

2.3.2 The SP and the PHCP

In the fitting method, the intensity of the fitted model is fixed. Thus, the PPP is not

considered. As the accurate intensity values of the SP and the PHCP are unknown for

given values of the parameters in (2.1) and (2.2), it is not quite suitable to use the method

for the two processes. But there are some approximations of the intensity for the SP [26],
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e.g.,

λ ≈ W (aΓ)/Γ, (2.10)

where W (x) is the principle branch of the Lambert W function [27] and Γ =
(
1 −

exp(−b)
)
πR̃2. This is the Poisson-saddlepoint approximation [26], which is more accu-

rate than the mean field approximation.

If we use the approximated intensity (2.10) in the fitting method for the SP, we have to

adjust the three parameters a, b, and R̃ in (2.1) to minimize the average squared error of

the coverage probability. Note that, as b increases, the strength of the repulsion between

the points in the SP increases, and as R̃ increases, the repulsion range increases. Both

adjustments increase the regularity of the process. From (2.10), we have a ≈ λ exp(λΓ). a

increases as b and R̃ increase with λ fixed. So in order to increase the regularity of the SP

with fixed intensity, we can fix b, increase R̃ and a, or fix R̃, increase b and a according

to (2.10). We can also first increase a, and then adjust b and R̃. But in this way, the

regularity may not increase, or even decrease for some b and R̃. To get a more regular

model, we can compare models with different settings of b and R̃ in simulations. The above

three methods are used to obtain the fitting results of the SP in simulations.

TABLE 2.1

FITTING RESULTS OF THE STRAUSS PROCESS

Parameters a b R̃ Actual intensity λ̂ Desired intensity λ λ̂/λ− 1

Urban region 1× 10−4 3.745 85 3.737× 10−5 4.063× 10−5 −8.02%

Rural region 1 2.44× 10−8 1.892 3000 1.622× 10−8 1.645× 10−8 −1.40%

Rural region 2 5.00× 10−8 0.599 5490 2.086× 10−8 2.069× 10−8 0.82%
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Given a point set, to obtain a fitted SP, we can first fit the SP to the point set using

the method of the maximum pseudolikelihood, and then, based on the parameters we get,

increase the regularity to minimize the average squared error of the coverage probability.

Table 2.1 shows the fitting results of the SP for the three point sets in Table 1.1. As shown

in Fig. 2.7, for each fitted model, the coverage curve matches the one of the corresponding

point set very closely. Note that the simulation is not perfectly accurate, since the number

of realizations of the point process used to calculate the coverage probability is limited

to 3,000; also, when calculating the average squared error of the coverage probability, we

only compute the average over a finite number of sample points on the coverage curve; and

when we increase b and R̃, the step width is not infinitesimal. We say an SP model has

the “minimum” average squared error of the coverage probability if E < 10−5.

The fitted SP is not unique. For some different values of a, we can find different

fitted models that satisfy E < 10−5, by adjusting b and R̃. For instance, the SP with

a = 1.1 × 10−4, b = 2.547, R̃ = 92 is also a fitted model for the urban region, which is

shown as the curve of another fitted SP model in Fig. 2.7.

Since the PHCP is a special case of the SP, its approximated intensity can be obtained

by setting b =∞ in (2.10), λ ≈ W (aπR2)/(πR2). To increase the regularity of the PHCP

with fixed intensity, we can increase R. Table 2.2 shows the fitting results of the PHCP

for the three point sets. The coverage curves of the fitted models and their corresponding

point sets are visually indistinguishable, as shown in Fig. 2.8.

Although the models are fitted well to the point sets, there are two main shortcomings

of the fitting for the SP and the PHCP. One is that the actual intensity is not the same as

the density of the given point set as shown in Tables 2.1 and 2.2, and the difference can

be as large as 10%. Note that each value of the actual intensity is obtained by averaging

over 10,000 independent realizations of the model.

The other drawback is that we may not get a well fitted model for some point sets.
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Figure 2.7. The coverage curves of the experimental data and the fitted SP
models. The curves of the rural region 1, not shown in this figure, are very

similar to those of the rural region 2.

TABLE 2.2

FITTING RESULTS OF THE POISSON HARD-CORE PROCESS

Parameters a R Actual intensity λ̂ Desired intensity λ λ̂/λ− 1

Urban region 9.38× 10−5 78 3.885× 10−5 4.063× 10−5 −4.38%

Rural region 1 2.28× 10−8 2500 1.626× 10−8 1.645× 10−8 −1.16%

Rural region 2 2.37× 10−8 2000 1.864× 10−8 2.069× 10−8 −9.91%
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Figure 2.8. The coverage curves of the experimental data and the fitted PHCP
models. The curves of the rural region 1, not shown in this figure, are very

similar to those of the rural region 2.
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In simulations, we use the function rStrauss in the R package “Spatstat” [28] to generate

realizations for the SP and the function rHardcore for the PHCP. In rStrauss and rHard-

core, the coupling-from-the-past (CFTP) algorithm [29] is used, but it is not practicable

for all parameter values. Its computation time and storage increase rapidly with a, R̃ and

R. For example, for a point set that has a coverage curve close to that of the triangular

lattice, we cannot get the fitted SP or PHCP, due to the limited storage and time. It turns

out, though, that the three point sets in Table 1.1 are not too regular to use rStrauss and

rHardcore.

2.3.3 The Perturbed Triangular Lattice

There are no such shortcomings described in the previous subsection when the per-

turbed triangular lattice is fitted by the method of minimum contrast. The reasons are 1)

the intensity is fixed once the lattice constant η is fixed; 2) as R increases from 0 to ∞,

the coverage curve of the perturbed triangular lattice degrades from that of the triangular

lattice to that of the PPP, and we can easily get the realizations of the perturbed triangular

lattice for all values of η and R. To do the fitting, we first compute η and then increase R

from 0 to find the fitted model.

Consider the point set of the urban region. The intensity of the point set is λ̂ = 4.06×

10−5. Equating λtri = λ̂, we get η = 168.57. Fig. 1.1 shows the locations of the BSs in the

urban region. Figs. 2.9-2.11 give the realizations of the fitted PPP, the triangular lattice,

and the triangular lattice with uniform perturbation on the disk b(o, 0.52η), respectively.

Note that the fitted PPP means that the intensity of the PPP is estimated by the method

of maximum likelihood. To compute the coverage probability of the triangular lattice with

η = 168.57, the lattice is generated on the same region as the point set. Under the same

simulation conditions as those in Section 2.2, the coverage probability is obtained, which is

shown in Fig. 2.12. As expected, the coverage probability of the lattice is larger than that

of the given point set. The lattice provides an upper bound on the coverage probability.
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Figure 2.9. A realization of the PPP fitted to the urban data set.

To compare the coverage performances of the perturbed triangular lattices with the

PPP and the triangular lattice, we simulate the cases with R = 0.2η, 0.5η and 0.8η. Fig.

2.13 shows the coverage curves. As expected and observed in the figure, the coverage prob-

ability degrades as R increases. As R → ∞, the perturbed triangular lattice approaches

the PPP with intensity λ = 4.06× 10−5. Therefore, the coverage curves of the perturbed

triangular lattices with different R span the region between the PPP and the triangular

lattice. It is thus guaranteed that we can obtain the desired perturbed triangular lattice

that is fitted tightly to a point set.

For the point set of the urban region, the fitting value of R is R = 0.52η. Fig. 2.10

indicates that the disks centered at the triangular lattice points with radii 0.52η overlap

slightly, as the distance between each two triangular lattice points is η. In Fig. 2.11,

a realization of this perturbed triangular lattice is shown. The coverage curves of this

perturbed triangular lattice and the point set closely overlap, as shown in Fig. 2.12. For
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Figure 2.10. A realization of the triangular lattice on the urban region. The
dashed disks have centers at the lattice points and their radii are 0.52η.
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Figure 2.11. A realization of the triangular lattice with uniform perturbation on
the disk b(o, 0.52η) fitted to the urban data set.
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Figure 2.12. The coverage curves of the experimental data (the urban region),
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the point sets of the rural region 1 and the rural region 2, the fitting values are R1 = 0.70η

and R2 = 0.74η, respectively. So the point set of the urban region is the most regular of

the three, followed by the point set of the rural region 1 and then the point set of the rural

region 2.
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Figure 2.13. The coverage curves of the triangular lattice, the perturbed
triangular lattices and the PPP.

To obtain a point set from the model that has approximately the same performance

of the coverage probability as the given point set, we can generate a realization of the

triangular lattice with uniform perturbation on the disk b(o,R). Although the coverage

curve of the realization may have some deviations, its average, the coverage probability, is

quite exactly that of the point set.
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Thus, we can model the given point set as a realization of the triangular lattice with

uniform perturbation on the disk b(o,R), where R can be determined by minimizing the

average squared error of the coverage probability, which is of great significance in practice.

When analyzing performance metrics that are related with the distribution of the BSs in

real cellular networks, we can use the perturbed triangular lattice instead of the lattice or

the PPP to model the BSs. Although the perturbed triangular lattice is not as tractable

as the PPP, it still has some desirable properties. For the PPP, the distribution of the area

of the Voronoi cell is usually approximated by a generalized gamma function [11, 30, 31].

Its typical support is unbounded for the PPP, while for the perturbed triangular lattice,

the area is bounded and depends on R.

2.4 Deployment Gain

Here we define a metric that measures how close the point set is to the PPP. This metric

can be considered as a “distance” between the point set and the PPP whose coverage curve

only depends on the SIR threshold θ. We call this metric the deployment gain. It is a

function of the coverage probability and is a gain in the SIR, relative to the PPP, provided

by the deployment.

Definition 2.9 (Deployment gain). The deployment gain, denoted by G(pt), is the SIR

difference between the coverage curves of the given point set and the PPP at a given target

coverage probability pt.

As such, it mimics the notion of the coding gain2 commonly used in coding theory. We

can evaluate different deployment gains at different pt, for different considerations. In the

rest of the chapter, we choose pt = 0.5. At this target probability, the coverage curves

are steep, and the gap between curves is easy to observe. More importantly, G(0.5) gives

2Coding gain [32, Ch. 1], always a function of the target bit-error-rate (BER), is a measure to quantify
the performance of a given code, and is defined by the difference in minimum signal-to-noise-ratio (SNR)
required to achieve the same BER with and without the code.
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a good approximation of the average deployment gain, which is the value by which the

coverage curve of the PPP is right shifted such that the difference between the new curve

and the curve of the point set is minimized.

Definition 2.10 (Average deployment gain). Let the difference between two curves be the

average squared error defined in (2.9). The average deployment gain, denoted by Ŝg, is

then defined as:

Ŝg = arg min
x

∫ b

a

(
P th

c (t− x)− P ed
c (t)

)2

dt, (2.11)

where a = −9.38 dB and b = 16.07 dB, P th
c (t) is the theoretical value of the coverage

probability for the PPP, and P ed
c (t) is the experimental value of the coverage probability for

the data.

For fixed α, the theoretical expression of the coverage probability of the PPP [8] is

P th
c (θ) =

1

1 + ρ(θ, α)
, (2.12)

where ρ(θ, α) = θ2/α
∫∞
θ−2/α 1/(1 + uα/2)du. For α = 4, P th

c (θ) is equal to Pc(θ) in (2.8).

The average deployment gain Ŝg is a measure of regularity. The point set with a larger

average deployment gain has a better performance than the one with a smaller value. For

the triangular lattice, when α = 4, Ŝlg = 4.38 dB, which is the maximal value of the average

deployment gain. Similar to Ŝg, G(0.5) is also a measure of regularity and satisfies that

|G(0.5) − Ŝg|/Ŝg < 5%, which is verified in simulations. Hence, we can evaluate G(0.5)

instead of Ŝg in practice, since G(0.5) is much easier to obtain.

Fig. 2.14 shows the coverage curves of the experimental data and the PPP and the right

shifted curves of the PPP by the average deployment gains, when α = 4. As the figure

shows, the right shifted curve of the PPP and the curve of the point set are well matched.

For the point sets of the urban region, the rural region 1 and the rural region 2, the average

deployment gains are, respectively, Ŝg0 = 2.09 dB, Ŝg1 = 1.28 dB and Ŝg2 = 1.10 dB. While,

the deployment gains at pt = 0.5 are, respectively, G0(0.5) = 2.07 dB, G1(0.5) = 1.26 dB
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Figure 2.14. The coverage curves of the experimental data and the PPP and the
curves of the PPP right shifted by 2.09 dB and 1.10 dB, which are the average
deployment gains (α = 4). The coverage curve of the experimental data (Rural

region 1) and the curve of the PPP right shifted by 1.28 dB are not shown in this
figure, but they are well matched, similar to the cases of the other two regions.
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Figure 2.15. The coverage curves of the experimental data (the urban region)
and the curves of the PPP right shifted by the corresponding average

deployment gains Ŝg = 2.93, 2.36, 2.11, 2.09, 2.10, 2.19 (dB) under different values
of α = 2.5, 3, 3.5, 4, 4.5, 5.
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and G2(0.5) = 1.08 dB, which are very close to the average deployment gains. Because

G0(0.5) > G1(0.5) > G2(0.5), in terms of the deployment gain, the deployment of the point

set of the urban region is the best, followed by the point set of the rural region 1 and then

the point set of the rural region 2.

In the above case, the path loss exponent α = 4 is fixed. If the value of α varies,

G(0.5) and Ŝg will also change. Fig. 2.15 shows the coverage curves of the experimental

data (the urban region) and the curves of the PPP right shifted by the corresponding Ŝg

under different values of α. For the triangular lattice, as the parameter η of the triangular

lattice in the SIR can be eliminated, the coverage probability and the average deployment

gain do not depend on η. Fig. 2.16 shows the deployment gains G(0.5) and the average

deployment gains Ŝg of all point sets and the triangular lattice when α takes different

values, which indicates that Ŝg and G(0.5) are not monotonic as a function of α, but first

decrease and then increase as α increases from 2.5 to 5. In this figure, the lines or dashed

lines indicate the average deployment gains, and the marks indicate the deployment gains.

The inequality |G(0.5) − Ŝg|/Ŝg < 5% is also satisfied here. The figure also reveals that

G0(0.5) > G1(0.5) > G2(0.5) for all α ∈ {2.5, 3, 3.5, 4, 4.5, 5}, and the deployment gain of

the triangular lattice gives an upper bound.

We have demonstrated that in all cases considered, the coverage probability is very

closely approximated by the coverage curve of the PPP, right shifted along the SIR axis by

the deployment gain. This general behavior has important implications for the analysis of

point process models that are more accurate than the PPP. For the coverage performance

evaluation of an arbitrary cellular model, we may take the value analytically obtained for

the PPP, and adjust the SIR threshold θ by the deployment gain. Since the coverage

probability (or the SIR distribution) affects most first-order metrics, the deployment gain

can be used to estimate other metrics (e.g. the average ergodic rate), according to their

definitions. Of course, the deployment gain of a model or point set first needs to be

established.
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One important implication is the estimation of the average ergodic rate of the network

using the deployment gain. Since the coverage probability is the CCDF of the SIR and the

average ergodic rate only depends on the PDF of the SIR, we can first obtain the approx-

imated CDF of the SIR by the deployment gain, and then compute the average ergodic

rate. Using the definition of the average ergodic rate γ̄ and the theoretical expression of

Pc(θ) for the PPP in (2.8), γ̄ can be expressed as

γ̄ = E[ln(1 + SIR)]

= −
∫ ∞

0

ln(1 +Gx)dPc(x)

(a)
=

∫ ∞
0

Pc

(
ex − 1

G

)
dx, (2.13)

where the unit of G is 1, not dB. (a) follows since the CCDF of the random variable

X = ln(1 + G · SIR) is P(X > x) = P
(
SIR > (exp(x)− 1)/G

)
= Pc

(
(exp(x)− 1)/G

)
and

the expectation of a positive random variable can be expressed as the integral over the

CCDF. Numerically evaluating the above integral, we can obtain the approximated average

ergodic rate of the three point sets. For the point set of the urban region, γ̄ ≈ 1.770. For

the point set of the rural region 1, γ̄ ≈ 1.660. For the point set of the rural region 2,

γ̄ ≈ 1.6311. Compared with the values obtained in Section 2.2.5, the difference is smaller

than 2%.

2.5 Summary

We proposed a general procedure for point process fitting and applied it to publicly

available base station data. To the best of our knowledge, this is the first time public data

was used for model fitting in cellular systems. We also introduced the deployment gain,

which is a metric on the regularity of a point set or a point process and greatly simplifies

the analysis of general point process models.

Two methods are used to fit different point processes to real deployments of BSs in
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wireless networks in the UK. One is the method of maximum pseudolikelihood, the other

is the method of minimum contrast, which minimizes the average squared error of the

coverage probability between the point process model and the point set. Using the former

method for fitting, we can decide which model fits best in terms of the coverage probability.

But the fitted model cannot perfectly fit the coverage probability—there is still a significant

gap between the fit and the data. Conversely, using the latter method, the fitted model

fits the data perfectly with respect to the metric.

The deployment gain can be used to evaluate the coverage probability and compare

the coverage performances of different point sets analytically. It has considerable practical

significance in system design. For example, it can help guide the placement of additional

BSs and judge the goodness of a concrete deployment of BSs, which includes recognizing

how much better the deployment is than the PPP and how much the deployment could be

improved theoretically.

Our work sheds light on real BSs modeling in cellular networks in terms of coverage. For

a specified BS data set, we can use the methodology in this chapter to model it. The SP,

the PHCP and the perturbed triangular lattice are shown to be accurate models. However,

for detailed theoretical analyses, these models may not be suitable. They do not have the

tractability of the PPP, since their probability generating functionals are unknown. We

can carry out the analysis for the PPP instead and then add the deployment gain to the

coverage curve to evaluate the performance of the real deployments.
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CHAPTER 3

ASYMPTOTIC DEPLOYMENT GAIN

In this chapter, we propose a novel approach to evaluate the coverage probability of

cellular networks, where BSs follow a general class of point processes, using the asymptotic

deployment gain (ADG).

3.1 System Model and Asymptotic Deployment Gain

3.1.1 System Model

We consider a cellular network that consists of BSs and mobile users. The BSs are

modeled as a general m.i. point process Φ of intensity λ on the plane. We assume that Φ

is mixing1 [5, Def. 2.31], which implies that the second moment density ρ(2)(x1, x2) → λ2

as ‖x1 − x2‖ → ∞. Intuitively, ρ(2)(x1, x2) is the probability that there are two points

of Φ at x1 and x2 in the infinitesimal volumes dx1 and dx2. Rigorously, it is the density

pertaining to the second factorial moment measure [5, Def. 6.4], which is given by

α(2)(A×B) = E
( 6=∑
x,y∈Φ

1A(x)1B(y)
)

=

∫
A×B

ρ(2)(y − x)dxdy,

1The distribution of Φ, denoted by P , is the probability measure pertaining to the outcome measure
space (N ,N), where N is the set of all counting measures and N is the σ-algebra of counting measures. For
an event Y , the translated event Yx is defined as Yx , {ϕ ∈ N : ϕ−x = {x1− x, x2− x, . . . } ∈ Y }, Y ∈ N.
A stationary point process is mixing if P (E

⋂
Yx)→ P (E)P (Y ), as ‖x‖ → ∞, ∀E, Y ∈ N. Mixing implies

that if two events are defined on disjoint finite regions of the plane, the two events become independent
as the distance between the regions grows. Moreover, mixing implies ergodicity, which means that it is
sufficient to analyze one realization of the point process on a window large enough to obtain statistically
meaningful results.
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where A,B are two compact subsets of R2, and the 6= symbol indicates that the sum

is taken only over distinct point pairs. Since the point processes considered are m.i.,

ρ(2)(x1, x2) only depends on ‖x1−x2‖. Without ambiguity, we let ρ(2)(x2−x1) , ρ(2)(x1, x2).

Similarly, the nth moment density ρ(n)(x1, x2, . . . , xn) is the density (with respect to the

Lebesgue measure) pertaining to the nth-order factorial moment measure α(n), and we let

ρ(n)(x2 − x1, . . . , xn − x1) , ρ(n)(x1, . . . , xn).

We assume all BSs are always transmitting and the transmit power is fixed to 1. Each

mobile user receives signals from its nearest BS, and all other BSs act as interferers (the

frequency reuse factor is 1). Every signal is assumed to experience path loss and fading.

We consider both non-singular and singular path loss models, which are, respectively,

`(x) = (1 + ‖x‖α)−1 and `(x) = ‖x‖−α, where α > 2. (Since `(x) only depends on ‖x‖, in

this chapter, `(x) and `(‖x‖) are equivalent.) We assume that the fading is independent and

identically distributed (i.i.d.) for signals from all BSs. The fading can be small-scale fading,

shadowing or a combination of the two. We mainly focus on Nakagami-m fading, which

includes Rayleigh fading as a special case, and the combination of Nakagami-m fading and

log-normal shadowing. The thermal noise is assumed to be additive and constant with

power W . We define the mean SNR as the received SNR at a distance of r = 1, where its

value is 1/(2W ) for the non-singular path loss model and 1/W for the singular path loss

model.

To formulate the SINR and the coverage probability, we first define the nearest-point

operator NPϕ for a point pattern ϕ ⊂ R2 as

NPϕ(x) , arg min
y∈ϕ

{‖y − x‖}, x ∈ R2. (3.1)

If the nearest point is not unique, the operator picks one of the nearest points uniformly
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at random. The SINR at location z ∈ R2 has the form

SINRz =
hu`(u− z)

W +
∑

x∈Φ\{u} hx`(x− z)
, (3.2)

where u = NPΦ(z) and hx denotes the i.i.d. fading variable for x ∈ Φ with the cumulative

distribution function (CDF) Fh and the probability density function (PDF) fh. For a

m.i. point process, the coverage probability P(SINRz > θ) does not depend on z, and we

define

Pc(θ) = P(SINR > θ). (3.3)

Hence, without loss of generality, we focus on the coverage probability at the origin o.

Since each user communicates with its nearest BS, the interference at o only comes from

the BSs outside the open disk b(o, r) , {x ∈ R2 : ‖x‖ < r}, where r = ‖NPΦ(o)‖. The

total interference, denoted by I(Φ), is

I(Φ) =
∑

x∈Φ\NPΦ(o)

hx`(x). (3.4)

3.1.2 Asymptotic Deployment Gain

In Section 2.4, we introduced the deployment gain (DG) for interference-limited net-

works. Here we redefine the DG, to include the thermal noise.

Definition 3.1 (Deployment gain). The deployment gain, denoted by G(pt), is the ratio

of the θ values between the coverage probability curves of the given point process (or point

set) and the PPP at a given target coverage probability pt, i.e.,

G(pt) =
P−1

c (pt)

(PPPP
c )−1(pt)

, (3.5)

where PPPP
c (θ) and Pc(θ) are, respectively, the coverage probabilities of the PPP and the

given point process Φ.
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This definition is analogous to the notion of the coding gain commonly used in coding

theory [32, Ch. 1].

Fig. 3.1 shows the coverage probability of the PPP, the Matérn cluster process (MCP)

[5, Ch. 3], [40], and the randomly translated triangular lattice. The intensities of all the

three point processes are the same. We observe that for pt > 0.3, the DG is approximately

constant, e.g. the DG of the MCP is about −3 dB. In Fig. 3.1, the coverage probability

curves of the PPP that are shifted by G(0.6) (in dB) of the MCP and the triangular lattice

are also drawn. We see that the shifted curves overlap quite exactly with the curves of the

MCP and the triangular lattice, respectively, for all pt > 0.3. It is thus sensible to study

the DG as pt → 1 and find out whether the DG approaches a constant. To do so, analogous

to the notion of the asymptotic coding gain, we define the asymptotic deployment gain

(ADG).

Definition 3.2 (Asymptotic deployment gain). The ADG, denoted by Ĝ, is the deployment

gain G(pt) when θ → 0, or, equivalently, when pt → 1:

Ĝ = lim
pt→1

G(pt). (3.6)

Note that, the ADG may not exist for some point processes and fading types. In the

following section, we will provide some sufficient conditions for the existence of the ADG.

For Rayleigh fading, the ADG of the MCP exists.

Similar to the DG, the ADG measures the coverage probability but characterizes the

difference between the coverage probability of the PPP and a given point process as the

coverage probability approaches 1 instead of for a target coverage probability, and by

observation from Fig. 3.1, the ADG closely approximates the DG for all practical values

of the coverage probability. Hence, given the ADG of a point process, we can evaluate

its coverage probability by shifting (in dB) the corresponding PPP results, that is to

say, Pc(θ) ≈ PPPP
c (θ/Ĝ) and Pc(θ) ∼ PPPP

c (θ/Ĝ), θ → 0. In Fig. 3.1, we observe that
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Figure 3.1. The coverage probability of the PPP with intensity λ = 0.1, the
MCP with λp = 0.01, c̄ = 10 and rc = 5 (see Section 3.2.4 for an explanation of
these parameters), and the triangular lattice with density λ = 0.1 for Rayleigh
fading, path loss model `(x) = (1 + ‖x‖4)−1 and no noise, which are simulated

on a 100× 100 square. The lines are the coverage probability curves of the three
point processes, while the markers indicate the coverage probability curves of

the PPP shifted by the DGs of the MCP and the triangular lattice at pt = 0.6.
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Ĝ ≈ 3.73 dB ≈ 2.4 for the triangular lattice and Ĝ ≈ −3.07 dB ≈ 0.5 for the MCP. Note

that the ADG relative to the PPP permits an immediate calculation of the ADG between

two arbitrary point processes.

3.2 Existence of the Asymptotic Deployment Gain

In this section, we derive several important asymptotic properties of the SINR distribu-

tion, given some general assumptions about the point process and the CDF of the fading

variables. These asymptotic properties, in turn, prove the existence of the ADG.

Some important and recurrent notations used in this section are summarized in Table

3.1.

TABLE 3.1

SOME IMPORTANT AND RECURRENT NOTATIONS IN SECTION 3.2.

Notation Description

NPϕ(x) arg miny∈ϕ{‖y − x‖}, x ∈ R2

ξ ‖NPΦ(o)‖

ξmax supx∈R2 miny∈Φ{‖x− y‖}

Φζ
o (Φ | NPΦ(o) = ζ), where ζ ∈ R2 \ {o}

I(Φζ
o)

∑
x∈Φζo\{ζ} hx`(x)

Φζ (Φ | ζ ∈ Φ)

Î(Φζ)
∑

x∈Φζ
⋂
Bζ/2\{ζ} hx`(x)
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3.2.1 Definition of a General Class of Base Station Models

First we give several notations, based on which we introduce the precise class of point

processes we focus on. We define the contact distance ξ , ‖NPΦ(o)‖, and define the

supremum of ξ as ξmax , supx∈R2 miny∈Φ{‖x − y‖}. Due to the ergodicity of the point

process (which follows from the mixing property) [5, Ch. 2], ξmax does not depend on the

realization of Φ. ξmax =∞ in many mixing point processes.

We define Φζ
o , (Φ | NPΦ(o) = ζ), where ζ ∈ R2 \ {o}, as the conditional point process

that satisfies NPΦ(o) = ζ, which implies ζ ∈ Φζ
o and Φζ

o(b(o, ‖ζ‖)) = 0.2 So given that

ζ is the closest point of Φ to o, the total interference is I(Φζ
o). However, it is tricky to

directly handle the conditional point process conditioned on that there is an empty disk,

if the point process is not the PPP. Thus, we compare the interference in Φζ
o with the

interference from a point process where the desired BS ζ is not necessarily the closest one.

To this end, we define Φζ , (Φ | ζ ∈ Φ) and consider its interference outside a disk of

radius ‖ζ‖/2 around the origin:

Î(Φζ) =
∑

x∈Φζ
⋂
Bζ/2\{ζ}

hx`(x), (3.7)

where Bζ/2 , R2 \ b(o, ‖ζ‖/2). Note that it is not necessary to set the radius of the disk

to ‖ζ‖/2; in fact, the radius could be any quantity that is smaller than ‖ζ‖. Since we can

use standard Palm theory [5] for Φζ , it is easier to deal with Φζ than Φζ
o.

To motivate the above notations, we give an illustration of them in Fig. 3.2. Both Φζ
o

and Φζ have a point at ζ, and we let ‖ζ‖ = y. All points of Φζ
o are located in the striped

region (outside b(o, y)), and I(Φζ
o) is the interference from all these points except ζ. In

contrast, Φζ may have points throughout the whole plane, but Î(Φζ) is the interference

only from the points of Φζ in the shaded region (outside b(o, y/2)) except ζ.

2For a point process Φ, Φ(B) is a random variable that denotes the number of points in set B ⊂ R2.
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Figure 3.2. An illustration of Φζ
o, Φζ , I(Φζ

o) and Î(Φζ), where ‖ζ‖ = y.

Using the above notations, we define a general class of point process distributions that

we use to rigorously state our main result on the SINR distribution.

Definition 3.3 (Set A). The set A = {PΦ} is the set of all m.i. point process distributions

PΦ that are mixing and that satisfy the following four conditions. If a point process Φ is

distributed as PΦ ∈ A,

1. for all n ≥ 2, the nth moment density of Φ is bounded, i.e., ∃qn < ∞, such that
ρ(n)(x1, . . . , xn) < qn, for x1, . . . , xn ∈ R2;

2. for all y > 0, ∃ζ ∈ R2 with ‖ζ‖ = y, such that P(Φζ(b(o, y)) = 0) 6= 0;

3. ∃y0 > 0, such that for all y > y0 and ζ ∈ R2 with ‖ζ‖ = y, Î(Φζ) stochastically
dominates I(Φζ

o), i.e., P(I(Φζ
o) > z) ≤ P(Î(Φζ) > z), for all z ≥ 0;

4. ∀n ∈ N, the n-th moment of the contact distance ξ is bounded, i.e., ∃bn < ∞, s.t.
E(ξn) < bn.

To clarify the need for these conditions, we offer the following remarks:
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1. By the mixing property, we have that ρ(2)(x1, x2) → λ2, as ‖x1 − x2‖ → ∞, which
indicates that when ‖x1−x2‖ is large enough, ρ(2)(x1, x2) is bounded. The first condition
is stronger than that. It guarantees that the nth moment measure of Φ is absolutely
continuous with respect to the Lebesgue measure, which, in turn, implies that Φ is
locally finite [5, Ch. 2.2]. A point process is locally finite if and only if Φ(B) <∞ a.s.,
for any B ⊂ R2 with ν(B) <∞, where ν(·) is the Lebesgue measure. Local finiteness is
a standard assumption in point process theory, but it is too weak for our purposes. For
example, Condition 1 excludes some extreme3 cases, such as the Gauss-Poisson point
process as described in [5, Sec. 3.4], which is locally finite.

2. Since Φ is a m.i. point process, the second condition is equivalent to requiring that for
all y > 0, ∀ζ ∈ R2 with ‖ζ‖ = y, such that P(Φζ(b(o, y)) = 0) 6= 0. That is to say,
if ζ ∈ Φ, the probability of no points of Φ being located in b(o, ‖ζ‖) is positive. The
condition also implies that ξmax = ∞. Because if ξmax < ∞, for all y > ξmax, there
surely is at least one point of Φ in b(o, y), which leads to a contradiction since it would
imply that P(Φζ(b(o, y)) > 0) = 1. So, the condition excludes the m.i. and mixing
point processes where there exists r0 > 0, such that for all x ∈ R2, there is at least one
point in the region b(x, r0). Those point processes may be constructed, but are rarely
considered in the context of wireless networks.

3. The third condition is based on the two random variables I(Φζ
o) and Î(Φζ), whose

expressions contain the fading variables. But, in fact, the condition is independent of
the fading type, since the fading variables are i.i.d. and their expectation is bounded.
The condition means that there exists y0 > 0, such that for all y > y0 and ζ ∈ R2 with
‖ζ‖ = y, the CCDF of the interference from Φζ

⋂
Bζ/2 \ {ζ} is always no smaller than

the CCDF of the interference from Φζ
o \ {ζ}. Most point processes meet the condition,

since an extra region b(o, y) \ b(o, y/2) is included in Î(Φζ), but not in I(Φζ
o). Some

point processes that are seldom considered may violate the condition. For example,
albeit somewhat artificial, for small ε > 0, the expectation of Φζ

o(b(o, ‖ζ‖+ ε)) is much
greater than that of Φζ(b(o, ‖ζ‖ + ε)), which, at last, leads to the violence of the third
condition. Such kind of point processes are beyond our consideration.

4. The fourth condition is satisfied by most point processes that are considered. A sufficient
condition of the fourth condition is that F c

ξ (x) < exp(−c0x), as x → ∞, where F c
ξ is

the CCDF of ξ and c0 ∈ R+. One simple example is the PPP with intensity λ, whose
CCDF of ξ is F c

ξ (x) = exp(−λπx2).

In summary, the four conditions in Def. 3.3 are quite mild; they are satisfied by most

point processes that are usually considered in wireless networks and in stochastic geometry,

such as the PPP, the MCP, the Thomas cluster process [5, Ch. 3], the Matérn hard-core

3We call this point process extreme since, conditioned on a point at o, there is a positive probability
of having another point on a subset of Lebesgue measure zero.
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process (MHP) [5, Ch. 3] and the Ginibre process [48]. The triangular lattice is not

included, since it is not mixing and ξmax < ∞. We will prove that the laws of the PPP,

the MCP and the MHP belong to A in Section 3.2.4.

3.2.2 Main Results

Before presenting the main theorem, we state a property of the distribution of I(Φζ
o).

Lemma 3.4. Assume the fading variable h satisfies that ∀n ∈ N, E(hn) < +∞. For a

point process Φ with PΦ ∈ A, the following statements hold:

1. for `(x) = (1+‖x‖α)−1, all moments of the interference I(Φζ
o) are bounded, i.e., ∀n ∈ N,

∃cn ∈ R+, such that E(I(Φζ
o)
n) < cn, where cn does not depend on ζ;

2. for `(x) = ‖x‖−α, all moments of the interference I(Φζ
o) are bounded, and ∀n ∈ N,

∃cn ∈ R+, such that E(I(Φζ
o)
n) < cn max{1, ‖ζ‖2−αn}.

Proof. See Appendix A.1.

Since I(Φζ
o) can be interpreted as the total interference at o if the nearest base station

to o is at ζ, Lemma 3.4 shows that all moments of the total interference are bounded. If

the path loss model is non-singular, the bound can be chosen to be independent of ‖ζ‖.

However, if the path loss model is singular, the bound depends on ‖ζ‖, and if ‖ζ‖ goes to

0, it can be proved that E(I(Φζ
o)) becomes arbitrarily large for some BS processes, e.g.,

the PPP.4

Now we are equipped to state our main result: if the CDF of the fading variable h

decays polynomially around 0 and all moments of h are bounded, then as a result of the

boundedness of the moments of the interference, the outage probability 1−Pc(θ) expressed

in dB, as a function of the SINR threshold θ, also in dB, has the same slope as θ → 0, for

all Φ with PΦ ∈ A.

4Note that for the PPP with intensity λ, if we de-conditioned on ‖ζ‖, by Campbell’s theorem, the mean

interference E(I(Φ)) =
∑
x∈Φ\NPΦ(o) hx‖x‖−α = E(h)

∫∞
0

(2πλ)2

α−2 x3−αe−λπx
2

dx. So, E(I(Φ)) is finite for
2 < α < 4, and infinite for α ≥ 4.
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Theorem 3.5. For a point process Φ with PΦ ∈ A, if the fading variable satisfies

1. ∃m ∈ (0,+∞), s.t. Fh(t) ∼ atm, as t→ 0, where a > 0 is constant,

2. ∀n ∈ N, E(hn) < +∞,

then we have

1− Pc(θ)

θm
→ κ, as θ → 0, (3.8)

where 0 < κ <∞ does not depend on θ and is given by

κ =

∫ ∞
0

EI(Φζo)

[
a`(y)−m

(
I(Φζ

o) +W
)m]

fξ(y)dy (3.9)

(‖ζ‖ = y) and fξ is the PDF of ξ.

Proof. See Appendix A.2.

Theorem 1 shows that the ADG exists and how it depends on the other network pa-

rameters. The following theorem quantifies the ADG.

Corollary 3.6. Under the same condition as in Theorem 3.5, the ADG of Φ exists and is

given by

Ĝ =
(κPPP

κ

) 1
m
, (3.10)

where κPPP is the value for the PPP and κ is the value for Φ. For the PPP with intensity

λ,

κPPP = 2λπ

∫ ∞
0

EIr
[mm−1

Γ(m)
`(r)−m

(
Ir +W

)m]
r exp(−λπr2)dr, (3.11)

where Ir =
∑

x∈Φ
⋂
b(o,r)c hx`(x).

Proof. Given a target coverage probability pt, define θ1 , P−1
c (pt) and θ2 , (PPPP

c )−1(pt).

As pt → 1, we have θ1 → 0 and θ2 → 0. By Theorem 3.5, 1 − Pc(θ1) ∼ κθm1 and

1− PPPP
c (θ2) ∼ κPPPθm2 . Since pt = Pc(θ1) = PPPP

c (θ2), as pt → 1, κθm1 = κPPPθm2 . Thus,

Ĝ = limpt→1 θ1/θ2 = (κPPP/κ)1/m.
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Note that Rayleigh fading meets the requirements in Theorem 3.5 with m = 1. For

the special case of the PPP with intensity λ, no noise and Rayleigh fading, the coverage

probability can be expressed as (2.12). It follows that κPPP = limθ→0
1−Pc(θ)

θ
= 2

α−2
. For

α = 4, Pc(θ) = 1/(1 +
√
θ arctan

√
θ), and κPPP = 1.

κ plays a key role in evaluating the ADG. For a non-Poisson point process, κ can be

obtained by simulations; it does not seem possible to derive an exact analytical expression.

The main difficulties for getting the analytical expression are: first, the contact distance

distributions for many non-Poisson point processes are not available; second, the nth mo-

ment densities (n ≥ 2) for most non-Poisson point processes are generally unknown, even

for n = 2; and lastly but most importantly, the knowledge on the non-Poisson point pro-

cesses conditioned on that there is an empty ball around the origin is required but currently

unavailable, e.g. the conditional intensities, the conditioned second moment densities, etc.

While Palm theory provides techniques for point processes conditioned on one fixed point

(atom), it is not directly applicable to our situation, which requires conditioning on events

in a region.

A point process has different ADGs depending on the value of m and other network

parameters. So it is sensible to compare the ADGs of different point process models only

under the same network parameters.

We have proved that the ADG exists with certain constrains on the fading and point

processes. In the rest of this section, we consider some special cases.

3.2.3 Special Cases - Fading Types

Regarding the fading, we mainly consider Nakagami-m fading and composite fading,

which is a combination of Nakagami-m fading and log-normal shadowing.
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3.2.3.1 Nakagami-m Fading

The fading variable h ∼ gamma(m, 1
m

). On the one hand, we have

lim
t→0

Fh(t)

tm
= lim

t→0

(mt)m−1 exp(−mt)
Γ(m)tm−1

=
mm−1

Γ(m)
< +∞. (3.12)

On the other hand, since F c
h(x) has an exponential tail, all moments of h are finite. Thus,

Nakagami-m fading meets the requirements in Theorem 3.5.

In addition, we find an interesting phenomenon that for a point process Φ with PΦ ∈ A,

the behavior of the CCDF of the fading at the tail determines the tail behavior of the

CCDF of the interference I(Φζ
o). The following corollary formalizes this property. As

usual, f(x) = Ω(g(x)) as x→∞ means lim supx→∞
∣∣f(x)
g(x)

∣∣ > 0.

Corollary 3.7. For a point process Φ with PΦ ∈ A, if the fading has at most an exponential

tail, i.e., − logF c
h(x) = Ω(x), x → ∞, where F c

h(x) is the CCDF of the fading variable

h, then the interference tail is bounded by an exponential, i.e., − logF c

I(Φζo)
(x) = Ω(x),

x→∞, where F c

I(Φζo)
(x) is the CCDF of I(Φζ

o).

Proof. See Appendix A.3.

A similar property has been derived in [45], namely, that in ad hoc networks modeled by

m.i. point processes, an exponential tail in the fading distribution implies an exponential

tail in the interference distribution. The result in [45] cannot be directly applied to cellular

networks, because in the cellular network that we consider, each user communicates with

its nearest BS u and thus no interferers can be closer than u, while the authors in [45]

assume the receiver communicates with a transmitter at a fixed location and there can be

some interferers closer to the receiver than the transmitter.
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3.2.3.2 Composite Fading

The signals from all BSs experience both Nakagami-m fading and log-normal shadow-

ing. The same kind of fading5 has been investigated in [50], and its special case, which was

composed of Rayleigh fading and log-normal shadowing, was studied in [51, 52]. Denoting

the fading variable with respect to Nakagami-m fading by h̃ and the fading variable with

respect to log-normal shadowing by ĥ, the composite fading variable can be represented

as h = h̃ĥ, where h̃ and ĥ are independent.

For log-normal shadowing, we use the definition from [57]. Without loss of generality,

we assume ĥ = 10X/10, where X ∼ N (0, σ2). The CDF of ĥ, denoted by Fĥ(t), is

Fĥ(t) =
1

2
erfc

(
− 10 log t

σ
√

2 log 10

)
=

1√
π

∫ ∞
− 10 log t

σ
√

2 log 10

exp(−v2)dv, (3.13)

where erfc is the complementary error function. It is straightforward to obtain that6

E[ĥ] = exp(( log 10
10

)2 σ2

2
) and E[ĥ2] = exp(( log 10

10
)22σ2), and to show that as t → ∞, F c

ĥ
(t)

decays faster than t−n for any n ∈ N, but slower than exp(−at) for any a > 0.

For composite fading, we have the following lemma about the distribution of h.

Lemma 3.8. If h̃ ∼ gamma(m, 1
m

), 10 log ĥ/ log 10 ∼ N (0, σ2), and h̃ is independent of

ĥ, the distribution of h = h̃ĥ has the following properties:

1. Fh decays polynomially around 0 and

lim
t→0

Fh(t)

tm
=
mm−1

Γ(m)
exp

((m log 10

10
√

2

)2

σ2

)
<∞;

2. F c
h(t) = o(t−n), as t→∞, for any n ∈ N, and − logF c

h(t) = o(t), t→∞.

5Note that in the presence of shadowing, it may be more appropriate to assume that each mobile user is
associated with the BS that offers the highest received power. Here, we assume that each user is connected
to the BS that offers the highest average received power, or equivalently, which is the closest to the user.

6Note that the mean of ĥ is not 1. Actually, we could normalize it to 1 and replace it with the
normalized variable in our results, but since it does not affect our results, for convenience, we just leave it
as it is.
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Proof. See Appendix A.4.

The two properties in Lemma 3.8 indicate that the composite fading retains the asymp-

totic property of Nakagami-m fading for t → 0 and that of log-normal shadowing for

t → ∞, respectively. They also imply that the composite fading meets the requirements

in Theorem 3.5.7

Regarding the distribution of the interference at the tail, we have the following corollary.

Corollary 3.9. For a point process Φ with PΦ ∈ A and composite fading, the interference

tail is upper bounded by a power law with arbitrary parameter β, i.e., F c

I(Φζo)
(y) = o(y−β),

∀β ∈ N, as y → +∞.

Proof. We can simply apply the Markov inequality and have that ∀β ∈ N,

P(I(Φζ
o) > y) ≤ E(I(Φζ

o)
β)

yβ
. (3.14)

Hence, using Lemma 3.4, we have F c

I(Φζo)
(y) = o(y−β), ∀β ∈ N, as y → +∞.

3.2.4 Special Cases - Point Processes

As for the point processes, we specifically concentrate on the PPP, the MCP and the

MHP. We first briefly describe the MCP and the MHP.

Matérn Cluster Process : As a class of clustered point processes on the plane built on

a PPP, the MCPs are doubly Poisson cluster processes, where the parent points form a

uniform PPP Φp of intensity λp and the daughter points are uniformly scattered on the

7It is worth noting that in [53], it is proved that with increasing shadowing variance, the received
powers at the origin for all m.i. point processes converge weakly to those of a PPP. This implies that if
shadowing is considered in the BS association, the Poisson result applies in the limit σ2 → ∞. However,
it does not mean that the ADG Ĝ → 1, as σ2 → ∞ in our scenario with compound fading. We assume
BS association is based on distance, and shadowing is affecting the coverage probability rather than being
included in the decision on which BS is the serving one. In fact, as σ2 →∞, it can be shown using (3.9),
(3.10), the multinomial theorem and the Dominated Convergence Theorem that Ĝ approaches a constant
different from 1.
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ball of radius rc centered at each parent point xp with intensity λ0(x) = c̄
πr2

c
1B(xp,rc)(x),

where B(xp, rc) , {x ∈ R2 : ‖x− xp‖ ≤ rc} is the closed disk of radius rc centered at xp.

The mean number of daughter points in one cluster is c̄. So the intensity of the process is

λ = λpc̄.

Matérn Hard-core Process : The MHPs are a class of repulsive point processes, where

points are forbidden to be closer than a certain minimum distance. There are several

types of MHPs. Here we only consider the MHP of type II [5, Ch. 3], which is generated

by starting with a basic uniform PPP Φb of intensity λb, adding to each point x an

independent random variable m(x), called a mark, uniformly distributed on [0, 1], then

flagging for removal all points that have a neighbor within distance rh that has a smaller

mark and finally removing all flagged points. The intensity of the MHP is λ =
1−exp(−λbπr

2
h)

πr2
h

.

The highest density λmax = 1/(πr2
h) is achieved as λb →∞.

Lemma 3.10. The distributions of the PPP, the MCP and the MHP belong to the set A.

Proof. See Appendix A.5.

By Lemma 3.10, regarding Nakagami-m fading and composite fading, we have the

following corollary directly from Theorem 3.5.

Corollary 3.11. If the fading is Nakagami-m or the composite fading, then for the PPP,

the MCP and the MHP,

1− Pc(θ)

θm
→ κ, as θ → 0, (3.15)

where κ is given by (3.9). In (3.9), for Nakagami-m fading, a = mm−1

Γ(m)
; for the composite

fading, a = mm−1

Γ(m)
exp

((
m log 10

10
√

2

)2

σ2

)
.

It is worth noting that the Thomas cluster process (TCP) is an important concrete

Neyman-Scott process [5, Ch. 3], along with the MCP. Similar to the MCP, the TCP has

also been studied in wireless networks (e.g., [40]). The difference between the two point
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processes is that for the TCP, the daughter points are normally scattered with variance

σ2
t around each parent point xp with intensity λ0(x) = c̄

2πσ2
t

exp
(
− ‖x−xp‖2

2σ2
t

)
. It can be

shown that the distribution of the TCP also belongs to the set A. The proof is similar to

the proof for the MCP.

The applicability of the ADG framework is not restricted to the case of full frequency

reuse. For example, to analyze the benefits of partial frequency reuse, an independent

thinning of the base station point process could be considered, as in [8]. Similar to the

proof of Lemma 3.10, we can prove that after an independent thinning of the PPP, the

MHP and the MCP, the distributions of the new point processes Φ′ belong to A. That

said, it is unclear whether for all point processes in A, their independently thinned version

still belongs to A. This is an interesting open problem that we will consider it in our future

work.

3.3 Applications of the Asymptotic Deployment Gain

Since the ADG characterizes the gap of the coverage probability between a point process

and the PPP, any statistic that depends on the distribution of the SINR (e.g., the average

ergodic rate and the mean SINR) can be approximated using the ADG. In this section, we

focus on the average ergodic rate and the mean SINR.

3.3.1 Average Ergodic Rate

We assume that the base station adopts adaptive modulation/coding to achieve the

Shannon bound of the rate for the instantaneous SINR. That is to say, each BS adjusts its

rate of transmission to γ = ln(1 + SINR). The average ergodic rate (expressed in nats) is

γ̄ , E[ln(1 + SINR)].

Denoting the ADG of Φ as Ĝ and the coverage probability of the corresponding PPP

as PPPP
c (θ), the coverage probability for Φ is approximated as PPPP

c (θ/Ĝ). The average
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ergodic rate can be expressed as

γ̄ ≈ −
∫ ∞

0

ln(1 + θ)dPPPP
c

(
θ

Ĝ

)
= −

∫ ∞
0

ln(1 + Ĝθ)dPPPP
c (θ)

(a)
=

∫ ∞
0

PPPP
c

(
ex − 1

Ĝ

)
dx,

where (a) follows since the CCDF of the random variable X = ln(1 + Ĝ · SINR) is P(X >

x) = P
(
SINR > (ex−1)/Ĝ

)
= PPPP

c

(
(ex−1)/Ĝ

)
and the expectation of a positive random

variable can be expressed as the integral over the CCDF.

3.3.2 Mean SINR

Just as the coverage probability and the average ergodic rate, the mean SINR is also an

important criterion that has been discussed in wireless networks, e.g. in [54]. Denote MΦ

as the mean SINR for Φ, and MPPP the mean SINR for the PPP with the same intensity

as that of Φ. It can be proved that the mean SINR for the PPP is infinite if the path loss

model is singular. Briefly, for ζ = NPΦ(o), letting y = ‖ζ‖, we have

E(SINR) = E
(

hζ`(ζ)

W + I(Φζ
o)

)
(a)

≥ E(h)Ey
(

`(ζ)

W + E[I(Φζ
o)]

)
(b)

≥ E(h)Ey
(

y−α

W + c1 max{1, y2−α}

)
= E(h)

(∫ 1

0

x−α

W + c1x2−αf‖ζ‖(x)dx+

∫ ∞
1

x−α

W + c1

f‖ζ‖(x)dx

)
≥ E(h)

(∫ 1

0

x−1

W + c1

2πλe−λπx
2

dx+

∫ ∞
1

x−α

W + c1

f‖ζ‖(x)dx

)
=∞,

where f‖ζ‖(x) = 2πλxe−λπx
2

is the contact distance distribution for the PPP, (a) follows

from Jensen’s inequality, and (b) follows from Lemma 3.4.

So, we only consider the non-singular path loss model. We have E(SINR) = E(h)E
( `(ζ)

W+I(Φζo)

)
≤

E(h)
W

E(`(ζ))<∞. Given the ADG Ĝ of Φ, we have a simple approximation for MΦ:

MΦ ≈ ĜMPPP, (3.16)

where MPPP can be expressed as MPPP =
∫∞

0
PPPP

c (θ)dθ. Therefore, the ADG can also be
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interpreted as the approximate gain in the mean SINR.

3.4 Simulations

In this section, we present simulation results on a 100× 100 square, where we consider

the non-singular path loss model and fix the path loss exponent to α = 4 and the intensity

of the point processes to λ = 0.1. For the MCP, we let λp = 0.01, c̄ = 10 and rc = 5;

for the MHP, we let λb = 0.263 and rh = 1.7. We present our results in two subsections

corresponding to the SINR distribution and the applications of the ADG.

3.4.1 SINR Distribution

3.4.1.1 Nakagami-m Fading

In this part, we present simulation results of the outage probability for the PPP, the

MCP, and the MHP under Nakagami-m fading.

Fig. 5.1 shows the outage curves 1−Pc(θ) of the PPP for m ∈ {0.5, 1, 2} and different

mean SNR values. Note that the SNR value here is 1/(2W ). As θ approaches 0, the slopes

of the curves for m = 0.5 are all 5 dB/decade, the slopes for m = 1 are all 10 dB/decade,

and the slopes for m = 2 are all 20 dB/decade, in agreement with Corollary 3.11. We

also observe that there is only a rather small gap between the cases of SNR = 20 dB and

SNR =∞, thus the thermal noise does not significantly affect the asymptotic performance

of the coverage probability. We will neglect noise in the rest of this section.

In Fig. 5.2, we find that for the same point process, a different m implies a different

asymptotic slope. In fact, the slope is 10m dB/decade, just as Corollary 3.11 indicates.

For the same m, different point processes have the same asymptotic slope, thus in the

high-reliability regime, the coverage probability of a non-Poisson process can be obtained

accurately simply by shifting the coverage probability curve of the PPP with the same

intensity by the ADG. Besides, we observe that for any m, the coverage probability of
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Figure 3.3. Nakagami-m fading: the outage probability 1− Pc(θ) vs. θ for the
PPP when m ∈ {0.5, 1, 2} under different SNR settings.

the MHP is the largest of the three processes, followed by the PPP and then the MCP.

Intuitively, it is because the MHP is more regular than the PPP and the MCP is more

clustered than the PPP. In addition, since the value of κ for the MCP and the MHP can be

approximated through the simulation, by Corollary 3.6, we can approximate their ADGs.

Denote by ĜMCP
m the ADG for the MCP with respect to m, and by ĜMHP

m that of the MHP.

We obtain that for the MCP, ĜMCP
0.5 ≈ 0.47, ĜMCP

1 ≈ 0.49, ĜMCP
2 ≈ 0.37 and ĜMCP

4 ≈ 0.29;

for the MHP, ĜMHP
0.5 ≈ 1.38, ĜMHP

1 ≈ 1.58, ĜMHP
2 ≈ 1.48 and ĜMHP

4 ≈ 1.45. Note that

ĜMCP
1 is consistent with the approximated value 0.49 obtained from Fig. 3.1.

3.4.1.2 Composite Fading

We consider the combination of Nakagami-m fading and log-normal shadowing in this

part. In Fig. 3.5, the outage probabilities for the PPP, the MCP and the MHP are

exhibited. The MHP still has the best outage probability, followed by the PPP and the
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Figure 3.4. Nakagami-m fading: the outage probability 1− Pc(θ) vs. θ for the
PPP, the MCP and the MHP when m ∈ {0.5, 1, 2, 4} (no noise).

MCP. We also observe that the value of σ does not affect the slope of the outage curve as

θ → 0, which is 10m dB/decade. The ADGs of the MCP and MHP can also be estimated:

for m = 1 and σ = 2, ĜMCP
1 ≈ 0.51 and ĜMHP

1 ≈ 1.55; for m = 2 and σ = 4, ĜMCP
2 ≈ 0.40

and ĜMHP
2 ≈ 1.37.

3.4.2 Applications of the ADG

In this subsection, we evaluate the average ergodic rate and the mean SINR for the

PPP, the MCP and the MHP through simulations, and also estimate them using the ADGs.

The ADG values are approximated by the DG values at pt = 1− 10−4 for the three point

processes, which are presented in Table 3.2.
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TABLE 3.2

THE ADGS FOR DIFFERENT α (RAYLEIGH FADING, NO NOISE).

ADG α = 2.5 α = 3.0 α = 3.5 α = 4 α = 4.5

MCP 0.46 0.40 0.41 0.49 0.42

MHP 1.27 1.37 1.37 1.58 1.40
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3.4.2.1 Average Ergodic Rate

In Fig. 3.6, the average ergodic rates γ̄ for the three point processes as a function

of α are shown as the lines. We also use the simulation results of the PPP and the

ADGs in Table 3.2 to estimate the average ergodic rates for the MCP and the MHP. The

estimated values are shown as the markers in Fig. 3.6. From the figure, we observe that

the average ergodic rates estimated using the ADGs provide fairly good approximations to

the empirical values. We also observe that γ̄ increases as α grows, which is obvious since

the interference decays much faster than the desired signal power.

3.4.2.2 Mean SINR

In Fig. 3.7, the lines are the mean SINRs for the three point processes as a function of

α. The markers indicate the mean SINRs for the MCP and the MHP estimated using the

simulation results of the PPP and the ADGs. The approximations using the ADGs are

acceptable, although not perfect. The gaps between the values estimated using the ADG

and the empirical value are mainly due to the fact that the mean is heavily affected by

the tail of the CCDF of the SINR, while the ADG approximation is accurate for small and

moderate values of θ.

3.5 Summary

In this chapter, we examined the asymptotic properties of the SINR distribution for a

variety of motion-invariant point processes, given some general assumptions on the point

process and general fading assumptions. The assumptions on the point process are satisfied

by many commonly used point processes, e.g. the PPP, the MHP, the MCP and the TCP.

Similarly, the fading assumptions are satisfied by Nakagami-m fading and composite fading.

We proved that 1− Pc(θ) ∼ κθm, as θ → 0, which shows that the ADG exists.

Under the same system configurations on the fading and path loss, different point
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Figure 3.6. The average ergodic rate γ̄ vs. α for the PPP, the MCP and the
MHP. The lines are the average ergodic rates obtained directly from simulations,

while the markers are the average ergodic rates estimated using the ADGs.

processes with the same intensity have different ADGs. Thus, the ADG can be used

as a simple metric to characterize the coverage probability. Given the ADG of a point

process, we can obtain the precise CCDF of the SINR near 1 by shifting the coverage

probability curve of the PPP with the same intensity by the ADG (in dB), and numerical

studies show that the shifted coverage probability curve is highly accurate for all practical

coverage probabilities.
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The lines are the mean SINRs obtained directly from simulations, while the

markers are the mean SINRs estimated using the ADGs (i.e., by (3.16)).
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CHAPTER 4

SIR ASYMPTOTICS IN GENERAL NETWORK MODELS

In this chapter, we extend our asymptotic results in Chapter 3 to more scenarios.

We show our results as the leaves of the tree in Fig. 4.1. Visually, the tree provides

the structure of the main part of this chapter. We discuss the asymptotic results for all

combinations of the assumptions.

Besides, we study the impact of the nearest interferer on the asymptotic properties

of the SIR distribution, to see whether the nearest interferer plays a dominant role in

determining the asymptotics.

The rest of this chapter is organized as follows. In Section 4.1, we introduce the system

model. We analyze the asymptotic properties of the lower and upper tails of the SIR

distribution in Sections 4.2 and 4.3, respectively. In Section 4.4, the impact of the nearest

interferer on the asymptotic is investigated. A summary is given in Section 4.5.

4.1 System Models

We consider general network models, including ad hoc networks and cellular networks,

where the transmitters/BSs are assumed to follow a stationary point process Φ. Without

loss of generality, we focus on the SIR distribution at the typical receiver at the origin o. We

assume that the desired transmitter/base station is x0 and all transmitters/BSs transmit

at the same unit power level. Note that in ad hoc networks, x0 does not belong to Φ,

but in cellular networks, x0 is a point of Φ. Also, in ad hoc networks, if Φ is not simple,

we assume there is an interferer at the same location as x0. Let Φ∗ be the collection of

all interferers in both ad hoc networks and cellular networks. All signals experience i.i.d.
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Figure 4.1. The organization of the chapter sorted by the assumptions and the
asymptotic results.

fading with unit mean and the cumulative distribution function (CDF) of the fading is

denoted by Fh. The SIR is given by

SIR ,
S

I
=

hx0`(x0)∫
R2 hx`(x)Φ∗(dx)

, (4.1)

where (hx) are the fading random variables and `(·) is the path loss law. We use the

integral form of the interference instead of the usual sum over all interferers, since Φ∗ is

not necessarily simple. Note that for simple point processes, S and I are independent in

ad hoc networks but correlated in cellular networks; for non-simple point processes, S and

I are always correlated, since there is always one interferer at the same location as the

desired transmitter/BS.

Using the notation of the interference-to-(average)-signal ratio (ISR) defined in [61], in
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general, the success probability can be expressed as

Ps(θ) = EF̄h
(
θ · I

Eh (S)

)
= EF̄h(θ · IS̄R), (4.2)

where Eh (S) = E (S | Φ) = `(x0) is the mean received signal power averaged only over the

fading and F̄h is the CCDF of the fading random variables.

In the following two sections, we will first discuss the asymptotic properties of the lower

tail of the SIR distribution (near 0) and then the upper tail of the SIR distribution (near

∞). Note that in the rest of this chapter, by “tail” we mean the “upper tail”, whereas

“lower tail” refers to the asymptotics near 0.

4.2 Lower Tail of the SIR Distribution

4.2.1 Simple Ad Hoc Models

4.2.1.1 Singular Path Loss Model

Consider the wireless network where all transmitters follow a simple stationary point

processes Φ of intensity λ and the distance between the transmitter and the corresponding

receiver is a constant b > 0. We add an additional transmitter-receiver pair with the the

receiver at the origin o and its desired transmitter at x0 = (b, 0) /∈ Φ and analyze the SIR

distribution at o. We assume all transmitters are always transmitting1 at unit power and

in the same frequency band. Every signal is assumed to experience i.i.d. fading with mean

1. The path loss model is `(x) = ‖x‖−α, where α > 2. The lower tail of the CDF of the

SIR has the following property:

Theorem 4.1. Let Φ be a simple stationary point processes with intensity λ, and let the

1This is not a restriction due to the generality of the point process model (most MAC schemes preserve
the stationarity of the transmitters).
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desired received signal strength be given by S = hb−α and the interference be given by

I =
∑

x∈Φ hx‖x‖−α. If the fading random variable h satisfies E[h−δ] <∞, we have

1− Ps(θ) ∼ θδπλb2E[hδ]E[h−δ], θ → 0. (4.3)

In particular, if h ∼ exp(1), 1− Ps(θ) ∼ θδπλb2Γ(1 + δ)Γ(1− δ), as θ → 0.

Proof. Using the same method as in the proof of Theorem 5.6 in [42], we can show that

P(I ≥ y) ∼ πλE[hδ]y−δ, y →∞. (4.4)

Note that in the proof of Theorem 5.6 in [42], the reduced Palm measure is used. In our

case, we use the standard probability measure, since in our model, the transmitter and

receiver do not belong to Φ, while in Theorem 5.6 in [42], the result is conditioned on

that there is a transmitter at the origin belonging to Φ. The success probability can be

rewritten as

Ps(θ) = 1− P
(
I > hx0b

−αθ−1
)

= 1− Eh
[
P
(
I > hb−αθ−1 | h

)]
. (4.5)

Thus,

lim
θ→0

1− Ps(θ)

θδ
= lim

θ→0

Eh [P (I > hb−αθ−1 | h)]

θδ

(a)
= Eh

[
lim
θ→0

P (I > hb−αθ−1 | h)

θδ

]
(b)
= πλb2E[hδ]E[h−δ], (4.6)

where (a) follows from the dominated convergence theorem and (b) follows from (4.4).

Note that Nakagami-m fading, Rician fading and lognormal fading satisfy the conditions
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in Theorem 4.1.

In this model, the distance between the nearest interferer and the origin could be

arbitrarily small irrespective of the type of the point process and thus the ratio of the

average desired signal strength and the nearest interferer’s signal strength averaged over

the fading could be arbitrarily small due to the singular path loss. In the rest of this

subsection, we study whether the nearest interferer determines the asymptotic property of

Ps(θ), as θ → 0. The following proposition [61, Lemma 7] gives the property about the

upper tail of the CCDF of the nearest interferer’s signal strength.

Proposition 4.2. For all stationary point processes, the tail of the CCDF of the nearest

interferer’s signal strength I0 at the receiver o is

P(I0 > y) ∼ λπE
[
hδ
]
y−δ, y →∞. (4.7)

Proposition 4.2 implies that the CDF of the ratio of the desired signal strength and the

nearest interferer’s signal strength, denoted by S
I0

, satisfies

P
(
S

I0

< θ

)
= P (I0 > hb−αθ−1)

∼ λπE(hδ)Eh
[(
hb−αθ−1

)−δ]
= λπb2E[hδ]E[h−δ]θδ, θ → 0. (4.8)

So, P (SIR < θ) > P
(
S
I0
< θ
)
∼ λπb2E

[
hδ
]
E
[
h−δ
]
θδ, as θ → 0.

By Theorem 4.1, we find that P (SIR < θ) ∼ P
(
S
I0
< θ
)

, as θ → 0. So the nearest

interferer alone determines the asymptotic behavior of Ps(θ) (not just the pre-constant),

as θ → 0. For Nakagami-m fading, E[hδ]E[h−δ] = Γ(m)2

Γ(m+δ)Γ(m−δ) . So, both m and δ affect

the pre-constant, but only δ determines the decay order.
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4.2.1.2 Bounded Path Loss Model

We assume that the path loss model is `(x) = (ε + ‖x‖α)−1, where α > 2 and ε > 0,

and that signals experience Nakagami-m fading with mean 1, i.e., the fading variables are

distributed as h ∼ gamma(m, 1
m

). We have

lim
t→0

Fh(t)

tm
= lim

t→0

(mt)m−1 exp(−mt)
Γ(m)tm−1

=
mm−1

Γ(m)
. (4.9)

So as θ → 0,

1− Ps(θ) = P
(
h0(ε+ bα)−1

I
< θ

)
= E [Fh (θ(ε+ bα)I)]

(a)∼ θm
mm−1

Γ(m)
(ε+ bα)mE[Im], ε > 0, (4.10)

where I =
∑

x∈Φ h(ε + ‖x‖α)−1 and (a) follows by the dominated convergence theorem

(similar to the proof of Theorem 3.5 in Section 3.2.2). By Lemma 3.4 in Section 3.2.2, we

have E[Im] <∞, for ε > 0.

4.2.2 Simple Cellular Models

For both singular and bounded path loss models with Nakagami-m fading, the results

in Table 1.2 have been proved in Chapter 3.

4.2.3 Non-simple Ad Hoc Models

4.2.3.1 Singular Path Loss Model

We assume that in the wireless network, all transmitters follow a duplicated-2-point

stationary point processes Φ of intensity λ, where every point has a partner point colocated.

We add an additional transmitter-receiver pair with the receiver at the origin o and its

desired transmitter at x0 = (b, 0) /∈ Φ and an additional transmitter x1 = (b, 0) /∈ Φ as
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an interferer. We analyze the SIR distribution at o. As in Section 4.2.1.1, we assume all

transmitters are always transmitting at unit power and in the same frequency band; the

path loss model is `(x) = ‖x‖−α, where α > 2; every signal is assumed to experience i.i.d.

fading with mean 1 and PDF fh.

Φ can no longer be represented as a random set, since a set can only contain one

instance of each element. Let Φs be the simple point process version of Φ, which means

that at every point location of Φ, there is only one point of Φs. So Φs is a random set.

Viewing Φ and Φs as random counting measures, we have Φ = 2Φs. The intensity of Φs is

λs = λ/2. Let Ĩ ,
∑

x∈Φs
(hx,1 + hx,2) `(x), where hx,1 and hx,2 are the two fading variables

of the transmitters at the location of x. The total interference, including the one from the

partner node of the desired transmitter, is then given by I = h1b
−α + Ĩ. The SIR at the

receiver at o can be expressed as

SIR =
h0b
−α

h1b−α + Ĩ
, (4.11)

where {h0, h1} are fading variables.

The following theorem characterizes the lower tail of the SIR distribution.

Theorem 4.3. Let Φ be a stationary processes with intensity λ, where every transmitter is

colocated with another one. We focus on a receiver at the origin o, with the desired received

signal strength S = h0b
−α and the interference I =

∑
x∈Φs

(hx,1 + hx,2) ‖x‖−α+h1b
−α. If the

fading random variables ha, hb satisfy E[hδa] < ∞, E[h−δa ] < ∞ and P (ha < θhb) = Θ(θK)

as θ → 02, where K > 1, then we have

1− Ps(θ) ∼ θδ
πλb2

2
E[(ha + hb)

δ]E[h−δ], θ → 0, (4.12)

2Note that there exist distributions that violate the fading constraints in Theorem 4.3. For example, if
h follows an inverse Gamma distribution with its PDF fh(x) = βa

Γ(a)x
−a−1 exp(−β/x), where a, β > 0, we

have E[hδ] =∞ for a < δ.
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where h, ha, hb are iid fading random variables. Specifically, Nakagami-m fading meets the

fading constraints wherein K = m.

Proof. See Appendix A.6.

Comparing (4.12) with (4.3), we observe that by duplication of the transmitters, only

the pre-constant changes, since for the interference, the duplication can be interpreted as

the duplication of the fading variable and the decay order is determined only by δ.

4.2.3.2 Bounded Path Loss Model

The system model is the same as that in Section 4.2.3.1, except that `(x) = (ε+‖x‖α)−1,

where α > 2 and ε > 0, and that signals experience Nakagami-m fading with mean 1.

As θ → 0, we have

1− Ps(θ) = P
(

h0(ε+ bα)−1

h1(ε+ bα)−1 + Ĩ
< θ

)
= E

[
Fh

(
θ(ε+ bα)

(
h1(ε+ bα)−1 + Ĩ

))]
(a)∼ θm

mm−1

Γ(m)
(ε+ bα)mE

[(
h1(ε+ bα)−1 + Ĩ

)m]
, (4.13)

where (a) follows by the dominated convergence theorem (similar to the proof of Theorem

3.5 in Section 3.2.2). By Lemma 3.4 in Section 3.2.2, we have E[Ĩn] < ∞ for any n ∈ N,

and thus E
[(
h1(ε+ bα)−1 + Ĩ

)m]
<∞ follows using binomial expansion.

For example, the non-simple ad hoc models can be applied to the scenario where there

is a jamming transmitter located at the desired transmitter’s position. Our results show

that adding jamming transmitters does not change the asymptotic order as θ → 0 and

only the pre-constant changes. Besides, by analyzing the non-simple ad hoc models, we

know how the limiting case when an interferer gets really close to the receiver behaves and

we can contrast the ad hoc models with the cellular models under the same duplication in

the next subsection.
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4.2.4 Non-simple Cellular Models

Consider a downlink cellular network model. The base station (BS) locations are

modeled as a stationary point process Φ ∈ R2 with intensity λ, where every point has

a partner point colocated. Hence Φ is no longer a simple point process. Without loss of

generality, we assume that the typical user is located at the origin o and is served by one

of the two nearest BSs. All transmitters are assumed to be always transmitting signals

using unit power and in the same frequency band. Every signal is assumed to experience

i.i.d. Nakagami-m fading with mean 1 and PDF fh and there is no noise and shadowing.

For both the singular path loss model `(x) = ‖x‖−α and the bounded path loss model

`(x) = (ε+ ‖x‖α)−1, where α > 2, we can simply modify the proof of Theorem 3.5 in

Chapter 3 and prove that 1− Ps(θ) ∼ θm, as θ → 0.

This model can be applied to the analysis of edge users of two adjacent cells in cellular

networks, since each edge user has an interferer that has the same distance to the user

as the serving BS. The application’s model is a bit different from our model, since the

interferers, excluding the nearest one, do not have partner points colocated. But in our

model, the duplication of the interferers in the SIR expression can be interpreted as the

sum of two i.i.d. the fading variables. Therefore, the only difference between the results of

the application and our model is the pre-constant, and the asymptotic order remains the

same.

4.2.5 Discussion

In Table 1.2, for those entries where the lower or upper tail of the SIR distribution

decays by the power law, the results are true for essentially all motion-invariant (m.i.)

point processes. So if it turns out that the distribution of ‖x0‖ or the distributions of the

distances from interferers to the origin determine the decay order, the decay order is a

function of δ.

For θ → 0, to study the asymptotic properties of P
(
S
I
< θ
)
, at least one of the two
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conditions, S → 0 or I →∞, has to be met, otherwise, P
(
S
I
< θ
)

= 0 for some θ.

In ad hoc models, for both the singular and bounded path loss models, S → 0 is only

determined by the lower tail of the fading distribution and I →∞ is determined by both

the tail of the fading distribution and the distributions of all interferers. It is proved that

for ad hoc models with bounded path loss, 1 − Ps(θ) decays polynomially, and the decay

order is only determined by the fading parameter m. For ad hoc models with singular path

loss, it is proved that the lower tail of the distributions of the interferer distances, other

than the fading distirbution, dominates the decay order and thus the decay order is only

determined by δ.

4.3 Tail of the SIR Distribution

4.3.1 Simple Ad Hoc Models

4.3.1.1 Singular Path Loss Model

We first consider the PPP with Rayleigh fading and then discuss the case of the PPP

with Nakagami-m fading.

The success probability Ps,PPP(θ) for the PPP is [5, Ch. 5.2]

Ps,PPP(θ) = exp
(
−πλθδb2Γ(1 + δ)Γ(1− δ)

)
. (4.14)

Hence, Ps,PPP(θ) = e−Θ(θδ), as θ →∞.

Note in (4.14), Ps,PPP(θ) is in the form of the void probability of a ball. As θ → ∞,

Ps,PPP(θ) is equal to void probability of a ball with radius d0 = θδ/2b(Γ(1 + δ)Γ(1− δ))1/2,

i.e., the probability that there is no interferer with distance less than d0 to o.

For h ∼ exp(1), we have P(h > β) = exp(−β). From the above result, we observe that

Ps,PPP(θ) = P (h > θbαI) does not have an exponential tail e−Θ(θ) simply as the fading

random variable does. It is the interference term in the denominator that determines the

power of θ.
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For the simple PPP case with Nakagami-m fading, we have the following proposition.

Proposition 4.4. For the PPP Φ with intensity λ, the desired received signal strength at

the origin is given by S = hb−α and the interference is expressed as I =
∑

x∈Φ hx‖x‖−α,

where (hx) are i.i.d. Nakagami-m fading variables, then we have

Ps,PPP(θ) = e−Θ(θδ), θ →∞. (4.15)

Proof. By (4.14), it has been showed that (4.15) holds for m = 1. First, we consider

the case with m = 2. The Laplace transform of the interference I for the PPP has been

derived in [5, Ch. 5.2], which is LI(s) = E[e−sI ] = exp
(
−πλE(hδ)Γ(1− δ)sδ

)
. By taking

the derivative of LI(s), we have

E[Ie−sI ] = πλE(hδ)Γ(1− δ)δsδ−1 exp
(
−πλE(hδ)Γ(1− δ)sδ

)
. (4.16)

Thus, the success probability is expressed as

Ps,PPP(θ) = P (h > θbαI)

= EI
[∫ ∞

θbαI

4xe−2xdx

]
(a)
= EI

[
2θbαIe−2θbαI +

∫ ∞
2θbαI

e−xdx

]
= 2θbαEI

[
Ie−2θbαI

]
+ EI

[
e−2θbαI

]
=
(
πλE(hδ)Γ(1− δ)δ2δb2θδ + 1

)
exp

(
−πλE(hδ)Γ(1− δ)2δb2θδ

)
, (4.17)

where (a) follows using the integration by parts. Therefore, as θ →∞, − log (Ps,PPP(θ)) =

Θ(θδ).

For m ≥ 3, we can obtain the same result by the same reasoning as the case with

m = 2, i.e., applying the (m− 1)-th derivative of LI(s) and integration by parts.
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4.3.1.2 Bounded Path Loss Model

We consider the PPP case with Nakagami-m fading and assume that the path loss

model is `(x) = (ε+ ‖x‖α)−1, where α > 2 and ε > 0.

For m = 1, the success probability Ps,PPP(θ) can be expressed as

Ps,PPP(θ) = E [exp (− (ε+ bα) θI)] , (4.18)

which is in the form of the Laplace transform of the interference I. We have

LI(s) , E [exp (−sI)]

= exp

(
−λ
∫
R2

(
1− Eh

[
exp

(
−sh (ε+ ‖x‖α)−1)]) dx

)
= exp

(
−2πλ

∫ ∞
0

(
1− 1

1 + s (ε+ rα)−1

)
rdr

)
(a)
= exp

(
−2πλs(s+ ε)δ−1

∫ ∞
0

r

1 + rα
dr

)
= exp

(
− πλ

sinc δ
s(s+ ε)δ−1

)
, (4.19)

where (a) follows by using the substitution r(s+ ε)−δ/2 → r.

Thus, Ps,PPP(θ) = exp
(
− πλ

sinc δ
(ε+ bα) θ((ε+ bα) θ + ε)δ−1

)
. We have

log (Ps,PPP(θ)) ∼ −Aθδ, θ →∞, (4.20)

where A = πλ
sinc δ

(ε+ bα)δ.

For m ∈ N+, we have the following proposition.

Proposition 4.5. For the PPP Φ with intensity λ, the desired received signal strength at

the origin is given by S = h(ε+bα)−1 and the interference is expressed as I =
∑

x∈Φ hx(ε+
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‖x‖α)−1, where {hx} are i.i.d. Nakagami-m fading variables, then we have

Ps,PPP(θ) = e−Θ(θδ), θ →∞. (4.21)

Proof. The proof is similar to that of Proposition 4.4.

4.3.2 Simple Cellular Models

4.3.2.1 Singular Path Loss Model

For general fading models, the SIR asymptotics have been derived in [61].

4.3.2.2 Bounded Path Loss Model

By the same reasoning as in the proof of Theorem 4 in [61], we have

Ps(θ) ∼ λθ−δ
∫
R2

E!
o

[
F̄h ((θε+ ‖x‖α) I∞)

]
dx, θ →∞, (4.22)

where I∞ =
∑

x∈Φ hx`(x).

We consider the PPP case with Nakagami-m fading. For m = 1, as θ →∞,

Ps,PPP(θ) ∼ λθ−δ
∫
R2

E!
o [exp (− (θε+ ‖x‖α) I∞)] dx

(a)
= λθ−δ

∫
R2

exp

(
−2πλ (θε+ ‖x‖α) (θε+ ‖x‖α + 1)δ−1

∫ ∞
0

r

1 + rα
dr

)
dx

= λθ−δ exp

(
− πλ

sinc δ
θδεδ

)∫
R2

exp

(
− πλ

sinc δ

(
(θε+‖x‖α) (θε+‖x‖α+1)δ−1−θδεδ

))
dx,

(4.23)

where (a) follows by using the result in (4.19).

Since log
(∫

R2 exp
(
− πλ

sinc δ

(
(θε+ ‖x‖α) (θε+ ‖x‖α + 1)δ−1 − θδεδ

))
dx
)

= o(θδ), as θ →

∞, we have Ps(θ) = e−Θ(θδ), as θ →∞.
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4.3.3 Non-simple Ad Hoc Models

4.3.3.1 Singular Path Loss Model

The system model is the same as that in Section 4.2.3.1, except that Φs is assumed to

be a uniform (and thus simple) PPP with intensity λ/2 and the fading is Rayleigh.

The success probability Ps,PPP(θ) is

Ps,PPP(θ) = P
(

h0b
−α

h1b−α + Ĩ
> θ

)
= E

[
e−h1θ

]
E
[
e−θb

αĨ
]

=
1

1 + θ
exp

(
−πλ

2
θδb2E

[
(ha + hb)

δ
]

Γ(1− δ)
)
, (4.24)

where h0, h1, ha, hb are fading variables. Takeing the logarithm on both sides, we have

− log(Ps,PPP(θ))− log(1 + θ) ∼ Θ(θδ), as θ →∞. Thus, Ps(θ) = e−Θ(θδ), as θ →∞.

Note that if we had k colocated interferers, the prefactor at the right-hand side of (4.24)

would be (1 + θ)−k. When k = 2, the prefactor is the same as in the result for cellular

worst-case users in [65, Eq. (19)].

4.3.3.2 Bounded Path Loss Model

The system model is the same as that in Section 4.2.3.2, except that Φs is assumed to

be a uniform PPP with intensity λ/2 and the fading is Rayleigh.

91



The success probability Ps,PPP(θ) is

Ps,PPP(θ) = P

(
h0 (ε+ bα)−1

h1 (ε+ bα)−1 + Ĩ
> θ

)

= E
[
e−h1θ

]
E
[
e−θ(ε+b

α)Ĩ
]

=
1

1 + θ
exp

(
−πλ

∫ ∞
0

(
1− E

[
e−g2s1(ε+rα)−1

])
rdr

)
=

1

1 + θ
exp

(
−πλ

∫ ∞
0

(
1− 1(

1 + s1 (ε+ rα)−1)2

)
rdr

)
(a)
=

1

1 + θ
exp

(
−2πλs1(s1 + ε)δ−1

∫ ∞
0

rα + s1+2ε
2(s1+ε)

(rα + 1)2 rdr

)
(b)∼ 1

1 + θ
exp

(
−2πλs1(s1 + ε)δ−1

∫ ∞
0

rα + 1
2

(rα + 1)2 rdr

)
, θ →∞

∼ 1

1 + θ
exp

(
−πλ(δ + 1)

2 sinc δ
s1(s1 + ε)δ−1

)
, θ →∞, (4.25)

where h0, h1, ha, hb are fading variables, s1 , θ (ε+ bα), g2 , ha + h2 ∼ Gamma(2, 1),

(a) follows by using the substitution r(s1 + ε)−δ/2 → r, and (b) follows by the dominated

convergence theorem. Thus, Ps(θ) = e−Θ(θδ), as θ →∞.

4.3.4 Non-simple Cellular Models

4.3.4.1 Singular Path Loss Model

The system model is the same as that in Section 4.2.4, except that `(x) = ‖x‖−α, where

α > 2.

Let x0 denote the serving BS of the typical user, and let x1 = x0 denote the BS colocated

with x0. Define R , ‖x0‖. The downlink SIR of the typical user can be expressed as

SIR =
h0R

−α

h1R−α +
∑

x∈Φs\{x0} (hx,1 + hx,2) `(x)
, (4.26)

where h0, h1, {hx,1}, {hx,2} ∼ gamma(m, 1
m

) are independent fading variables and Φs is the
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simple point process version of Φ. Let Ĩ ,
∑

x∈Φs\{x0} (hx,1 + hx,2) `(x). Ĩ can be rewritten

as

Ĩ =
∑
x∈Φs

∑
y∈Φs\{x}

(
(hy,1 + hy,2) ‖y‖−α

)
1(Φ(b(o, ‖x‖) = 0)), (4.27)

where b(o, r) denotes the open disk of radius r at o.

For the tail property of the SIR, we have the following theorem.

Theorem 4.6. For all stationary BS point processes, where every BS is colocated with

another one and the typical user is served by one nearest BS, if the fading is Nakagami-m,

then

Ps(θ) ∼ θ−(m+δ) λπm−δ

2(m+ δ) (Γ(m))2E
!
o(I
−δ
∞ )

(
m∑
i=0

(
m

i

)
Γ(m+ i)Γ̄(m− i)

)
, θ →∞,

(4.28)

where δ , 2/α, I∞ ,
∑

y∈Φs
(hy,1 + hy,2) ‖y‖−α, and

Γ̄(m− i) =

 δΓ(m− i+ δ), i < m

Γ(1 + δ), i = m.
(4.29)

Proof. See Appendix A.7.

By Theorem 4.6, we know that in the log-log plot of Ps(θ) v.s. θ, the slope of Ps(θ) is

−10(m + δ) dB/decade, as θ → ∞. The slope only depends on the fading type and the

path loss exponent.

4.3.4.2 Bounded Path Loss Model

The system model is the same as that in Section 4.3.4.1, except that Φs is assumed

to be a uniform PPP with intensity λ/2, the fading is Rayleigh and `(x) = (ε + ‖x‖α)−1,
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where α > 2 and ε > 0. We have

Ps,PPP(θ) = P
(

h0`(R)

h1`(R) + Ĩ
> θ

)
= E

[
e−h1θ

]
E
[
e−θ(ε+R

α)Ĩ
]

=
1

1 + θ
E
[
e−θ(ε+R

α)Ĩ
]
. (4.30)

Using the same method as in Section 4.3.2.2, we obtain that as θ →∞,

Ps,PPP(θ) ∼ 1

1 + θ

λθ−δ

2

∫
R2

exp

(
−2πλ (θε+ ‖x‖α) ((θε+ ‖x‖α) + ε)δ−1

∫ ∞
0

rα + 1
2

(rα + 1)2 rdr

)
dx

∼ 1

1 + θ

λθ−δ

2
exp

(
−2πλθδεδ

∫ ∞
0

rα + 1
2

(rα + 1)2 rdr

)
·
∫
R2

exp

(
−2πλ

(
(θε+ ‖x‖α) ((θε+ ‖x‖α) + ε)δ−1 − θδεδ

) ∫ ∞
0

rα + 1
2

(rα + 1)2 rdr

)
dx.

(4.31)

Thus, log(Ps(θ)) = Θ(θδ), as θ →∞.

4.3.5 Discussion

For θ → ∞, to study the asymptotic properties of P
(
S
I
> θ
)
, we need either S → ∞

or I → 0, or both.

In simple ad hoc models, for both the singular and bounded path loss models, the tail

of the distribution of S is determined only by the tail of the fading distribution and the

lower tail of the distribution of I is determined by the lower tail of the fading distribution

and the tail of the nearest-interferer distance distribution. For Nakagami-m fading, the

distribution of the fading variable has an exponential tail and its lower tail follows a power

law. If we fix the locations of all the interferers (i.e., conditioned on Φ), the lower tail

of the distribution of I decays faster than any power law, since I is a sum of an infinite

number of weighted fading variables. If we fix all fading variables, the lower tail of the
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distribution of I depends on the tail of the distribution of the nearest-interferer distance.

Note that, we have not yet proved our results for all m.i. point processes. For the PPP,

the tail of the distribution of the nearest-interferer distance decays exponentially and thus

the lower tail of the distribution of I is bounded by an exponential decay. So, Ps(θ) decays

faster than any power law and it is proved to decay exponentially.

In non-simple ad hoc models, one interferer’s location is fixed. Thus, a necessary

condition for I → 0 is that the fading variable goes to 0. Similar to the simple ad hoc

models, Ps(θ) decays faster than any power law and it is proved to decay exponentially.

In simple cellular models with singular path loss, S → ∞ is determined by the tail of

the fading distribution and the lower tail of the distribution of ‖x0‖, and the lower tail of

the distribution of I decays faster than any power law. It is proved that Ps(θ) decays by the

power law and the lower tail of the distribution of ‖x0‖ (and not the fading distribution)

dominates the decay order, so the decay order is a function of δ. In non-simple cellular

models with singular path loss, there is an interferer at the desired transmitter’s location.

It is proved that Ps(θ) decays by the power law, and both the lower tail of the distribution

of ‖x0‖ and the ratio of two i.i.d fading variables determine the decay order, so the decay

order is a function of δ and the fading parameter. For both simple and non-simple cellular

models with bounded path loss, S → ∞ is determined only by the tail of the fading

distribution, and the lower tail of the distribution of I decays faster than any power law.

It is proved that Ps(θ) decays exponentially.

4.4 Impact of the Interferer on the Aymptotics

In this section, we study how the nearest interferer affects the aymptotics. In other

words, we analyze the SIR asymptotics if we only consider the interference from the nearest

interferer I0. In ad hoc networks, we assume the distance from the nearest interferer to

the receiver at the origin is R with PDF fR and E[Rt] < ∞, for all t > 0. In cellular

networks, we assume the distance from the nearest BS to the receiver at the origin is R0
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with PDF fR0 , the distance from the nearest interferer to the receiver at the origin is R

with conditional PDF fR|R0 and E[Rt
0] <∞ and E[Rt | R0] <∞, for all t > 0. We define

SIR0 , S
I0

and P0(θ) , P(SIR0 > θ).

Table 4.1 summarizes the asymptotic properties of P0(θ). Note that the shading

indicate that the results are the same as those in Table 1.2. Those entries indicate that the

nearest interferer alone determines the decay order, and other interferers may only affect

the pre-constant.

TABLE 4.1

ASYMPTOTIC PROPERTIES OF P0(θ) (“SIMPLE”: SIMPLE POINT

PROCESSES; “DUPLICATED”: DUPLICATED-2-POINT POINT

PROCESSES)

Models θ → 0 θ →∞

Simple & Ad Hoc & Singular path loss 1− P0(θ) = Θ(θδ) P0(θ) = Θ(θ−m)

Simple & Ad Hoc & Bounded path loss 1− P0(θ) = Θ(θm) P0(θ) = Θ(θ−m)

Simple & Cellular & Singular path loss 1− P0(θ) = Θ(θm) P0(θ) = Θ(θ−δ)

Simple & Cellular & Bounded path loss 1− P0(θ) = Θ(θm) P0(θ) = Θ(θ−m)

Duplicated & Ad Hoc & Singular path loss 1− P0(θ) = Θ(θm) P0(θ) = Θ(θ−m)

Duplicated & Ad Hoc & Bounded path loss 1− P0(θ) = Θ(θm) P0(θ) = Θ(θ−m)

Duplicated & Cellular & Singular path loss 1− P0(θ) = Θ(θm) P0(θ) = Θ(θ−m)

Duplicated & Cellular & Bounded path loss 1− P0(θ) = Θ(θm) P0(θ) = Θ(θ−m)
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4.4.1 Lower Tail of the SIR Distribution

4.4.1.1 Simple Ad Hoc Models

For the singular path loss model, the result has been proved in Proposition 4.2. For

the bounded path loss model, we have

1− P0(θ) = P
(
h0`(b)

h`(R)
< θ

)
= ERP

(
h0 < θh`(b)−1`(R) | R

)
= ERP

(
h0 < θh`(b)−1(ε+Rα)−1 | R

)
. (4.32)

As was stated after Theorem 4.3, for Nakagami-m fading, we have P (h0 < θh) = Θ(θm)

as θ → 0. Using the dominated convergence theorem and L’Hospital’s rule, we can prove

that as θ → 0,

1− P0(θ) = Θ(θm). (4.33)

4.4.1.2 Simple Cellular Models

We can simply modify the proof of Theorem 3.5 in Section 3.2.2 and prove that 1 −

P0(θ) = Θ(θm), as θ → 0.

4.4.1.3 Non-simple Ad Hoc Models

For the singular path loss model, we have

1− P0(θ) = P
(

h0`(b)

h`(min{R, b}) < θ

)
= P(R < b)ER[P

(
h0 < θh`(b)−1`(R) | R

)
| R < b] + P(R ≥ b)ER[P (h0 < θh) | R ≥ b]

= P(R < b)ER[P
(
h0 < θh`(b)−1`(R) | R

)
| R < b] + P(R ≥ b)P (h0 < θh) .

(4.34)
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From Section 4.4.1.1, we know that the first term in (4.34) is Θ(θδ) and the second

term is Θ(θm). So, 1− P0(θ) = Θ(θm), as θ → 0.

For the bounded path loss model, we can apply the same methods as in the correspond-

ing cases in Section 4.4.1.1 and obtain the results in Table 4.1.

4.4.1.4 Non-simple Cellular Models

We have R = R0. Thus, SIR0 = h0/h1. We can easily obtain the results in Table 4.1.

4.4.2 Tail of the SIR Distribution

4.4.2.1 Simple Ad Hoc Models

For both singular and bounded path loss models, we have

P0(θ) = P
(
h0`(b)

h`(R)
> θ

)
= ERP

(
h < θ−1h0`(b)`(R)−1 | R

)
. (4.35)

Since E[Rt] <∞, for all t > 0, using the dominated convergence theorem and L’Hospital’s

rule, we obtain that P0(θ) = Θ(θ−m), as θ →∞.
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4.4.2.2 Simple Cellular Models

For the singular path loss model, we define R̄2 as the distance from the origin to its

nearest point of Φ!
o and assume E(R̄2

2) <∞. We have

P0(θ) = P
(
h0`(R0)

h`(R)
> θ

)
= E

∑
x∈Φ

F̄h0

(
θ‖x‖αh‖x̄2‖−α

)
1 (Φ(b(o, ‖x‖)) = 0) 1 (Φ(b(o, ‖x̄2‖)) = 1)

= λ

∫
R2

E!
oF̄h0

(
θ‖x‖αh‖x̄2‖−α

)
1 (b(o, ‖x‖)empty) 1 (Φx(b(o, ‖x̄2‖)) \ {x} = 0) dx

(a)
= λθ−δ

∫
R2

E!
oF̄h0

(
‖x‖αh‖x̄2‖−α

)
1
(
b(o, ‖x‖θ−δ/2) empty

)
· 1
(
Φxθ−δ/2(b(o, ‖x̄2‖)) \ {xθ−δ/2} = 0

)
dx

(b)∼ λθ−δ
∫
R2

EF̄h0

(
‖x‖αh‖x̄2‖−α

)
1
(
Φ!
o(b(o, ‖x̄2‖)) = 0

)
dx, θ →∞

(c)
= λθ−δE

[(
hR̄−α2

)−δ] ∫
R2

F̄h0 (‖x‖α) dx, θ →∞

= λθ−δE
[
h−δ
]
E
[
R̄2

2

]
πE(hδ), θ →∞, (4.36)

where Φx = {y ∈ Φ : y+x} is a translated version of Φ, (a) follows by using the substitution

xθδ/2 → x, (b) follows since 1
(
b(o, ‖x‖θ−δ/2) empty

)
→ 1, and (c) follows by using the

substitution x(h‖x̄2‖−α)δ/2 → x. Thus, P0(θ) = Θ(θ−δ), as θ →∞.

For the bounded path loss model, we have

P0(θ) = P
(
h0`(R0)

h`(R)
> θ

)
= ER0ER|R0P

(
h < θ−1h0`(R0)`(R)−1 | R,R0

)
. (4.37)

Since E[Rt
0] < ∞ and E[Rt | R0] < ∞, for all t > 0, using the dominated convergence

theorem and L’Hospital’s rule, we obtain that P0(θ) = Θ(θ−m), as θ →∞.
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4.4.2.3 Non-simple Ad Hoc Models

For both singular and bounded path loss models, we can apply the same methods as

in the corresponding cases in Section 4.4.1.1 and obtain the results in Table 4.1.

4.4.2.4 Non-simple Cellular Models

We have R = R0. Thus, SIR0 = h0/h1. We can easily obtain the results in Table 4.1.

4.4.3 Discussion

Intuitively, since I ≥ I0 and S
I0
≥ S

I
, we have 1−P0(θ) ≤ 1−Ps(θ) and thus, as θ → 0,

1 − P0(θ) decays faster than or in the same order as 1 − Ps(θ); also, since P0(θ) ≥ Ps(θ),

as θ →∞, P0(θ) decays slower than or in the same order as Ps(θ). This is consistent with

the results in Tables 1.2 and 4.1.

4.4.3.1 θ → 0

For θ → 0, to study the asymptotic properties of P
(
S
I0
< θ
)

, at least one of the two

conditions, S → 0 or I0 →∞, has to be met, otherwise, P
(
S
I0
< θ
)

= 0 for some θ.

In ad hoc models, for both the singular and bounded path loss models, S → 0 is only

determined by the distribution of the fading variable near 0; for the singular path loss

model, I0 → ∞ is determined by both the tail of the fading distribution and the lower

tail of the nearest-interferer distance distribution, while for the bounded path loss model,

I0 →∞ is determined only by the tail of the fading distribution. Thus, for ad hoc models

with bounded path loss, the decay order is only determined by the fading parameter m.

For simple ad hoc models with singular path loss, it is proved that the lower tail of the

nearest-interferer distance distribution, other than the fading distribution, dominates the

decay order and thus the decay order is only determined by δ. For non-simple ad hoc

models with singular path loss, since R ≤ b, P(R = b) > 0 and Θ(θm) decays faster than
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Θ(θδ), the decay order is the same as that of simple ad hoc models with bounded path

loss.

In cellular models, R0 can be arbitrarily small and it always holds that R ≥ R0. For

simple point processes, it is proved that it is the fading variable, not the path loss exponent

(or δ), that determines the decay order. For non-simple point processes, since R = R0, the

fading variable alone determines the decay order.

4.4.3.2 θ →∞

For θ → ∞, to study the asymptotic properties of P
(
S
I0
> θ
)

, at least one of the two

conditions, S →∞ or I0 → 0, has to be met.

In simple ad hoc models, for both the singular and bounded path loss models, S →∞

is determined only by the tail of the fading distribution and I0 → 0 is determined by

both the lower tail of the fading distribution and the tail of the nearest-interferer distance

distribution. It is proved that the fading distribution, other than the nearest-interferer

distance distribution, dominates the decay order.

The non-simple ad hoc models have the same results as the simple case, since only

the nearest-interferer distance near∞ may affect the asymptotic property and in the non-

simple case, the nearest-interferer distance cannot be larger than b.

In simple cellular models, for the singular path loss model, S → ∞ is determined by

the tail of the fading distribution and the lower tail of the distribution of R0; I0 → 0 is

determined by both the lower tail of the fading distribution and the tail of the distribution

of R. It is proved that the lower tail of the distribution of R0/R (especially, that of

R0), other than the fading distribution, dominates the decay order, so the decay order

is a function of δ. For the bounded path loss model, S → ∞ is determined only by the

tail of the fading distribution; I0 → 0 is determined by both the lower tail of the fading

distribution and the tail of the distribution of R. It is proved that the fading distribution,

other than the distribution of R, dominates the decay order.
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In non-simple cellular models, since R = R0, the fading distribution alone determines

the decay order.

4.5 Summary

We considered a variety of wireless networks including ad hoc networks and cellular

networks, where transmitters/BSs follow general point processes, and analyzed the asymp-

totic properties of the lower and upper tails of the SIR distribution.

The lower tail of the SIR distribution decays polynomially. Only the path loss exponent

or the fading parameter determines the asymptotic order for ad hoc networks; only the

fading parameter determines the asymptotic order for cellular networks. This indicates

that we can use the SIR distribution of the PPP case to approximate the SIR distribution

of non-Poisson cases in high-reliability regime by applying a horizontal shift which can be

obtained using the mean interference-to-signal ratio (MISR) defined in [61]. For the tail

of the SIR distribution, only cellular network models with singular path loss have tails

decaying polynomially. In these cases, we can approximate the tail of the SIR distribution

of non-Poisson networks using the corresponding Poisson result and the expected fading-to-

interference ratio (EFIR) defined in [61]. For cellular networks with bounded path loss and

ad hoc networks, we mainly investigated the Poisson case with Rayleigh fading and showed

that the tail of the SIR distribution decays exponentially. Note that the exponential decay

does not mean there is no approach to approximate the tail of the SIR distribution for

non-Poisson cases. Using the same approximation method inside the exponential may be

a potential approach, but it needs further analyses on the tail of the SIR distribution and

justification.

Moreover, we investigated the impact of the nearest interferer on the asymptotic prop-

erties of the SIR distribution. If the nearest interferer is the only interferer in the networks,

we proved that for the lower tail of the SIR distribution, expect for non-simple cellular

networks with singular path loss law, the asymptotic properties remain the same as those
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with all interferers, which means that the nearest interferer alone determines the decay

order. In contrast, for the tail of the SIR distribution, the nearest interferer alone does not

dominate the asymptotic trend and the tail decays polynomially, except for simple cellular

networks with singular path loss.
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CHAPTER 5

JOINT SPATIAL AND PROPAGATION MODELS

In this chapter, we consider the cellular networks with coverage-oriented BS deploy-

ments (as opposed to capacity-oriented BS deployments) and propose a new class of cellular

models, where BSs are deployed to make all users at the cell edges achieve a minimum

required signal power level from the serving BS. The equalized received signal power at

the cell edges is the outcome of both the spatial structure of the BSs and the propagation

model of the signals. We call such system models joint spatial and propagation (JSP)

models.

5.1 Approach 1: Redefined Path Loss Model

5.1.1 System Model

We introduce a novel cellular downlink model, where all BSs are always transmitting

with equal power P and are well deployed, which means that the signal power averaged

over the fading from each BS at its cell edge is equal to a constant target received power

P0 < P , as is illustrated in Fig. 5.1. The cell edge is defined as the association boundary

for mobile users, inside which at any location, the received signal power averaged over

the fading from the BS in the cell is larger than the signal power from any other BS. We

assume the frequency reuse factor is 1. Thus all other BSs act as interferers. All signals

are assumed to experience path loss and independent (small-scale) Rayleigh fading with

mean 1. Without loss of generality, in our model, we assume P = 1.

Due to the factors such as terrain contours, environment (urban or rural, vegetation

and foliage), propagation medium, etc., which influence the path loss of a signal, the cell
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Figure 5.1. BSs (denoted by ’×’) and cell edges (e.g., the Voronoi tessellation).
For any point on the cell edges, the received signal power averaged over the

fading from any one of the closest two or three BSs is a constant P0.
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shape in real networks and in our model is not hexagonal but irregular. From a global

perspective, the BSs appear to be deployed randomly and thus may be modeled as a

homogenous Poisson point process (PPP) or some non-Poisson point process, such as the

Ginibre process. In the rest of the chapter, we assume that the BSs follows a homogeneous

PPP with intensity λ.

The path loss in our model is not modeled as the conventional one, i.e., a power law

path loss model with a fixed path loss exponent. Instead, we consider the power law

path loss model from x to the origin o as `(x) = ‖x‖−α, where α is variable. The path

loss exponent α is affected by the aforementioned factors and some other factors such as

refraction, diffraction, reflection and absorption. Therefore, it is α that determines the

shape of a cell. For simplicity, we assume in a cell Ci, the path loss exponent is a function

of the direction ω from the BS, denoted by αi(ω). We call this path loss exponent local

path loss exponent.

5.1.2 Poisson Networks and Voronoi Tessellations

The BS placement and the cell edges are a function of the propagation environment.

Assuming that the resulting deployment is a PPP, we can reverse engineer the local path

loss exponents α if the cell edges are known. We assume the cells correspond to the Poisson-

Voronoi tessellation, which means that the serving BS of a mobile user is the one closest

to the user. An illustration of our system model is shown in Fig. 5.1. Given a specific

deployment of BSs on the plane, the cell edges are known from the Voronoi tessellation,

and αi(ω) in each cell Ci can then be calculated.

In this subsection, we mainly analyze the coverage probability, defined as the CCDF of

the signal-to-interference-plus-noise ratio (SINR), i.e., Pc(θ) , P(SINR > θ). We consider

a typical user at the origin o, as is shown in Fig. 5.1, and denote the cell that contains o

as C0 and its size as S0.

The interference to the typical user is the accumulated signal power from all BSs other
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than the serving BS. Analyzing the interference is difficult for two reasons:

1. In the Poisson-Voronoi tessellation, conditioned on the Voronoi cell C0 containing o,
the locations of the interfering BSs in the adjacent Voronoi cells are determined, which
means the received signal power is correlated with the interference. But such correlation
is not necessarily difficult to deal with since we know we can handle it with the standard
path loss model. It is only together with the dependent propagation model that this
becomes difficult. To tackle the problem, in the rest of this chapter, we approximate
irregular cell shapes as disks1 of the same cell size and we make assumptions that the
serving BS at x0 is still the closest BS to the origin (regardless of the shape of the cell in
the approximation we have made—”disk”) and the interfering BSs follow a PPP with
intensity λ outside the disk b(o, ‖x0‖).

2. In the Poisson-Voronoi tessellation, it is hard to analyze the path loss that the interfering
signal from an interfering BS experiences. The path loss depends on the path the signal
traverses, and the local path loss exponents vary from cell to cell and also depend on
the direction, which makes an exact calculation of the path loss intractable. To simplify
the analysis, we assume that all interfering signals experience a path loss with a fixed
path loss exponent ᾱ.

5.1.2.1 Cell Shape: Irregular Shape and Disk

Consider the Voronoi cell Ci and assume the BS of Ci is at the origin, as is shown in

Fig. 5.2. Bi is disk. We make some comparisons between the actual shape of Ci and the

disk Bi with the same size, in terms of the distribution of the desired signal power averaged

over the fading and the distribution of the distance from a user to the BS.

For a mobile user at x in Ci, the received signal power averaged over the fading, denoted

as Pr(x), is expressed as Pr(x) = ‖x‖−αi(∠x), which depends on the distance to the origin

‖x‖ and the corresponding local path loss exponent αi(∠x), where ∠x the angle from the

serving BS to x.

For a mobile user who is uniformly distributed in the cell, the cumulative distribution

function (CDF) of the desired signal power P̂r averaged over the fading is denoted by

FP̂r(y) = P(P̂r < y), where y ≥ P0. In the rest of this subsection, we compare the CCDF

1In [67], it has been proved that asymptotically, large cells are indeed disks. So the disk assumption
makes sense at least when cell size is large. In Section 5.1.3, we will show by simulations that the
approximation is good.
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Figure 5.2. The Voronoi cell Ci of size Si = S and its corresponding disk Bi of
the same size. r(ω) is the distance from the BS to its cell edge with angle ω.

R =
√

S
π

is the radius of Bi.
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of the desired signal power averaged over the fading in the Voronoi cell Ci of size Si = S > 0

with that in Bi.

As is illustrated in Fig. 5.2, denote by r(ω) the distance from the BS to its Voronoi cell

edge with angle ω. It follows that S = 1
2

∫ 2π

0
(r(ω)2)dw. Since r(ω)−αi(ω) = P0, we have

αi(ω) = − lnP0

ln r(ω)
. We have αi(ω) < 0 if r(ω) < 1, and αi(ω) > 0 if r(ω) > 1. Therefore, for

1 ≥ y ≥ P0,

F c
Pr(y) = P(Pr > y) = Ex∈Ci [1(‖x‖−αi(∠x) > y)]

=
1

S

∫ 2π

0

∫ y
− 1
αi(ω)

0

1(r(ω) > 1)zdzdw

=
1

2S

∫ 2π

0

y
− 2
αi(ω) 1(r(ω) > 1)dw

=
1

2S

∫ 2π

0

(r(ω)2)
ln y

lnP0 1(r(ω) > 1)dw. (5.1)

In disk Bi of size S with radius R =
√

S
π

, to meet the assumption of equal power at

the cell edge, the local path loss exponent α is the same everywhere in Bi, and we have

R−α = P0. So, α = − 2 lnP0

lnS−lnπ
.

For S > π, we have α > 0 and R > 1. The CCDF of the desired signal power P̃r

averaged over the fading in Bi, denoted as F c
P̃r

, is

F c
P̃r

(y) = P(P̃r > y) = Ex∈b(o,R)[1(‖x‖−α > y)]

=
1

S

∫ 2π

0

∫ y−
1
α

0

zdzdw

=
1

S
πy−

2
α =

π

S

(
S

π

) ln y
lnP0

. (5.2)

Since 1 ≥ y ≥ P0, H(x) = x
ln y

lnP0 is a concave function for x > 0. By Jensen’s inequality,

109



we have

F c
P̂r

(y) =
π

S

1

2π

∫ 2π

0

(r(ω)2)
ln y

lnP0 1(r(ω) > 1)dw

≤ π

S

1

2π

∫ 2π

0

(r(ω)2)
ln y

lnP0 dw

≤ π

S

(
1

2π

∫ 2π

0

(r(ω)2)dw

) ln y
lnP0

=
π

S

(
S

π

) ln y
lnP0

= F c
P̃r

(y). (5.3)

According to (5.3), P̃r in Bi stochastically dominates P̂r in Ci. In the rest of the chapter,

we approximate the cell shape with a disk of the same size. In doing so, for cell size S > π,

the CCDF of the desired signal power averaged over the fading becomes larger and thus,

the average received signal power Pr over the whole cell 1
|Ci|

∫
x∈Ci Pr(x)dx becomes larger.

For S < π, we have α < 0, R < 1 and F c
P̃r

(y) = Ex∈b(o,R)[1(‖x‖−α > y)] = 0. Thus,

F c
P̂r

(y) ≥ F c
P̃r

(y). P̂r in Ci stochastically dominates P̃r in Bi. When the intensity of the

PPP becomes small, the case of S < π can be ignored.

As to the distribution of the distance from a user to the BS, for a user who is uniformly

distributed in Ci, denote the CDF of the distance from it to the BS d̂ as Fd̂. For a user

who is uniformly distributed in the disk Bi with the same size as Ci, denote the CDF of

the distance from it to the BS d̃ as Fd̃. It is obvious that Fd̃(x) ≥ Fd̂(x), for all x ≥ 0.

d̃ in Bi stochastically dominates d̂ in Ci. Therefore, with the approximation, the mean

distance from a user to the BS becomes smaller.

5.1.2.2 Coverage Analysis

As is mentioned in Section 5.1.2.1, we assume all Voronoi cells can be treated as disks.

In [58], it has been derived that the normalized probability density function (PDF) of the
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Voronoi cell sizes in the plane can be approximated as

fS̄(x) =
cc

Γ(c)
xc−1 exp(−cx), (5.4)

where c = 7
2

and S̄ = λS is the normalized cell size. (The mean of Voronoi cell size S

for any stationary point process with intensity λ is 1
λ
.) Thus, the Voronoi cell size S for a

PPP with intensity λ follows the gamma distribution with parameters c and 1
λc

, denoted

as gamma(c, 1
λc

), and the PDF of S is

fS(x) =
(λc)c

Γ(c)
xc−1 exp(−λcx). (5.5)

For the typical user at o with serving cell size S0, conditioned on S0, the serving BS is

uniformly distributed on the disk B0 of size S0, and thus the CDF of the distance d from

the BS to the origin is F̂d(x) = π
S0
x2, for 0 ≤ x ≤

√
S0

π
. Therefore, conditioning on the

serving cell size S0 and the serving BS at x0, which is subject to S0 > πx2
0, we have the

desired received power at the origin o

Pr = h0‖x0‖−α0 , (5.6)

where h0 is the fading parameter satisfying h0 ∼ Exp(1) and α0 = − 2 lnP0

lnS0−lnπ
. The inter-

ference can be expressed as

Ix0 =
∑

x∈Φ\b(o,‖x0‖)

hx‖x‖−ᾱ, (5.7)

where {hx} are the i.i.d. fading parameters that follow Exp(1) and are independent of h0.

Assume the thermal noise is additive and constant with power W . This gives the SINR

expression

SINR =
h0‖x0‖−α0∑

x∈Φ\b(o,‖x0‖) hx‖x‖−ᾱ +W
. (5.8)
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In this subsection, for the interfering signal, we assume the fixed path loss exponent

ᾱ is the average of the local path loss exponent (under the disk approximation) over the

plane, which is given as

ᾱ =

∫∞
0
αxxfS(x)dx∫∞

0
xfS(x)dx

, (5.9)

where αx , − 2 lnP0

lnx−lnπ
. However, by the properties of the logarithmic integral function, we

have
∫ π

0
αxdx = −∞ and

∫ ζ
π
αxdx = +∞ for any π < ζ < ∞. To avoid considering the

singularity of αx, we choose a constant τ0 > π and define ᾱ as

ᾱ =

∫∞
τ0
αxxfS(x)dx+

∫ τ0
0
ατ0xfS(x)dx∫∞

0
xfS(x)dx

=

∫ ∞
0

−2 lnP0

ln(max{x, τ0})− ln π

(λc)c+1

Γ(c+ 1)
xc exp(−λcx)dx, (5.10)

where ατ0 , − 2 lnP0

ln τ0−lnπ
. In the rest of the chapter, we set τ0 = 4. The coverage probability

is given in the following theorem.

Theorem 5.1. In the JSP model consisting of disk-shaped cells whose sizes follow gamma(c, 1
λc

),

for the approach of redefined path loss model, the coverage probability is

Pc(θ) =

∫ ∞
0

2π

υ

∫ √ υ
π

0

exp

(
− yαυθW − 2πλ

∫ ∞
y

(
1− 1

1 + yαυθz−ᾱ

)
zdz

)
ydyfS0(υ)dυ,

(5.11)

where αx , − 2 lnP0

lnx−lnπ
, fS0(x) = (λc)c+1

Γ(c+1)
xc exp(−λcx) and ᾱ is expressed in (5.10).

Proof. Let us first derive the CDF FS0(x) of the size S0 of the cell that contains o. Since

the probability of o falling into a cell with size smaller than x is equal to the area ratio of
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all cells with size smaller than x to the entire plane, we have

FS0(x) = P(S0 < x) =

∫ x
0
z (λc)c

Γ(c)
zc−1 exp(−λcz)dz∫∞

0
z (λc)c

Γ(c)
zc−1 exp(−λcz)dz

= λ

∫ x

0

(λc)c

Γ(c)
zc exp(−λcz)dz. (5.12)

(5.12) is shown in a more general context in [68]. The PDF of S0 is thus fS0(x) =

(λc)c+1

Γ(c+1)
xc exp(−λcx). So, S0 ∼ gamma(c+ 1, 1

λc
).

The coverage probability can be expressed as

Pc(θ) = P(SINR > θ)

=

∫ ∞
0

P(SINR > θ | S0 = v)fS0(v)dv. (5.13)

Conditioning on S0 = v, we have the coverage probability in the following form.

P(SINR > θ | S0 = v) = Ex0P
(
h0‖x0‖−αv
Ix0 +W

> θ | x0

)
= Ex0EIx0

(
exp(−‖x0‖αvθ(Ix0 +W ))

)
=

∫ √ v
π

0

exp(−yαvθW )EIy
(

exp(−yαvθIy)
)
f̂d(y)dy, (5.14)

where f̂d(y) = 2π
S0
y, for 0 ≤ y ≤

√
S0

π
is the PDF of the distance d from the serving BS to

the origin, αx , − 2 lnP0

lnx−lnπ
and Iy =

∑
x∈Φ\b(o,y) hx‖x‖−ᾱ. Since the Laplace transform of

Iy is

LIy(s) = EIy(exp(−sIy))

= E
(

exp
(
− s

∑
x∈Φ\b(o,y)

hx‖x‖−ᾱ
))

= exp

(
− 2πλ

∫ ∞
y

(
1− 1

1 + sz−ᾱ

)
zdz

)
, (5.15)
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combining (5.14) and (5.15) yields that

P(SINR > θ | S0 = v)

=
2π

v

∫ √ v
π

0

exp

(
− yαvθW

− 2πλ

∫ ∞
y

(
1− 1

1 + yαvθz−ᾱ

)
zdz

)
ydy. (5.16)

Combining (5.13) and (5.16), we obtain (5.11).

5.1.3 Simulations

We have analyzed the JSP model in Poisson networks by approximating irregular cell

shapes as disks. In this subsection, we first investigate whether such approximation has

good accuracy by comparing the approximation results with the simulation results of the

JSP model with irregular cell shapes. Then, the distribution of the local path loss ex-

ponent is investigated. Finally, we make a comparison between our JSP model and the

conventional models, where the path loss exponent is a constant and the desired received

signal power averaged over the fading at cell edges is not a constant [8, 59].

As is discussed in Section 5.1.2.1, for any user at x in the Voronoi cell Ci in the

JSP model with irregular cell shapes, the local path loss exponent αi(∠x) for the desired

received signal is determined by the angle from the serving BS to x and the cell shape,

i.e. αi(∠x) = − lnP0

ln r(∠x)
. For all interfering signals from other BSs, we assume the path loss

exponent is constant and given in (5.10).

The simulations are performed on a 4000 × 4000 square. We take, unless otherwise

specified, the intensity of the PPP λ = 3.5 × 10−5, which is reasonable if the distance

unit is meter, since it is close to the density of BSs in one typical urban region in the

UK (see [49] for details). We set P0 = 1 × 10−8 unless otherwise specified. If the power

unit is Watt, we have P = 30 dBm and P0 = −50 dBm, hence the signal power decay is

reasonable. By (5.10) with τ0 = 4, we have ᾱ ≈ 4.0. In simulations, we only consider the
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Figure 5.3. The coverage probability Pc(θ) vs. θ for the JSP model with
irregular cell shapes and disk approximation of the cell shape in three parameter

setting cases. Case 1: λ = 3.5× 10−5, P0 = 1× 10−8, ᾱ = 4.0; Case 2:
λ = 3.5× 10−5, P0 = 1× 10−7, ᾱ = 3.5; Case 3:

λ = 1× 10−4, P0 = 1× 10−8, ᾱ = 4.5.

interference-limited networks, i.e., the noise power is assumed to be 0.

5.1.3.1 Cell Shape: Irregular Shape vs. Disk

Fig. 5.3 compares the coverage probability for the JSP model with irregular cell shapes

and disk approximation of the cell shape given different values of (λ, P0), where ᾱ is given

in (5.10). The disk approximation of the cell shape is quite accurate, especially in the high-

reliability regime, i.e., when θ is small, for all values of (λ, P0) that we choose. Consider

the parameter setting Case 1 with (λ, P0) = (3.5 × 10−5, 1 × 10−8) as a reference. Case

3 with (λ, P0) = (1 × 10−4, 1 × 10−8) has better coverage probability, while Case 2 with

(λ, P0) = (3.5 × 10−5, 1 × 10−7) has worse coverage probability. One dominating reason
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is the difference of ᾱ. For example, compared to Case 1, Case 2 has a larger P0 and a

larger desired received signal power averaged over the fading. Case 2 should have a better

coverage than Case 1, if the interference levels (indicated by ᾱ) were the same. But in fact,

the interference in Case 2 is much higher and Case 2 has a worse coverage, as is shown in

Fig. 5.3, which implies that ᾱ is a dominating factor.

5.1.3.2 Distribution of the Local Path Loss Exponent

In Fig. 5.4, the empirical PDF of the local path loss exponent for the desired received

signal the JSP model with irregular cell shapes is drawn. We choose the known probability

distributions—the gamma distribution and the inverse gamma distribution and use the

maximum likelihood estimation (MLE) method to approximate the empirical PDF. For

the gamma distribution, the PDF is expressed as fgamma(x) = xk−1 exp(−x/a)/(akΓ(k)),

the mean is ka and the variance is ka2. For the inverse gamma distribution, the PDF

is expressed as figamma(x) = aκ−1x−κ−1 exp(−a/x)/Γ(κ), the mean is a/(κ − 1) and the

variance is a2/((κ− 1)2(κ− 2)). Fig. 5.4 shows that both fits provide good matches with

the inverse gamma distribution fit slightly better than the gamma distribution fit. We

observe that most empirical local path loss exponents falls in the range [3.5, 4.5]; outside

the range, according to the fitting results, the PDF decays fast.

5.1.3.3 JSP Model and Conventional Model

Since the JSP model is brand new, it is crucial to compare our model with the conven-

tional model to see how different our model performs. We use the simulation result of the

JSP model with irregular shapes to do the comparison, not the approximation result (i.e.,

the JSP model with disk approximation of the cell), although our approximation provides

accurate coverage probability in the high-reliability regime. Consider the JSP model with

irregular cell shapes (λ = 3.5 × 10−5, P0 = 1 × 10−8 and by (5.10), ᾱ = 4.0). We assume

a path loss exponent α = 4 and the same intensity λ = 3.5 × 10−5 for the conventional
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Figure 5.4. Empirical PDF of the local path loss exponent for the desired
received signal and the fits of the gamma distribution and the inverse gamma
distribution (λ = 3.5× 10−5, P0 = 1× 10−8 and ᾱ = 4.0). The average of the

empirical local path loss exponents is 3.89.
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Figure 5.5. Comparison between the JSP models with irregular cell shapes
((P0, λ, ᾱ) = (1× 10−8, 3.5× 10−5, 4.0), (1.24× 10−8, 3.5× 10−5, 3.95)) and
conventional models—the conventional PPP model and the conventional

triangular lattice model (λ = 3.5× 10−5 and α = 4.0). For the JSP model with
fixed ᾱ = 4 (the dashed line), P0 = 1.24× 10−8, λ = 3.5× 10−5 and ᾱ is not

given in (5.10), but is a constant 4.
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model. Fig. 5.5 compares the JSP model with irregular cell shapes and two conventional

models—the conventional PPP model and the conventional triangular lattice model. Note

that in the conventional PPP model [8], Pc(θ) = (1 +
√
θ arctan(

√
θ))−1. It has been

shown that in conventional models, the coverage curve of a general point process is quite

accurately approximated by a horizontal shift (gain) of the curve of the PPP [59, 60]. The

triangular lattice has the largest gain of 3.4 dB.

We observe that the coverage probability of the JSP model lies between that of the two

conventional models and is close to that of the conventional triangular lattice model. The

actual network perceived by the typical user is approximately a conventional triangular

lattice network. The small gap (roughly 1 dB horizontal difference) between the JSP model

and the conventional lattice model mainly results from the fact that the received signal

powers averaged over the fading at the cell edges are not equal for the two models. If we

approximate the hexagonal cell shape as a disk, we can obtain the received power at cell

edges, which is 1.24× 10−8 and is larger than 1× 10−8.

Consider the JSP model with λ = 3.5×10−5 and P0 = 1.24×10−8. By (5.10), ᾱ = 3.95.

We observe in Fig. 5.5 that this JSP model has the same performance as the JSP model

with λ = 3.5 × 10−5 and P0 = 1 × 10−8. There is a roughly 1 dB horizontal gap between

the JSP model and the conventional lattice model. It is mainly because the interference

level in the JSP model is higher than that in the conventional lattice model, since ᾱ < 4.0.

To investigate how much impact the path loss exponent ᾱ for the interference has on

the coverage probability in the JSP model, we here assume ᾱ is not given in (5.10), but is

a constant 4.0 for the JSP model with λ = 3.5× 10−5 and P0 = 1.24× 10−8. As is shown

in Fig. 5.5, the new case nearly overlaps with that of the conventional lattice model.

Therefore, the difference in ᾱ is the main reason of the 1 dB gap between the JSP model

and the conventional lattice model.
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5.2 Approach 2: Redefined Shadowing Model

In recent years, the cell size in cellular systems is becoming smaller and smaller, and thus

the signal propagation environment with respect to the path loss and the shadowing in a

single cell is becoming more and more homogeneous. In this approach, we assume the path

loss model are the conventional power-law model with constant exponent α among all cells,

but each cell has a “shadowing” parameter, which can be treated as a power attenuation

factor. Here, we assume that all cells are disks as in Section 5.1.2.2. Therefore, the

“shadowing” parameter is a constant within each cell but varies among cells with different

sizes. Similar assumption can be found in [69], where an indoor correlated shadowing

model was proposed and the shadowing effect is the same within a room but different

among different rooms. In our model, a large cell indicates less severe shadowing, and thus

its shadowing parameter is large. For small cells, their shadowing parameter are small.

In this section, we suppose the path loss model is `(x) = ‖x‖−α with α > 2, the BS

transmit power is 1 and the desired received power at the cell edge is P0. For each cell Ci

with size Si, it has a shadowing parameter Ki. The radius of the cell Ci is denoted as Ri.

We have KiR
−α
i = P0 and πR2

i = Si, and thus,

Ki = P0

(
Si
π

)1/δ

, (5.17)

where δ , 2/α.

Statistically, among all cells, the shadowing parameter K is a random variable.

5.2.1 Distribution of the Shadowing Parameter

We use the same notations as in Section 5.1.2.1. Define Y , P δ0
π
S. Since S ∼

gamma(c, 1
λc

), where c = 7
2
, we have Y ∼ gamma(c,

P δ0
πλc

).

It can be shown that if X ∼ gamma(k, θ̄), then Z , Xq for q > 0 follows a generalized
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gamma distribution with parameters p = 1/q, d = k/q, and a = θ̄q. The PDF of Z is

fZ(x) =
(p/ad)xd−1e−(x/a)p

Γ(d/p)
. (5.18)

Since K =
(
P δ0
π
S
)1/δ

, the PDF of K can be derived as

fK(x) =
δxδk−1e−x

δ θ̄−1

θ̄kΓ(k)
, (5.19)

where k = c, and θ̄ =
P δ0
πλc

. K follows a generalized gamma distribution with parameters

p = δ, d = cδ, and a =
(
P δ0
πλc

) 1
δ
. The mean of K is E[K] = aΓ((d+1)/p)

Γ(d/p)
=
(
P δ0
πλc

) 1
δ Γ((cδ+1)/δ)

Γ(c)
.

The variance of K is

Var(K) = a2

(
Γ ((d+ 2) /p)

Γ (d/p)
−
(

Γ ((d+ 1) /p)

Γ (d/p)

)2
)

= P 2
0

(
1

πλc

) 2
δ

(
Γ ((cδ + 2) /δ)

Γ (c)
−
(

Γ ((cδ + 1) /δ)

Γ (c)

)2
)

= (E[K])2

(
Γ ((cδ + 1) /δ)

Γ(c)

)−2
(

Γ ((cδ + 2) /δ)

Γ (c)
−
(

Γ ((cδ + 1) /δ)

Γ (c)

)2
)
. (5.20)

The mean and variance of K are functions of P0, λ and δ. It is different from the

conventional shadowing model where the shadowing parameter is independent of δ. Given

the mean of K, by (5.20), Var(K) only depends on δ (or equivalently, α). In Fig. 5.6, we

show Var(K) as a function of α, for E[K] = 1. We observe that when α = 4, Var(K) = 1.27

and as α increases, Var(K) grows exponentially.

In the literature, log-normal shadowing is usually assumed. Suppose KLN is the

log-normal shadowing random variable with parameter µ and σ. The PDF of KLN is

fKLN
(x) = 1

xσ
√

2π
e−

(ln x−µ)2

2σ2 , and the mean and the variance of KLN are, respectively, eµ+σ2/2

and (eσ
2 − 1)e2µ+σ2

. Letting E[KLN] = E[K] = 1 and Var(KLN) = Var(K), we have

µ = − log(Var(K)+1)
2

, σ =
√

log(Var(K) + 1). In Fig. 5.7, we compare the distributions of
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Figure 5.6. The variance of K vs. α for E[K] = 1.

log(KLN) and log(K) given E[KLN] = E[K] = 1 and Var(KLN) = Var(K), for α ∈ {2.5, 4}.

log(KLN) follows a normal distribution and we can easily obtain the PDF of log(K) is

flog(K)(x) = (p/ad)exd−(ex/a)p

Γ(d/p)
, where p = δ, d = cδ, and a =

(
P δ0
πλc

) 1
δ
. As is observed from

Fig. 5.7, when α is small, the PDFs of log(KLN) and log(K) have similar shapes.

5.2.2 Coverage Analysis

Similar to the approach of the redefined path loss model, to simplify the analysis, we

assume the shadowing parameter for all interfering signals are a constant K̄ = E[K]. So,

conditioned on the serving cell size S0 and the serving BS at x0, the SINR expression is

SINR =
h0K0‖x0‖−α∑

x∈Φ\b(o,‖x0‖) hxK̄‖x‖−α +W
, (5.21)

where K0 = P0(S0/π)1/δ.

The coverage probability is given in the following theorem.
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Theorem 5.2. In the JSP model consisting of disk-shaped cells whose sizes follow a

gamma(c, 1
λc

) distribution, for the approach of redefined shadowing model, the coverage

probability is

Pc(θ) =

∫ ∞
0

2π

υ

∫ √ υ
π

0

exp

(
−
(
P

2/α
0

π
v

)−α/2
yαθW

− 2πλ

∫ ∞
y

(
1− 1

1 + πα/2
(
P

2/α
0 v

)−α/2
yαθK̄z−α

)
zdz

)
ydyfS0(υ)dυ, (5.22)

where W is the noise power, K̄ =
(
P δ0
πλc

) 1
δ Γ((cδ+1)/δ)

Γ(c)
and fS0(x) = (λc)c+1

Γ(c+1)
xc exp(−λcx).

For the case with no noise, the coverage probability is

Pc(θ) =

∫ ∞
0

2π

υ

∫ √ υ
π

0

exp

(
− 2πλ

∫ ∞
y

(
1− 1

1+πα/2
(
P

2/α
0 v

)−α/2
yαθK̄z−α

)
zdz

)
ydyfS0(υ)dυ.

(5.23)

Proof. Similar to the proof of Theorem 5.1, we can obtain the result (5.22).

5.2.3 Numerical Results

We consider the three parameter settings same as in Section 5.1.3. They are, re-

spectively, Case 1 with (λ, P0, α) = (3.5 × 10−5, 1 × 10−8, 4.0), Case 2 with (λ, P0, α) =

(3.5 × 10−5, 1 × 10−7, 3.5) and Case 3 with (λ, P0, α) = (1 × 10−4, 1 × 10−8, 4.5). (Note

that the values of α are exactly the values of ᾱ in Section 5.1.3.) Also, we set W = 0.

We compare our numerical results of (5.23) with those of (5.11) in Fig. 5.8. We observe

that the approach of the redefined shadowing model has a similar SIR performance to the

approach of the redefined path loss model. This indicates that the coverage probability of

the JSP model with redefined shadowing model lies between that of the conventional PPP

and triangular lattice models and is close to that of the conventional triangular lattice
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redefined shadowing model, for three parameter setting cases.

model, similar to the JSP model with redefined path loss model.

5.3 Summary

In this chapter, we argue that for coverage-oriented deployments, a new class of models

is needed—the joint spatial and propagation models, where BSs are deployed to make all

users at cell edges achieve a minimum target signal power level from the serving BS. In

other words, the BSs are deployed “optimally” given the surrounding signal propagation

conditions. We proposed two instances of such a JSP model, within one of which, the target

signal power on the cell edges is achieved using a variable path loss exponent. Then, for

networks where the BSs form a homogeneous PPP, we obtained the expressions of the
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coverage probability by approximating the irregular Voronoi cell shapes as disks of the

same cell size. Simulation results showed that the approximation is quite accurate. For

the second instance, we use a redefined shadowing model to make the target signal power

on the cell edges achieved. Numerical results of the coverage probability show that the

second instance has quite similar SIR performance to the first instance.

It is insightful to contrast our results with those in [66], where it is proved that with

increasing shadowing variance, the received powers at the origin for all motion invariant

point processes and lattices converge weakly to those of a PPP, which means that the actual

network is perceived by a typical user as an equivalent Poisson point process distributed

network, provided shadowing is strong enough.

Our results show that the JSP model exhibits a coverage performance that is very

similar to that of a triangular lattice. Hence we come to the opposite conclusion of [5],

which stated that wireless networks appear Poissonian due to strong shadowing. Here we

have demonstrated that Poisson networks appear like lattices due to dependence between

propagation and BS placement. This shows that even though BSs may geographically form

a PPP, the resulting performance is not as bad as previously assumed if the dependence

between cell sizes and propagation conditions is accounted for.
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CHAPTER 6

CONCLUDING REMARKS

6.1 Summary

In this dissertation, we mainly analyzed the SINR distributions and interference peop-

erties in cellular networks in several aspects. From spatial stochastic model fitting to the

real base station location date set collected from the UK official website to deriving the

theoretical expressions of the SINR distributions, from discovering the fantastic asymp-

totic property of the lower tail of the SINR distribution in the cellular networks models

with general simple point processes to analyzing the asymptotic properties of both the

lower and upper tail of the SIR distribution in cellular networks with both simple and

non-simple point processes (and even in ad hoc networks, although not quite related with

the main work of this dissertation), and from evaluating the SINR distributions in con-

ventional cellular networks, where independent randomness in the positions of the base

stations and the propagation conditions is assumed, to proposing the novel joint spatial

and propagation models and analyzing the SINR distributions, we provide a comprehensive

yet relatively complete (asymptotics) study on the SINR distributions in cellular networks

using stochastic geometry.

6.2 Conclusions

We discussed four main topics about the SINR distributions in cellular networks in

detail from Chapter 2 to Chapter 5, which are concluded as follows.
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• Actual BS deployments can be accurately modeled using some repulsive point pro-
cesses in stochastic geometry. e.g., the SP, the PHCP and the perturbed triangular
lattice. We proposed a general procedure for point process fitting and applied it
to publicly available base station data. By observations from simulations, we found
that the CCDFs of the SIR distributions of different point sets or point processes
have similar shape, and thus we introduced a new metric on the regularity of a point
set or a point process, called deployment gain.

• The SIR distribution of arbitrary m.i. processes can be accurately approximated by
applying a horizontal shift—ADG to the SIR distribution of the PPP with the same
intensity. We proved that given a m.i. point process with general fading assumptions,
the lower tail of the CCDF of the SIR decays polynomially. The order of the decay
is merely determined by the fading.

• The asymptotic behavior of the SIR distribution is comprehensively investigated for a
variety of scenarios in cellular networks where BSs follow general simple or non-simple
point processes. We analyzed both the lower and upper tails of the SIR distribution.
For all scenarios, the lower tail of the SIR distribution decays polynomially and only
the fading parameter determines the asymptotic order. For the upper tail of the SIR
distribution, only cellular network models with singular path loss have tails decaying
polynomially; in contrast, in cellular network models with bounded path loss, the
tails decay exponentially.

• The dependence between propagation and BS deployment should be taken into ac-
count. We argued that for coverage-oriented deployments, a new class of models is
needed—the joint spatial and propagation models, where BSs are deployed to make
all users at cell edges achieve a minimum target signal power level from the serving
BS. We proposed two instances of such JSP models, derived the expressions of the
SINR distributions and found that the JSP models have the coverage performance
that is very similar to that of a triangular lattice.
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APPENDIX A

PROOFS

A.1 Proof of Lemma 3.4

Proof. We first prove that ∀n ∈ N, there exists a positive K0 < ∞, s.t. E(I(Φζ
o)
n) ≤

K0E(Î(Φζ)n). Let ζ ∈ R2 and ‖ζ‖ = y. According to Def. 3.3, for y > y0, P(I(Φζ
o) > z) ≤

P(Î(Φζ) > z), ∀z ≥ 0, hence E(I(Φζ
o)
n) ≤ E(Î(Φζ)n). For y ≤ y0, we have

E(Î(Φζ)n) ≥ E(Î(Φζ)n | Φζ(b(o, y))=0))P(Φζ(b(o, y))=0)

(a)

≥ E(I(Φζ
o)
n)P(Φζ′(b(o, y0)) = 0), (A.1)

where ζ ′ ∈ R2, ‖ζ ′‖ = y0, and (a) holds since Φ is motion-invariant, y0 ≥ y and thus

P(Φζ′(b(o, y0)) = 0) ≤ P(Φζ(b(o, y)) = 0). The second condition in Def. 3.3 implies that

for all y > 0, ∀ζ ∈ R2 with ‖ζ‖ = y, P(Φζ(b(o, y)) = 0) 6= 0. So, we have P(Φζ′(b(o, y0)) =

0) 6= 0, letting K0 = max{1, 1/P(Φζ′(b(o, y0)) = 0)}, we have

E(I(Φζ
o)
n) ≤ K0E(Î(Φζ)n). (A.2)

Second, we prove that all moments of I(Φζ
o) are bounded. For n = 1, by the third
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condition in Def. 3.3, we have

E(I(Φζ
o)) ≤ K0E(Î(Φζ)) = K0EhE!ζ

( ∑
x∈Φ

⋂
Bζ/2

hx`(x)

)

= K0E!ζ

( ∑
x∈Φ

⋂
Bζ/2

E(hx)`(x)

)
(a)
= K0

E(h)

λ

∫
Bζ/2

`(x)ρ(2)(x− ζ)dx, (A.3)

where E!ζ(·) is the expectation with respect to the reduced Palm distribution P !ζ , which

is the conditional expectation conditioned on ζ ∈ Φ but excluding ζ. (a) follows from the

Campbell-Mecke theorem.

For n ≥ 2, we have

E(I(Φζ
o)
n) ≤ K0EhE!ζ

( ∑
x∈Φ

⋂
Bζ/2

hx`(x)

)n
(a)
= K0EhE!ζ

[ ∑
x∈Φ

⋂
Bζ/2

(
hx`(x)

)n]
+K0

∑
k1+k2=n,k1≥k2>0

(
n

k1, k2

)

· EhE!ζ

[ 6=∑
x1,x2∈Φ

⋂
Bζ/2

(
hx1`(x1)

)k1
(
hx2`(x2)

)k2

]
+ · · ·

+K0

∑
∑n
j=1 kj=n,kn≥···≥k1>0

(
n

k1, ..., kn

)
EhE!ζ

[ 6=∑
x1,...,xn∈Φ

⋂
Bζ/2

n∏
j=1

(
hxj`(xj)

)kj]
(b)
= K0

E(hn)

λ

∫
Bζ/2

(`(x))nρ(2)(x− ζ)dx+
K0

λ

n∑
J=2

∑
∑J
j=1 kj=n,kJ≥···≥k1>0

(
n

k1, ..., kJ

)

·
( J∏

j=1

E(hkj)

)∫
Bζ/2

· · ·
∫
Bζ/2

J∏
j=1

(`(xj))
kjρ(J+1)(x1 − ζ, ..., xJ − ζ)dx1...dxJ ,

(A.4)

where (a) follows by the multinomial theorem and (b) follows by the Campbell-Mecke

theorem.

We discuss the cases of the non-singular and singular path loss models, separately.

130



For `(x) = (1 + ‖x‖α)−1, when n = 1, since by Def. 3.3, there exists q2 < ∞, such that

ρ(2)(x) < q2 for x ∈ R2, it yields that
∫
Bζ/2

`(x)ρ(2)(x)dx ≤
∫
R2 `(x)ρ(2)(x)dx <∞ and thus

by (A.3), there exists c1 ∈ R+, such that E(I(Φζ
o)) < c1. Similarly, when n > 1, by (A.4),

there exists cn ∈ R+, such that E(I(Φζ
o)
n) < cn, where cn does not depend on ζ.

For `(x) = ‖x‖−α, when n = 1, we have that
∫
Bζ/2

`(x)ρ(2)(x)dx ≤ q2

∫
Bζ/2
‖x‖−αdx =

2πq2
(α−2)22−α‖ζ‖2−α ≤ 2πq2

(α−2)22−α max{1, ‖ζ‖2−α}, and hence by (A.3), there exists c1 ∈ R+, such

that E(I(Φζ
o)) < c1 max{1, ‖ζ‖2−α}. When n > 1, for kj ∈ {1, 2, ..., n},

∫
Bζ/2

(`(x))kjdx =∫
Bζ/2
‖x‖−αkjdx = 2π

(αkj−2)22−αkj ‖ζ‖2−αkj , and therefore
∫
Bζ/2
· · ·
∫
Bζ/2

∏J
j=1(`(xj))

kjdx1...dxJ =

(
∏J

j=1( 2π

(αkj−2)22−αkj ))‖ζ‖2J−αn. Further, we have ‖ζ‖2J−αn ≤ max{1, ‖ζ‖2−αn}. Hence, by

(A.4), there exists cn ∈ R+, such that E(I(Φζ
o)
n) < cn max{1, ‖ζ‖2−αn}.

A.2 Proof of Theorem 3.5

Proof. We first consider the case when the noise power W = 0. Since Φ is m.i., we can

assume ζ = (y, 0). Let ˆ̀(x) = 1/`(x). The coverage probability is

Pc(θ) = Eξ[P(SINR > θ | ξ)]

=

∫ ∞
0

P(hζ > θ ˆ̀(ζ)I(Φζ
o))fξ(y)dy

=

∫ ∞
0

EI(Φζo)[F
c
h(θ ˆ̀(ζ)I(Φζ

o))]fξ(y)dy, (A.5)

Thus,

lim
θ→0

1− Pc(θ)

θm
= lim

θ→0

∫ ∞
0

EI(Φζo)

[
Fh(θ ˆ̀(ζ)I(Φζ

o))

θm

]
fξ(y)dy. (A.6)

Assume G(t) , Fh(t)/t
m, for t > 0, and G(0) = limt→0 Fh(t)/t

m = a. ∀ε > 0, there

exists τ > 0, such that for all t ∈ (0, τ), |G(t)− a| < ε. So, G(t) < a+ ε for t ∈ (0, τ). For

t ≥ τ , G(t) = Fh(t)/t
m < τ−m. Letting A = max{a + ε, τ−m}, we have G(t) < A, for all
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t ≥ 0.

In the following, we discuss the cases of `(x) = (1 + ‖x‖α)−1 and `(x) = ‖x‖−α,

separately.

For `(x) = (1 + ‖x‖α)−1, by Lemma 3.4, we have that ∀n ∈ N, ∃cn ∈ R+, such that

E(I(Φζ
o)
n) < cn. It follows that

H(y) , EI(Φζo)

[
Fh(θ ˆ̀(ζ)I(Φζ

o))

θm

]
< EI(Φζo)

[
A(ˆ̀(ζ)I(Φζ

o))
m

]
< Acm ˆ̀(y)m < +∞, (A.7)

and thus, by the fourth condition in Def. 3.3,

∫ ∞
0

H(y)fξ(y)dy < AcmEξ
(
ˆ̀(ξ)m

)
< +∞. (A.8)

For `(x) = ‖x‖−α, by Lemma 3.4, we have that ∀n ∈ N, ∃dn ∈ R+, such that

E(I(Φζ
o)
n) < dn max{1, ‖ζ‖2−αn}. Therefore, H(y) < Ayαmdm max{1, y2−αm} < +∞,

and
∫∞

0
H(y)fξ(y)dy < AdmEξ

(
ξαm max{1, ξ2−αm}

)
≤ Adm

(
Eξ(ξαm) + Eξ(ξ2)

)
< +∞.

Assume {θn} is any sequence that converges to 0. Consider `(x) = (1 + ‖x‖α)−1.

Define f̃(z) , a(ˆ̀(ζ)z)mfI(Φζo)(z), and f̃n(z) , Fh(θn ˆ̀(ζ)z)
θmn

fI(Φζo)(z), where fI(Φζo)(z) is the

PDF of I(Φζ
o). {f̃n} is a sequence of functions and f̃n → f̃ , as n → ∞. Let g(z) ,

A(ˆ̀(ζ)z)mfI(Φζo)(z). We have that f̃n ≤ g, for all n, and (A.7) indicates g(z) is integrable.

By the Dominated Convergence Theorem, we have
∫∞

0
f̃(z)dz = limn→∞

∫∞
0
f̃n(z)dz. Sim-

ilarly, define f̂(y) , EI(Φζo)

[
a(ˆ̀(ζ)I(Φζ

o))
m
]
fξ(y), f̂n(y) , EI(Φζo)

[Fh(θn ˆ̀(ζ)I(Φζo))
θmn

]
fξ(y) and

ĝ(z) , Acm ˆ̀(y)mfξ(y). By the Dominated Convergence Theorem, we have
∫∞

0
f̂(y)dy =

limn→∞
∫∞

0
f̂n(y)dy. By the same reasoning, the Dominated Convergence Theorem can

also be applied twice for the case `(x) = ‖x‖−α. Thus, for both cases of `(x), we obtain
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that

lim
θ→0

1− Pc(θ)

θm
=

∫ ∞
0

EI(Φζo)

[
lim
θ→0

Fh(θ ˆ̀(ζ)I(Φζ
o))

θm

]
fξ(y)dy

=

∫ ∞
0

EI(Φζo)

[
a(ˆ̀(ζ)I(Φζ

o))
m

]
fξ(y)dy. (A.9)

Note that by (A.8), (A.9) is finite.

Next, we consider the case when W > 0. In (A.6), we only need to replace I(Φζ
o) with

(I(Φζ
o) +W ) in the expectation EI(Φζo)(·) and the expectation becomes

H(y) = EI(Φζo)

[
Fh(θ ˆ̀(ζ)(I(Φζ

o) +W ))

θm

]
< EI(Φζo)

[
Aˆ̀(ζ)m(I(Φζ

o) +W )m
]
. (A.10)

By expanding (I(Φζ
o) +W )m, we observe that the right-hand side of (A.10) is finite. Anal-

ogous to the case when W = 0, we can prove that Theorem 3.5 also holds for W > 0.

A.3 Proof of Corollary 3.7

Proof. Consider the worst case, F c
h(x) ∼ exp(−ax), x → ∞. First, we will show that

the Laplace transform of I(Φζ
o), denoted by LI(Φζo)(s), converges for s > τ0, where τ0 < 0.

Since LI(Φζo)(s) always converges for s ≥ 0, we only consider the case s < 0. To prove

the property, we need to derive an upper bound of LI(Φζo)(s) that only depends on the Φζ .

Similar to the proof of Lemma 3.4, we can prove the proposition that ∀s < 0, there exists
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a positive K <∞, s.t. EI(Φζo)(exp(−sI(Φζ
o))) ≤ KEÎ(Φζ)(exp(−sÎ(Φζ))). Thus, we have

LI(Φζo)(s) = EI(Φζo)(exp(−sI(Φζ
o)))

≤ KEΦζ ,{hx}

( ∏
x∈Φζ

⋂
Bζ/2\{ζ}

exp(−shx`(x))

)

= KE!ζ

( ∏
x∈Φ

⋂
Bζ/2

Eh
(

exp(−sh`(x))
))

= KE!ζ

( ∏
x∈Φ

⋂
Bζ/2

Lh(s`(x))

)
, (A.11)

where Lh(s) denotes the Laplace transform of h.

Let k(s, x) , Lh(s`(x)). We have that LÎ(Φζ)(s) = E!ζ
(∏

x∈Φ
⋂
Bζ/2

k(s, x)
)

is finite if

and only if

η(s) = E!ζ

( ∑
x∈Φ

⋂
Bζ/2

| log k(s, x)|
)
<∞.

Now we show that τ0 is strictly less than 0. We have

η(s) = E!ζ

( ∑
x∈Φ

⋂
Bζ/2

| log k(s, x)|
)

(a)
=

1

λ

∫
Bζ/2

∣∣ log k(s, x)
∣∣ρ(2)(x− ζ)dx, (A.12)

where (a) follows from the Campbell-Mecke theorem.

Since F c
h(x) ∼ exp(−ax) for large x, without loss of generality, we assume for some

large H0, the PDF of h is fξ(x) = a exp(−ax) for x > H0. So,

k(s, x) =

∫ ∞
0

exp(−sy`(x))dFh(y)

=

∫ H0

0

exp(−sy`(x))dFh(y) +

∫ ∞
H0

a exp
(
− y(a+ s`(x))

)
dy. (A.13)

Since x ∈ Φ
⋂
Bζ/2, by the Dominated Convergence Theorem, k(s, x) is bounded for

all x and s > −a`(‖ζ‖/2)−1. Also, for s ∈ (−a`(‖ζ‖/2)−1, 0), we have k(s, x) > 1 and
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log(k(s, x)) ≤ k(s, x)− 1. To show η(s) <∞ for s ∈ (−a`(‖ζ‖/2)−1, 0), we need to prove∫
B(o,ω)c(k(s, x)−1)ρ(2)(x)dx <∞, for large ω. Since for large ‖x‖, we have ρ(2)(x−ζ)→ λ2,

where λ is the intensity of Φ, we choose ω large enough such that ρ(2)(x) is approximately

λ2 for all ‖x‖ > ω. So we only need to show that
∫
B(o,ω)c(k(s, x)− 1)dx <∞. We have

∫
B(o,ω)c

(k(s, x)− 1)dx

=

∫
B(o,ω)c

∫ H0

0

(exp(−sy`(x))− 1)dFh(y)dx+

∫
B(o,ω)c

∫ ∞
H0

(exp(−sy`(x))− 1)dFh(y)dx.

For large ω,

∫
B(o,ω)c

∫ H0

0

(exp(−sy`(x))− 1)dFh(y)dx =

∫
B(o,ω)c

∫ H0

0

(−sy`(x))dFh(y)dx <∞,

and

∫
B(o,ω)c

∫ ∞
H0

(exp(−sy`(x))− 1)dFh(y)dx

= exp(−aH0)

∫
B(o,ω)c

( −s
a`(x) + s

+
a`(x)(exp(−sH0`(x))− 1)

a`(x) + s

)
dx <∞.

Thus, η(s) < ∞ and LI(Φζo)(s) < ∞. Since I(Φζ
o) is nonnegative, according the region

of convergence (ROC) for Laplace transforms, there exists τ < −a`(‖ζ‖/2)−1, such that

LI(Φζo)(s) converges for s < τ and diverges for s > τ . τ is called the abscissa of con-

vergence. By Theorem 3 in [55], it follows that the interference has an exponential tail.

Therefore, if the fading has at most an exponential tail, the interference tail is bounded

by an exponential.
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A.4 Proof of Lemma 3.8

Proof. Since h̃ and ĥ are independent, we have

Fh(t) = P(h̃ĥ ≤ t) =

∫ ∞
0

P(h̃ ≤ t

u
| ĥ = u)fĥ(u)du =

∫ ∞
0

Fh̃

( t
u

)
fĥ(u)du

=

∫ ∞
0

1√
πΓ(m)

(∫ mt
u

0

wm−1 exp(−w)dw

)
Vσ
u

exp(−V 2
σ (log u)2)du, (A.14)

where Vσ , 10
σ
√

2 log 10
.

To prove the first property, we have

lim
t→0

Fh(t)

tm
= lim

t→0

F ′h(t)

mtm−1
= lim

t→0

∫ ∞
0

Vσm
m−1

√
πΓ(m)um+1

exp

(
− mt

u

)
exp(−V 2

σ (log u)2)du

≤
∫ ∞

0

Vσm
m−1

√
πΓ(m)um+1

exp(−V 2
σ (log u)2)du. (A.15)

Since as u→ 0, exp(−V 2
σ (log u)2) = o(un) for any n ∈ N, (A.15) is bounded. Thus we

can apply the Dominated Convergence Theorem and have that

lim
t→0

Fh(t)

tm
=

∫ ∞
0

Vσm
m−1

√
πΓ(m)um+1

exp(−V 2
σ (log u)2)du =

mm−1

Γ(m)
exp

(
m2

4V 2
σ

)
<∞,

which is the first property.

For the second property, on the one hand, for any n ∈ N,

lim
t→∞

1− Fh(t)
t−n

= lim
t→∞

F ′h(t)

nt−n−1
= lim

t→∞

∫ ∞
0

Vσm
mtn+m

√
πΓ(m)um+1n

exp
(
− mt

u

)
exp(−V 2

σ (log u)2)du.

Assume H(t) = tn+m exp
(
− mt

u

)
. Since H ′(t) = tn+m−1

(
n+m− mt

u

)
exp

(
− mt

u

)
, when

t = u(n+m)
m

, H(t) achieves its maximum value and maxt>0H(t) =
(u(n+m)

m

)n+m
exp(−(n +

m)). Thus,

lim
t→∞

1− Fh(t)
t−n

≤
∫ ∞

0

Vσu
n−1

√
πΓ(m)n

(n+m)n+m

mn
exp(−(n+m)) exp(−V 2

σ (log u)2)du <∞.
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Applying the Dominated Convergence Theorem, we obtain limt→∞
1−Fh(t)
t−n

= 0 and thus

F c
h(t) = o(t−n), as t→∞, for any n ∈ N.

On the other hand, for any a > 0,

lim
t→∞

1− Fh(t)
exp(−at) = lim

t→∞

F ′h(t)

a exp(−at)

= lim
t→∞

∫ ∞
0

Vσm
m

√
πΓ(m)um+1a

tm−1 exp
((
a− m

u

)
t
)

exp(−V 2
σ (log u)2)du.

(A.16)

For any a > 0, there exists K̂ > 0, such that for u > K̂, exp(mt/u) < exp(at/3).

Hence, limt→∞
1−Fh(t)
exp(−at) =∞, for any a > 0. Thus, − logF c

h(t) = o(t), t→∞.

A.5 Proof of Lemma 3.10

Proof. Conditions 1 and 2 in Def. 3.3 hold for all the three point processes obviously. For

Conditions 3 and 4, we treat the three point processes separately.

For the PPP, Condition 3 holds, because the points in Φ are independent; Condition 4

holds, because P(ξ > x) = P(Φ(b(o, x)) = 0) = exp(−λπx2).

For the MCP, we first prove that Condition 3 holds. For y > rc, the interference I(Φζ
o)

consists of two parts. One is the interference from the clusters with center points inside the

region B(o, y+ rc) \ b(o, y− rc), denoted by I1, and the other part is the interference from

the clusters with center points in B(o, y + rc)
c, denoted by I2. I1 and I2 are independent.

Similarly, Î(Φζ) consists of Î1 and Î2, where Î1 is from the clusters with center points inside

B(o, y + rc) \ b(o, y/2) and Î2 is from the clusters with center points in B(o, y + rc)
c.

Since the parent points are independent, I2 and Î2 have the same distribution. For

y � rc, we can easily prove that Î1 stochastically dominates I1. As P(I(Φζ
o) > z) =

P(I1 + I2 > z) = EI2 [P(I1 > z − I2 | I2)], we have P(I(Φζ
o) > z) ≤ P(Î(Φζ) > z) for all

z ≥ 0.

Then we prove Condition 4 holds for the MCP. For large y, let S be the set of the
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parent points that are in B(o, y − rc), i.e., S = {x ∈ Φp : x ∈ B(o, y − rc)} and Φ̃x be the

daughter process for the cluster centered at x ∈ Φp. We have

P(ξ > y) = P(Φ(B(o, y)) = 0)
(a)

≤ P(Φ̃x(B(x, rc)) = 0, for all x ∈ S)

=
∞∑
k=0

(λpπ(y − rc)
2)k exp(−λpπ(y − rc)

2)

k!
exp(−c̄)k

= exp
(
− (1− exp(−c̄))λpπ(y − rc)

2
)
, (A.17)

where (a) follows since Φ(B(o, y)) = 0 implies Φ(B(x, rc)) = 0, for all x ∈ S. As E(ξn) =

−
∫
zndP(ξ > z), performing integration by parts, it follows that E(ξn) is bounded.

For the MHP, to prove Condition 3, we consider Φζ
o and Φζ in term of the base PPP

Φb. Conditioned on Φb

⋂
(B(o, y + 2rh) \ B(o, y + rh)), the interference from the region

B(o, y + 2rh)c in Φζ and that in Φζ
o are i.i.d.. So we only need to consider the region

B(o, y+2rh) for large y. As y →∞, E[Φζ(B(o, y)\B(o, y/2))] = Θ(y2), and E[Φζ
o(B(o, y+

2rh) \ B(o, y))] = Θ(y).1 It can be proved that the portion of Î(Φζ) that comes from the

retained points in B(o, y + 2rh) \ B(o, y/2) stochastically dominates the portion of I(Φζ
o)

that comes from the retained points in B(o, y + 2rh) \B(o, y). Hence, Condition 3 holds.

To prove that Condition 4 holds for the MHP, we use the CCDF of ξ expressed in the

form (15.1.5) in [56]:

F c
ξ (x) =

∞∑
k=0

(−1)k

k!

∫
B(o,x)

· · ·
∫
B(o,x)

ρ(k)(y1, . . . , yk)dy1 · · · dyk (A.18)

=
∞∑
k=0

(−1)k

k!
α(k)[B(o, x)

⊗
k ], (A.19)

where B(o, x)
⊗
k is the Cartesian product of k balls and α(k) is the kth-order factorial

1f(x) = Θ(g(x)), if both f(x)/g(x) and g(x)/f(x) remain bounded as x→∞.
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moment measure. For the MHP, the nth moment density satisfies

ρ(n)(z1, . . . , zn) = λn, for (z1, . . . , zn) ∈ Sn(x), (A.20)

where Sn(x) , {(z1, . . . , zn) ∈ B(o, x)
⊗
n : ‖zi − zj‖ > 2rh,∀i 6= j}. The complementary

set of Sn(x) with respect to B(o, x)
⊗
n is Sc

n(x) = B(o, x)
⊗
n \ Sn(x) = {(z1, . . . , zn) ∈

B(o, x)
⊗
n : ∃i 6= j, s.t. ‖zi − zj‖ ≤ 2rh}. The Lebesgue measure of Sc

n(x) satisfies

ν(Sc
n(x)) = O(x2n−1). So, as x → ∞,

∫
Sc
n(x)

ρ(n)(y1, . . . , yn)dy1 · · · dyn → 0. Since (A.18)

can be rewritten as

F c
ξ (x) =

∞∑
k=0

(−1)k

k!

(∫
Sk(x)

ρ(k)(y1, . . . , yk)dy1 · · · dyk +

∫
Sc
k(x)

ρ(k)(y1, . . . , yk)dy1 · · · dyk
)
,

it follows that as x→∞,

F c
ξ (x) ∼

∞∑
k=0

(−1)k

k!

(∫
Sk(x)

ρ(k)(y1, . . . , yk)dy1 · · · dyk +

∫
Sc
k(x)

λkdy1 · · · dyk
)

=
∞∑
k=0

(−1)k

k!
(λπx2)k = exp(−λπx2).

Therefore, E(ξn) is bounded for all n and Condition 4 holds.

A.6 Proof of Theorem 4.3

Proof. Using the same method in the proof of Theorem 5.6 in [42], we can prove that

P(Ĩ ≥ y) ∼ πλ

2
E[(ha + hb)

δ]y−δ, y →∞. (A.21)
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The success probability can be rewritten as

Ps(θ) = 1− P
(
Ĩ > h0b

−αθ−1 − h1b
−α
)

= 1− Eh0,h1

[
P
(
Ĩ > h0b

−αθ−1 − h1b
−α
)

1(h0b
−αθ−1 ≥ h1b

−α) | h0, h1

]
− Eh0,h1

[
P
(
Ĩ > h0b

−αθ−1 − h1b
−α
)

1(h0b
−αθ−1 < h1b

−α) | h0, h1

]
= 1− Eh0,h1

[
P
(
Ĩ > h0b

−αθ−1 − h1b
−α
)

1(h0θ
−1 ≥ h1) | h0, h1

]
− P

(
h0θ

−1 < h1

)
.

(A.22)

Thus,

lim
θ→0

1− Ps(θ)

θδ
= lim

θ→0

Eh0,h1

[
P
(
Ĩ > h0b

−αθ−1 − h1b
−α
)

1(h0θ
−1 ≥ h1) | h0, h1

]
+ P (h0θ

−1 < h1)

θδ

= lim
θ→0

Eh0,h1

[
P
(
Ĩ > h0b

−αθ−1 − h1b
−α
)

1(h0θ
−1 ≥ h1) | h0, h1

]
θδ

(a)
= Eh0,h1

lim
θ→0

P
(
Ĩ > h0b

−αθ−1 − h1b
−α
)

1(h0θ
−1 ≥ h1)

θδ
| h0, h1


(b)
= Eh0,h1

[
lim
θ→0

πλb2E[(ha + hb)
δ]

2

(h0θ
−1 − h1)

−δ
1(h0θ

−1 ≥ h1)

θδ
| h0, h1

]

=
πλb2E[(ha + hb)

δ]

2
Eh0,h1

[
lim
θ→0

(h0 − h1θ)
−δ 1(h0 ≥ h1θ) | h0, h1

]
=
πλb2

2
E[(ha + hb)

δ]E[h−δ], (A.23)

where (a) follows from the Dominated Convergence Theorem and (b) follows from (A.21).
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A.7 Proof of Theorem 4.6

Proof. The SIR distribution can be expressed as

Ps(θ) = P
(

h0R
−α

h1R−α + Ĩ
> θ

)
= P

(
h0 > θ(h1 +RαĨ)

)
= E

[
F̄h

(
θ(h1 +RαĨ

)]
. (A.24)

So,

lim
θ→∞

Ps(θ)

θ−(m+δ)
= lim

θ→∞

E
[
F̄h

(
θ
(
h1 +RαĨ

))]
θ−(m+δ)

= lim
θ→∞

∂
∂θ
E
[
F̄h

(
θ
(
h1 +RαĨ

))]
−(m+ δ)θ−(m+δ+1)

= lim
θ→∞

E

 ∂
∂θ
Fh

(
θ
(
h1 +RαĨ

))
(m+ δ)θ−(m+δ+1)


=

1

(m+ δ)Γ(m)
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where Fh and F̄h are respectively the CCDF and the CDF of h.

In the following, we evaluate limθ→∞ E
[
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]
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,

separately.
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For limθ→∞ E
[
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For limθ→∞ E
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]
, we discuss the cases when i < m and when

i = m, separately.

When i < m, let gi ∼ gamma(m− i, 1), and we have
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where (a) follows by applying the L’Hospital’s rule reversely and F̄gi is the CCDF of gi.
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Using the same method in the proof of Theorem 4 in [61], we have
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where (b) follows from the Campbell-Mecke theorem, Φx , {y ∈ Φ : y + x} is a translated

version of Φ, (c) follows by using the substitution xθδ/2 → x, (d) follows by the Dominated

Convergence Theorem and the fact that θ−δ/2 → 0 and thus 1
(
b(o, ‖x‖θ−δ/2) empty

)
→ 1,

(e) follows by using the substitution x (mI∞)δ/2 → x. So, by substituting (A.28) into

(A.27), it yields that
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When i = m, let gm ∼ exp(1), and we have
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αĨ
]

= lim
θ→∞

θδE
[
F̄gm

(
θmRαĨ
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where (a) follows from (A.28).

Substituting (A.26), (A.29) and (A.30) into (A.25), we obtain (4.28).
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