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SPATIAL MODELING AND ANALYSIS OF VEHICULAR NETWORKS

Abstract

by

Jeya Pradha Jeyaraj

Through vehicle-to-vehicle communication (V2V), vehicles can exchange informa-

tion required for safety alerting other vehicles in their vicinity. Due to the mission-

critical nature of safety applications, high reliability is a key requirement of V2V

systems. Reliability is the probability that a V2V link can sustain a certain target

data rate. It depends on the locations of transmitting and receiving vehicles and

interferers, street geometry, and wireless medium. The reliability results obtained by

conducting a large number of trials in the real world fail to provide crisp insights into

the effects of network design parameters on reliability despite their high costs. We

aim to complement/reduce these large-scale experiments by applying mathematical

tools from stochastic geometry to (i) model vehicular networks, and (ii) analyze the

reliability of V2V communication. In particular, we introduce the notion of model

equivalence, which shows that the number of models can be drastically reduced to

only a few classes. Also, we prove that many existing models can be substantially

simplified to the proposed transdimensional models with virtually no loss in accuracy.

Furthermore, we investigate the meta distribution (MD) of the signal-to-interference

ratio (SIR), which is a much sharper performance metric than the SIR distribution

that is usually studied. The SIR MD answers questions such as ‘what fraction of the

V2V links are 99% reliable if the target data rate is 10 Mbps?’ This metric is the

key towards designing V2V networks with guaranteed reliability.
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With respect to the broadcast communication, we formulate the binned meta

distribution of the SIR, which answers questions like ‘what fraction of the V2V links

that are in the distance range of 100-200 m are 99% reliable if the target data rate is

10 Mbps?’ The binned variant of the MD provides insights into the effective range for

reliable broadcast communication. Having the binned SIR MD as the performance

metric, we compare different stochastic geometry models to system-level simulations.

The Poisson point process-based vehicular networks rank the highest in terms of

analytical tractability with loose approximations to system-level simulations; the

Matérn hard-core process-based models provide tight approximations but are highly

intractable; the determinantal point process-based models rank the highest in terms

of accuracy with good tractability.
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CHAPTER 1

INTRODUCTION

Nearly 1.3 million fatalities occur in road crashes each year, with 90% caused due

to human errors [2]. National highway traffic safety administration (NHTSA) of the

United States estimates that the vehicle-to-vehicle (V2V) communication can elimi-

nate 80% of the accidents [3]. V2V can alert vehicles about the events happening in

their vicinity that even the best sensors in vehicles may fail to detect. This promis-

ing technology can support road safety services such as safer autonomous driving,

broadcasting hazard warnings and roadblocks, cooperative adaptive cruise control,

platooning, and infotainment services.

Due to the mission-critical nature of safety applications, high reliability is a key

requirement of V2V systems. In this context, an important question is ‘what is the

maximum density of vehicles on the street that can achieve a certain reliability?’ The

answer depends on the street geometry, relative locations of vehicles and infrastruc-

ture nodes, and the wireless signal propagation. The answer is hard to determine

using system-level simulations and large-scale experiments as they require conduct-

ing multiple trials with a large number of vehicles in different traffic scenarios for

different street systems. Hence designing and planning V2V systems only based on

extensive system-level simulations or experiments fails to provide insights into the

key dependencies and trade-offs between the network parameters.

The goal of our research is to analyze the behavior of reliable vehicular networks

and obtain crisp insights that serve as an alternative or companion to large-scale

simulations and experiments. To this end, we need spatial models that closely capture
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(a) (b)

Figure 1.1: A section of (a) Manhattan (b) Boston shot using Google Earth. Streets
are highlighted in blue.

different street systems and uncertainties in the locations of vehicles.

1.1 Spatial Modeling

Some street systems are more regular as in Manhattan, while some are less regular

as in Boston (Fig. 1.1). Furthermore, the vehicle locations are subject to considerable

uncertainty. As a result, studying a specific instance of the network (traffic pattern)

is insufficient to analyze and design the vehicular network. It would be helpful if

we could make statistical statements about classes of likely network realizations. In

essence, we need spatial models that can characterize different street systems with

varying levels of regularity and uncertain (random) vehicle locations.

Stochastic geometry [4] provides the mathematical toolsets that permits the mod-

eling and analysis of random spatial patterns. It yields statistical features of the en-

sembles of vehicular network realizations and analytical results that can be evaluated

quickly to get useful design insights. To be concrete, below we give a few examples

of the mathematical tools from stochastic geometry to model vehicle locations and

streets.

A point process is a random collection of points, where a point can represent a

vehicle, pedestrian, an infrastructure node, or any other node. A realization of a
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point process of vehicles can be considered equivalent to a traffic pattern at a time

instant. There exist different types of point processes pertaining to the characteristics

of point patterns (alternatively, different traffic patterns). For example, Fig. 1.2 shows

snapshots of three different point processes: (a) a regular point process, (b) a cluster

point process, and (c) a Poisson point process (PPP). In a regular point process, there

is a minimum spacing between two points, which can be used to represent vehicle

locations on a highway during heavy traffic. In a cluster point process, points tend

to attract each other, which can be used to characterize the vehicle locations near

intersections.

A PPP corresponds to a point pattern which is in between those produced by

regular and cluster point processes. The advantage of the PPP is its analytical

tractability. It has been widely used in the modeling of cellular, device-to-device

(D2D), and machine-to-machine (M2M) networks [5]. Real-world wireless networks

are hard to describe using mathematical models, let alone analyze. PPPs with their

appealing feature of analytical tractability come in handy in those situations, and

they were shown to provide lower bounds on the network performance in many cases,

even though they cannot exactly characterize the real-world wireless networks [5, 6, 7].

A city with a regular street system like Manhattan (Fig 1.1a) can be depicted by

an orthogonal grid with variable spacing between the streets Fig. 1.2c. The Poisson

line process used to model the lines (streets) in Fig. 1.2d can be used for cities with

irregular street systems. We discuss further modeling of vehicular networks in the

following chapters in detail along with the analyses.

1.2 Outline of the Thesis

In Chapter 2 [8, 9], we debunk the claim in [10] that the vehicles can be modeled

as random points on a 2D plane using PPPs. We highlight the need for modeling the

street geometry and show that without it, we will not be able to fully understand the
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Figure 1.2: Snapshots of (a) regular point process (b) cluster point process (c) PPP
on orthogonal grid (d) PPP on Poisson line process. Lines represent streets and ‘o’
represent vehicles.
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vehicular network behavior.

We introduce a general framework for modeling vehicular networks in Chapter

3 [11]. This framework enables us to model street systems in different geographi-

cal regions where the streets can be of different lengths and orientations and form

intersections and T-junctions. We evaluate the probability that a vehicle at a gen-

eral location, intersection, or a T-junction can successfully receive a message from a

transmitter at a certain distance. Further, we introduce the notion of equivalence.

Instead of analyzing a distinct street geometry for each city, we can find the street

systems that behave qualitatively the same way and can thus be investigated jointly.

By establishing such equivalence between the street systems, we can focus on a spe-

cific subset of street systems, which will significantly reduce the computation time

and costs associated with designing and planning.

The calculations of the performance metrics can become unwieldy at times espe-

cially due to the random modeling of streets as well as vehicle locations. In Chapter

4 [12, 13], we introduce transdimensional models that are an alternative for the es-

tablished more complicated vehicular network models. The transdimensional models

focus only on certain aspects of the vehicular networks but can provide insights into

the network behavior as well as the complicated (much less tractable) models. The

key advantage is that the transdimensional models lend themselves to simpler and

tractable analytical expressions.

The Poisson-based vehicular networks provide loose approximations or lower bounds

to system-level simulations. Here, the transmitting vehicles can be arbitrarily close.

The hard-core models guarantee a minimum distance between the transmitting ve-

hicles but they are difficult to analyze. In Chapter 5, we explore a middle route

between PPPs and hard-core point processes for modeling vehicular networks. In

particular, we investigate determinantal point processes whose structure facilitates

simalysis [14], a blend of simulation and analysis, to study the vehicular network
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behavior. Further, we revisit the question of whether we need to model the streets if

we model the locations of transmitting vehicles using determinantal point processes.
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CHAPTER 2

VEHICULAR NETWORKS ON ORTHOGONAL STREET SYSTEMS

Some of the prior works in the literature [15, 16, 17, 18, 19] focus on analyzing

the vehicular communication on a single street with one or multiple lanes. Though

the insights into the vehicular network behavior provided by the single-street models

are certainly useful, they are insufficient to understand the overall network behavior

especially in dense urban areas, and at intersections. It is shown in [20] that the

proximity of a vehicle to an intersection reduces the chances of successful packet

reception, emphasizing the need to model intersections. Another approach is to model

the vehicle locations as random points on the plane using a 2D PPP neglecting the

street geometry [10]. The analysis of GPS traces of taxis in Beijing performed by [21]

demonstrates that the taxi locations do not form a 2D PPP, invalidating the model

in [10]. The pertinent question is whether we need a vehicular network model that

accounts for the street geometry or whether a 1D model is sufficient to understand

the vehicular network behavior. In this chapter, we focus on answering this question

through a simple model—an orthogonal grid-based vehicular network.

2.1 Network Model

We consider a vehicular network model that consists of a square (orthogonal)

grid formed by horizontally and vertically oriented streets. The transmitting vehicles

on each street form independent 1D homogeneous PPPs with intensity λ. Each

vehicle broadcasts with probability p following the slotted ALOHA protocol. Then
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the intensity of active transmitters on each street in each time slot is λp. We formally

define the PPP on a square grid (SG-PPP) below.

Definition 2.1 (SG-PPP). Let

L(`, ϕ) , {(x, y) ∈ R2 : x cosϕ+ y sinϕ = `}

denote a line in R2, where ` ∈ R is the location and ϕ ∈ [0, π) is the direction of the

line. For example, the x axis (R, 0) is L
π/2
0 , and the y axis (0,R) is L0

0.

Let Pϕ` denote a 1D PPP of intensity λ on the line L(`, ϕ). For different ` or ϕ,

the processes are independent. Then

PZ ,
⋃
k∈Z

P0
k ∪ P

π/2
k

is a union of horizontally and vertically oriented 1D PPPs, such that exactly one of

the coordinates of each point is an integer.

To make the model stationary and of variable intensity with respect to the inter-

street spacing s, the SG-PPP model is defined as

V , s(PZ + U),

where s > 0 and U is uniform on [0, 1)2.

Fig. 2.1 depicts the model. We can also obtain a grid of 1D PPPs by quantizing

either of the coordinates of each point of a 2D PPP with equal probability.

Definition 2.2 (SG-PPP—Alternate Definition). Let qZ : R2 7→ R2 be the random

quantization function defined as

qZ((u, v)) , Q(u,v)(u, bvc) + (1−Q(u,v))(buc, v),
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Figure 2.1: A snapshot of the SG-PPP. Lines represent streets and ‘o’ represent
vehicles. λ = 1, and s = 1.

where Qx, x ∈ R2, is a random field of independent Bernoulli random variables with

mean 1/2 and bzc is the largest integer smaller than or equal to z.

Let P ⊂ R2 be a stationary 2D PPP of intensity λ2 and define

PZ , qZ(P).

The SG-PPP follows as

V , s(PZ + U),

as in the first definition.

We also define the (scaled) quantization function q : R2 7→ R2 as

q(x) , s(qZ(x) + U).

The quantization levels correspond to the streets, which are integers for the model

shown in Fig. 2.1. For example, given integer quantization levels, U = (0, 0), and
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s = 1, a point (4.93, 1.16) in a 2D PPP P can be quantized either as (5, 1.16),

displacing the point to a vertical street or as (4.93, 1), displacing it to a horizontal

street. On quantizing a 2D PPP P defined on [0,M ]2, we obtain M horizontal and M

vertical streets, each of length M . Random translation U does not affect the number

of streets and their lengths. Scaling by a factor s results in a square grid of size sM .

The intensity of active transmitters in P is λ2p. Equating the total expected number

of active transmitters in P and its scaled quantized version V , we obtain

λp× 2M × sM = λ2p× (sM)2, (2.1)

which implies λ = λ2s/2. For s = 1, displacing each of the points of a 2D PPP to

either horizontal or vertical streets results in streets each with transmitters at half

the intensity of a 2D PPP.

Performance Metric and the Typical Vehicle Our metric of interest is the

success probability or reliability, which is the probability of successfully receiving the

message at a distance D from the transmitter. If a transmitter can communicate to

a receiver at a distance D, then the other receivers within distance D are also highly

likely to receive the message.

To define a meaningful network-wide metric, we focus on the success probability

of a representative vehicle (receiver) whose performance corresponds to the average

of that of all vehicles. In point process theory, this representative vehicle is called

‘the typical point.’ In our context, it is ‘the typical vehicle.’ As vehicles are located

on the street(s), having a vehicle at the origin implies that at least one street passes

through the origin. Under expectation over the SG-PPP, a vehicle conditioned to

be at the origin becomes the typical vehicle. Note that we can condition the typical

vehicle to be at any location since the vehicular network is stationary owing to the

underlying stationary street system (see Definition 1) and the homogeneity of the
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PPP. The typical vehicle’s transmitter is assumed to be at a distance D from the

origin. The transmitter can be another vehicle, a roadside unit, a pedestrian, or any

other node.

In the SG-PPP, we consider two types of typical vehicles: the typical general

vehicle and the typical intersection vehicle. For the typical general vehicle, we con-

dition on the translation U = (u1, u2) such that the origin is not an intersection, i.e.,

u1 = 0, u2 ∈ (0, 1). In the case of the typical intersection vehicle, the intersection

falls at the origin, i.e., u1 = u2 = 0. Note that the term ‘typical vehicle’ refers to

both the general and intersection vehicles, unless otherwise stated. Let rj denotes the

distance between the typical vehicle and the nearest location on the jth street, i.e.,

the perpendicular distance. Without loss of generality, we order the perpendicular

distances rj such that r0 ≤ r1 ≤ . . . , where r0 = 0.

Signal-to-Interference Ratio The received signal power S at the origin with re-

spect to some transmitter x is gx`(x), where the channel power gain gx is exponentially

distributed with mean 1 (Rayleigh fading) and `(w) = ‖w‖−α is the standard path

loss function with exponent α. Let D denote the distance between the typical vehicle

and its desired transmitter, and g denote the corresponding channel power gain. The

received interference power at the origin is the sum of all the interference powers

from the other transmitters on the same as well as the different streets. Let Ij denote

the interference from the street at perpendicular distance rj from the typical vehicle.

Thus the total interference power is I =
∑

j∈N0
Ij, where N0 = N∪{0}. Accordingly,

the signal-to-interference ratio SIR at the typical vehicle is

SIR =
S∑

j∈N0

Ij
=

gD−α∑
j∈N0

∑
z∈Vj

gz‖z‖−αBz

, (2.2)

where Vj represents the point process of vehicles on the jth street at a time instant

and V =
⋃
j∈N0

Vj. Bz is a Bernoulli random variable with mean p, the transmit
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probability. The transmission is considered successful when the SIR exceeds a certain

threshold θ which parametrizes the data rate.

2.2 Success Probability

In this section, we derive the success probabilities of (i) the typical general vehicle,

which equals the average fraction of vehicles who achieve SIR greater than θ, and

(ii) the typical intersection vehicle, which equals the average fraction of vehicles who

achieve SIR greater than θ when they are at intersections.

The success probability (reliability) of the typical vehicle is defined as

ps , P(SIR > θ) = P(S > Iθ) (2.3)

= P(g > θDαI) = EI(exp(−θDαI)) (2.4)

(a)
=
∏
j∈N0

EIj(exp(−θDαIj))
(b)
=
∏
j∈N0

LIj(θDα) (2.5)

where (a) follows from the independence of the 1D PPPs and (b) follows from the

definition of Laplace transform. First, we will find the interference from the same

street and from a different street. Using the results obtained, we will evaluate the

success probabilities of the typical general and intersection vehicles.

2.2.1 Interference from the Same Street

Based on our ordering of perpendicular distances, I0 denotes the interference from

the same street where the typical general vehicle lies. The Laplace transform of the

interference from the same street is

LI0(θDα) = EI0(exp(−θDαI0))

= E

[ ∏
z∈V0:Bz=1

E
(
exp

(
−θDαgz‖z‖−α

)) ]
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= E

[ ∏
z∈V0:Bz=1

1

1 + θDα|z|−α

]

(c)
= exp

(
− λp

∞∫
−∞

1

1 +
(

u2

D2θδ

)1/δ
du

)

(d)
= exp

(
− λpDθδ/2

∞∫
0

1

(1 + v1/δ)
√
v

dv

)

= exp(−2λpDθδ/2Γ(1 + δ/2)Γ(1− δ/2)), (2.6)

where δ = 2/α, (c) follows from the probability generating functional (PGFL) of the

PPP, and (d) results from the change of variable v = u2

D2θδ
. For the typical intersection

vehicle, r0 = r1 = 0. Then I0 = I1 in distribution, and the Laplace transform of the

interference from both the streets is

1∏
j=0

LIj(θbα) = L2
I0

(θDα) = exp(−4λpDθδ/2Γ(1 + δ/2)Γ(1− δ/2)). (2.7)

2.2.2 Interference from a Different Street

The Laplace transform of the interference from a different street for the typical

general/intersection vehicle is given by

LIj(θDα) = EIj(exp(−θDαIj))

= E

[ ∏
z∈Vj :Bz=1

E
(
exp

(
−θDαgz‖z‖−α

)) ]

= E

[ ∏
z∈Vj :Bz=1

1

1 + θDα‖z‖−α

]

(e)
= exp

(
− λp

∞∫
−∞

1

1 +
(
r2j+u2

D2θδ

)1/δ
du

)
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(f)
= exp

(
− λpDθδ/2

∞∫
r2
j

D2θδ

1

(1 + v1/δ)

√
v − r2j

D2θδ

dv

)
, (2.8)

where δ = 2/α, (e) applies the PGFL of the PPP, and (f) is due to the change of

variable v =
r2j+u2

D2θδ
. Note that (2.6) can be obtained from (2.8) by setting rj = 0. For

α = 2 and 4, (2.8) simplifies to

LIj(θD2) = exp

(
−πλD2θ√
r2
j +D2θ

)
,

and

LIj(θD4) = exp

(−πλD2
√
θ sin

(
1
2

arctan
(
D2
√
θ

r2j

))
(
r4
j +D4θ

) 1
4

)
,

respectively.

2.2.3 Success Probabilities for General and Intersection Users

Now, we can express the success probabilities of the typical general and intersec-

tion vehicles using (2.5) as shown in Lemma 2.1.

Lemma 2.1. The success probability of the typical general/intersection vehicle in the

SG-PPP is given by

ps = exp(−mλpDθδ/2Γ(1 + δ/2)Γ(1− δ/2))

×
∏

j≥m/2

exp

(
− λpDθδ/2

∞∫
r2
j

D2θδ

1

(1 + v1/δ)

√
v − r2j

D2θδ

dv

)
, (2.9)

where δ = 2/α, m = 2 for the typical general vehicle and 4 for the typical intersection

vehicle.
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Proof. Substituting the Laplace transform of the interference from the same street(s)

(2.6), and (2.7), and from a different street (2.8) in (2.5), we obtain the result (2.9).

2.3 Understanding Vehicular Network Behavior

We learned that the closed-form expression for (2.9) exists only for specific mod-

eling parameters. To gain insights on the impact of interference from different streets

on ps, we focus on the asymptotic regimes θ → 0 and θ →∞.

2.3.1 Asymptotic Reliability Analysis

First, we will study how the interferers affect ps as θ → 0, which corresponds to

the high-reliability regime.

Theorem 2.1. As θ → 0, the SG-PPP behaves as

1− ps ∼ mλpDθδ/2Γ(1 + δ/2)Γ(1− δ/2),

where δ = 2/α, m = 2 for the typical general vehicle and 4 for the typical intersection

vehicle.

Proof. Let K = Γ(1 + δ/2)Γ(1− δ/2) and ∀j ≥ 0,

Fj(θ) = exp

(
− λpDθδ/2

∞∫
r2
j

D2θδ

1(
1 + v1/δ

)√
v − r2j

D2θδ

dv

)
.

Note that
∏

j<m/2 Fj(θ) = exp(−mλpDθδ/2K). Then we can express (2.9) as

ps = exp

(
−mλpDθδ/2K −

∑
j≥m/2

lnFj(θ)

)
. (2.10)
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For small θ, we can approximate (2.10) using Taylor’s series as

lim
θ→0

1− ps

θδ/2
= mλpDK + lim

θ→0

∑
j≥m/2

lnFj(θ)

θδ/2
(2.11)

Observe that
lnFj(θ))

θδ/2
→ 0 as θ → 0 since the lower limit of the integral

r2j
D2θδ

→ ∞.

Hence the limit (2.11) reduces to

lim
θ→0

1− ps

θδ/2
= mλpbK,

and thus

ps ∼ 1−mλpDθδ/2Γ(1 + δ/2)Γ(1− δ/2), θ → 0. (2.12)

This completes the proof.

The success probability of the typical vehicle in a d-dimensional PPP is [4, Sec.

5.2]

ps = exp(−cdλdDdθδ
′
Γ(1 + δ′)Γ(1− δ′)), (2.13)

where cd denotes the volume of a d-dimensional unit ball, D is the link distance

between each transmitter and its receiver, λd is the transmitter intensity, δ′ = d/α

and α is the path loss exponent. Note that c1 = 2 and c2 = π.

We can approximate the success probability of the typical vehicle in a d-dimensional

PPP (2.13) using Taylor’s series as

ps ∼ 1− cdλdDdθδ
′
Γ(1 + δ′)Γ(1− δ′), θ → 0. (2.14)

Comparing (2.12) and (2.14), we observe that λ1 = λp, d = 1 (c1 = 2), δ′ = δ/2 =

1/α, and m = 2 since a 1D PPP refers to a single street. For the typical intersection

vehicle, as it lies at the intersection of two streets, and the vehicles on each street
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form independent 1D PPPs, we have m = 4, and

ps ∼ 1− 4λpDθδ/2Γ(1 + δ/2)Γ(1− δ/2), θ → 0. (2.15)

Remark 2.1. The SG-PPP behaves like a 1D PPP as θ → 0. In this regime, the

effect of the interference from different streets (rj 6= 0) is negligible, and it is sufficient

to consider only the interference from the same street(s) as seen from (2.12)-(2.15).

Next, we analyze the low-reliability regime, where θ →∞.

Theorem 2.2. As θ → ∞, the success probability of the typical vehicle in the SG-

PPP behaves as

ps ∼ exp(−πλ2D
2θδΓ(1 + δ)Γ(1− δ)), θ →∞, (2.16)

where λ2 = 2λp/s, and δ = 2/α.

Proof. The success probability of the typical general/intersection vehicle in the SG-

PPP from (2.2) and (2.4) is

ps = P
(
g > Dα

∑
z∈V

gz‖θ−1/αz‖−α
)
. (2.17)

If q(·) denotes the quantized version of each point of a 2D PPP P (see Def. 2), then

(2.17) can be equivalently written as

ps = P
(
g > Dα

∑
z∈P

gz‖θ−1/αq(z)‖−αBz

)
. (2.18)

Similarly, for a stationary 2D PPP P , the success probability of the typical vehicle

at the origin p′s can be expressed as

p′s = P
(
g > Dα

∑
z∈P

gz‖θ−1/αz‖−αBz

)
. (2.19)
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Each point in P is displaced at most by s/2, where s is the spacing between the streets.

Using the Cauchy-Schwarz inequality, we can obtain the lower bound |‖z‖−‖q(z)‖| ≤

‖z − q(z)‖ ≤ s/2 on the distance between the point and its quantized version. On

multiplying by θ−1/α, we obtain

|‖θ−1/αz‖ − ‖θ−1/αq(z)Bz‖| → 0, θ →∞. (2.20)

Applying (2.20) to (2.18) and (2.19), we infer that the interference experienced by

the typical general/intersection vehicle in the SG-PPP tends to that of in a 2D PPP

as θ →∞. Note that the type of vehicle does not matter since the quantization does

not affect the points of P as θ → ∞, i.e., there is no difference between a general

vehicle and an intersection vehicle. Hence the success probability in the SG-PPP

tends to that in a 2D Poisson network P . From (2.1), we find the intensity of active

transmitters in P as 2λp/s. Setting d = 2 (c2 = π), λ2 = 2λp/s, and δ′ = δ = 2/α in

(2.13), we obtain (2.16).

Remark 2.2. The SG-PPP behaves like a 2D PPP as θ →∞.

2.3.2 Comparison to Poisson Point Processes

From our asymptotic analysis, we infer that the vehicular network shares some

properties of both 1D and 2D PPPs. Here, we provide heuristic arguments that

generalize the behavior of the vehicular network for all θ.

The success probability ps in (2.9) is the product of the Laplace transforms of

the interference from the same and different streets. As 0 ≤ ps ≤ 1, we can infer

that ps is less than or equal to the Laplace transform of the interference from the

same street(s), i.e., ps ≤ exp(−mλpDθδ/2Γ(1 + δ/2)Γ(1− δ/2)), which is the success

probability of the typical vehicle in a 1D PPP of intensity mλp/2 (see (2.13)).

Due to the quantization (see Definition 2), the SG-PPP is a Cox process [4, Sec.
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Figure 2.2: Nearest neighbor distance distributions G(r) for SG-PPP and 2D PPP.
The equation number is given in the parentheses. λ = 2, p = 1, and s = 1.

3.3] and thus exhibits clustering behavior, which means that the probability of finding

a n-th nearest neighbor at a distance r is higher in the SG-PPP than in a PPP. For

a 2D PPP P of intensity λ2, the probability that the nearest neighbor is within a

distance r is [4]

FPR (r) = 1− exp(−λ2πr
2). (2.21)

Fig. 2.2 shows the nearest neighbor distance distribution curves (n = 1) for the 2D

PPP and the SG-PPP (obtained through simulations), which supports our clustering

argument. For the same channel distribution, as the number of neighbors to the

typical vehicle within a distance r is higher in the SG-PPP, the interference to the

typical vehicle is higher than in a PPP. Let I ′ denote the interference to the typical

vehicle in P . Using (2.4), for I ≥ I ′, we get

EI(exp(−θDαI)) ≤ EI′(exp(−θDαI ′)),
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Figure 2.3: Success probabilities of the typical general and intersection vehicles in the
SG-PPP. The equation number of the success probability is given in the parentheses
in the legend.

which implies that the success probability in the SG-PPP is less than or equal to that

in a 2D PPP. Hence the success probability of the typical vehicle in the SG-PPP is

upper bounded by that in the 1D and 2D PPPs.

Remark 2.3. The success probability of the typical vehicle in the SG-PPP is upper

bounded by the minimum of the success probabilities of the typical vehicle in the 1D

and 2D PPPs. As θ → 0, and θ →∞, the bound gets tight.

2.4 Results and Discussion

In this section, we present the numerical evaluations of the success probabilities

of the typical general and intersection vehicles, and validate the asymptotic analysis.

We assume λ = 1, p = 0.3, D = 0.25, s = 1, and α = 4.

Fig. 2.3 shows the success probabilities of the typical general and intersection ve-

hicles. The success probability of the typical general vehicle is higher than that of the

typical intersection vehicle. As two streets pass through the intersection, the proba-

bility that the nearest interferer is within a distance r is higher for the intersection
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vehicle than the general vehicle. This results in lower success probability for the typ-

ical intersection vehicle. Asymptotically, as θ → ∞, the success probabilities of the

typical general and intersection vehicles match in accordance with our low-reliability

analysis.

Figs. 2.4a and 2.4b compare the success probabilities of the typical general and

intersection vehicles to that of the typical vehicle in 1D and 2D PPPs. At low SIR

threshold θ, the success probabilities of the typical general and intersection vehicles

match that of the 1D PPP with intensity λ1 = λp ×m/2 = 0.15m, for m = 2 and

4, respectively. At high SIR threshold, the SG-PPP matches 2D PPP with intensity

λ2 = 0.6 = 2λp for both types of vehicles, consistent with our asymptotic analysis.

Hence the upper bound on the success probability of the typical vehicle is tight at

the asymptotic regimes. The bound is least tight when the success probabilities of

the 1D and 2D PPPs are the same, which happens when θ = −2 dB in Fig. 2.4a and

θ = 10 dB in Fig. 2.4b.

2.5 Conclusions

In this chapter, we analyzed an orthogonal street system with vehicles on each

street forming 1D PPPs. Using tools from stochastic geometry, we have derived ex-

act analytical expressions for the success probabilities of the typical general vehicle,

which characterizes the average performance of all the vehicles, and of the typical

intersection vehicle, which characterizes the performance of the vehicles at intersec-

tions.

Our asymptotic analysis reveals that in the high-reliability regime, the interferers

from the same streets as that of the typical receiver dominate the interference and

the orthogonal street system behaves like a 1D PPP. On the other hand, in the low-

reliability regime, the orthogonal street system behaves like a 2D PPP. Also, it is

shown that the success probability of the typical general/intersection vehicle is upper
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(a)

(b)

Figure 2.4: Success probability of the (a) typical general vehicle and (b) typical
intersection vehicle in the SG-PPP vs. success probability of the typical vehicle in
1D and 2D PPPs. The equation numbers of the success probabilities are given in the
parentheses in the legends.
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bounded by the minimum of the success probabilities of the typical vehicle in the 1D

and 2D PPPs, and that the bound gets tight in the asymptotic regimes. Hence the

vehicles on the streets cannot be completely characterized by 1D PPPs and accurately

modeled as 2D PPPs and and that the street geometry is essential in modeling the

vehicular networks.
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CHAPTER 3

COX MODELS FOR VEHICULAR NETWORKS

The street systems in different geographical regions may differ in their structure,

street lengths, and degree of regularity. Crucitti et al. in [22] studied the street sys-

tems of 18 cities in different parts of the world. They divide the street systems into

two classes—(i) self-organized patterns that are formed historically without the con-

trol of any central agency, and (ii) planned regular grid-like patterns. Cities such as

Ahmedabad (India), Cairo (Egypt), and Venice (Italy) are examples of self-organized

patterns with unimodal street length distributions. Los Angeles, Richmond, and San

Francisco in the United States are examples of grid-like patterns with multimodal

street length distributions. It is worth noting that that even in the cities containing

grid-like street patterns, the street lengths are finite and vary significantly.

In the literature [23, 24, 25, 26, 27, 28, 29], street systems are most commonly

modeled as a random collection of lines with uniform orientations using Poisson line

processes (PLPs). While assuming that all streets are infinitely long may lead to

useful results, it either overestimates the total interference or underestimates the

local density of vehicles. For example, a street in a city that is 2 km long may have

a density of 50 cars per km. But extending it to an infinite street would mean such

a high car density extends to very remote rural regions far outside the city, which

is not realistic. Further, in the PLP, each pair of streets forms an intersection and

there are no T-junctions. Fig. 3.1 shows a part of Rome as an example, where few

streets are long enough to be approximated by infinite streets, and there exist many

T-junctions.
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Figure 3.1: Part of Rome’s city center. Visual inspection shows a mean street length
of about 250 m and many T-junctions.

Consequently, we need street models that can characterize finite variations in the

street lengths, and intersections and T-junctions. The edges of Poisson-Voronoi tes-

sellation, Poisson-Delaunay tessellation, and Poisson line tessellation are considered

to model streets of finite lengths in [30]. Estimators for the probability densities of

the inter-node distances are derived for these tessellations owing to their intractabil-

ity. A simpler alternative is to use line segments or sticks as we show later. In this

chapter, we introduce a general framework for the modeling and analysis of vehicular

networks. Under this framework, we develop models that represent street systems

varying from regular grid-like patterns to irregular hodgepodges and characterize the

uncertainty in the vehicle locations on the streets. In particular, the street lengths

can be infinitely long or varying finitely and mutually independent or dependent

resulting in intersections or T-junctions.

An important question is whether we need a different spatial model for each

region. Alternatively, does there exist an equivalence between the models such that

a single model is sufficient to analyze two different regions? If yes, a representative
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subset can be used to analyze a larger set of models, reducing the computation time

and costs associated with network design and planning. In this chapter, we show

that some models developed within the framework are equivalent, in a precise sense

defined later.

3.1 System Model

We will use the definitions and notations presented in this section for the rest

of the report unless otherwise stated. Let b(x, r) denote a disk of radius r centered

at x, and o , (0, 0) denote the origin. Let | · |d denote the Lebesgue measure in d

dimensions.

3.1.1 General Framework

Definition 3.1 (Street System). A street system S is a stationary random closed

subset of R2 with |S|2 = 0 that contains no singletons or isolated points. Due to the

stationarity,

E|S ∩ B|1 = τ |B|2 for Borel sets B ⊂ R2, (3.1)

where τ is the mean total street length per unit area.

|S|2 = 0 in Definition 3.1 implies that S is a random 1D subset of the plane

consisting of lines, line segments or sticks, curved segments or arcs, that characterize

the streets. Let Ξ = {ξ1, ξ2, . . .} be a collection of 1D subsets in R2 such that for

i 6= j, |ξi ∩ ξj|1 = 0 and ξi ∪ ξj is not a 1D subset. The street system S is the union

of 1D subsets, i.e.,

S ,
⋃
ξ∈Ξ

ξ. (3.2)

The elements of S are points in R2 but those of Ξ are 1D subsets, which are sets

themselves, and hence S 6= Ξ. Further, S uniquely characterizes Ξ and vice-versa,
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i.e., there exists a one-to-one correspondence between S and Ξ. Any street system

S can be partitioned as follows.

Definition 3.2 (Street System Decomposition). Let Pm , {z ∈ R2 : |S ∩ b(z, r)|1 ∼

mr, r → 0} denote the set of points of order m ∈ N in the street system S.

The sets Pm are disjoint, and their union equals S, i.e., {Pm}m∈N is a partition of

S. For m 6= 2, the sets Pm are countable and form simple and stationary point pro-

cesses. P2 is the only set with |P2|1 > 0, in fact, |P2|1 =∞. We have P2 = S almost

everywhere, i.e., P2 is an open set and S = cl(P2), where cl denotes the closure. P1

are endpoints, P3 are T-junctions, P4 are intersections, P5 are intersections with a

T-junction, P6 are three-way intersections (three streets intersecting at one point),

etc. Let

M , {m ∈ N : P(Pm = ∅) = 0} (3.3)

denote the index set of the non-empty components. Then S =
⋃
m∈MPm is called an

M−indexed street system. UsingM, we can categorize different street systems. For

example, a (2, 4)−street system refers to a street geometry without endpoints and

T-junctions but with intersections.

Definition 3.3 (Vehicular Point Process). A vehicular point process V ⊂ R2 is a

Cox process with random intensity measure Υ(B) = λ|S ∩ B|1.

Equivalently, Υ(B) = λ|P2 ∩B|1 since a.s. V ⊂ P2. This implies that the vehicles

form independent 1D PPPs on each street. By Definition 1, the 2D intensity measure

of V is E[Υ(B)] = λE[|S ∩ B|1] = λτ |B|2.

3.1.2 Vehicular Network Models

Here, we present a few models that fall under our framework. A street system

may include curves or circles. We focus only on street systems formed by lines or

sticks.
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A line (an infinitely long street) L can be represented as

L(x, ϕ) = {(a, b) ∈ R2 : a cosϕ+ b sinϕ = x}, (3.4)

where (|x|, ϕ) are the polar coordinates of the foot of the perpendicular from the

origin o to L.

Definition 3.4 (Line-based Poisson Street System). Consider a marked point process

on R×Ω, whose ground process is a PPP Φ1 of intensity µ on R and marks are i.i.d.

on Ω ⊆ [0, π). Let ν denote the distribution of Ω. The collection of lines ΞL =

{L(x, ϕ) : (x, ϕ) ∈ Φ1 × Ω} with the intensity measure ΛΞ(dxdϕ) = µdx × dν(ϕ)

forms

• an orthogonal grid with exponential spacing (OG) if dν(ϕ) = 0.5δ0 + 0.5δπ/2,

• a Poisson line process (PLP) if dν(ϕ) = dϕ/π.

The line-based Poisson street system is S =
⋃
L∈ΞL

L.

The OG and PLP inherently form intersections and hence are classified as (2, 4)-

street systems. Streets of varying finite lengths can be represented using sticks. A

stick S is defined by its midpoint y, orientation ϕ, and half-length h, and represented

as a closed set as

S(y, ϕ, h) = [y − hu(ϕ), y + hu(ϕ)], (3.5)

where u(ϕ) = (cosϕ, sinϕ). Alternatively, S(y, ϕ, h) = y + rotϕ([−h, h]), where rotϕ

denotes the rotation by ϕ around o. Now, we are ready to define the stick-based

street system.

Definition 3.5 (Stick-based Poisson Street System). Let Q = {(yi, ti)}, i ∈ N,

denote an i.i.d. marked point process with the ground process {yi} forming a 2D PPP
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Φ2 of intensity µ. Associate with yi a 2D mark ti = (ϕi, hi), where the orientation

ϕi is i.i.d. on [0, π), and hi is the half-length. The countable collection of sticks

ΞS = {S(yi, ϕi, hi)} forms

• a Poisson stick process (PSP) if the half-lengths are i.i.d. with some distribution
FH .

• a Poisson lilypond model (PLM)1 if each stick grows from zero length at a
constant rate on both sides until one of its endpoints hits another stick, thereby
forming a T-junction.

Then S =
⋃
S∈ΞS

S defines the stick-based Poisson street system.

Let yi ≡ (γi, φi) in polar coordinates, where γi ∈ R+, and φi ∈ [0, 2π). The PSP

has no T-junctions a.s., thus forming a (1, 2, 4)−street system, whereas the PLM has

no intersections a.s. due to its touch-and-stop growth mechanism, thus forming a

(1, 2, 3)−street system.

We only consider the street systems containing points of order up to 4. The

analyses shown in this chapter can be extended to higher-order street systems as

well.

We refer to the vehicular point processes formed by the OG, PLP, PSP, and PLM

as the OG-PPP, PLP-PPP, PSP-PPP, and PLM-PPP, respectively. Fig. 3.2 depicts

sample realizations.

3.1.3 Performance Metric and Types of Vehicles

Each vehicle broadcasts with probability p following the slotted ALOHA protocol.

Then the intensity of transmitting vehicles on each street in each time slot is λp. Our

metric of interest is the success probability or reliability, which is the probability of

a vehicle successfully receiving the message from a transmitter at distance D. If a

1The PLM is denoted as LM-I in [31]. We note that the other model, LM-II in [31], has similar
properties as the PLM.
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(a) µ = 1 and λ = 0.1 (b) µ = 1 and λ = 0.1

(c) µ = 0.1 and λ = 0.1 (d) µ = 0.1 and λ = 0.1

Figure 3.2: Snapshots of vehicular networks: (a) OG-PPP (b) PLP-PPP (c) PSP-
PPP and (d) PLM-PPP. Lines or sticks denote the streets, and ‘◦’ denote the vehicles.
The stick lengths in (c) are Rayleigh distributed with parameter 2.
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transmitter can communicate to a receiver at a distance D, then the other receivers

within distance D are also highly likely to receive the message. This model can be

extended to analyze any form of vehicle-to-everything (V2X) communication since the

transmitter is only specified by its distance D to the typical vehicle at the origin. The

transmitter can be a vehicle, a roadside unit, a pedestrian, or any other infrastructure

node, i.e., the transmitter is the ‘X’ in V2X.

As in Chapter 2, we focus on the typical vehicle at the origin to evaluate the

success probability. Note that we can condition the typical vehicle to be at any

location since the vehicular network is stationary owing to the underlying stationary

street system (Definition 1) and the homogeneity of the PPP. The typical vehicle’s

transmitter is assumed to be at a distance D from the origin.

The performance of vehicular communication at intersections and T-junctions is

crucial as they are more prone to accidents. In view of this, we evaluate the success

probabilities of three kinds of vehicles: (i) the typical general vehicle whose order is

2; (ii) the typical intersection vehicle whose order is 4; and (iii) the typical T-junction

vehicle whose order is 3. The term typical vehicle refers to all the three types of

typical vehicles unless otherwise stated. Mathematically, the success probability of

the typical vehicle of order m at o is defined as

pm(θ) = P(SIR > θ | o ∈ Pm), m = 2, 3, 4, (3.6)

where SIR is the signal-to-interference ratio measured at o and θ parametrizes the

target rate. The SIR for the typical vehicle with its transmitter at distance D is

given by

SIR =
gD−α∑

z∈V gz‖z‖−αBz

, (3.7)

where I =
∑

z∈V gz‖z‖−α is the total interference power at the origin. The channel

power gains g and gz are exponentially distributed with mean 1 (Rayleigh fading),
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and α is the path-loss exponent. (Bz)z∈V is an i.i.d. sequence of Bernoulli random

variables with mean p, the probability that the transmitter z is active. Equipped

with the performance metric, we next define the equivalence of spatial models.

3.1.4 Equivalence

Definition 3.6 (Equivalence). Two spatial models A and B are said to be ε-equivalent

with respect to the typical vehicle of order m if the total variation distance of their

SIR distributions is at most ε, i.e., max
θ
|pA
m(θ)− pB

m(θ)| = ε, 0 ≤ ε ≤ 1. If this holds

with ε = 0, we call them strictly equivalent. Model A is said to be asymptotically

equivalent to model B in the lower regime of θ if (1 − pA
m(θ))/(1 − pB

m(θ)) → 1 as

θ → 0, and in the higher regime of θ if pA
m(θ)/pB

m(θ)→ 1 as θ →∞.2

If the street system A has index set MA and the street system B has index set

MB, then the equivalence of A and B is defined only for the typical vehicles of

ordersMA ∩MB. If A and B are strictly equivalent, then either A or B is sufficient

to capture all the geographical regions that can be characterized by them. Else,

substituting one model for the other would depend on the complexity of the model

and the value of ε, which we will discuss in detail in Section 3.4.3.

3.1.5 Further Notation

Conditioning on o ∈ P2 implies that a street passes through the origin, condition-

ing on o ∈ P3 implies that a street passes through the origin while another street ends

at the origin, and conditioning on o ∈ P4 implies that two streets pass through the

origin. We denote by Vm = (V | o ∈ Pm) the point process of vehicles with the origin

2For all models, the success probability of the typical vehicle pm(θ) → 1 as θ → 0. Hence,
considering ratios of success probabilities is not meaningful in this regime as they would all be
equivalent. Similarly, the outage probability 1− pm(θ)→ 1 as θ →∞, so in this regime, it does not
make sense to consider the ratio of outage probabilities. To obtain non-trivial equivalence results,
the quantities of interest need to go to zero.
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being on at least one street. Also, let Vmo denote the vehicles on the streets that pass

through or end at the origin. V! denotes the vehicles on the rest of the streets, i.e.,

V! = Vm \ Vmo . We index the streets based on the distances of the perpendiculars

from the streets to the origin. Based on the indexing, Vk denotes the point process

of vehicles on the kth street. Then Vmo = ∪1≤k≤dm/2eVk, and V! = ∪k>dm/2eVk. Let Imo

and I! denote the interference from the vehicles in Vmo and V!, respectively. δ , 2/α,

where α is the path-loss exponent.

3.2 Properties of Vehicular Networks

Lemma 3.1. The mean total street length per unit area in the OG and PLP is τ = µ.

Proof. The total expected length of the lines that intersect b(o, r) is given by

E[|S ∩ b(o, r)|1] = µ

∫ π

0

∫ r

−r
2
√
r2 − u2 dudv(ϕ)

= µ|b(o, r)|2. (3.8)

By Definition 1 and (3.8), we get τ = µ.

Lemma 3.2 ([32], Eq. 9). The mean total stick length per unit area in the PSP is

τ = 2µE[H].

Let fH(h) denote the probability density function (PDF) of the half-lengths of

the sticks.

Lemma 3.3. The half-lengths of the sticks that pass through the typical vehicle are

distributed with density f̃H(h) = hfH(h)/E[H].

Lemma 3.3 is a case of the inspection paradox [33]. The length of the stick that

passes through the typical vehicle is biased by the fact that the mean number of
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points on the stick is proportional to its length. As a result, the half-lengths of those

sticks follow the density function f̃H(h). For example, consider a case where half the

streets are of length 10−2 and the rest are of length 102, and the intensity of vehicles

on each street is 1. Then the typical vehicle lies on a long street with a probability of

about 99.99%, which is very different from the 50% probability of the typical street

to be a long one. On the other hand, in the PLM, a stick that ends at a T-junction

follows the inherent distribution fH(h) since each stick has exactly one such endpoint

a.s. If all the sticks are of the same length 2h0, then f̃H(h) = fH(h) = δ(h− h0).

In the lilypond model, the growth of a stick is determined by the locations and

the orientations of the other sticks since each stick grows at a constant rate until one

of its endpoints hits another stick. This simultaneous touch-and-stop growth process

makes it difficult, most likely impossible, to derive the exact distribution of the half-

lengths. However, a suitable approximation for the distribution of the half-lengths

can be found, as stated in Lemma 3.4.

Lemma 3.4. The half-lengths of the sticks in the PLM are approximately Rayleigh

distributed with PDF f̂H(h) = 2bh exp(−bh2), h ≥ 0. It follows that E[H] ≈
√
π/4b,

where b is proportional to the street intensity µ and can be estimated from the empir-

ical mean of the half-lengths.

Proof. See Appendix A.1.

Combining Lemmas 3.3 and 3.4, we note that the PDF of half-lengths of the

sticks that pass through the typical vehicle in PLM can be approximated as f̃H(h) ≈

hf̂H(h)/E[H]. Fig. 3.3a illustrates their histogram and the fitted density functions

f̃H(h) and fH(h). We observe that hf̂H(h)/E[H] provides a good fit to the histogram,

validating the approximation f̂H(h).

To appreciate the differences between the PSP-PPP and PLM-PPP, we consider

the case where the half-lengths in the PSP are Rayleigh distributed as in the PLM. Let
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(a)

(b)

Figure 3.3: (a) Fitting hf̂H(h)/E[H] to the half-lengths of the streets that pass
through the typical vehicle in the PLM. (b) Mean and variance of number of neighbors
to the typical general vehicle in the PLM-PPP vs. PSP-PPP with fH(h) = f̂H(h) =
2bh exp(−bh2). µ = 0.01 and λ = 0.3. The value of b corresponding to µ = 0.01
is 0.0103. The intensity of 2D PPP is 2λµE[H], which is the 2D intensity of the
PLM-PPP/PSP-PPP.
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No(r) denote the number of neighbors to the typical vehicle at o within a distance r.

Fig. 3.3b compares the mean and variance of No(r) in the PLM-PPP and PSP-PPP.

The correlation among the stick lengths resulting from the touch-and-stop mechanism

in the PLM-PPP leads to a smaller variance of No(r) than in the PSP-PPP, where

the stick lengths are independent. On the other hand, E[No] is the same for both the

PSP-PPP and PLM-PPP when both follow the same distribution for half-lengths as

their first-order statistics are the same. Also, the statistics of No for the PLM-PPP

and PSP-PPP differ significantly from that for a 2D PPP of equivalent intensity,

highlighting the differences in having the street geometry and not.

Lemma 3.5. The nearest-neighbor distance distribution for a vehicular network with

the street system characterized by Definition 3.1 can be decomposed as

FR(r) = 1− (1− FR,Vmo (r))(1− FR,Vr(r)), (3.9)

where FR,Vmo (r) is the probability of finding a neighbor in Vmo within distance r, and

FR,Vr(r) is with respect to Vr. FR,Vr(r) also denotes the contact distance distribution,

the distribution of the distance from an arbitrary location to the nearest vehicle in V.

Proof. See Appendix A.2.

Lemma 3.6. The nearest-neighbor distance distribution for the OG-PPP/PLP-PPP

is FR(r) = 1− exp(−mλr − 2µ
∫ r

0
(1− exp(−2λ

√
r2 − u2))du), where m ∈ {2, 4}.

Proof. See Appendix A.3.

An alternative proof of the nearest-neighbor distance distribution for the case

m = 2 in the PLP-PPP can be found in [28]. Lemma 3.6 presents a slightly more

general result that also applies to an intersection vehicle and the OG-PPP, which can

be obtained by rotating each line L ∈ ΞL (Definition 3.4) constituting the PLP-PPP

such that they are orthogonal to each other.
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(a) (b)

Figure 3.4: Comparison of (a) mean distance from the typical general vehicle to its n-
th nearest neighbor and (b) nearest-neighbor distance distributions in the PLM-PPP
and PSP-PPP given by (3.10) with fH(h) = f̂H(h) = 2bh exp(−bh2), where b = 1.04
for µ = 1, and 0.0103 for µ = 0.01. λ = 0.3.

Theorem 3.1. The nearest-neighbor distance distribution for the PSP-PPP is

FPSP−PPP
R (r) =1−

[ ∞∫
0

1

h

h∫
0

exp(−λ`(γ, 0, 0))f̃H(h)dγdh

]m/2

× exp

(
− µ

π

∞∫
0

π∫
0

2π∫
0

r+h∫
0

exp(−λ`(γ, φ, ϕ))γfH(h)dγdφdϕdh

)
,

(3.10)

where `(γ, φ, ϕ) = `1(γ, φ, ϕ)1γ≤r+`2(γ, φ, ϕ)1γ>r. `1(γ, φ, ϕ), `2(γ, φ, ϕ) = |min(u1, h)

±min(u2, h)|, where u1, u2 = | − γ cos(φ − ϕ) ±
√
r2 − γ2 sin2(φ− ϕ)|. f̃H(h) =

hfH(h)/E[H], and m ∈ {2, 4}.

Proof. See Appendix A.4.

Fig. 3.4a shows the normalized mean distance E[Rn]/n to the n-th nearest neigh-

bor in the PLM-PPP and PSP-PPP with Rayleigh distributed half-lengths. The rate

of change in E[Rn]/n of the PLM-PPP from that of the PSP-PPP is at most 6%
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for µ = 0.01, and 5% for µ = 1. Fig. 3.4b compares the nearest-neighbor distance

distributions for different values of µ. We see that the nearest-neighbor distance

distribution in the PLM-PPP is tightly upper bounded by that in the PSP-PPP in

accordance with Fig. 3.4a, which shows that the mean distance to the nearest neigh-

bor in the PLM-PPP is tightly lower bounded by that in the PSP-PPP. We presume

that the inference obtained from Fig. 3.4b extends to the n-th nearest neighbor for

n > 1 as well.

Conjecture 3.1. The distance from the typical general vehicle to the n-th nearest

neighbor in the PLM-PPP stochastically dominates that distance in the PSP-PPP

with Rayleigh distributed half-lengths.

To facilitate the comparison of the success probabilities in the general street-based

Cox models and the homogeneous PPP, we recall the success probability of the typical

vehicle in a PPP. Let Φd denote a stationary d-dimensional PPP of intensity λd and

cd denote the volume of a unit d-dimensional ball. In particular, c1 = 2 and c2 = π.

Lemma 3.7 ([4], Sec. 5.2). The success probability ps of the typical vehicle in Φd is

pΦd
s = exp(−cdλdDdθδΓ(1 + δ′)Γ(1− δ′)), (3.11)

where δ′ = d/α.

Next, we analyze the success probabilities of the typical vehicle in Cox vehicular

networks.

3.3 Success Probabilities

Using (3.7) and the notations in Section 3.1.5, we express the success probability

pm of the typical vehicle of order m as

pm = P(g > θDαI)
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= E[exp(−θDα(Imo + I!)]. (3.12)

We can simplify (3.12) for all the Cox vehicular networks considered but the PLM-

PPP as follows:

pm
(a)
= E[exp(−θDαImo )]E[exp(−θDαI!)] (3.13)

(b)
= LImo (s)LI!(s)|s=θDα , (3.14)

where (a) is due to the independence of the PPPs on the streets, and (b) applies the

definition of the Laplace transform. For the PLM-PPP, (3.13) does not hold as the

length of each street is dependent on that of other streets.

Proposition 3.1. The success probability of the typical vehicle in the OG-PPP/PLP-

PPP is given by

pm = exp

(
−mλpDθδ/2Γ(1 + δ/2)Γ(1− δ/2)− 2µ

∫ ∞
0

(1− LIx(θDα))dx

)
, (3.15)

where LIx(s) = exp
(
− λpsδ/2

∫∞
vx

1

(1+v1/δ)
√
v−vx

dv
)

with vx = x2

sδ
, and m ∈ {2, 4}.

Proof. See Appendix A.5.

The success probability of the typical vehicle of order 2 in the PLP-PPP is derived

in [27]. The success probability (3.15) depends only on the distances of the interferers

to the typical vehicle, not their orientations. In Appendix A.5, we give a general proof

that shows the effect of the order of the vehicle and the irrelevance of the orientations

on the success probability.

Proposition 3.2. The Laplace transform of the interference from the vehicles on

streets that pass through the typical vehicle of order m ∈ {2, 4} in the PSP-PPP with
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half-length density function fH(h) is given by

LPSP−PPP
Imo

(s) =

( ∞∫
0

(
1

2h

h∫
−h

exp

(
− λpsδ/2

(−w+h)s−δ/2∫
(−w−h)s−δ/2

1

1 + v2/δ
dv

)
dw

)
f̃H(h)dh

)m/2
,

(3.16)

where f̃H(h) = hfH(h)/E[H].

Proof. See Appendix A.6.

Proposition 3.3. The Laplace transform of the interference from the vehicles on all

but the streets that pass through the typical vehicle in the PSP-PPP with half-length

density function fH(h) is given by

LPSP−PPP
Ir

(s) = exp

(
− µ

π

∞∫
0

π∫
0

2π∫
0

∞∫
0

(1− LIa(s))γfH(h)dγdφdϕdh

)
, (3.17)

where

LIa(s) = exp

(
− λp

h∫
−h

(
1 +

(
γ2 + u2 + 2γu cos(φ− ϕ)

sδ

)1/δ)−1

du

)
.

Proof. See Appendix A.7.

Following (3.14), the success probability of the typical vehicle in the PSP-PPP is

pPSP−PPP
m = LPSP−PPP

Imo
(θDα)LPSP−PPP

I!
(θDα), (3.18)

where LPSP−PPP
Imo

(s) and LPSP−PPP
I!

(s) are given by (3.16) and (3.17), respectively.

Proposition 3.4. The success probabilities of the typical general vehicle (order 2)
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and the typical T-junction vehicle (order 3) in the PLM-PPP can be approximated as

pPLM−PPP
2 ≈ pPSP−PPP

2 = LPSP−PPP
I2o

(θDα)LPSP−PPP
I!

(θDα), (3.19)

pPLM−PPP
3 ≈ pPSP−PPP

2 ×
∞∫

0

exp

(
− λpDθδ/2

2h

Dθδ/2∫
0

1

1 + v2/δ
dv

)
f̂H(h)dh, (3.20)

respectively. LPSP−PPP
I2o

(s) is given by (3.16) and LPSP−PPP
I!

(s) by (3.17) with fH(h) =

f̂H(h) = 2bh exp(−bh2).

Proof. See Appendix A.8.

Fig. 3.5 compares the success probabilities of the typical general and intersection/T-

junction vehicles. We omit the plot for the success probability of the typical vehicle

in the OG-PPP as it is the same as that in the PLP-PPP by Proposition 3.1. We see

that the success probability of the typical general vehicle is higher than that of the

typical intersection/T-junction vehicle in all the Cox vehicular networks. The reason

is that as two streets pass through or end at the typical vehicle at an intersection

or a T-junction, the received interference is higher compared to the typical general

vehicle through which only one street passes.

Remark 3.1. Fig. 3.5c indicates that the success probability of the typical general ve-

hicle in the PLM-PPP is tightly lower bounded by that in the PSP-PPP with Rayleigh

distributed half-lengths.

Remark 3.2. The approximation (3.20) to the success probability of the typical T-

junction vehicle serves as a tight lower bound (Fig. 3.5c). The integral term on

the right-hand side of (3.20) is the Laplace transform of the interference from the

vehicles on the street that has its endpoint at the origin. We can rephrase (3.20) as

follows. The success probability of the typical T-junction vehicle in the PLM-PPP is

tightly lower bounded by the success probability of the typical vehicle (with one street
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(a) (b)

(c)

Figure 3.5: Success probabilities of the typical general and intersection/T-junction
vehicles in the (a) PLP-PPP (b) PSP-PPP and (c) PLM-PPP. λp = 0.3, D = 0.25,
α = 4, µ = 2, 0.1, and 0.3 for the PLP, PSP, and PLM, respectively. fPSP

H (h) =
δ(h− 10). The equation numbers are given in parentheses in the legends.
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passing through) in the network formed by conditioning a street in the PSP-PPP (with

Rayleigh distributed half-lengths) such that one of its endpoints is at the origin.

Next, we analyze the equivalence between the spatial models using their properties

and the success probabilities of the typical vehicle in those models.

3.4 Equivalence of Spatial Models

To differentiate the street intensities of the models OG, PLP, PSP, and PLM, we

denote them as µOG, µPLP, µPSP, and µPLM, respectively.

3.4.1 OG-PPP and PLP-PPP

Theorem 3.2. The PLP-PPP of street intensity µPLP is strictly equivalent to the

OG-PPP with street intensity µOG = µPLP.

Proof. The equivalence is a direct consequence of the success probabilities of the

typical vehicle in the OG-PPP and PLP-PPP given in Proposition 1.

3.4.2 PSP-PPP and PLP-PPP

Theorem 3.3. Let H , cH1, where c is a constant and H1 is a random variable

with mean 1. The PLP is the limiting process of the PSP as c → ∞ and µPSP → 0

such that 2µPSPE[H] = 2cµPSP = µPLP.

Proof. We formalize the heuristic arguments on the relation between the PLP and

PSP given in [32]. From Definitions 3.4 and 3.5, we learn that the parameter spaces

of line and stick are different. To compare the line process with the stick process,

we first establish compatible parametrizations. Let S ′(r, φ, q) denote the infinitely

extended stick S(y, ϕ, h), where q = yz is the distance between the midpoint of

the stick y = (u, v) and z = (r cosφ, r sinφ), the closest point to the origin from

S ′(r, φ, q). Fig. 3.6 illustrates S ′(r, φ, q) and S(y, ϕ, h) using overlaid dashed and
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Figure 3.6: Reparametrization of the PSP. The stick S(y, ϕ, h) ∈ ΞS is extended to
form a line S ′(r, φ, q). The perpendicular from the extended stick is at a distance r
from o and forms an angle φ with the x−axis.

solid lines, respectively. We can express y = (u, v) and ϕ in terms of (r, φ) and q as

u = r cosφ− q sinφ, v = r sinφ + q cosφ, and ϕ = φ− π/2. The differential element

dudvdϕ equals drdφdq, i.e., the two parametrizations are equivalent.

By (3.4), the line is just the projection of the stick from the parameter space

(r, φ, q) to (r, φ) when the latter is extended to infinity. However, we learn from

Lemmas 3.1 and 3.2 that the properties of the PLP and PSP differ. Then, to obtain

the PLP from PSP, we need to equate their statistical properties. Equating the mean

total street length per unit area in the PLP and PSP given in Lemmas 3.1 and 3.2,

we obtain 2µPSPE[H] = µPLP. For µPSPE[H] = cµPSP to remain finite, µPSP should

go to zero as c→∞.

Remark 3.3. The PSP-PPP, and its limiting case, the PLP-PPP, are strictly equiv-

alent. As the PLP and PSP are identically distributed as c → ∞ and µPSP → 0,

equivalence is not restricted to PPPs on the streets but also holds for general point
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processes of vehicles.

3.4.3 PLM-PPP and PSP-PPP

We learned from Proposition 4 that the success probability of the typical general

vehicle in the PLM-PPP is approximated by that in the PSP-PPP with the same half-

length density function as the PLM-PPP. Furthermore, from Figs. 3.4a and 3.4b, we

infer that the n-th nearest-neighbor distance distribution in the PLM-PPP is tightly

upper bounded by that in the PSP-PPP. Consequently, we can deduce that the

approximation to the success probability in the PLM-PPP is tight. Fig. 3.7 compares

the simulated success probability of the typical general vehicle in the PLM-PPP with

its lower bound. The maximum difference between the success probabilities in the

PSP-PPP and PLM-PPP is ε = 0.0297 for µ = 0.01 and 0.0219 for µ = 1. Though

the PLM can characterize T-junctions, it is too complex to permit an exact analytical

expression.

Remark 3.4. The PLM-PPP is ε−equivalent with ε � 1 to the PSP-PPP with the

same half-length distribution and street intensity as the PLM-PPP. Consequently, the

PSP-PPP serves as a good substitute for the PLM-PPP.

We see from Fig. 3.7 that the success probabilities of the typical general vehicle in

the PLM-PPP and PSP-PPP with Rayleigh distributed half-lengths are even closer

in the asymptotic regions of θ than in the middle regions of θ. Theorem 3.4 proves

this observation formally.

Theorem 3.4. The PLM-PPP is asymptotically equivalent in both the lower and

upper regimes of θ to the PSP-PPP with the same half-length density as the PLM-

PPP.

Proof. First, we study the asymptotic behavior of the PSP-PPP as θ → 0 and ∞.

Then, we compare them with that of the PLM-PPP.
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Figure 3.7: Success probability of the typical general vehicle in the PLM-PPP vs. that
in the PSP-PPP-based approximation given by (19) with fH(h) = 2bh exp(−bh2),
where b = 1.04 for µ = 1, and 0.0103 for µ = 0.01. λp = 0.3, D = 0.25, and α = 4.

Lemma 3.8. As θ → 0, the PSP-PPP behaves like a vehicular point process formed

only by the typical vehicle’s streets, i.e.,

1− pPSP−PPP
m (θ) = Θ(θδm/4). (3.21)

Proof. See Appendix A.9.

Lemma 3.9. As θ →∞, the success probability of the typical vehicle in the PSP-PPP

tends to that in a 2D PPP, i.e.,

pPSP−PPP
m (θ) ∼ exp(−πλ2pD

2θδΓ(1 + δ)Γ(1− δ)), (3.22)

where λ2 = 2µλE[H] is the 2D intensity of the PSP-PPP.

Proof. See Appendix A.10.

Equipped with the two lemmas, we continue with the proof of the theorem. As

θ → 0, for SIR > θ to hold, it suffices not to have any interferers within a small disk
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TABLE 3.1

CONDITIONS FOR EQUIVALENCE BETWEEN THE SPATIAL

MODELS

Model A Model B Conditions for Equivalence

OG-PPP PLP-PPP µOG = µPLP

PLP-PPP PSP-PPP µPSP → 0 and c→∞ s.t. 2µPSPE[H] = 2cµPSP = µPLP

PSP-PPP PLM-PPP µPSP = µPLM, fPSP
H (h) = fPLM

H (h)

around the typical vehicle. With high probability, the small disk intersects only the

street(s) passing through the typical vehicle. Consequently, the system performance

converges to that of only the typical vehicle’s streets as θ → 0. The outage probability

of the typical vehicle due to its streets alone is proportional to λpθδm/4 as θ → 0. On

the other hand, as θ →∞, for SIR > θ, a large disk around the typical vehicle must

be devoid of interferers. It follows from Lemma 3.9 that the street geometry outside

a large disk does not matter as θ → ∞ since the PSP-PPP is similar to a 2D PPP

at a large scale.

Lemma 3.8 extends to the PLM-PPP as the interaction between the sticks is

irrelevant when θ → 0. Also, the success probability of the typical general vehicle

with respect to its street alone in the PLM-PPP is the same as that in the PSP-PPP

with the same half-length density as the PLM-PPP. In Appendix A.10, we reasoned

that the PSP-PPP behaves like a 2D PPP as θ →∞ through mapping all the points

on the sticks to their respective midpoints. The same logic holds for the PLM-PPP

as it is also formed by sticks whose midpoints form a PPP. As the PLM-PPP and

PSP-PPP with the same half-length density as the PLM-PPP behave like 2D PPPs

of the same intensities as θ →∞, they are equivalent as θ →∞.
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(a) (b)

(c)

Figure 3.8: Success probability of the typical general vehicle in the (a) PSP-PPP
(b) PLM-PPP (c) PLP-PPP vs. that of the typical vehicle in 1D and 2D PPPs.
λp = 0.3, D = 0.25, α = 4, µ = 0.1, 0.3, and 2 for the PSP, PLM, and PLP,
respectively. fPSP

H (h) = δ(h− 10). The equation numbers are given in parentheses in
the legends.
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Fig. 3.8 compares the success probabilities of the typical general vehicle in the

street-based Cox vehicular networks with that of the typical vehicle in 1D and 2D

PPPs. The success probability of the typical vehicle in the PSP-PPP and PLM-PPP

tends to that in the network formed only by the typical vehicle’s street(s) as θ → 0

and to that of the 2D PPP as θ → ∞, as given in Theorem 3.4 and the lemmas

therein. The same holds for the PLP-PPP (we defer the proofs to Chapter 4). As

vehicles on each street in the PLP-PPP form a 1D PPP, the PLP-PPP behaves like

a 1D PPP as θ → 0.

Until now, we have assumed that the link distance D is fixed. Next, we discuss the

equivalence between the spatial models when the link distances are random. Here, the

success probability is obtained by averaging the Laplace transform of the interference

over the link distances.

3.4.4 Equivalence Under Random Link Distances

3.4.4.1 PLP-PPP vs. OG-PPP

The OG-PPP is just a rotational variant of the PLP-PPP. Both of them have

the same statistical properties such as the mean total street length per unit area

(Lemma 3.1), distribution of the distance to the nearest neighbor (Lemma 3.6), and

the Laplace transform of the interference (Proposition 3.1). Hence, the OG-PPP and

PLP-PPP are strictly equivalent even if the link distances are random.

3.4.4.2 PSP-PPP vs. PLP-PPP

The PLP is the limiting process of the PSP as the lengths of the sticks extend to

infinity and street intensity tends to zero (Theorem 3.3). By the inherent nature of

the PSP, it is equivalent to the PLP irrespective of the mode of communication.
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Figure 3.9: Success probabilities of the typical general vehicle that receives a message
from its nearest neighbor. λp = 0.5 and α = 4. fH(h) = f̂H(h) = 2bh exp(−bh2),
where b = 1.04 for µ = 1, and 0.0103 for µ = 0.01.

3.4.4.3 PLM-PPP vs. PSP-PPP

We deduced from Figs. 3.4a and 3.4b that the n-th nearest-neighbor (or inter-

ferer) distance distribution in the PLM-PPP is tightly upper bounded by that in the

PSP-PPP with Rayleigh distributed half-lengths. It follows that irrespective of the

distribution of the distance to the intended transmitter, the PLM-PPP and PSP-PPP

with Rayleigh distributed half-lengths are ε−equivalent. Fig. 3.9 validates the above

inference for the case where the typical general vehicle receives a message from its

nearest neighbor (transmitter) through simulations.

Remark 3.5. The notion of equivalence enables us to consider only a representative

set of spatial models to obtain insights on the effect of the network parameters, thereby

reducing the computational costs and time associated with large-scale experiments and

system-level simulations. The success probabilities of the typical vehicle in the OG-

PPP, PLP-PPP, and PLM-PPP can be obtained from that in the PSP-PPP by a

suitable mapping between the parameters as summarized in Table 3.1.
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3.5 Conclusions

We developed a Coxian framework for the modeling and analysis of vehicular

networks. The spatial models in this framework can characterize different street

geometries involving intersections and T-junctions, and street lengths that can be

independent or dependent on each other. Streets of infinite lengths and different

orientations forming intersections can be characterized by PLPs and their rotational

variants. PSPs and PLMs can model streets of varying finite lengths forming intersec-

tions and T-junctions, respectively. We evaluated the reliability of a vehicle-to-vehicle

link in the Cox vehicular networks when the receiving vehicle is at an intersection, a

T-junction, or a general location, and its transmitter is at a certain fixed distance.

Our approach to defining the street system as a union of points of different orders

facilitates general analytical results for different types of typical vehicles. The expres-

sions for the reliability can be used to investigate the interplay among the network

parameters such as data rate, street intensity, vehicle density, and the type of vehicle.

The concept of equivalence demonstrates that one does not need different spatial

models to analyze the reliability of a vehicle-to-vehicle link in different geographical

regions. The models considered in the Coxian framework are equivalent in terms of

reliability. This implies that the expression for the reliability of the typical vehicle

in the PSP-PPP is sufficient to evaluate that in the OG-PPP, PLP-PPP, and PLM-

PPP by appropriately mapping the system parameters. Also, the vehicular networks

behave like PPPs only in the asymptotic regimes of the reliability or data rate. Hence,

the street geometry is relevant to understand vehicular network behavior.

An interesting future extension would be to understand how two or more mod-

els developed in the Coxian framework can be superimposed to represent an intri-

cate geographic region with intersections and T-junctions, and streets and highways.

Also, one may look for tractable models that characterize curved streets and examine

whether they are equivalent to the line/stick-based vehicular networks.
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CHAPTER 4

TRANSDIMENSIONAL MODELS FOR VEHICULAR NETWORKS

Although the PPPs are tractable, coupling them with PLPs/PSPs turns them into

Cox models that lead to complex analytical expressions for the success probability (see

Propositions 3.1–3.4 and [23, 24, 25, 26, 27, 29]). Nevertheless, vehicle locations

cannot be simply modeled as random points as in a 2D PPP neglecting the street

geometry [21]. The random locations of points in a PPP defy the certainty of vehicles

to be located on a line/stick. In this chapter, we explore the middle route between

the complicated Cox vehicular network models and the oversimplified 2D PPP and

introduce a model that provides a good trade-off between accuracy and tractability.

4.1 The Transdimensional Poisson Point Process

We propose a transdimensional model that includes the vehicles on the street(s)

passing through the typical vehicle of order m at the origin and models the remaining

vehicles on the plane as a 2D PPP neglecting the geometry of the other streets. By

such superposition, we account for the geometry of the street(s) passing through the

receiver, and, at the same time, we obviate the need to incorporate the geometry of

the remaining streets. The formal definition follows.

Definition 4.1. Let Ψk = {(t1, 0), (t2, 0), . . . } where {ti}, i ∈ N, is a 1D PPP

of intensity λ on Rk ⊆ R, 1 ≤ k ≤ m/2, and m ∈ {2, 4}. Let Ψm
o =

m/2⋃
k=1

Ψk

denote the point process on m/2 streets that pass through the typical vehicle of order

m. The transdimensional Poisson point process (TPPP) with respect to the typical
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vehicle of order m is the superposition of Ψm
o and a 2D PPP Φ2 of intensity λ2, i.e.,

T , Ψm
o ∪ Φ2.

Ψm
o is equivalent in distribution to Vmo as the 1D PPPs on m/2 streets are inde-

pendent, and their orientations are i.i.d. Rk is an infinite or a finite interval that

contains the origin. Rk = R if the street is a line, and Rk ⊂ R if the street is a stick.

By the superposition property of the PPP, Ψm
o —the union of 1D PPPs of intensity

λ on m/2 lines passing through the typical vehicle of order m—is equivalent to a 1D

PPP of intensity mλ/2. By Lemma 3.2, λ2 = λµ. Fig. 4.1a shows a realization of

the TPPP corresponding to the PLP-PPP.

The superposition property does not extend to the PSP-PPP even if the sticks are

of the same finite length. The reason is that the origin can be located at a distance

w ∈ (0, hy) from the midpoint y of the stick. The lengths of the sticks on both sides

of the origin need not be the same. In other words, the interference measured at

the origin with respect to the two streets may differ. The streets passing through

the origin form a Cox process as they are stochastic with respect to the length of

the stick as well as their starting or ending points. Figs. 4.1b and 4.1c show the

snapshots of the TPPP with respect to the typical general and intersection vehicles

in the PSP-PPP, where the half-length of a stick follows the Rayleigh distribution.

For the sake of visualization, we show the streets to be orthogonal in Fig. 4.1c rather

than being on top of each other as given in Definition 4.1. We have λ2 = 2λµE[H]

by Lemma 3.2.

The TPPP T is non-stationary as the neighborhood seen by a point in Ψm
o is

different from that in Φ2 as at least one street passes through the typical vehicle.

We have so far focused on the success probability as the performance metric,

which represents the average performance of the vehicles. Hereafter, we broaden our

focus to a more refined metric, the SIR meta distribution, whose special case is the

success probability.
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(a) (b)

(c)

Figure 4.1: Snapshot of the TPPP with respect to the typical vehicle in the PLP-
PPP is shown in (a), where mλ/2 = λ2 = 0.1. Snapshots of the TPPP with respect
to the typical general and intersection vehicles in the PSP-PPP are shown in (b) and
(c), respectively, where λ = 0.3, µ = 0.01, fH(h) = 2ch exp(−ch2) with c = 0.01, and
λ2 = 2λµE[H]. Line/stick denotes a street and ‘o’ denotes a vehicle.
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4.2 SIR Meta Distribution

The SIR MD naturally includes a reliability constraint on the individual transmitter-

receiver links [34, 35, 36]. It answers questions like what fraction of the links support

a target data rate of 10 Kbps with a probability of at least 0.99?, whereas the success

probability answers questions like what fraction of the links support a target data rate

of 10 Kbps?, focusing on the average performance without reliability constraint.

We illustrate the need to look beyond the average using Fig. 4.2. It depicts the

histogram of the link success probabilities of the vehicles in two different scenarios

with the intensity of the active vehicles λp being constant. The success probability is

the mean of the link success probabilities. We observe that though the mean success

probability is the same, the distributions of the link success probabilities differ. The

mean does not provide any information on the performance of the vehicles with bad

link success probabilities. As vehicle safety is a serious concern, it is significant to

understand the reliability of each vehicle-to-vehicle link.

4.2.1 Related Work

The SIR MD was first introduced in [34] and was evaluated for Poisson bipolar

and cellular networks. Further, it was extended to carry out a fine-grained analysis

of the base station cooperation, power control, and device-to-device (D2D) underlays

in cellular networks. Apart from the SIR, the MD can also be defined for the data

rate, energy harvested, etc. (see [37] and references therein).

In terms of vehicular networks, the SIR MD was analyzed for linear motorways [38]

and intersections [39]. The intersection is formed by two finite road segments with

vehicles forming a PPP on each segment. It is shown that the MD is bimodal, i.e.,

the individual link success probabilities are either low or high, not concentrated near

their average. In the linear motorway model, the inter-vehicle distances follow a

shifted exponential distribution, i.e., the vehicles are separated by a constant plus a
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Figure 4.2: The histogram of the empirical probability density function of the link
success probability for transmit probabilities p = 1/10 and p = 1. Both cases have
the same mean success probability of 0.5944, but we see a different distribution of
link success probabilities for different values of λ and p. For p = 1/10, the link success
probabilities mostly lie between 0.4 and 0.8 (concentrated around their mean), while
for p = 1, they are spread much more widely. Taken from [1].
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distance modeled by the exponential distribution.

Furthermore, using the SIR MD, we can find the maximum density of concurrently

active links that satisfy a certain reliability constraint, referred to as the spatial outage

capacity (SOC) [1]. The SOC captures the trade-off between the density of active

links and the fraction of the reliable links. Also, we can find insights on how to adapt

the transmission parameters at a given vehicle density to avoid network congestion.

When the channel load increases beyond a certain threshold, the number of packet

collisions sharply increases, and the channel is said to be congested. The common

methods to combat congestion include controlling the transmit i) rate, ii) power, and

iii) data rate, and their combinations [40]. In this chapter, we show how to handle

congestion using the SIR MD by exploring the trade-off between the transmit rate

and the fraction of reliable links.

4.2.2 Formulation

The success probability on the link between the vehicle at the origin of order m

and its transmitter is

Pm(θ) = P(SIR > θ | V), (4.1)

where θ is the SIR threshold that parametrizes the data rate. Conditioning on V

in (4.1) implies that we average only over the fading and the transmitter point process

(determined by slotted ALOHA). Due to the conditioning, we also refer to the link

success probability as conditional success probability.

The meta distribution of the SIR is given by [34, 35]

F̄Pm(θ, x) = P(Pm(θ) > x), x ∈ [0, 1], (4.2)

where x is the reliability threshold. By the Gil-Pelaez theorem, the SIR meta distri-
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bution can be expressed as

F̄Pm(θ, x) =
1

2
+

1

π

∫ ∞
0

=(e−jt log xMjt,m)

t
dt, (4.3)

where

Mb,m(θ) = E[Pm(θ)b], b ∈ C. (4.4)

The average of the conditional success probabilities is the success probability pm, i.e.,

pm = E[Pm(θ)] = P(SIR > θ). (4.5)

Since pm = M1,m(θ), the terms ‘first moment’ and ‘success probability’ can and will

be used interchangeably.

Now, we are ready to analyze the SIR meta distributions for the PLP-PPP, PSP-

PPP, and their respective TPPPs, and discuss the logic behind using the TPPP for

vehicular network analysis. To this end, we derive the moments (4.4) required to

calculate the SIR meta distribution (4.3) for the PLP-PPP and the corresponding

TPPP; then, we perform a comparative analysis of the moments of different orders in

the PLP-PPP and TPPP followed by that of their respective SIR meta distributions.

4.3 The Transdimensional Approach to the PLP-PPP

4.3.1 Derivation of Moments

Theorem 4.1. The b-th moment of the conditional success probability PPLP−PPP
m (θ)

of the typical vehicle of order m ∈ {2, 4} in the PLP-PPP is given by

MPLP−PPP
b,m = exp(−mλDθδ/2Γ(1 + δ/2)Γ(1− δ/2)Db(p, δ/2)− 2µ

∫∞
0

(1−Gb(t))dt),

(4.6)
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where Gb(t) = exp

(
−λδ

∫ ∞
t2/δ

[
1−
(

1− ps

v + s

)b]
vδ−1

√
vδ − t2

dv

)
, s = θDα, Db(p, δ/2) =

pb 2F1(1− b, 1− δ/2; 2; p), and δ = 2/α,.

Proof. See Appendix B.1.

Corollary 4.1. The first moment MPLP−PPP
1,m or, equivalently, the success probability

pPLP−PPP
m is

MPLP−PPP
1,m = exp(−mλpDθδ/2Γ(1 + δ/2)Γ(1− δ/2)− 2µ

∫∞
0

(1− LIt(θDα))dt),

(4.7)

where LIt(s) = exp

(
− λpsδ/2

∫∞
ut

1

(1+u1/δ)
√
u−ut

du

)
with ut = t2s−δ.

Proof. It directly follows from (4.6) by noting that D1(p, δ/2) = p and the change of

variable u = vδ in Gb(t) with b = 1.

See the proof of Proposition 3.1 and [27] for alternative proofs.

Corollary 4.2. For a given transmitter density λp = C, as p→ 0, we have

lim
p→0
λp=C

PPLP−PPP
m = MPLP−PPP

1,m

in mean square (and probability and distribution).

Proof. See Appendix B.2.

The conditional success probabilities converge to their average only when p→ 0.

Generally, the average gives very little information on the individual links.

Theorem 4.2. The b-th moment of PTPPP
m (θ) of the typical vehicle in the TPPP is

MTPPP
b,m = exp(−mλDθδ/2Γ(1 + δ/2)Γ(1− δ/2)Db(p, δ/2)
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− λµπD2θδΓ(1 + δ)Γ(1− δ)Db(p, δ)), (4.8)

where δ = 2/α and Db(p, q) = pb 2F1(1− b, 1− q; 2; p).

Proof. In a d-dimensional PPP Φd of intensity λd, the b-th moment of the conditional

success probability for a link distance D is [34, Eqn. (4)]

MΦd
b = exp(−λdcdDdθδ

′
Γ(1 + δ′)Γ(1− δ′)Db(p, δ

′)), (4.9)

where δ′ = d/α. By the independence of the point processes Ψm
o and Φ2 ⊂ T , MTPPP

b,m

is the product of the moments of the conditional success probabilities in Ψm
o and Φ2

given by (4.9) with λ1 = (m/2)λ and λ2 = λµ.

The success probability pTPPP
m of the typical vehicle is the first moment MTPPP

1,m .

It is obtained by setting b = 1 in (4.8), i.e.,

MTPPP
1,m = exp(−mλpDθδ/2Γ(1 + δ/2)Γ(1− δ/2)− λpµπD2θδΓ(1 + δ)Γ(1− δ)).

(4.10)

The second term in the exponential in (4.6) has two nested integrals over infinite

ranges, while that in (4.8) has none. The numerical evaluation of (4.6), in particular

when used in (4.3), is tedious since it involves three layers of complex-valued integrals.

Note that it takes about 100,000 times longer to numerically evaluate the first moment

for the PLP-PPP (4.7) than that for the TPPP (4.10). To demonstrate that the

TPPP is an accurate yet simple model, we compare the SIR MDs of the PLP-PPP

and the corresponding TPPP, starting with the first moment.
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4.3.2 First-Order Moment Analysis for the PLP-PPP

The moments of the conditional success probability for the PLP-PPP (4.6) do

not have closed-form expressions. To gain insights into MPLP−PPP
1,m or pPLP−PPP

m , we

begin with the asymptotic analysis with respect to θ.

Theorem 4.3. The success probability of the typical vehicle tends to that in a 1D

PPP as θ → 0, i.e.,

1− pPLP−PPP
m (θ) ∼ mλpDθδ/2Γ(1 + δ/2)Γ(1− δ/2), θ → 0. (4.11)

Intuitively, as θ → 0, for SIR > θ to hold, it suffices not to have any interferers

within a small disk around the typical vehicle. With high probability, the small disk

intersects only the street(s) passing through the typical vehicle. Consequently, as

θ → 0, the success probability of the typical vehicle in the PLP-PPP converges to

that in the network formed only by the typical vehicle’s streets.

Proof. See Appendix B.3.

Theorem 4.4. The success probability of the typical vehicle tends to that in a 2D

PPP as θ →∞, i.e.,

pPLP−PPP
m (θ) ∼ exp(−πλpµD2θδΓ(1 + δ)Γ(1− δ)), θ →∞. (4.12)

Proof. See Appendix B.4.

Here the intuition is that as θ → ∞, for SIR > θ, a large disk around the

typical vehicle must be devoid of interferers. The fact that pPLP−PPP
m tends to the

success probability of the typical vehicle in a 2D PPP as θ → ∞ signifies that the

geometry of the vehicle locations outside the large disk does not matter. This is

further corroborated by the nature of the pair correlation function of the PLP-PPP
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given by [41, Ch. 8]

gPLP−PPP(r) = 1 +
1

µr
. (4.13)

It tends to 1 as r →∞ implying that the locations of the vehicles separated by larger

distances are independent as in a PPP [4].

Fig. 4.3 compares the success probability in the PLP-PPP to that in the 1D

and 2D PPPs. We observe from Fig. 4.3 that the success probability of the typical

vehicle is upper bounded by the minimum of the success probabilities of the typical

vehicle in 1D and 2D PPPs. This implies that either a 1D PPP or a 2D PPP alone

is insufficient to characterize the vehicular network. We also see that the success

probabilities of the typical vehicle in the PLP-PPP tend to that in the 1D and 2D

PPPs in the asymptotic regimes as established in Theorems 4.3 and 4.4. This hints

at the possibility of using a simpler, purely PPP-based model that has the properties

of both the 1D and 2D PPPs for vehicular network analysis. In the next subsection,

we show that the TPPP model indeed results in a highly accurate approximation of

the PLP-PPP.

4.3.3 Comparison of First-Order Moments

We remark that the TPPP, by its inherent nature, behaves like a 1D PPP as

θ → 0 and a 2D PPP as θ → ∞. By Theorems 4.3 and 4.4, the PLP-PPP exhibit

the same behavior as the TPPP in the asymptotic regimes of θ. Here, we analyze

the non-asymptotic behavior of MPLP−PPP
1,m and MTPPP

1,m .

Theorem 4.5. The nearest-neighbor distance in the PLP-PPP is stochastically dom-

inated by the distance from the typical vehicle at the origin in the TPPP to its nearest

neighbor.

Proof. Using e−x ≥ 1 − x, we can bound the nearest-neighbor distance distribution
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(a)

(b)

Figure 4.3: Comparison of success probabilities of the (a) typical general vehicle and
(b) typical intersection vehicle in the PLP-PPP to that of the typical vehicle in 1D
and 2D PPPs. µ = 2, λ = 1, p = 0.3, D = 0.25, and α = 4. The equation numbers
are given in the parentheses in the legends.
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in the PLP-PPP given in Lemma 3.6 as

FPLP−PPP
R (r) ≤ 1− exp(−λmr − 4πµλ

∫ r
0

√
r2 − u2du)

= 1− exp(−λmr − λµπr2). (4.14)

The nearest-neighbor distance distribution in a d-dimensional PPP Φd is given by

FΦd
R (r) = 1− exp(−cdλdrd), (4.15)

where c1 = 2 and c2 = π. By Definition 4.1, Ψm
o is a union of m 1D PPPs. Compar-

ing (4.14) and (4.15), we observe that FPLP−PPP
R (r) ≤ F

Ψmo ∪Φ2

R (r) ≡ FTPPP
R (r) with

λ1 = (m/2)λ and λ2 = λµ.

Conjecture 4.1. The distance from the typical vehicle at the origin to the n-th

nearest neighbor in the TPPP stochastically dominates that in the PLP-PPP for all

n ∈ N.

An important consequence of Conjecture 4.1 is that the success probability of

the typical vehicle at the origin in the PLP-PPP is lower bounded by that in the

TPPP. Here, we give a heuristic argument for Conjecture 4.1. The 2D density of

the vehicles in the TPPP is the same as that in the PLP-PPP. Then the comparison

of the distances to the n-th nearest neighbor rn can be based only on the vehicle

placement with respect to the typical vehicle.

Fig. 4.4 compares the simulated values of E[r2
n]/n in the PLP-PPP and TPPP.

We observe that the mean squared distance from the typical general vehicle to the

n-th nearest neighbor is higher for the PLP-PPP than the TPPP. The case of n = 1

follows from Theorem 4.5. We presume that this observation can be extended to

higher values of n. Since the TPPP includes points at random independent locations

compared to the PLP-PPP with points only concentrated on the lines, the probability
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Figure 4.4: Comparison of normalized mean squared distances to the n-th nearest
neighbor from the typical general vehicle at the origin in the PLP-PPP and TPPP.
λ = µ = 1.

that the n-th nearest neighbor is at a distance rn is higher for the TPPP. It follows

that the average distance to the n-th nearest interferer from the origin is higher for

the PLP-PPP, which in turn, leads to a higher success probability than for the TPPP.

Fig. 4.5 plots the difference in the success probabilities of the typical general ve-

hicle in the PLP-PPP and TPPP. Letting x = λp and y = D2θδ, the integrated

difference
∫∞

0

∫∞
0

(pPLP−PPP
2 (x, y) − pTPPP

2 (x, y))dxdy is maximized at µ = 0.204,

which is the value we choose to plot the difference in Fig. 4.5. The maximum differ-

ence between the success probabilities of the PLP-PPP and TPPP is about −14 dB

(0.0404). Therefore, the success probability in the TPPP is a tight lower bound to

that in the PLP-PPP. Note that the inferences obtained from Figs. 4.4 and 4.5 also

apply to the typical intersection vehicle as the characterization of the streets that

pass through the typical vehicle is the same in both the PLP-PPP and TPPP.

Fig. 4.6 compares the outage probabilities of the typical general vehicle in the

PLP-PPP and TPPP to that of the typical vehicle in a 1D PPP. We observe that

the TPPP better approximates the PLP-PPP for small θ than just a 1D PPP. As
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Figure 4.5: Difference between the success probabilities of the typical general vehicle
in the PLP-PPP (4.7) and TPPP (4.10) as a function of λp and D2θδ. µ = 0.204,
δ = 2/α, and α = 4. The maximum difference of 0.0404 corresponding to the pair
(0.12, 10.1) is highlighted using a red filled circle.

Figure 4.6: Outage probabilities of the typical general vehicle in the PLP-PPP,
TPPP, and that of the typical vehicle in a 1D PPP. µ = 1 and α = 4. The equation
numbers corresponding to the success probability are given in the parentheses in the
legend.
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θ → 0, for SIR > θ, there should not be any interferers in a small disk b(o, r) of some

radius r centered at the origin. The pair correlation function for the PLP-PPP (4.13)

diverges as r → 0, which indicates there definitely exists at least one line with vehicles

of intensity λ intersecting b(o, r). For infinitesimally small θ, only the typical street

intersects b(o, r). However, for non-vanishing values of θ, there may be more than

one line intersecting b(o, r), and the 1D PPP is not sufficient to capture the effect of

the streets other than the typical street intersecting b(o, r).

Remark 4.1. The success probability of the typical vehicle in the PLP-PPP can

be tightly approximated by that in the TPPP. In particular, the approximations are

asymptotically exact at the upper and lower tails of the success probability.

Next, we compare the moments of order b > 1 in the PLP-PPP and TPPP

followed by their respective SIR meta distributions.

4.3.4 Comparison of Higher-Order Moments and SIR Meta Distributions

Fig. 4.7 compares the moments of Pm in the PLP-PPP, TPPP, 1D PPP, and 2D

PPP. We observe that the moments in the PLP-PPP are lower bounded by that in the

TPPP. Through Conjecture 4.1, we heuristically showed that the success probability

of the typical vehicle in the PLP-PPP is lower bounded by that in the TPPP. The

argument based on the stochastic dominance of the nearest-neighbor distance in the

TPPP to the PLP-PPP in Conjecture 4.1 extends to the moments of order b > 1

as well. Also, we observe that the difference between the moments in the PLP-PPP

and 2D PPP decreases with SIR threshold as in the case for M1(θ) established in

Theorem 4.4.

Fig. 4.8 plots the SIR meta distributions for the PLP-PPP, TPPP, 1D PPP, and

2D PPP. For an SIR threshold θ of 0 dB, 80% of the links are at least 60% reliable,

whereas only 20% of the links are at least 95% reliable. To make 80% of the links at
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(a) θ = −20 dB

(b) θ = 0 dB

(c) θ = 10 dB

Figure 4.7: Moments of the conditional success probabilities for different SIR thresh-
olds. µ = 1, λ = 1, p = 0.3, D = 0.25, and α = 4. The equation numbers of the
moments Mb are given in the parentheses in the legends.
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(a) x = 0.6

(b) x = 0.95

Figure 4.8: SIR meta distributions for different reliabilities. µ = 1, λ = 1, p = 0.3,
and D = 0.25. The equation numbers of the moments required to evaluate F̄Pm(θ, x)
are given in the parentheses in the legends.
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least 95% reliable, we need to reduce θ to −24 dB. Using the SIR MD, we can obtain

the trade-offs between data rate (parametrized by θ) and reliability. Also, we can

find how to change the transmit probability p to maintain a certain value of the MD,

which we will discuss in detail in Section 4.5. In terms of comparison with the TPPP,

we observe that the SIR MDs for the TPPP and PLP-PPP are asymptotically exact

with the gap being slightly larger in the middle ranges of θ than observed between

their success probabilities (Fig. 4.5). As the exact expression (4.3) also involves

the moments of order b > 1, the differences between the moments MPLP−PPP
b,m and

MTPPP
b,m combined produces a slightly larger gap than for the success probability (first

moment). The PLP-PPP behaves like a 1D PPP as θ → 0 and 2D PPP as θ → ∞

as given in Theorems 4.3 and 4.4.

4.3.5 Presence of Shadowing

Now, let us assume that the channels are also subject to shadowing in addition

to Rayleigh fading in the PLP-PPP and TPPP. Using (3.7), the SIR expression

including shadowing can be written as

SIR =
gνD−α∑

z∈χ gzνz‖z‖−αBz

, (4.16)

where ν, νz are i.i.d. shadowing random variables with mean 1 and variance σ2. χ = V

in the PLP-PPP, while χ = T in the TPPP.

Theorem 4.6. Fix λ′ > 0 and let the density of vehicles on each street be λ =

λ′/E[νδ]. Then, as σ →∞,

F̄PLP−PPP
Pm

(θ, x) ∼ F̄TPPP
Pm (θ, x), θ ∈ R+, x ∈ [0, 1].

Proof. The PLP-PPP and TPPP differ only in the distribution of the vehicles that do
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not lie on the typical vehicle’s streets. Hence we need to show that the interference

distributions from the rest of the vehicles that form the point processes V ! in the

PLP-PPP and Φ2 in the TPPP are identical as σ →∞. To this end, we focus on the

propagation loss processes Υχ , {‖z‖α/νz : z ∈ χ} for χ = Φ2 and χ = V !. By [42,

Lemma 1], ΥΦ2 is a PPP on R+ with intensity function λ(r) = λ′µπδrδ−1. By [43,

Theorem 7], ΥV ! converges in distribution to a PPP with the same intensity function

as σ →∞.

The scaling of the density by E[νδ] in Theorem 4.6 is necessary since without it,

the intensity function of the one-dimensional point processes Υχ would go to 0 or

approach ∞ as σ increases. While the convergence result would still hold, it would

be trivial since in both models, there would either be no interference or infinite

interference.

A simple approximation to the SIR MD is obtained by just using the first two

moments of the conditional success probability. As it varies between 0 and 1, the

beta distribution characterized by the first two moments is a natural choice. It is

shown that the beta distribution can tightly approximate the SIR meta distribution

in Poisson bipolar and cellular networks [34]. In the next subsection, we explore

whether the beta approximation works for vehicular networks.

4.3.6 Beta Approximation of the SIR Meta Distribution

The probability density function (pdf) of a beta distributed random variable X

with parameters α and β is given by

fX(x) =
xα−1(1− x)β−1

B(α, β)
, (4.17)
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where B(a, b) = Γ(a)Γ(b)
Γ(a+b)

. The first and second order moments of X are

E[X] =
α

α + β
, and E[X2] =

α + 1

α + β + 1
E[X], (4.18)

respectively. We obtain α and β by equating E[X] = M1,m(θ) and E[X2] = M2,m(θ).

The complementary cumulative distribution function of X is the beta approximation

of the SIR meta distribution, i.e.,

F̄Pm(x) ≈ 1− Ix(α, β), (4.19)

where Ix(α, β) is the regularized incomplete beta function.

Fig. 4.9 shows a different cross-section of the SIR MD of the typical general vehicle

in the PLP-PPP and compares it to that in the TPPP and the beta approximations

for the PLP-PPP and TPPP. The SIR MD for the PLP-PPP tightly approximates

that for the TPPP in the asymptotic regimes of θ as in Fig. 4.8, and in that of x.

At x = 1− p, which is 0.7 in the considered network setting, there is a transition in

the meta distribution curves, particularly noticeable at lower SIR thresholds. The

reason is that as θ → 0, there should not be any interferers in a small disk around

the typical vehicle. If the nearest interferer is absent with probability 1 − p, then

there exists a non-zero fraction of links that can satisfy a reliability of 1 − p. We

can neglect the case of two or more interferers present within that small distance to

the typical vehicle, as the probability of such an event vanishes asymptotically. We

observe that the beta approximation is tight at higher SIR thresholds, whereas at

lower SIR thresholds, the first two moments that define the beta approximation are

not sufficient to tightly characterize the transition at x = 1−p in both the PLP-PPP

(Fig. 4.9a) and TPPP (Fig. 4.9b). Instead, the beta approximation smoothes out

the meta distribution. Furthermore, we can doubly approximate the SIR MD for

the PLP-PPP by the beta approximation of the SIR MD for the TPPP (Fig. 4.9b),
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(a)

(b)

Figure 4.9: SIR meta distributions for the PLP-PPP, TPPP and their beta approx-
imations. µ = 1, λ = 1, p = 0.3, α = 4, and D = 0.25. The transition at x = 1 − p
is highlighted by the dashed line. The equation numbers in the parentheses in the
legends either refer to the moments or expression of F̄P2(θ, x).
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which is tight in the asymptotic regimes of θ and x.

Remark 4.2.

1. The maximum difference between the success probabilities MPLP−PPP
1,m and MTPPP

1,m

is about −14 dB over the entire parameter space (Fig. 4.5).

2. Fig. 4.9a suggests that there exists some θ̂ such that the SIR MD for the PLP-
PPP tends to its beta approximation for θ > θ̂ and to that for the TPPP for
θ ≤ θ̂, ∀x. Hence, it is not always necessary to evaluate all the b−th (b ∈ N)
moments of the conditional success probability to evaluate the SIR MD.

3. The beta approximation of the SIR MD for the TPPP is fairly accurate ∀θ and
∀x and becomes increasingly tight as θ → 0 or ∞ and x→ 0 or 1 (Fig. 4.9b).

4. The accuracy of the TPPP further improves under shadowing. The SIR MD for
the TPPP approaches that for the PLP-PPP as the variance of the shadowing
increases. This implies that the worst-case TPPP approximation is the case of
no shadowing.

4.4 The Transdimensional Approach to the PSP-PPP

First, we analyze the first moment of the conditional success probability, and then

the SIR MDs for the PSP-PPP and corresponding TPPP as in Section 4.3.

4.4.1 First-Order Moments: PSP-PPP vs. TPPP

By (B.2), the moment Mb,m can be expressed as Mb,m = M o
b,mM

!
b,m, where M o

b,m

considers only the interference from the vehicles on the typical vehicle’s streets, and

M !
b,m takes into account the interference from the vehicles on the rest of the streets.

The success probability pPSP−PPP
m , or the first moment of the conditional success

probability MPSP−PPP
1,m = M o

1,mM
!
1,m is given by (3.18). It tends to that in a point

process formed only on the typical vehicle’s streets as θ → 0 and a 2D PPP as

θ → ∞ as established in Lemmas 3.8 and 3.9. Next, we derive the first moment

for the transdimensional model of the PSP-PPP formed by the superposition of the

point process on the typical vehicle’s streets and a 2D PPP.
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Lemma 4.1. The success probability of the typical vehicle of order m ∈ {2, 4} at the

origin in the TPPP corresponding to the PSP-PPP is given by

pTPPP
m = M o

1,m(θDα) exp(−2λpµπE[H]D2θδΓ(1 + δ)Γ(1− δ)), (4.20)

where M o
1,m(θDα) is given by (3.16), and δ = 2/α.

Proof. The point processes Ψm
o and Φ2 forming the TPPP are independent. It fol-

lows that the success probability of the typical vehicle at the origin in the TPPP

corresponding to the PSP-PPP is the product of M o
1,m(θDα) given by (3.16) and

the success probability of the typical vehicle in Φ2 given by (4.9) with b = 1. The

intensity of active transmitters in Φ2 is 2λpµE[H] by Lemma 3.2.

Fig. 4.10 compares the success probabilities of the typical vehicle in the PSP-PPP

and the corresponding TPPP for different values of λ and µ. We observe that the

success probability of the typical vehicle in the TPPP tightly lower bounds that in

the PSP-PPP. The reason is that the probability of finding the n-th nearest neighbor

within a distance r is higher in the TPPP than in the PSP-PPP as the vehicles

are randomly placed on the plane without clustering to the streets. We presume

that Conjecture 4.1 that focuses on the stochastic dominance of the n-th nearest

neighbor holds for the PSP-PPP as well. The case of n = 1 can be proved similarly

to Theorem 4.5 using (3.10) and (4.15).

4.4.2 SIR Meta Distribution: PSP-PPP vs. TPPP

We observe from (3.18) that the first moment of the conditional success probability

for the PSP-PPP involves multiple nested integrals. The moments of order b > 1 are

even more complicated and hence omitted. We analyze the SIR meta distributions

for the PSP-PPP through simulations. Fig. 4.11 compares the SIR meta distributions

for the PSP-PPP, the TPPP, and the beta approximation. The behavior is the same
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(a) µ = 0.01 (b) µ = 1

(c) µ = 0.01 (d) µ = 1

Figure 4.10: Success probabilities of the typical general ((a) and (b)) and intersection
((c) and (d)) vehicles in the PSP-PPP (3.18) and the corresponding TPPP (4.20).
fH(h) = 2ch exp(−ch2) with c = µ, D = 0.25, and α = 4.

as observed in Fig. 4.9 for the PLP-PPP, and thus Remark 2 also holds for the

PSP-PPP.

Remark 4.3. The success probability expression of the PSP-PPP (3.18) involving

multiple integrals can be approximated by a much simpler expression (4.20) obtained

by its transdimensional model. In the case of the SIR meta distribution, the trans-

dimensional model well approximates the PSP-PPP, especially, in the asymptotic

regimes of θ and x (Fig. 4.11).
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Figure 4.11: Comparison of exact SIR meta distribution for the PSP-PPP and its
approximations. fH(h) = 2ch exp(−ch2) with c = 1, µ = 1, λ = 1, p = 0.3, α = 4,
and D = 0.25. The transition at x = 1 − p is highlighted by the dotted line. The
beta approximation to F̄P2(θ, x) is given by (4.19).

4.5 Application to Congestion Control

We have established that the TPPP is sufficient to analyze the complicated PLP-

PPP and PSP-PPP. Particularly, the beta approximation of the SIR MD for the

TPPP provides tight approximations to the SIR MD for the PLP-PPP and PSP-

PPP in the asymptotic regimes of x and θ. In this section, we introduce the transmit

rate control in the PLP-PPP using the beta approximation of the SIR MD of the

TPPP. The insights presented in this section also hold for the PSP-PPP. First, we

begin with success probability-based congestion control to demonstrate the need for

SIR MD-based congestion control.

4.5.1 Success Probability-Based Congestion Control

Fig. 4.12a plots the pairs (1/λ, p) that satisfy the target success probability of the

typical general vehicle p2(λ, p) = q for different values of q. It is convenient to plot 1/λ

vs. p rather than λ vs. p to illustrate the difference between success probability-based
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(a)

(b)

Figure 4.12: (a) Pairs of (1/λ, p) such that p2(λ, p) = q for q = 0.1, 0.5, 0.8, 0.9 in
the TPPP. θ = 0 dB, D = 0.25, µ = 1, and α = 4. The equation numbers of p2 are
given in the parentheses in the legends. (b) Histograms of conditional link success
probabilities for different combinations of (1/λ, p) that yield p2 = 0.9 in (a).
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and beta approximation-based congestion control methods. It follows from (4.10) that

p is a linear function of 1/λ, and each line follows an equation of the form λp = C,

where C is a constant. For a given target p2, as λ scales by a, p is scaled by 1/a.

Further, we observe that for the same λ, we have to more aggressively reduce p at

higher target p2 than in the lower target values.

Fig. 4.12b shows the histograms of conditional success probabilities for different

combinations of (1/λ, p) picked from the line corresponding to p2 = 0.9 in Fig. 4.12a.

We see that for a given λp, the conditional success probabilities exhibit higher vari-

ance for p = 0.9 than for p = 0.1. This implies that the fraction of links that are

reliable with a probability of at least x varies for different (1/λ, p) even though they

yield the same success probability. Therefore, to maintain certain link-level reliability,

we need to use the SIR MD for congestion control.

4.5.2 Beta Approximation-Based Congestion Control

To make the dependence of the MD on λ and p explicit, we are adding these

two parameters as arguments to the MD as F̄P2(θ, x, λ, p). Fig. 4.13 plots the pairs

(1/λ, p) such that F̄P2(1, x, λ, p) = q for different values of q and x. We observe that

the (1/λ, p) contours transition from concave to linear to convex as we increase x

for all values of F̄P2 . For example, as λ → ∞ (1/λ → 0), we can more aggressively

vary p at lower values of x than at higher values of x. The converse is observed as

λ→ 0 (1/λ→∞). This implies that we have to change p differently with respect to

the reliability constraint rather than simply changing p such that λp = C as in the

success probability-based congestion control. In other words, to maintain a certain

target fraction of reliable links, λp, and, in turn, the success probability, cannot be

kept constant.

Fig. 4.14 presents a different cross-section of Fig. 4.13 that helps us compare the

success probability-based and beta approximation-based congestion control schemes.
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(a) x = 0.1

(b) x = 0.5

(c) x = 0.9

Figure 4.13: Pairs (1/λ, p) such that F̄P2(1, x, λ, p) = q for q = 0.1, 0.4, 0.7, and 0.9.
D = 0.25, µ = 1, and α = 4.
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Figure 4.14: Pairs of (1/λ, p) that satisfy the target performance given in the legends.
The range of p2 listed for each combination (F̄P2 , x) is obtained by finding the success
probabilities for different values of (1/λ, p) sampled along the contour that satisfies
F̄P2(1, x, λ, p) = 0.9 for a given x. D = 0.25, µ = 1, and α = 4.

We observe that the transmit probability p that achieves p2 = 0.9 (solid line) is higher

than the p that guarantees 90% of links to be at least 80% reliable (dotted curve), es-

pecially, at lower λ. To guarantee a minimum of 80% reliability, we shall vary p based

on the dotted curve rather than the solid line that yields p2 = 0.9. This would lower

the success probability to as low as 0.85, implying that we can sacrifice the success

probability p2 to maintain a certain reliability at each link. Therefore, the success

probability is not an adequate measure of congestion when the conditional success

probabilities exhibit significant variance, i.e., when vehicles form a non-regular point

process. In contrast, if vehicles form a lattice, the conditional success probabilities are

concentrated around the success probability, because the distances to the interferers

are the same at each receiver.

Next, we see whether the inference obtained for congestion control using the

beta approximation-based scheme holds for the PLP-PPP. In Fig. 4.15, we plot the

exact SIR MDs for the PLP-PPP for different values of λ, with the correspond-

ing p values chosen according to the beta approximation-based congestion control
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Figure 4.15: Comparison of exact SIR MD for the PLP-PPP and beta-approximated
SIR MD for the TPPP. For each λ, p is chosen according to the beta approximation-
based congestion control scheme such that the SIR MD for the TPPP equals 0.9.
µ = 1, D = 0.25, and α = 4. The equation numbers in the parentheses in the legends
either refer to the moments or expression of F̄P2 .

scheme. These (λ, p) pairs yield an SIR MD of 0.9 for the TPPP for x = 0.5 and 0.9

(Figs. 4.13b and 4.13c). We observe in Fig. 4.15 that the SIR MDs for the PLP-PPP

are highly concentrated around 0.9 with small deviations. This validates that the

beta approximation of the SIR MD for the TPPP is sufficient for congestion con-

trol. In fact, using the exact SIR MD of the PLP-PPP for congestion control would

be prohibitively complicated due to the infinitely many moments involved and their

unwieldy expression (4.6).

In the next section, we explore whether the transdimensional model can be ex-

tended to non-Poisson point processes.

4.6 Extension to Non-Poisson Point Processes

We assume that the vehicles form a Matérn hard-core process (MHCP) of type

II [4, Sec. 3.5]. The reason we choose MHCP is that it is shown to provide good
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approximations to the system-level simulations in [6]. MHCP of type II can be ob-

tained by starting with independent 1D PPPs of intensity λ on each streets and then

apply dependent thinning to impose the minimum hard-core distance rM between the

points. Associate with each point x a mark t(x) uniformly distributed on (0, 1). Flag

for removal the points that have a neighbor within rM that has a smaller mark. The

MHCP-based vehicular network is given by

Ψm = {x ∈ Vm : t(x) < t(y) for all y ∈ Vm ∩ (b(x, rM) \ {x})}, (4.21)

where Vm is the point process of vehicles with vehicles on each street forming 1D

PPPs.

A d-dimensional MHCP of intensity λ′ is obtained by starting with a d-dimensional

PPP of intensity λd and applying dependent thinning such that the points are at a

minimum distance of rM from each other. The intensity λ′ can be written in terms

of λd as [4, Sec. 3.5]

λ′ =
1− exp(−λdcdrdM)

cdrdM
. (4.22)

Note that c1 = 2 and c2 = π.

Fig. 4.16 illustrates realizations of the vehicular networks formed by MHCP on

the PLP (PLP-MHCP) and on the PSP (PSP-MHCP).

Following Definition 4.1, the transdimensional non-Poisson point process (TNPP)

T ′ is given by Ψo
m ∪P , where Ψo

m denotes the point process of vehicles on the streets

passing through the typical vehicle of order m that follow the hard-core constraint.

P is a 2D MHCP generated from a 2D PPP whose intensity equals the 2D intensity

of Vm. The intensity of the 2D MHCP can be evaluated using (4.22). Note that the

hard-core constraint applies to Ψm
o and P individually, not jointly except around the

typical vehicle.
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Figure 4.16: Realizations of the (a) PLP-MHCP with µ = λ = 0.3 (b) PSP-MHCP
with µ = 0.01, and λ = 0.1. rM = 2. Lines/sticks represent streets, and ‘o’ represent
vehicles. The disks around the vehicles are of radius rM/2.

4.6.1 The Transdimensional Approach to the PLP-MHCP

The transdimensional process TNPP corresponding to the PLP-MHCP is shown

in Fig. 4.17. The orientation of the street passing through the typical general vehicle

does not matter as the distances from the interferers on that street to the origin

remains the same if the street is rotated around the origin. Without loss of generality,

we assume that the orientation of the street passing through the typical general

vehicle is zero. The orientations of the streets passing through the typical intersection

vehicle are uniformly distributed on [0, π).

Another transdimensional model of interest is where P is a 2D PPP with the

intensity of PLP-MHCP. For the ease of notation, we refer to the TNPP with P

forming a 2D MHCP as TNPP-I, and P forming a 2D PPP as TNPP-II.

Fig. 4.18 compares the success probabilities of the typical general vehicle in the

PLP-MHCP, TNPP, and TNPP-II. We observe that the success probability of the

typical vehicle in the TNPP is a lower bound to that in the PLP-MHCP. The bound
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Figure 4.17: Snapshots of the TNPP with respect to the a) typical general vehicle
and b) typical intersection vehicle in the PLP-MHCP. λ = µ = 0.3, and rM = 2.
The estimated 2D intensity is λ2 = 0.035. Lines represent streets, and ‘o’ represent
vehicles. The disks around the vehicles are of radius rM/2.

(a) µ = 0.5 (b) µ = 2

Figure 4.18: Comparison of success probabilities of the typical general vehicle in the
PLP-MHCP, and the corresponding TNPP-I and TNPP-II. rM = 0.5. The estimated
2D intensities of the PLP-MHCP for µ = 0.5, and λ = 0.15, 0.3, 0.6, and 2 are
0.067, 0.117, 0.193, and 0.324, respectively. When µ = 2, λ2 = 0.248, 0.42, 0.632, and
0.872.
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gets tighter with increasing µ and/or decreasing λ. The success probability of the

typical vehicle in the model TNPP-II is comparable to that in the TNPP and PLP-

MHCP.

4.6.2 The Transdimensional Approach to the PSP-MHCP

Fig. 4.19 shows the realizations of the TNPP-I with respect to the PSP-MHCP.

Fig. 4.20 shows that the success probabilities of the typical vehicle in the PSP-MHCP

can be well-approximated by that in the stick-based TNPP-I and TNPP-II.

The inferences obtained for the typical general vehicle extend to the typical inter-

section vehicle as Ψo
m is the same in the PLP-MHCP/PSP-MHCP and their trans-

dimensional models. We conjecture that the SIR MDs for the TNPP will serve as a

good approximation to that for the MHCP-based vehicular networks as in the case

of the TPPP.

Remark 4.4. The transdimensional point processes are alternative models to the

more complicated vehicular networks whether the lengths of the streets are infinite or

varying finitely, and the point process of vehicles on the streets is Poisson or hard-

core. They provide insights into the network behavior as well as the more complicated

vehicular networks and with better tractability.

4.7 Conclusions

We introduced a simple transdimensional approach to analyze complicated ve-

hicular network models such as the PLP-PPP or PSP-PPP, where the streets are

characterized by the PLP or PSP and vehicles on each street form a 1D PPP. The

TPPP accounts for only the geometry of the vehicle locations on the street(s) passing

through the typical vehicle and models the rest of the vehicles as random points on

the 2D plane ignoring their street geometry. Such a transdimensional approach leads
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Figure 4.19: Snapshots of the PSP-MHCP with respect to the a) typical general
vehicle and b) typical intersection vehicle at the origin. µ = 0.01, λ = 0.1 and
rM = 2. fH(h) = 2bh exp(−bh2) with b = 0.0103. The estimated 2D intensity is
λ2 = 0.013. Sticks represent streets, and ’o’ represent vehicles. The disks around the
vehicles are of radius rM/2.

(a) µ = 0.01 (b) µ = 1

Figure 4.20: Comparison of success probabilities of the typical general vehicle in the
PSP-MHCP, and the corresponding TNPP-I and TNPP-II. fH(h) = 2bh exp(−bh2).
The values of b corresponding to µ = 1 and 0.01 are 1.08 and 0.0103, respec-
tively. rM = 0.5. The estimated 2D intensities of the PSP-MHCP for µ = 0.01,
and λ = 0.15, 0.3, and 2 are 0.023, 0.044, and 0.133, respectively. When µ = 1,
λ2 = 0.218, 0.375, and 0.893.
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to a much simpler and more tractable analysis of the PLP-PPP and PSP-PPP with

good accuracy. We showed that under no shadowing, the SIR meta distribution for

the TPPP well approximates that for the PLP-PPP and PSP-PPP, and particularly,

the approximations are tight in the asymptotic regimes of data rate and reliability.

We proved that the SIR meta distribution for the TPPP becomes exact as the vari-

ance of the shadowing increases. Hence, it is not essential to account for the geometry

of every single street for vehicular network analysis. From the perspective of network

simulation, the TPPP model enables us to focus on simpler simulation setups, thus

saving computational costs and time.

We conjecture that the TPPP is sufficient even if the streets are curved segments

or circles, etc., rather than lines as in the PLP or sticks as in the PSP. The reason

is that any PPP-based vehicular network interloops both the properties of both 1D

and 2D PPPs, which indeed is the fundamental principle behind the construction of

the TPPP.

We also showed that the transdimensional approach extends to the non-Poisson

point processes as well, where the vehicles that pass through the typical vehicle’s

streets form a non-Poisson point process on the streets and the rest of the vehicles

form a 2D non-Poisson point process.

Further, the SIR meta distribution enables network congestion control while en-

suring fairness among the links, by guiding the choice of the transmit rate such that

each transmitter-receiver link is reliable with a probability of at least x. We showed

that the success probability or packet reception rate, a measure of the average relia-

bility of the links, is inadequate to understand and alleviate congestion in a network

with irregular vehicle spacing since it cannot guarantee that a certain fraction of links

achieves the required reliability.
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CHAPTER 5

DETERMINANTAL POINT PROCESSES FOR VEHICULAR NETWORKS:

MODELING, ANALYSIS, AND SYSTEM-LEVEL SIMULATIONS

Vehicles broadcast their messages over the shared wireless medium. If two vehicles

located within the communication range of each other transmit simultaneously, then

the receivers located between these two vehicles may fail to receive any of those

messages since one will interfere with the other. This can be avoided if each vehicle

senses the wireless medium to check if it is idle before transmitting its messages. Such

sense-and-transmit mechanism cause repulsion among the concurrently transmitting

vehicles. In the vehicular standards such as DSRC and LTE-/NR-V2X, a sense-and-

transmit mechanism is implemented using CSMA/CA in DSRC [44], CAT-n LBT,

n ∈ 2, 3, 4, in LTE-V2X, and Type-1, 2A, 2B channel access schemes in NR-V2X [45].

Type-2A and Type-2B channel access schemes are similar to CAT-2 LBT, and Type-

1 channel access scheme and CSMA/CA are similar to CAT-4 LBT, where CAT-n

refers to n-th category. The rest of the acronyms are defined on page xv. For the

ease of notation, we refer to the above-mentioned schemes as LBT, the abbreviation

of listen before talk, in the rest of the chapter.

To facilitate the mathematical analysis of LBT, we need a point process that

exhibits its repulsion property. We recall that a widely used point process to model

the locations of transmitting vehicles is the PPP due to its analytical tractability.

The PPP is shown to provide a lower bound to real-world vehicular networks on a

widely used performance metric—success probability [6]. In the PPP, the numbers

of points in any two disjoint regions are independent. This implies that two vehicles
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that are selected to transmit can be within the communication range of each other,

thus defying the nature of LBT.

There are other point processes that can capture the inherent repulsive nature

of the LBT mechanism. For instance, it is shown in [6] that the MHCP is a good

choice to model transmitter locations. The vehicles form a PPP, and transmitters

are selected such that they are at least a distance rM apart from each other, thus

creating repulsion. An alternative hard-core model is to place vehicles with their

headway distances following a shifted exponential distribution [38], i.e., to separate

vehicles by a constant plus a distance modeled by the exponential distribution. The

exact analyses of the hard-core models are difficult; approximation techniques such

as modeling far-field interferers by a PPP or approximating the interference distri-

bution [46] are generally required to obtain good bounds on the performance metrics

of interest.

In practice, two vehicles located closely may not listen to each other due to channel

impairments and thus can transmit simultaneously. Another possible situation is

both finding the channel idle at the same time. Hence, there may not be a strict

minimal distance between the transmitters, resulting in them forming a soft-core

process rather than its extreme variant, the hard-core process. Hence, we need a

point process that exhibits soft and adaptable repulsiveness yet remains tractable.

In this chapter, we show that the (discrete) determinantal point processes (DPPs)

are excellent candidates to model the concurrent transmitters due to their soft repul-

sion property in a broadcast communication scenario. To this end, first, we formulate

the binned meta distribution of the signal-to-interference-plus-noise ratio (SINR),

which answers questions such as what fraction of the links with distances in the range

of 100-200 meters can satisfy a target data rate of 10 Kbps with a probability of at

least 0.99? The binned MD is a nuanced version of the MD discussed in Chapter 4.

The former provides insights into the effective broadcast communication range while
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the latter focuses on the maximum achievable broadcast distance. Then, we derive

the analytical expression for the binned SINR MD in the DPPs and show that it

matches the system-level simulations performed in the network simulator ns-3 [47].

5.1 Related Work

Determinantal Point Processes The DPPs are point processes that model re-

pulsion among the points. They have been used in random matrix theory since the

1960s and were referred to as fermion point processes as they were used to model the

statistical distribution of fermions in thermal equilibrium. Borodin [48] introduced

the term ‘determinantal’ in 2000 which has become a standard now. The DPPs are

defined by the n-th order product densities in the continuous space that are expressed

as the determinants of a kernel. They have appealing mathematical properties such

as analytical expressions for n-th order moments, Laplace functional, and closure un-

der the reduced Palm distribution; and they lend to easier simulation and inference

compared to the Gibbs processes, another class of point processes that model repul-

sion [49]. In [50, 51], it is shown that the repulsion between the base station locations

can be captured well using the continuous DPPs with Gaussian and Cauchy kernels.

The analytical expressions for the statistical measures such as empty space function,

Laplace functional, etc. involve integrals over the support of the n-th order product

density functions [51].

The DPPs can be made even more tractable by defining them on discrete spaces.

Limiting the DPPs to discrete spaces reduces the mathematical derivations involving

integrals to simpler linear algebraic expressions. In [52], the authors showed how the

discrete DPPs can be applied to machine learning problems that involve selecting

subsets of images, news stories, etc., balancing the quality and diversity. Given a

ground set of items, the DPP is modeled such that the best set of items are picked.

The use of discrete DPPs for wireless networks was first considered in [53]. Coined
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as determinantal thinning in the spirit of stochastic geometry, a subset of points is

selected from a ground set of points that form a PPP. The authors fitted DPPs with

different kernels to the MHCP and triangle point process by learning the parameters

through maximum likelihood estimation. Later, in [54], they derived the probability

that the typical node receives a message successfully from its transmitter at a cer-

tain distance in a generic DPP model with some kernel K. A DPP-based wireless

framework that determines the subset of active links which maximizes the network

sum-throughput is analyzed in [55]. We work with discrete DPPs in the rest of the

chapter, and we simply refer to them as DPPs.

ns-3 vs. Stochastic Geometry In [6], the authors have shown that the MHCP pro-

vides good approximations for the success probability to that in the ns-3 simulations

under different traffic densities. The marks associated with the points in the MHCP

are determined based on the backoff mechanism in CSMA/CA. The marks along

with the hard-core distance rM determine the set of concurrent transmitters. It is

also shown that the PPP provides lower bounds to the ns-3 simulations. To compen-

sate for the over-estimation of the interference in the PPP-modeled CSMA/CA-based

wireless networks, the authors in [56] propose to transform the SINR threshold to in-

clude sensing overhead and the channel access probability resulting from the backoff

scheme.

See the Chapters 2-4 for the works on SINR MD and the alternative stochastic

geometry models for vehicular networks. Before we delve into the DPP-based ve-

hicular network modeling, we will discuss the analogies between ns-3 and stochastic

geometry.

5.2 ns-3 and Stochastic Geometry

ns-3 is a discrete-event network simulator (ns) with ‘3’ referring to the 3rd ver-

sion [47]. It includes models for packet data networks which can be used either as
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standalone models for system-level simulations, or users can incorporate their re-

quirements into the ns-3 models to create their experiments. ns-3 includes a suite

of IEEE 802.11 models that attempt to provide accurate MAC and physical (PHY)

layer implementations as per the standards. IEEE 802.11p provides MAC and PHY

support for vehicular communications. We use the proprietary DSRC module built

upon IEEE 802.11p in ns-3 by Toyota Motor North America [57] for system-level sim-

ulations. One can alternatively use an open-source ns-3-based simulator ‘ms-van3t’

to study DSRC [58]. Tools from stochastic geometry (SG) complement system-level

simulations by mimicking their complex behavior and yield interpretable analytical

expressions. Below, we address the key similarities and differences in ns-3 and SG-

based vehicular network models we consider in this chapter. They apply in general

to other SG models in the literature as well.

Network Stack As the name suggests, ns-3 provides functionalities to equip each

node (vehicle) with a network protocol stack. It is a hierarchy of software layers,

starting from the application layer where packets are generated to the physical layer

where they are sent over a channel. The MAC layer decides whether generated

packets will be sent to the PHY layer for transmission or not. In the SG models,

we model the locations of vehicles that generate packets using some point process

and then select the vehicles for transmission based on the MAC scheme in ns-3. The

layers in between the application and MAC layer are not accounted for in the SG

models.

Packet-level Decoding Each vehicle operates in a half-duplex state, i.e., it either

transmits or receives. ns-3 performs packet-level decoding by default. Let T = T1+T2,

where T1 and T2 denote the numbers of slots required to transmit the preamble and

data, respectively.

If a vehicle detects a signal with its energy exceeding the preamble detection

threshold, it starts receiving the packet. Let us denote the packet as E. If the
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SINR measured at the end of T1-th slot exceeds the preamble decoding threshold, it

continues receiving the packet E, else drops E. In case of interference from another

vehicle, say at the M -th slot (M > T1), SINR is measured for E and the interfering

packet F at the end of M -th slot. If the SINR of E exceeds the data decoding

threshold θ, its reception is continued and F is dropped. Otherwise, E is dropped

and packet reception is switched to F if its SINR exceeds θ. If an interferer transmits

in the M -th slot with M < T1, the preamble decoding threshold is used to choose

between the packets. We found that the proportion of packets lost due to interference

in the M -th (M < T1) slot are negligible when T1 is much smaller than T2. A packet

is considered to be received successfully if the SINR measured at the end of T2-th slot

exceeds θ. In the SG models, SINR is evaluated for all the concurrently transmitted

packets and a transmission is considered a success if its SINR exceeds θ. The SINR

evaluation is simplified without accounting for preamble decoding. Note that at most

1/k packets can attain the SINR threshold θ > k [59].

Memory vs. Memoryless Consider a scenario where each vehicle broadcasts a

message periodically. This implies that no vehicle transmits its messages consecu-

tively in ns-3. We model the transmissions in the SG models as memoryless, i.e.,

the intervals between transmissions may take any value, but the average number of

transmissions matches that in ns-3. It is common to model the packet arrivals using

a statistical distribution that leads to analysis.

SG models differ from ns-3 in the interference calculation as well, as explained by

the following example. Consider two vehicles A, B and C. Assume that A and B start

transmitting at the beginning of the first and T/2-th slot. B acts as an interferer to A

and vice versa. If C starts transmitting at the (T+1)-th slot, it is interfered by B and

vice versa. In the SG models, a slot is generally modeled as the transmission duration

of the entire packet. The interfering vehicles vary independently among the packet

durations, unlike C accounting for the interference from B in ns-3. Such memoryless
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nature of the SG models might lead to the interference being over-estimated.

The motivation behind using the SG models is that they can provide crisper in-

sights into the network behavior than system-level simulations. Due to the differences

cited above, it is possible that the results obtained in ns-3 do not match exactly that

in the SG models. It is shown that the SINR MDs, and, in turn, success probability,

for any general stationary point processes can be obtained by horizontally shifting

the respective curves for the PPPs in cellular networks [60]. This implies it might

be possible to shift the SINR MD curves in the SG models horizontally to match

those in ns-3. By doing so, we are not modeling all the complexities in the network

yet obtaining an analytical expression that can be shifted to match that in ns-3.

Alternatively, one can tune the parameters of the SG model to account for the dif-

ferences. The goal is to see whether the parameters of the SG model can effectively

characterize the simulations in ns-3, especially, whether the slope of the SINR MD

curves obtained in ns-3 matches that in the SG-models. Once we have such a model,

we can use it to analyze critical concerns such as congestion control, spatial outage

capacity [1], etc.

5.3 Baseline Network Models and Determinantal Point Processes

We assume that vehicles form a 1D PPP Φ of intensity λ on R ⊆ R. Transmit-

ting vehicles broadcast their messages over a single channel. We model the channel

fading as Rayleigh and path loss using log-distance propagation loss model. For a

transmitted power of Pt, the power Pr received at distance D is

Pr = gPL0PtD
−α, (5.1)

where PL0 is the path-loss constant and α is the path-loss exponent. g is the channel

power gain due to fading, which follows exponential distribution with mean 1.
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The point process of transmitters X is determined by a thinning of Φ, which is the

process of removing certain points independent or dependent on each other. We start

with recalling how we obtain the baseline network models—PPPs and MHCPs—by

thinning Φ, followed by the construction of the DPPs from the PPPs. R = R in the

case of baseline models, and R ⊂ R in the DPP.

5.3.1 Poisson Point Processes

Let p denote the probability that a point is retained independently. The retained

points (transmitters) form a 1D PPP of intensity λp. This model characterizes the

ALOHA MAC scheme.

5.3.2 Matérn Hard-Core Processes

Here, points are dependently thinned such that there is at least a distance rM

between the points. There are two types of MHCPs—Type-I and Type-II. In Type-I,

all the points that have a neighbor within distance rM are removed. Type-II achieves

denser packing than Type-I. Each point has a mark that is uniformly distributed

between 0 and 1. All the points that have a neighbor with a smaller mark within

distance rM are removed in Type-II. We focus on MHCPs of Type-II in this chapter.

The intensity of the transmitter process λ′ is given by [4, Ch. 3]

λ′ =
1− exp(−2λrM)

2rM

. (5.2)

5.3.3 Determinantal Point Processes

Let φ = {y1, y2, . . . , yN} denote a finite realization of Φ defined on R ⊂ R. Here,

X refers to a discrete point process defined on φ, i.e., X ⊆ φ.

Definition 5.1. (Determinantally Thinned Poisson Point Process) X is called a

determinantal point process (DPP) if there exists a N × N positive semi-definite
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matrix K parametrized by the elements of φ such that

ρ(Y ) = P(Y ⊆ X | Φ = φ) = det(KY (φ)), Y ⊆ φ. (5.3)

It is denoted as X ∼ DPP(K).

K is referred to as the kernel. KY denotes the submatrix of K parameterized by

the elements in Y . By convention, det(K∅) = 1. ρ(Y ) is referred to as the inclusion

probability as it the probability of Y being included in the realizations of X . The

points of φ are thinned based on K. Each point is retained with probability Kii,

1 ≤ i ≤ N . Kij denotes the element of matrix K parameterized by the i-th and j-th

elements of φ.

Remark 5.1. The DPP enables us to model vehicles with different transmit proba-

bilities. It can be interpreted as a spatially adaptive ALOHA. If Kij = 0 ∀i 6= j and

Kii = p ∀i, the DPP reduces to the ALOHA model on a finite space.

Definition 5.1 determines the class of DPPs. In general, it is easier to define the

joint probability distributions than inclusion probabilities. This led to the formation

of a slightly less general class of DPPs, referred to as the L-ensembles. The formal

definition follows.

Definition 5.2 ( [61]). (L-ensemble) Let L denote a N × N positive semi-definite

matrix parameterized by the elements of φ. A point process X is called the L-ensemble

if it is defined by the probabilities of the realizations

P(X = Y | Φ = φ) ∝ det(LY (φ)), Y ⊆ φ. (5.4)

An L-ensemble is a DPP with kernel K = L(I + L)−1.

The normalization factor in (5.4) is
∑

Y⊆V det(LY ) = det(I + L) [52, Th. 2.1],

where I is an identity matrix. We adopt det(L∅) = 1. An L-ensemble is a DPP,
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however the converse may not be true. A DPP with marginal kernel K is an L-

ensemble iff all the eigenvalues of K are positive and less than 1 (0 � K ≺ I) since

L = K(I −K)−1, i.e., K is positive semi-definite, which is denoted as K � 0, and

I − K is positive definite, which is denoted as I � K. The advantages in using

the L-ensembles are i) 0 � L � I is not required as the probabilities of observing a

realization (5.4) are defined proportionally, whereas, 0 � K � I must hold as (5.3)

calculates the probability of the inclusion of Y ; ii) the L-ensembles provide an easier

structure for optimization, which is useful in fitting the data to DPPs as we will see

later. Next, we provide a toy example to illustrate the L-ensemble DPP.

Let φ = {0, 1, 3}. Consider Lij = exp(−|yi − yj|), i, j ∈ {1, 2, 3}. Then we have

L =


1 0.3679 0.0498

0.3679 1 0.1353

0.0498 0.1353 1

 .

The realization probabilities can be calculated using (5.4) as follows:

P(∅) = P({0}) = P({1}) = P({3}) =
1

det(I + L)
= 0.13

P({0, 1}) =
1

det(I + L)

1 0.3679

0.3679 1
= 0.1124

P({0, 3}) =
1

det(I + L)

1 0.0498

0.0498 1
= 0.1297

P({1, 3}) =
1

det(I + L)

1 0.1353

0.1353 1
= 0.1276

P({0, 1, 3}) =
det(L)

det(I + L)
= 0.1103.

In the case of two points being selected, the probability of selecting {0, 3} is higher
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than selecting {0, 1} or {1, 3}, thus giving more priority to the points that are far

apart favoring repulsion. From the realization probabilities above, we can obtain

the inclusion probabilities as ρ({0}) = 0.4824, ρ({1}) = 0.4803, ρ({3}) = 0.4976,

ρ({0, 1}) = 0.2227, ρ({0, 3}) = 0.24, ρ({1, 3}) = 0.2379, and ρ({0, 1, 3}) = 0.1103.

The probability of each point being selected in a realization is different, which depicts

the spatially adaptive nature of the DPP. One can alternatively calculate the inclusion

probabilities using the relation K = L(I + L)−1 (by Definition 5.2) and (5.3).

The use of the PPPs and MHCPs is well established in the previous chapters.

To gain a better understanding of the DPPs, we provide below a few properties

of the DPP that aid in the SINR MD evaluation followed by the insights into the

construction of L matrix.

5.4 Properties and Construction of DPPs

Let ε1, ε2, . . . , εN denote the eigenvalues of L. By Definition 5.4, the eigenvalues

of K can be expressed as εi
1+εi

, 1 ≤ i ≤ N . The algorithm to sample from DPP(K)

uses the eigendecomposition of the matrix K. The number of points in each sample

is determined by the eigenvalues and the locations of points are determined by the

eigenvectors [52, Th. 2.3].

5.4.1 Properties

Lemma 5.1 ([62]). (Cardinality) The mean number of points in X is
N∑
i=1

εi
1+εi

.

Proof. The proof of Lemma 5.2 is given in Appendix C.2 for completeness.

We can interpret Lemma 5.1 in terms of Bernoulli random variables du as follows:

There are N trials in total. An u-th trial is a success (Bi = 1) with probability εi
1+εi

.

Then |X | is equivalent in distribution to
∑N

i=1Bi.
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Lemma 5.2 ([61]). (Closed under Reduced Palm Conditioning) Let X !i , X \ {yi},

yi ∈ X . Conditioning on yi ∈ X , if X ∼ DPP(K), then X !i is also a DPP with a

modified kernel K !i whose elements are given by

K !i
jk = Kjk −KjiK

−1
ii Kik, j, k 6= i. (5.5)

Proof. The proof is provided in Appendix C.2 for the convenience of the reader.

Lemma 5.3 ( [63, Th. 2.4]). (Laplace Functional) For any non-negative function h

on R, the Laplace functional LX (h) of X ∼ DPP(K(φ)) is

LX (h) = E
[

exp

(
−

N∑
i=1

h(yi)1yi∈X

)]
= det(I −Kh(φ)), (5.6)

where the elements of Kh(φ) are given by

Kh
ij =

√
1− e−h(yi)Kij

√
1− e−h(yj). (5.7)

With respect to Φ, we have

LX (h) = E
[
E
[

exp

(
−

N∑
i=1

h(yi)1yi∈X

)
| Φ = φ

]]
= E[det(I −Kh(Φ))]. (5.8)

See [53, App. A] for an alternate proof of Lemma 5.3. Note that the calculation

of the Laplace functional does not require the simulation of X , just Φ is sufficient.

5.4.2 Construction of L-Matrix

The L-matrix determines how the points of φ are thinned. We can represent L in

its decomposed form as

Lij = qiΥ
T
i Υjqj = qiSijqj, (5.9)
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Figure 5.1: Comparison of different similarity kernels. σ = 100.

where q is called the quality factor and S is referred to as the similarity matrix.

Such decomposition makes sure that L remains positive semidefinite while fitting the

observed data to the DPP. The quality factor qi is an intrinsic measure of the point yi.

The smaller the distance between the points yi and yj, the higher is their similarity

value Sij. There are multiple ways of modeling quality factors and similarity matrices.

Below, we provide a few of them in the context of vehicular (or wireless) networks.

5.4.2.1 Quality Factor

We model the quality factor using logistic regression. Let

qi = exp

(
υ0 +

M∑
k=1

υkfi,k

)
, M ≤ N. (5.10)

If fi,k = 0 ∀k > 0, all points have the same quality factor. Alternatively, we can

set fi,k = di,k, where di,k is the distance to the k-th nearest neighbor of the point yi.

In this case, for υk 6= 0, the quality of the point is decided by how far it is from its

neighbors. The similarity matrix is a function of pairwise distances, while the quality

factor can be formulated to model the relation between a point and its M neighbors.
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5.4.2.2 Similarity Matrix

A few choices to model S include the Gaussian, Cauchy, and Laplacian/double

exponential kernel functions. They are given by

(a) Gaussian: Sij = exp(−‖yi − yj‖2/σ2), (5.11)

(b) Cauchy: Sij = 1/(1 + ‖yi − yj‖2/σ2), (5.12)

(c) Laplacian: Sij = exp(−‖yi − yj‖/σ), (5.13)

where σ is the scale parameter. As the distance ‖yi − yj‖ increases, Sij decreases,

and, in turn, Lij decreases by (5.9). Thus, the probability of selecting points that

are far apart, increases by (5.4), as lower off-diagonal values yield a higher value of

the determinant. Fig. 5.1 illustrates the above kernels. With the Gaussian kernel,

the points that are at distances more than 230 m apart have higher chances of being

selected as they have smaller Sij than the points that are closer than 230 m. Nev-

ertheless, any two points that are at a non-zero distance can get selected with some

non-zero probability, resulting in a soft-core point process. The longer-tailed Cauchy

and Laplacian kernels can further restrict how the points are chosen.

Next, we define our performance metric, the binned SINR MD, and analyze it for

the baseline models and DPPs.

5.5 Binned Meta Distribution of the SINR

We condition a vehicle (receiver) to be at the origin. On averaging over the real-

izations of Φ, the vehicle becomes the typical vehicle. In broadcast communication,

there may exist multiple transmitters at different distances who broadcast their mes-

sages either concurrently or otherwise. Instead of analyzing the performance metric

of interest for different distances, we can group the distances into bins and analyze

the network behavior over each distance bin.
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Denote by cu and du the endpoints of the u-th bin, Bu, u ∈ N. X ∩ Bu denotes

the point process of transmitters whose distances to the typical vehicle at the origin

fall in the u-th bin. Below, we first provide the preliminaries required to define the

binned SINR MD, followed by its formulation.

5.5.1 Signal-to-Interference-plus-Noise Ratio

The SINR at the origin with respect to a transmitter y can be expressed using (5.1)

as

SINRy =
gPL0Pt‖y‖−α∑

z∈X\{y} gzPL0Pt‖z‖−α +W
, (5.14)

where I =
∑

z∈X\{y} gzPL0Pt‖z‖−α is the total interference power at the origin, and

W is the noise power.

5.5.2 Conditional Success Probability

Using (4.1), we write the conditional success probability on the link between some

transmitter y and the origin as

P y
s (θ) = P(SINRy > θ | Φ), θ > 0, (5.15)

where θ is the SINR threshold that parametrizes the data rate. (5.15) is obtained

by averaging only over the fading and transmitter point process X (MAC scheme)

conditioned on Φ. Now, we are ready to define the performance metric, the binned

meta distribution of the SINR.

5.5.3 Formulation of the Binned Meta Distribution of the SINR

The meta distribution of the SINR for the u-th bin, Bu, F̄Ps,u(θ, x), is defined as

F̄Ps,u(θ, x) , P(P y
s (θ) > x, y ∈ X ∩ Bu), x ∈ [0, 1], u ∈ N. (5.16)
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The binned SINR MD (5.16) gives the fraction of the links, whose distances to the

typical vehicle fall in the u-th bin can achieve the data rate θ with a reliability of at

least x. It provides insights into the distance range over which we can achieve certain

target reliability, in turn, the effective distance range for broadcast communication.

The binned success probability, a special case of the binned SINR MD, is a commonly

used metric in vehicular network simulations/experiments [57]. It is formally defined

as follows.

The success probability for Bu, ps,u is given by

ps,u(θ) = P[SINRy > θ, y ∈ X ∩ Bu] = EX∩Bu [P y
s (θ)], u ∈ N. (5.17)

It is obtained by averaging the conditional success probability of the links whose

distances fall in the u-th bin over Φ.

5.6 Key Results

Using (5.14), we can write the conditional success probability (5.15) as

P y
s (θ) = P

(
g >

θ‖y‖α

PL0Pt

(I +W ) | Φ
)

= E
[

exp

(
− θ‖y‖α

PL0Pt

I

)]
exp

(
− θ‖y‖α

PL0Pt

W

)
︸ ︷︷ ︸

W ′

= E

 ∏
z∈X\{y}

exp(−θ‖y‖αgz‖z‖−α)

W ′

(a)
= E

 ∏
z∈X\{y}

1

1 + θ‖y‖α‖z‖−α

W ′, (5.18)

where (a) averages over the fading.

Proposition 5.1. The conditional success probability on the link between the trans-
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mitter yi ∈ X ⊆ φ and the origin in the DPP is det(I −Ki(φ))W ′, where

Kijk = (Kjk −KjiK
−1
ii Kik)

∏
l=j,k

(
1 +

‖yl‖α

θ‖yi‖α

)−1/2

, j, k 6= i. (5.19)

Proof. For the DPP with φ = {y1, y2, . . . , yN}, we can rewrite (5.18) in terms of yi,

1 ≤ i ≤ N , as

P yi
s (θ) = E

[ ∏
z∈X\{yi}

1

1 + θ‖yi‖α‖z‖−α)

]
W ′

= E

[
j 6=i∏

1≤j≤N

1

1 + θ‖yi‖α‖yj‖−α1yj∈X

]
W ′

= E
[

exp

(
−

j 6=i∑
1≤j≤N

log

(
1 + θ‖yi‖α‖yj‖−α1yj∈X

))]
W ′. (5.20)

The expectation in (5.20) is with respect to the reduced palm conditioned point

process X !i = X \ {yi}. Comparing (5.20) with Lemma 5.3, we observe that h(yi) =

log(1 + θ‖yi‖α‖yj‖−α). Therefore, the resulting kernel is the kernel K modified by

X !i and h(yi). Using the Lemmas 5.2 and 5.3, we can express (5.20) as det(I−Ki(φ))

with the elements of Ki given by (5.19).

Remark 5.2. The conditional success probability (5.19) in the DPP applies to Φ

being any finite point process on Rd as it involves just calculating the determinant

over a discrete set of points.

Proposition 5.2. The SINR MD for the u-th bin in the PPP is given by

F̄Ps,u(θ, x) =
1

du − cu

∫ du

cu

F̄P ys (θ, x)dy, (5.21)

where

F̄P ys (θ, x) = P(P y
s (θ) > x) =

1

2
+

1

π

∫ ∞
0

=(e−jt log xMy
jt)

t
dt, (5.22)
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and

My
b (θ) = E[P y

s (θ)b] = exp(−2λ‖y‖θδ′Γ(1 + δ′)Γ(1− δ′)Db(p, δ
′)), b ∈ C, (5.23)

with δ′ = 1/α and Db(p, δ
′) = pb 2F1(1− b, 1− δ′; 2; p).

Proof. By Slivnyak’s theorem [4, Ch. 8], conditioning a transmitter at y is the same

as adding a transmitter at y in the PPP. To obtain the SINR MD with respect to

the u-th bin, Bu, we can add transmitters at multiple locations uniformly distributed

between the endpoints cu and du of Bu consecutively, and average the respective SINR

MDs. Adding a transmitter at y implies that the link between y and the origin is

active over the realizations of Φ. Then, we can rewrite the SINR MD (5.16) with

respect to the u-th bin, Bu, as

F̄Ps,u(θ, x) = P(P y
s (θ) > x, y ∈ X ∩ Bu)

=

∫ du

cu

P(P y
s (θ) > x)P(y ∈ X ∩ Bu)dy. (5.24)

As points in Bu are uniformly distributed, P(y ∈ X ∩ Bu) = 1
du−cu . Then

F̄Ps,u(θ, x) =
1

du − cu

∫ du

cu

P(P y
s (θ) > x)dy =

1

du − cu

∫ du

cu

F̄P ys (θ, x)dy,

where F̄P ys (θ, x) follows from the Gil-Pelaez theorem and is given by (5.22), and

My
b (θ), the b-th moment of the conditional success probability (5.23), follows from (4.9).

Corollary 5.1. The success probability with respect to the u-th bin, Bu, in the PPP

is

Ps,u(θ) = EX∩Bu [P y
s (θ)] =

1

du − cu

∫ du

cu

My
1 (θ)dy, (5.25)
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where My
1 (θ) is given by (5.23) with b = 1.

Proof. The proof follows from the proof of Proposition 5.2 except that the distribution

over the conditional success probability is replaced by the expectation in (5.24), which

is given by the first moment My
1 as shown in (5.25).

The conditional success probability (5.18) with respect to the MHCP cannot be

further simplified but for the approximation using the PPP. Here, we numerically

evaluate the binned SINR MD for the MHCP. Alternatively, one can fit a DPP to

the MHCP and use Proposition 5.1 to evaluate the binned SINR MD.

Remark 5.3. To evaluate the binned SINR MD for the PPP, one can directly use the

analytical expression (5.16) without the need to simulate the PPP. In the case of the

MHCPs, no exact analysis is possible. Starting from the PPPs, we generate different

realizations of the MHCPs and average over them to obtain the exact results.

The DPPs are the middle route between the PPPs and MHCPs. To evaluate the

conditional success probability (5.19), we just need to simulate the PPPs, not the

transmitters forming the DPPs. The DPPs enable faster simulations by exploiting

the analytical result, the determinant of a kernel matrix.

5.7 Results and Discussion

We consider the vehicles (cars) to be Poisson distributed on R with λ = 1/8, 1/16,

and 1/32 per meter. Equivalently, in the case of the DPP, we assume N = 500, 250,

and 50 vehicles Poisson distributed on a street of length 4000 m in ns-3. N = 500 cars

refer to the high-intensity traffic case as each car is about 5 m on average, and the

gap to the front/back vehicle totals an average of 3 m, implying that the road is fully

packed. N = 250 refers to the medium-intensity traffic scenario, and N = 50 refers

to the low-intensity traffic scenario. Each vehicle generates a basic safety message

(BSM) every τ = 100 ms. The BSM contains information on the vehicle’s speed,
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position, brake status, orientation, etc. Table 5.1 lists the other system parameters

in ns-3. The parameters AIFSN and contention window size listed in Table 5.1 are

specific to CSMA/CA used in DSRC. See [57] for further details on the CSMA/CA

parameters. The vehicles are assumed to remain static. It does not matter as a

message of size 414 bytes requires only about 550 µs to get transmitted with a data

rate of 6 Mbps and vehicles do not move a significant distance in such a short duration.

We recall that the MAC layer that determines which vehicles should transmit is

modeled by the transmitter point process. We need to choose the parameters of the L-

matrix in the DPP such that the distribution of the selected concurrent transmitters

matches that in ns-3.

5.7.1 ns-3 vs. DPP

Let ψt denote the set of concurrent transmitters observed in ns-3 for the PPP

realizations φt at time instants t ∈ {1, 2, . . . , T}. We would like to fit a DPP to the

observed data that maximizes the chances of observing X given Φ. Mathematically,

using (5.4), the maximum likelihood optimization problem can be expressed as

max
υ,σ

L = max
υ,σ

log

( T∏
t=1

P (X = χt | Φ = φt)

)

= max
υ,σ

T∑
t=1

log

(
det(Lχt(φt))

det(I + L(φt))

)
, (5.26)

where L is the log-likelihood, and υ = (υ0, . . . , υn) and σ are the parameters of q and

S given in (5.9), respectively. Note that the log-likelihood (5.26) is non-convex and

hence there exist multiple local minima.
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TABLE 5.1

SIMULATION PARAMETERS

Parameter Value

BSM Size 414 bytes

Bandwidth 10 MHz

Data Rate 6 Mbps

Slot Duration 13 µs

SINR Threshold 8 dB

Carrier Sensing Threshold -82 dBm

Preamble Detection Threshold -94 dBm

Preamble Decoding Threshold 8 dB

Path-Loss Exponent α 2

Path-Loss Constant PL0 −46.677 dB

Transmit Power Pt 10 dBm

Arbitrary Inter-Frame Spacing (AIFSN) 2

Contention Window Size 2k − 1, k ∈ [4, 10]
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5.7.1.1 Distance to the n-th Nearest Transmitter

LetRn denote the distance to the n-th nearest transmitter from the typical vehicle.

Fig. 5.2a shows the distribution FRn(r) of the distance to the n-th nearest transmitter.

We observe that the DPP provides a good fit to ns-3 even at higher values of n.

Fig. 5.2b depicts that the mean number of transmitters within a distance r of the

typical vehicle in the DPP match that in ns-3 well.

5.7.1.2 Binned SINR MD

Fig. 5.2c plots the binned SINR MD for different distance bins. The DPP does

not provide a good fit to ns-3 despite the good statistical fit with respect to the n-th

nearest-transmitter distance (Fig. 5.2a) for the reasons stated in Section 5.2. Nev-

ertheless, we can tune the DPP parameters such that its SINR MD tightly matches

that in ns-3 as shown in Fig. 5.3 for different traffic intensities.

5.7.2 ns-3 vs. Baseline Models

For the chosen simulation parameters given in Table 5.1, in the no fading case, at

a distance of 735 m, the signal strength falls below the preamble detection threshold

of −94 dBm. In ns-3, we have considered the length of the street as 4000 (� 735)

m, implying that the finite model in ns-3 is sufficiently long to be compared against

the theoretical stationary PPP model considered on R. Fig. 5.4 compares the binned

SINR MD and success probability for the PPP and ns-3. The transmit probability

in the PPP, p = Tp/τ , where Tp = 414 · 8/(6 · 106) is the time taken to transmit a

packet of size 414 bytes. We observe that the PPP approximates ns-3 better with

decreasing N . Fig. 5.5 plots the binned SINR MD for the MHCP and ns-3. The

MHCP is fitted to ns-3 by trial and error. We observe that the binned SINR MD,

in turn, the binned success probability, for the MHCP nicely approximates that for

ns-3. From Figs. 5.3 and 5.5, we conclude that the DPP provides a more accurate fit
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(a) (b)

(c)

Figure 5.2: (a) n-th nearest-transmitter distance distributions (b) Mean number of
transmitters within distance r of the typical vehicle (c) Comparison of the SINR
MDs for ns-3 and DPP for different bin indices. S is Gaussian. σ∗ = 200 and
υ∗ = [−1.5543, 0.0011]. They are obtained by optimizing (5.26). The distance bin is
of length 50 m. The conditional success probability required to evaluate the binned
SINR MD/success probability for the DPP is given by (5.19).
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than the MHCP to ns-3 with an advantage of mathematical analysis.

In Chapters 2 and 3, to model a 2D vehicular network, we considered street

geometry and placed vehicles on the streets. In the simplified transdimensional model

proposed in Chapter 4, we accounted for the streets passing through the typical

vehicle and approximated the rest of the vehicular point process using a 2D PPP.

The PPP does not exhibit repulsion, thus it is necessary to include the street geometry

to create some repulsion between the transmitting vehicle locations. However, that is

not the case with the DPP. The impending question here is whether street geometry

is important if 2D DPPs are used to model vehicular networks, which we will analyze

in the next section.

5.8 2D DPPs for Vehicular Networks

Consider a PLP-PPP V on R ⊂ R2 with street intensity µ and the vehicles on

each street forming a 1D PPP of intensity λ (Definition 3.4). The transmitter point

process X is determined by thinning V based on a kernel K. It is referred to as the

PLP-DPP (DPP on a PLP).

Fig. 5.6 compares the binned SINR MD and success probability for the PLP-

DPP and 2D DPP, which is obtained by thinning a 2D PPP of intensity λµ, the

2D intensity of the PLP-PPP (Lemma 3.1). We observe that a 2D DPP provides

a tight approximation to the PLP-DPP for all bin indices. The reason is that the

transmitters are selected purely based on the distances between them and hence the

geometry of the streets does not matter.

Remark 5.4. The DPP with a kernel K can accurately model the transmitter point

process in d-dimensional vehicular networks. It is more accurate than the PPP and

more tractable than the MHCP. There exists a trade-off between using the PPP and

DPP for modeling the transmitter point process. The PPP-based vehicular network

lends to analytical expressions for the binned SINR MD while the DPP lends to ex-
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(a) N = 500 (b) N = 250

(c) N = 50 (d)

Figure 5.3: ns-3 vs. DPP. Figs. (a)-(c) show the binned SINR MD and (d) shows the
binned success probability for different N and bin indices. S is Gaussian. The DPP
parameters that match the SINR MD in ns-3 for (a) N = 500 are ν = −0.8501 and
σ = 395, (b) N = 250 are ν = −1.1945 and σ = 415, and (c) N = 50 are ν = 280
and σ = −1.4263. The distance bin is of length 50 m. The unit of intensity λ is
per meter. The conditional success probability required to evaluate the binned SINR
MD/success probability for the DPP is given by (5.19).
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(a) N = 500, λ = 1/8 (b) N = 250, λ = 1/16

(c) N = 50, λ = 1/32 (d)

Figure 5.4: ns-3 vs. PPP. Figs. (a)-(c) show the binned SINR MD and (d) shows
the binned success probability for different traffic intensities and bin indices. The
transmit probability is p = 0.0055. The distance bin is of length 50 m. The unit of
intensity λ is per meter. The equation numbers corresponding to the binned SINR
MD and success probability are given in the parentheses in the legends.
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(a) N = 500, λ = 1/8 (b) N = 250, λ = 1/16

(c) N = 50, λ = 1/32 (d)

Figure 5.5: ns-3 vs. MHCP. Figs. (a)-(c) show the binned SINR MD and (d) shows
the binned success probability for different traffic intensities and bin indices. The
distance bin is of length 50 m. The hard-core distance rM that approximates ns-3 are
425.1 m, 718.3 m, and 1349.7 m for λ = 1/8, 1/16, and 1/32 per meter, respectively.
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(a)

(b)

Figure 5.6: PLP-PPP vs. 2D DPP. Figs. (a) and (b) show the binned SINR MD
and success probability, respectively. The distance bin is of length 50 m. α = 2.5.
N = 1000. Similarity matrix is Gaussian with σ = 100, ν = −1.8526. The rest of
the parameters are given in Table 5.1.
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pressions up to the conditional success probability with the challenge of finding the

appropriate kernel K.

Remark 5.5. The 2D DPP can effectively capture the distance distribution between

the transmitters as in the DPP placed on a PLP. Hence, we need not explicitly con-

sider the street geometry as in the case of PPP-based vehicle location modeling. This

remark is also applicable to the repulsion exhibiting hard-core processes such as the

MHCP.

5.9 Conclusions

The determinantal point processes can model the soft and adaptable repulsiveness

between the transmitters. The structure of the DPPs permits the evaluation of the

performance metrics through a mix of simulation and analysis, unlike the MHCP.

Though the MHCP can model the transmitter point process by strictly restricting

the minimum distances between the transmitters, it is intractable. We showed that

the DPP is a better and more accurate model than the MHCP and analytically

tractable PPP through DSRC simulations in ns-3 for different vehicle densities.

The main takeaway is the answer to the question ‘should we model the streets

in 2D vehicular networks?’ If we model the transmitter point process by a PPP, the

street geometry cannot be neglected since a 2D PPP cannot model the transmitters

clustered along the streets as in street-based vehicular networks. In this case, the

transdimensional Poisson point process can be used to model the vehicular networks

as they are simpler than the complicated street-based vehicular networks and yet

provide tight approximations to them. On the other hand, if we use a DPP to model

the transmitter point process, the street geometry can be safely omitted as the DPPs

select the transmitters based on the distances between them such that they exhibit

repulsion.
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CHAPTER 6

SUMMARY AND FUTURE WORK

6.1 Summary

High reliability is a key requirement in safety-oriented vehicular communications,

where a vehicle broadcasts safety messages to the intended recipients such as other

vehicles, roadside units, or pedestrians. Reliability is defined as the probability that

a receiver can successfully decode the message sent by a transmitter. It depends on

the locations of the transmitter, receiver and interferers, and the wireless medium.

To obtain insights into the reliability, we first need to model the key actors in ve-

hicular communications. To this end, we use mathematical tools such as point and

line/stick processes from stochastic geometry to model vehicle locations. They pro-

vide crisp insights into the network behavior and complement large-scale simula-

tions/experiments.

Poisson point processes (PPPs) have been widely used to model locations of base

stations in cellular networks. The reasons are: (i) they provide a lower bound to

the coverage probability—the probability of a cellular user successfully connecting to

a base station—evaluated in the real-world cellular networks; (ii) they are the most

tractable point processes; (iii) non-Poisson point processes such as hard-core processes

that can provide higher accuracy than PPPs are highly intractable. However, the use

of PPPs to model vehicle locations is debatable. Unlike base stations, vehicles are

located on the streets that possess a certain geometry.

To assess the significance of the street geometry, we first studied a square grid

vehicular network with vehicles on each street independently forming 1D PPPs of
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some intensity. Each vehicle transmits independently with a certain probability p as

in the ALOHA MAC scheme. Transmitters on each street also form a PPP with the

intensity scaled by p. The street-based vehicular network behaves differently from

a pure PPP-based vehicular network except at the asymptotic regimes of data rate.

The reason is that the street system allows vehicles to be clustered along the streets

unlike the complete random placement of vehicles in PPPs.

With the evidence favoring the need for modeling the street geometry, we de-

veloped a general framework for modeling and analysis of vehicular networks. The

spatial models in this framework can characterize streets of different lengths and

orientations, and involve intersections and T-junctions. For instance, Poisson line

processes (PLPs) can model streets of infinite lengths with different orientations in-

herently forming intersections. Poisson stick processes (PSPs) can model streets of

finite varying lengths with different orientations forming intersections. Poisson lily-

pond model (PLM) is a variant of PSPs with sticks forming T-junctions. These mod-

els facilitate the reliability analysis of vehicles located at intersections/T-junctions.

This is of critical concern as almost 50% of the accidents occur at intersections. The

expressions for the reliability of the vehicles located at intersections/T-junctions and

non-intersections/T-junctions can be used to study the interplay between the street

density, vehicle intensity, data rate, and the location of the vehicle.

The street systems, and, in turn, the spatial models, vary with geographical re-

gions. One might wonder whether there is a need to model each of them. Not

necessarily. We introduced the notion of equivalence which helps us to find the street

systems that behave the same way qualitatively. We need only a representative class

of models that can be used to analyze a larger set of street systems. For instance, a

PSP-based vehicular network is equivalent to PLP-based and PLM-based vehicular

networks under a certain mapping of system parameters, i.e., if we have the reliabil-

ity for the PSP-based vehicular network, we can use it to evaluate the reliability for
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PLP-based and PLM-based vehicular networks.

The complete characterization of street systems makes analytical expressions un-

wieldy despite the use of PPPs to model vehicle locations on streets. We proposed

a transdimensional Poisson point process (TPPP) that considers only the geometry

of the streets passing through the receiver of interest and models the rest of the

vehicles using a 2D PPP. Such a simplification resulted in a tremendous increase in

tractability yet providing tight approximations to the complete street-based vehic-

ular networks. In particular, the success probability in the TPPP differs from the

PLP-based vehicular network by a maximum of only about −14 dB. The TPPP pro-

vides good approximations not only in terms of success probability but also in its

fine-grained version, the meta distribution (MD) of the signal-to-interference ratio

(SIR).

The SIR MD answers questions such as what fraction of the links can satisfy a

target data rate of 10 Kbps with a probability of at least 0.99?, whereas the success

probability answers questions such as what fraction of the links can support a target

data rate of 10 Kbps? The former provides insights into fairness among the links

while the latter focuses only on the average. Using the SIR MD for the TPPP, we

devised a congestion control scheme that determines the optimum transmit probabil-

ity such that the fraction of the links can achieve the target data rate with a certain

minimum guarantee. The success probability-based congestion control scheme is in-

adequate to alleviate network congestion, especially when the transmitter-receiver

links exhibit significant variance in terms of reliability, as the success probability

does not guarantee that a certain fraction of the links achieves the desired reliability.

Lastly, we explored a middle route between the street-based vehicular networks

with transmitters on streets forming PPPs independently and hard-core processes

that guarantee a minimum distance between the transmitters. In particular, we

study determinantal point processes (DPPs) that belong to the family of soft-core
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point processes. Here, transmitters are jointly selected such that there exists soft

and adaptable repulsiveness between transmitter locations, which is very much the

case in real-world vehicular networks. Such selection obviates the need for street

geometry. The structure of DPPs defined on discrete spaces does not facilitate a

complete analysis but a simalysis, a blend of simulation and analysis. We found that

DPPs can tightly approximate the system-level simulations in terms of the binned

SINR MD, that answers questions such as what fraction of the links within the distance

range of 100-200 meters can satisfy a target data rate of 10 Kbps with a probability

of at least 0.99? The binned SINR MD provides insights into the reliable broadcast

range.

There exists a trade-off between using PPPs and DPPs for vehicular network

modeling. The PPPs guarantee exact analysis albeit with loose approximations to

system-level simulations, while DPPs guarantee high accuracy with a simalysis. For

modeling and analyzing 2D vehicular networks, one could use the TPPPs with partial

street geometry or DPPs forgoing the entire street geometry.

6.2 Future Directions

Analyzing DPP Parameters Fitting the transmitter point process in system-level

simulations to DPPs involves optimizing multiple parameters. So far we have shown

that a DPP can accurately fit system-level simulations for different vehicle intensities.

An interesting extension would be to mathematically formulate the relation between

a MAC scheme, vehicle intensity, and DPP parameters. One way to accomplish this

is to train a regression model with parameters learned by fitting DPPs to system-

level simulations for different vehicle intensities and MAC parameters and predict

the parameters for desired vehicle intensity and MAC parameters.

Congestion Control using DPPs Congestion control deals with the trade-off be-

tween the number of transmissions and the number of successful broadcast links. The
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latter increases with the former. However, as the number of transmissions increases

beyond a certain limit, congestion occurs. The goal here is to find the parameters of

the DPP that would maximize the number of successful broadcast links.

DSRC vs. NR-V2X The vehicular technologies DSRC and NR-V2X use different

mechanisms to select concurrent transmitters. Also, they employ different coding

schemes. It will be of interest to analyze (i) whether the performance differences

between the DSRC and NR-V2X are merely due to different coding schemes? (ii)

whether the DSRC and NR-V2X systems are equivalent, i.e., if we know the behavior

of DSRC, can we deduce/approximate the behavior of NR-V2X?
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APPENDIX A

PROOFS OF CHAPTER 3

A.1 Proof of Lemma 3.4

To prove Lemma 3.4, we make use of [31, Prop. 6.2], which asserts the following:

There exist a, b ≥ 0, such that the complementary cumulative distribution function

(CCDF) of the half-lengths H in the lilypond model can be bounded as

1− FH(h) ≤ a exp(−bh2), h ≥ 0. (A.1)

Our goal is to find a tight approximation. By the properties of the cumulative

distribution function, a ≥ 1. However, a > 1 makes the bound (A.1) loose for small

h, which implies that a = 1 is the natural choice. This reduces the bound (A.1)

to the CCDF of the Rayleigh distribution. Fig. A.1 fits the CCDF and PDF of the

half-lengths to that of the Rayleigh distribution. We observe that the upper bound

on the CCDF is loose for small values of h. Instead of choosing a value for b that

provides an upper bound, we approximate the CCDF of the half-lengths with an

appropriate value for b that minimizes the gap between the empirical and theoretical

CCDFs. It follows from the Rayleigh approximation that the mean half-length is

E[H] ≈
√
π/4b. The value of b is found by equating E[H] to the empirical mean of

the half-lengths.

Next, we study the relation between b and µ. Suppose we scale the PLM by

an arbitrary factor ν > 0. Then the street intensity µ is scaled by 1/ν2 and the

half-lengths of the sticks are scaled by ν, inversely proportional to
√
µ. As the PLM
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Figure A.1: Fitting the (a) CCDF and (b) PDF of the half-lengths to that of the
Rayleigh distribution. µ = 0.01.
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retains its lilypond nature with scaling, the mean of the scaled half-lengths H ′ is scale-

invariant, i.e.,
√
π/4b′ ≈ E[H ′] = E[νH] ≈

√
ν2π/4b. This implies that b′ = b/ν2,

and thus b scales with µ.

A.2 Proof of Lemma 3.5

For the typical vehicle at the origin, the probability that its nearest neighbor is

at a distance greater than r, 1− FR(r), is given by

1− FR(r) = E
[ ∏
z∈Vm

1{z /∈ b(o, r)}
]

(a)
= E

[ ∏
z∈Vmo

1{z /∈ b(o, r)}
]
E
[∏
z∈V!

1{z /∈ b(o, r)}
]

= E
[ dm/2e∏

k=1

∏
z∈Vk

1{z /∈ b(o, r)}
]
E
[ ∏
k>dm/2e

∏
z∈Vk

1{z /∈ b(o, r)}
]

(b)
= E

[ dm/2e∏
k=1

E
[ ∏
z∈Vk

1{z /∈ b(o, r)}
]]

︸ ︷︷ ︸
1−FR,Vmo (r)

E
[ ∏
k>dm/2e

E
[ ∏
z∈Vk

1{z /∈ b(o, r)}
]]

︸ ︷︷ ︸
1−FR,V! (r)

,

(A.2)

where (a) and (b) exploit the independence of the 1D PPPs.

The contact distance distribution GR(r) is the probability of finding a vehicle

within a distance r from an arbitrary location in the plane, say the origin. No streets

pass through or contain the origin a.s. This implies that GR(r) is defined with respect

to V , which is equivalent in distribution to Vm \ Vmo = V!. Hence GR(r) = FR,V!(r).
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A.3 Proof of Lemma 3.6

Using the probability generating functional (PGFL) of the PPP, we can express

1− FR,V!(r) in (A.2) as

1− FR,V!(r) = exp

(
− 2µ

π∫
0

r∫
0

(1− exp(−2λ
√
r2 − u2))dudv(ϕ)

)
,

(a)
= exp

(
− 2µ

r∫
0

(1− e−2λ
√
r2−u2)du

)
, (A.3)

where (a) follows from the independence between u and ϕ and the fact that
∫
R dv(ϕ) =

1 for the OG-PPP/PLP-PPP. Since the vehicle locations follow a 1D PPP, with re-

spect to the streets that pass through the origin, we have 1− FR,Vmo (r) = (e−2λr)m/2.

A.4 Proof of Theorem 3.1

The probability that there are no vehicles on a stick S(y, ϕ, h) within a distance

r from the origin is exp(−λ|S(y, ϕ, h) ∩ b(o, r)|1). We derive |S(y, ϕ, h) ∩ b(o, r)|1 as

follows: The midpoint y is denoted as (γ, φ) in polar coordinates. Using (3.5), we

can express the points on a stick S(y, φ, h) of length 2h as (γ cosφ+u cosϕ, γ sinφ+

u sinϕ), u ∈ (−h, h). Then the squared distance between a point on S(y, φ, h) and

the origin is γ2 +u2 +2γu cos(φ−ϕ). The points of intersection of S(y, ϕ, h) on b(o, r)

are at distances u1, u2 = | − γ cos(φ− ϕ)±
√
r2 − γ2 sin2(φ− ϕ)| from the midpoint

of the stick. They follow from solving

γ2 + u2 + 2γu cos(φ− ϕ) = r2 (A.4)

with respect to u. For a stick S(y, ϕ, h) to intersect b(o, r), y must be within b(o, r+h).

We consider two cases—y ∈ b(o, r), and y ∈ b(r, r + h):

1. y ∈ b(o, r): Let |S(y, ϕ, h) ∩ b(o, r)| , `1 for y ∈ b(o, r). When
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Figure A.2: Realizations corresponding to cases (1a), (1b), (2a), and (2b). The
midpoints of the streets are highlighted using filled ‘◦’. The points of intersection of
the street on b(o, r) are at distances ui, i ∈ {1, 2}, from the midpoint of the street.
ui in the cases (1b) and (2b) refers to u1 or u2.

a. S(y, ϕ, h)∩ b(o, r) = S(y, ϕ, h): The stick lies within b(o, r). Then `1(γ, φ, ϕ) =
2h.

b. S(y, ϕ, h) ∩ b(o, r) ⊂ S(y, ϕ, h): The stick is not fully contained in b(o, r). For
a stick that passes through b(o, r), `1(γ, φ, ϕ) = u1 + u2. For a stick with only
one endpoint in b(o, r), `1(γ, φ, ϕ) = u1 + h or h+ u2.

Summarizing the above cases, we write `1(γ, φ, ϕ) = min(u1, h) + min(u2, h).

2. y ∈ b(r, r+ h): Let |S(y, ϕ, h) ∩ b(o, r)| , `2 for y ∈ b(r, r + h). When

a. S(y, ϕ, h)∩b(o, r) = ∅: The stick does not intersect b(o, r). Then `2(γ, φ, ϕ) = 0.

b. S(y, ϕ, h)∩b(o, r) ⊂ S(y, ϕ, h): For a stick that passes through b(o, r), `2(γ, φ, ϕ) =
|u1− u2|. For a stick with only one endpoint in b(o, r), `2(γ, φ, ϕ) = |u1− h| or
|h− u2|.

Thus, `2(γ, φ, ϕ) = |min(u1, h) − min(u2, h)|. Then the probability of not find-

ing a vehicle on S(y, ϕ, h) within b(o, r) is exp(−λ`(γ, φ, ϕ)), where `(γ, φ, ϕ) =

`1(γ, φ, ϕ)1γ≤r + `2(γ, φ, ϕ)1r<γ≤r+h. Fig. A.2 illustrates the above cases.

For the typical vehicle’s street to pass through or end at the origin, its midpoint

must belong to b(o, h). The midpoint of the typical vehicle’s street of half-length h is

at a distance γ ∈ [0, h] from the origin. Using the above results and the decomposition
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of the nearest-neighbor distance distribution in Lemma 3.5, we can write 1− FR,Vmo (r)

and 1− FR,V!(r) as

1− FR,Vmo (r) = E
[m/2∏
k=1

E
[ ∏
z∈Vk

1{z /∈ b(o, r)}
]]

(a)
=

[ ∞∫
0

1

h

h∫
0

exp(−λ`(γ, 0, 0))f̃H(h)dγdh

]m/2
, (A.5)

1− FR,V!(r) = exp

(
− µ

π

∞∫
0

π∫
0

2π∫
0

r+h∫
0

exp(−λ`(γ, φ, ϕ))γfH(h)dγdφdϕdh

)
, (A.6)

respectively, by applying the PGFL of the PPP.

Note that (a) in (A.5) follows from the facts that (i) the rotation of the typical

vehicle’s streets around the typical vehicle does not change u1, u2, and hence we can

set φ = ϕ = 0, and (ii) m/2 streets are independent. Substituting (A.5) and (A.6)

in (3.9), we obtain (3.10).

A.5 Proof of Proposition 3.1

By (3.4), we can express the points on L(x, ϕ) as (x cosφ−u sinφ, x sinφ+u cosφ),

u ∈ R. Let x refer to the kth-nearest point in Φ1 from the origin. Then Vk denotes

the point process of vehicles on L(x, φ) (see Section 3.1.5). The Laplace transform

of the interference LIx(s) from the vehicles on L(x, ϕ) to the typical vehicle at the

origin is

LIx(s) = E
[ ∏
z∈Vk

Egz
[
exp

(
−sgz‖z‖−αBz

)] ]
= E

[ ∏
z∈Vk:Bz=1

1

1 + s‖z‖−α

]
(A.7)

(a)
= exp

(
− λp

∫ ∞
−∞

1

1 +
(
x2+u2

sδ

)1/δ
du

)
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(b)
= exp

(
− λpsδ/2

∫ ∞
x2

sδ

1

(1 + v1/δ)
√
v − x2

sδ

dv

)
, (A.8)

where δ = 2/α, (a) substitutes ‖z‖2 = ‖(x cosφ− u sinφ, x sinφ+ u cosφ)‖2 and the

PGFL of the PPP. λp is the intensity of the active transmitters for which Bz = 1,

z ∈ Vk. (b) is due to the change of variable v = x2+u2

sδ
.

We learned from (3.14) that the success probability is the product of the Laplace

transforms of the interference Imo and Ir, which we derive below.

Laplace Transform of Imo : The Laplace transform of the interference from V0 to the

typical general vehicle (order 2) can be obtained by setting x = 0 in (A.8), i.e.,

LI2o (s) = exp(−2λpsδ/2Γ(1 + δ/2)Γ(1− δ/2)). (A.9)

For the typical intersection vehicle (order 4), as two streets pass through the origin,

V4
o = V0 ∪ V1 (see Sec. 3.1.5). Then LI4o (s) can be written as in (A.7) as

LI4o (s) = E
[ ∏
z∈V0∪V1:Bz=1

1

1 + s‖z‖−α

]
(c)
=

(
E

[ ∏
z∈V0:Bz=1

1

1 + s‖z‖−α

])2

, (A.10)

which is the square of the success probability of the typical general vehicle given in

(A.9). (c) results from V0 being identically distributed as V1.

Laplace Transform of Ir: The aggregate Laplace transform of the interference from

the vehicles on all the streets that do not pass through the typical vehicle is given by

LIr(s) = E
[ ∏
z∈Vr

Egz
[
exp

(
−sgz‖z‖−αBz

)] ]
(e)
= E

[ ∏
k>m/2

E
[ ∏
z∈Vk:Bz=1

1

1 + s‖z‖−α

]]
(A.11)
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(f)
= exp

(
− µ

∫ π

0

∫ ∞
−∞

(1− LIx(s))dxdν(ϕ)

)
(g)
= exp

(
− µ

∫ ∞
−∞

(1− LIx(s))dx

)
, (A.12)

where (e) follows from Vr = ∪k>m/2Vk and the fact that Vk’s are independent 1D

PPPs, (f) uses (A.8) and the PGFL of the PPP with respect to x and ϕ, and (g)

results from LIx(s) being independent of ϕ, and
∫
R dν(ϕ) = 1. Substituting (A.9),

(A.10), and (A.12) in (3.14), we obtain (3.15).

A.6 Proof of Proposition 3.2

Using (3.5), we can denote the points on a stick S(y, φ, h) of length 2h as (γ cosφ+

u cosϕ, γ sinφ +u sinϕ), u ∈ (−h, h). The midpoint of the street that passes through

the typical vehicle is at a signed distance W ∼ U(−h, h) from the origin. Then the

endpoints of the street are at signed distances −W −h, and −W +h to the origin. As

in (A.7), the Laplace transform of the interference I2
o for the typical general vehicle

can be written as

LI2o (s) = E
[ ∏
z∈Vo:Bz=1

1

1 + s‖z‖−α

]
(a)
= EH,W

[
exp

(
− λp

∫ −W+H

−W−H

1

1 +
(

u
sδ/2

)2/δ
du

)]
(A.13)

(b)
= EH,W

[
exp

(
− λpsδ/2

∫ (−W+H)s−δ/2

(−W−H)s−δ/2

1

1 + v2/δ
dv

)]
, (A.14)

(c)
=

∫ ∞
0

1

2h

∫ h

−h
exp

(
− λpsδ/2

∫ (−w+h)s−δ/2

(−w−h)s−δ/2

1

1 + v2/δ
dv

)
f̃H(h)dwdh, (A.15)

where δ = 2/α, (a) substitutes ‖z‖2 = ‖(u cosϕ, u sinϕ)‖2 and applies the PGFL

of the PPP, and (b) results from the change of variable v = u
sδ/2

. (c) evaluates the

expectation with respect to H using f̃H(h) rather than fH(h) based on Lemma 3.3.

As two streets pass through the typical intersection vehicle and the point processes
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on them are independent, the corresponding Laplace transform of the interference is

the square of the success probability of the typical general vehicle given in (A.15)

similar to (A.10).

A.7 Proof of Proposition 3.3

This proof uses the same notation as in Appendix A.6. Let A , R+ × [0, 2π) ×

[0, π) × R+ and a = (γ, φ, ϕ, h) ∈ A. From Section 3.1.5, we have Vk, k > m/2,

denoting the point process of vehicles on the kth street S(γ, φ, ϕ, h) that does not

pass through the origin. The Laplace transform of the interference LIa(s) from the

vehicles on S(γ, φ, ϕ, h) is given by

LIa(s) = E
[ ∏
z∈Vk:Bz=1

1

1 + s‖z‖−α

]
(a)
= exp

(
− λp

∫ h

−h

1

1 + (γ2+u2+2γu cos(φ−ϕ))1/δ

s

du

)
, (A.16)

where (a) applies the PGFL of the PPP and ‖z‖2 = ‖(γ cosφ + u cosϕ, γ sinφ +

u sinϕ)‖2. Using (A.11), (A.16), and applying PGFL with respect to midpoints,

orientations and half-lengths, we write the Laplace transform of the interference from

Vr as

LIr(s) = E
[ ∏
k>m/2

E
[ ∏
z∈Vk:Bz=1

1

1 + s‖z‖−α

]]

= exp

(
− µ

π

∫
A

(1− LIa(s))γf̃H(h)dA
)
, (A.17)

where dA = dγdφdϕdh.
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A.8 Proof of Proposition 3.4

Success Probability of the Typical General Vehicle in the PLM-PPP We

learned from Conjecture 1 that the probability of finding the n-th nearest neighbor

closer is higher in the PSP-PPP than in the PLM-PPP. Consequently, the success

probability of the typical general vehicle in the PLM-PPP is lower bounded by that

in the PSP-PPP. As this inference is based on a conjecture, we present the result

for the success probability of the typical general vehicle in the PLM-PPP as an

approximation rather than a bound. By (3.12) and (3.14), we have

pPLM−PPP
2 = LPLM−PPP

I2o+I!
(s)

≈ LPSP−PPP
I2o

(s)LPSP−PPP
I!

(s) |fH(h)=f̂H(h) . (A.18)

Success Probability of the Typical T-junction Vehicle in the PLM-PPP We

have V3
o = V0∪V1, where V0 denote the vehicles on the street that passes through the

origin, and V1 denote the vehicles on the street with one endpoint at the T-junction.

The success probability of the typical T-junction vehicle (order 3), pPLM−PPP
3 , is given

by

p3 = E

[ ∏
z∈V0∪V1:
Bz=1

1

1 + s‖z‖−α
∏
z∈V!:
Bz=1

1

1 + s‖z‖−α

]

(a)
≈ E

[ ∏
z∈V0∪V!:
Bz=1

1

1 + s‖z‖−α

]
E

[ ∏
z∈V1:
Bz=1

1

1 + s‖z‖−α

]

(b)
≈ LPSP−PPP

I2o
(s)LPSP−PPP

I!
(s)E

[ ∏
z∈V1:
Bz=1

1

1 + s‖z‖−α

]

(c)
= LPSP−PPP

I2o
(s)LPSP−PPP

I!
(s)

∞∫
0

exp

(
− λpsδ/2

2hs−δ/2∫
0

1

1 + v2/δ
dv

)
f̂H(h)dh, (A.19)

where (a) assumes independence between V1 and V0∪V!, and (b) follows from (A.18).
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The integral expression in (c) can be derived similarly to (A.14) using the detail that

for the street whose one endpoint is a T-junction at the origin, its other endpoint is at

a distance 2H from the origin. f̂H(h) is the approximated density of the half-length

of the street that ends at a T-junction.

A.9 Proof of Lemma 3.8

We can approximate LIr(θDα) (A.17) using Taylor’s series as θ → 0 as

LIr(θDα) ∼ 1− θµλp

π

∞∫
0

π∫
0

2π∫
0

∞∫
0

h∫
−h

(
D2

γ2 + u2 + 2γu cos(φ− ϕ)

)1/δ

γf̃H(h)dudγdφdϕdh

= 1−Θ(θ). (A.20)

Using (A.13) and (A.20), as θ → 0, the outage probability can be written as

lim
θ→0

1− pm = 1− lim
θ→0

EH,W
[

exp

(
− λpsδ/2

(−W+H)s−δ/2∫
(−W−H)s−δ/2

1

1 + v2/δ
dv

)]m/2

(a)
= 1− EH,W

[
1− λpsδ/2

(−W+H)s−δ/2∫
(−W−H)s−δ/2

1

1 + v2/δ
dv

]m/2
, (A.21)

where (a) interchanges the limit and expectation (by the monotone convergence the-

orem), and applies the Taylor’s theorem inside the expectation. We can further

simplify (A.21) as θ → 0 as

1− pm
(b)∼ 1− EH,W

[
1− λpsδ/2

2

(−W+H)2s−δ/2∫
(−W−H)2s−δ/2

1

(1 + u1/δ)
√
u

du

]m/2
(A.22)

(c)
= Kαλps

δ/2, (A.23)
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where (b) follows from the change of variable u = v2, and (c) results from the integral

in (A.22) evaluating to a constant Kα as θ → 0. Note that Kα depends on α.

A.10 Proof of Lemma 3.9

Consider a model V ′ formed by mapping all the points on each stick to its mid-

point. The expected number of active transmitters on each stick is 2λpE[H]. Since

the midpoints follow a 2D PPP of intensity µ, V ′ forms a non-simple 2D PPP with

density 2µλpE[H]. It can be seen as a marked point process whose ground process

is a 2D PPP of intensity µ and the marks 2λpE[H] refer to the multiplicity of the

points. Let M define the mapping from V to V ′. Using (3.6) and (3.7), the success

probability of the typical vehicle in the PSP-PPP can be expressed as

pPSP−PPP
m = P

(
g > Dα

∑
z∈V

gz‖θ−1/αz‖−αBz

)
.

Similarly, the success probability of the typical vehicle in V ′ is written as

pV
′

m = P
(
g > Dα

∑
z∈V

gz‖θ−1/αM(z)‖−αBz

)
.

For sticks of half-length h, |‖z‖ − ‖M(z)‖| ≤ ‖z −M(z)‖ ≤ h <∞. Then

|‖θ−1/αz‖ − ‖θ−1/αM(z)‖| → 0 as θ →∞. (A.24)

Then pPSP−PPP
m → pV

′
m as θ → ∞. The order m of the typical vehicle is irrelevant

as the mapping M does not distinguish an intersection from a non-intersection. The

success probability pV
′

m is obtained by substituting λ2 = 2µλpE[H] in (3.11).
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APPENDIX B

PROOFS OF CHAPTER 4

B.1 Proof of Theorem 4.1

By (3.7) and (4.1), the conditional success probability can be expressed as

PPLP−PPP
m (θ) = P(g > θDαI | I,V)

= EI [exp(−θDαI) | V ]

(a)
=
∏
z∈V

(
p

1 + s‖z‖−α
+ 1− p

)b
, (B.1)

where s = θDα, and (a) is obtained by averaging over ALOHA and fading. Then

MPLP−PPP
b,m = E[Pm(θ)b]

= E
[∏
z∈V

(
p

1 + s‖z‖−α
+ 1− p

)b]
(b)
= E

[ ∏
z∈Vmo

(
p

1 + s‖z‖−α
+ 1− p

)b]
︸ ︷︷ ︸

Mo
b,m

E
[∏
z∈V!

(
p

1 + s‖z‖−α
+ 1− p

)b]
︸ ︷︷ ︸

M !
b,m

,

(B.2)

where (b) follows from the independence of the 1D PPPs. M o
b,m and M !

b,m are the

b-th moments with respect to the point processes Vmo and V!. We have

M o
b,m

(c)
= exp

(
− 2λ

∫ ∞
0

[
1−

(
p

1 + su−α
+ 1− p

)b]
du

)
= exp

(
− 2λ

∫ ∞
0

[
1−

(
1− ps

uα + s

)b]
du

)
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(d)
= exp

(
− λδ

∫ ∞
0

[
1−

(
1− ps

v + s

)b]
vδ/2−1dv

)
, (B.3)

where (c) applies ‖z‖ = |(−u sinϕ, u cosϕ)|2, and the probability generating func-

tional (PGFL) of the PPP and (d) is the result of substituting v = uα. Similarly, we

can derive M !
b,m as

M !
b,m = E

[∏
z∈V!

(
p

1 + s‖z‖−α
+ 1− p

)b]
(e)
= E

[
exp

(
− λ

∫
R

[
1−

(
p

1 + sg(t, u)−α
+ 1− p

)b]
du

)]
(f)
= exp

(
− 2µ

∫ ∞
0

(1−Gb(t))dt

)
, (B.4)

where g(t, u) = t2 +u2, ‖z‖ = ‖(t cosϕ−u sinϕ, t sinϕ+u cosϕ)‖2 in (e), (f) follows

from the PGFL of the PPP, and

Gb(t) = exp

(
− 2λ

∫ ∞
0

[
1−

(
p

1 + s(t2 + u2)−α
+ 1− p

)b]
du

)
= exp

(
− 2λ

∫ ∞
0

[
1−

(
1− ps

(t2 + u2)1/δ + s

)b]
du

)
(g)
= exp

(
− λδ

∫ ∞
t2/δ

[
1−

(
1− ps

v + s

)b]
vδ−1

√
vδ − t2

dv

)
(B.5)

= exp(−λδFb(t)), (B.6)

where (g) follows from the change of the variable v2 = t2 + u2. Note that Gb(0) =

M o
b,m. Using the binomial expansion, Fb(t) can be expanded as [34]

Fb(t) =
∞∑
k=1

(
b

k

)
(ps)k(−1)k+1

∫ ∞
t2/δ

vδ−1

(v + s)k
√
vδ − t2

dv. (B.7)
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For t = 0, (B.6) reduces to

Gb(0) = exp

(
− 2λθδ/2D

πδ/2

sin(πδ/2)

∞∑
k=1

(
b

k

)(
δ/2− 1

k − 1

)
pk
)

= exp

(
− 2λDθδ/2Γ(1 + δ/2)Γ(1− δ/2)Db(p, δ/2)

)
, (B.8)

where Db(p, δ/2) =
∑∞

k=1

(
b
k

)(
δ/2−1
k−1

)
pk = pb 2F1(1−b, 1−δ/2; 2; p). Substituting (B.8)

for M o
b,m and (B.4) in (B.2), we obtain the result in Theorem 4.1.

B.2 Proof of Corollary 4.2

Corollary 4.2 states that the variance of the conditional success probabilities tends

to zero as p → 0 while λp is set to a constant C. By (B.2), the moment Mb,m can

be expressed as Mb,m = M o
b,mM

!
b,m. The first term inside the exponential function

in (4.6) refers to M o
b,m and the second term is M !

b,m. Db(p, δ/2) = p for b = 1 and

2p + (δ/2 − 1)p2 for b = 2. Thus M o
2,m = (M o

1,m)2+(δ/2−1)p. By (B.4), M !
2,m =

exp(−2µ
∫∞

0
(1−G2(t)dt), where

G2(t) = exp

(
− λδ

∫ ∞
t2/δ

[
1−

(
1− ps

v + s

)2]
vδ−1

√
vδ − t2

dv

)
. (B.9)

As p→ 0 with λp = C, we have

lim
p→0
λp=C

M !
2,m = exp

(
− 2µ lim

p→0
λp=C

∫ ∞
0

(1−G2(t))dt

)
(a)
= exp

(
− 4µλδps

∫ ∞
t2/δ

vδ−1

(v + s)
√
vδ − t2

dv + o(p2)

)
(b)
≈ exp

(
− 4µ lim

p→0
λp=C

∫ ∞
0

(1−G1(t))dt

)
= (M !

1,m)2, (B.10)

where (a) applies Taylor’s series and (b) follows from (B.5). Now, we are ready to
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evaluate the variance M2,m −M2
1,m of the conditional success probability.

M2,m −M2
1,m = (M o

1,m)2+(δ/2−1)pM !
2,m − (M o

1,mM
!
1,m)2

= (M o
1,m)2((M o

1,m)(δ/2−1)pM !
2,m − (M !

1,m)2). (B.11)

By (B.10), as p→ 0 with λp = C, (B.11) reduces to

lim
p→0
λp=C

(M o
1,mM

!
1,m)2((M o

1,m)(δ/2−1)p − 1) = 0.

B.3 Proof of Theorem 4.3

We note that the first term in the product (4.7) with m = 2 is the success

probability of the typical vehicle in the 1D PPP given by (4.9) with b = 1. For

the typical intersection user, m = 4, as two independent 1D PPPs pass through the

origin. Consequently, as 0 ≤ ps ≤ 1, the success probability of the typical vehicle in

the PLP-PPP is upper bounded by that of the 1D PPP.

As θ → 0, the first term in (4.7) can be approximated using Taylor’s series as

1 −mλpDθδ/2Γ(1 + δ/2)Γ(1 − δ/2). Applying Taylor’s series to the second term in

(4.7), we get

lim
θ→0

exp

(
− 2µ

∞∫
0

(
1− exp

(
− λpDθδ/2

∞∫
t2

R2θδ

1

(1 + v1/δ)
√
v − t2

R2θδ

dv

))
dt

)

≈ 1− 2µλpDθδ/2
∫ ∞

0

∫ ∞
t2

R2θδ

1

(1 + v1/δ)
√
v − t2

R2θδ

dv dt

= 1− o(θδ/2),

since t2

R2θδ
→∞ as θ → 0. Then we can express pPLP−PPP

s as

1− pPLP−PPP
s ∼ mλpDθδ/2Γ(1 + δ/2)Γ(1− δ/2), θ → 0. (B.12)
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Similarly, we can approximate (4.9) with b = 1 as

1− pΦd
s ∼ cdλdD

dθδ
′
Γ(1 + δ′)Γ(1− δ′), θ → 0. (B.13)

Setting δ/2 = δ′ = 1/α i.e., d = 1 (m = c1 = 2), and λp = λ1 in (B.12), we obtain

(B.13), which refers to a 1D PPP or a single street. For the typical intersection user,

m = 4.

B.4 Proof of Theorem 4.4

Intuitively, as θ → ∞, for SIR > θ, there should not be any interferers in a

large disk around the user. It follows from (4.13) that the pair correlation function

gPLP−PPP(r) → 1 as r → ∞, exhibiting a Poisson network-like behavior. Hence the

PLP-PPP behaves like a 2D PPP as θ →∞. A rigorous proof follows.

Let Gu denote an orthogonal grid with the locations of the lines u ∈ Z, i.e., u is

the x-intercept or y-intercept of the line. The vehicles on each line form a 1D PPP.

One way of obtaining such a model is to start with a 2D PPP Φ2 and quantize one

of the coordinates of the points with equal probability (Definition 2.2). Similarly, we

can generate the PLP-PPP from a 2D PPP.

In the PLP-PPP, the locations of the streets are characterized by x, which follows

a 1D PPP Φ1 of intensity µ. This implies that the distances between the points in

Φ1 are exponentially distributed. With each x, there is an associated orientation ϕ

i.i.d. on [0, π). Then, by rotating the lines in the orthogonal grid with exponential

spacing Ge, we can obtain the PLP-PPP. However, direct mapping from Φ2 to Ge

would result in an inhomogeneous distribution of points on the streets.

Let M : Φ2 → Vu → V define the mapping from a 2D PPP to the PLP-PPP,

where Vu and V denote the locations of the transmitters in Gu and the PLP-PPP,

respectively. We order the streets based on their perpendicular distances to the origin.
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By Φ2 → Vu, the points on Φ2 are translated to Gu through the quantization process

described above. The mapping Vu → V involves two steps: 1) The points on the ith

street on the grid Gu are translated to the ith street on the grid Ge. 2) Each line is

rotated independently such that ϕ is i.i.d. on [0, π).

From (3.6) and (3.7), the success probability is given by

pPLP−PPP
m = P

(
g > Dα

∑
z∈V

gz‖θ−1/αz‖−αBz

)
. (B.14)

Using the mapping function M, we can express (B.14) as

pPLP−PPP
m = P

(
g > Dα

∑
z∈Φ2

gz‖θ−1/αM(z)‖−αBz

)
. (B.15)

The success probability of the typical vehicle in Φ2 is

ps
Φ2 = P

(
g > Dα

∑
z∈Φ2

gz‖θ−1/αz‖−αBz

)
. (B.16)

The mapping Φ2 → Vu displaces each point by at most 1/2 as u ∈ Z. Since the

exponential distribution has a finite variance and the PLP is isotropic, the mapping

Vu → V translates the points in Vu only by a finite distance. Then, by the Cauchy-

Schwarz inequality, |‖z‖ − ‖M(z)‖| ≤ ‖z −M(z)‖ < ∞. Multiplying by θ−1/α, we

obtain

|‖θ−1/αz‖ − ‖θ−1/αM(z)‖| → 0 as θ →∞. (B.17)

Applying (B.17) to (B.15) and (B.16), we infer that the interference experienced by

the typical general/intersection user in the PLP-PPP tends to that of in a 2D PPP

as θ → ∞. Note that the type of user does not matter since the mapping does not

affect the points of Φ2 as θ → ∞, i.e., there is no difference between a general user

and an intersection user. Hence the success probability in the PLP-PPP tends to
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that in Φ2 with intensity λpµ (Lemma 3.1).
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APPENDIX C

PROOFS OF CHAPTER 5

C.1 Proof of Lemma 5.1

We can express the mean number of points as

E|X | = E

[
N∑
i=1

1(yi ∈ X )

]

=
N∑
i=1

E[1(yi ∈ X )]

=
N∑
i=1

P({yi} ⊆ X )

(a)
=

N∑
i=1

Kii = tr(K)
(b)
=

N∑
i=1

εi
1 + εi

,

where (a) follows from Definition 5.1 and (b) follows from the eigendecomposition of

K. tr(K) denotes the trace of K.

C.2 Proof of Lemma 5.2

The matrix K can be written in terms of blocks as K =

KA KT
C

KC KD

. Without

loss of generality, we assume A = {x1} and D = X \ A. The conditional marginals

of observing D given A has been observed are given by

P(D ⊆ Y | A ⊆ Y ) =
P(A ∪D ⊆ Y )

P(A ⊆ Y )
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(a)
=

det(KA∪D)

det(KA)

(b)
= det(KD −KCK

−1
A KCT ),

where (a) follows from Definition 5.1 and (b) uses the Schur complement of K. Then,

D | A ∼ DPP(KD −KCK
−1
A KCT ).
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