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PERFORMANCE ANALYSIS AND TOPOLOGY CONTROL OF LARGE

WIRELESS NETWORKS WITH FADING

Abstract

by

Xiaowen Liu

For the performance analysis of multihop wireless networks, the key issues

are energy consumption, end-to-end reliability, delay and throughput. In the

research of wireless multihop networks, the “disk models” that are often employed

assume that the radius for a successful transmission of a packet has a fixed and

deterministic value, irrespective of the condition of the wireless channel. Taking

into account the stochastic nature of the fading channel, the Rayleigh fading link

model includes fading as a random variation in the path loss. As a result, all

properties of the network become random variables, in particular the signal-to-

noise-and-interference ratio (SINR) that determines the success of a transmission.

This thesis explores the performance of one- and two-dimensional networks

with equidistant nodes and uniformly randomly placed nodes. For regular two-

dimensional networks, three topologies are studied based on a uniform traffic

model and a simple random MAC scheme. Square networks are explored in more

detail for their load distribution. By comparing the energy consumption and the

achievable throughput for random and regular networks, we demonstrate that

random distributions incur substantially higher energy expenditures at a lower

achievable throughput.



Xiaowen Liu

For sensor networks with a slotted ALOHA MAC protocol in Rayleigh fad-

ing channels, we present closed-form expressions of the average link throughput,

and we compare networks with three regular topologies in terms of throughput,

transmit efficiency, and transport capacity. For random networks with nodes

distributed according to a two-dimensional Poisson point process, the average

throughput is analytically characterized and numerically evaluated.

Uniformly random or Poisson distributions are widely accepted models for the

location of the nodes in wireless sensor networks if nodes are deployed in large

quantities and there is little control over where they are dropped. On the other

hand, by placing nodes in regular topologies, we expect benefits both in coverage

and efficiency of communication. We describe and analyze quasi-regular networks,

which only use nodes as sentries and relays that are approximately evenly spaced,

thereby emulating a regular grid topology. It is shown that quasi-regular networks

have a significant energy and lifetime advantage compared with purely random

networks.
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CHAPTER 1

INTRODUCTION

1.1 Overview

An ad hoc network is a collection of nodes setting up peer-to-peer commu-

nication without the use of any infrastructure. The term “ad hoc” means “can

take different forms” and “can be static or mobile” [74]. The broadcast nature

of the radio channel of wireless ad hoc networks enables nodes to communicate

with high probability if the signal-to-noise-and-interference ratio (SINR) is high

enough. Distant nodes may communicate indirectly over one or more relays. The

source node, relay node(s) and destination node constitute a multihop connection

or route. Multihop connections with the aid of peer nodes as relays and the lack

of an infrastructure are the main differences that set the ad hoc wireless network

apart from other classes of wireless network. Multihop routing is typically used

to save transmit energy and consequently, increase the battery lifetime and de-

crease the interference between the nodes, thereby allowing spatial reuse of the

communication channel.

With the development of micro-electro-mechanical-systems (MEMS) technol-

ogy and digital electronics, sensor networks [4, 53] with small size, light weight,

low cost, low power nodes have stimulated extensive research. In a sensor network,

large numbers of sensor nodes are placed inside or near a phenomenon to collect
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information about the phenomenon. One of the main discriminators of wireless

sensor networks from other type of multihop networks is the fact that, in most

cases, the sensor data has to be delivered to a common sink, the observer or base

station.

In most applications, devices in a multihop network are powered by batteries

with limited lifetime. Devices with a rechargeable battery, e.g., cellular phones,

must maximize lifetime between recharging. For devices with unrechargeable bat-

tery (for instance, in military applications, when nodes are distributed to the

battlefield to collect data and it is impossible to recharge the batteries), energy

conservation becomes imperative. So energy consumption plays a crucial role

in the overall network performance [11, 59]. The traditional assumption is that

transmit power dominates energy consumption although many researchers like [2]

indicate that signal processing related to packet transmission and reception and

hardware operation in a standby mode consume nonnegligible power as well. Our

work does not focus on the energy consumption of the receiver and hardware.

Rather, we focus on the transmit energy consumption so that the transmit traffic

load of the node determines the node lifetime. For a sensor network, the load on

the nodes near the base station is higher since those nodes have to forward all the

traffic to the base station.

Throughput is a traditional measure of how much traffic can be delivered by

the network [15, 16, 34, 75]. Although many papers on networks use the terms

“capacity” or “throughput capacity” instead of throughput, we should clarify that

this capacity is not the channel capacity in Shannon’s theory. This capacity could

be understood as the maximum throughput of the network when the rates of trans-

mission on each link are fixed [11]. The throughput is intuitively related to the
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error-free transmission rate of each transmitter, which, in turn, is upperbounded

by Shannon’s channel capacity. In this thesis, we define the throughput as the

expected number of successful packet transmissions of a given node per timeslot.

The end-to-end throughput over a multihop connection is the minimum of the link

throughput values. End-to-end throughput is a performance measure of a route

and the MAC scheme. We determined the throughput for different MAC schemes

using analytic and simulation methods, yielding lower and upper bounds of the

available throughput.

Our analysis is based on fading channel models, in contrast to the deterministic

“disk model”(see Section 2.1), that is often used for the analysis of multihop

packet networks [16, 62, 70, 77], where the radius for a successful transmission

has a deterministic value, irrespective of the condition of the wireless channel, and

interference is commonly taken account using the same geometric disk abstraction.

The stochastic nature of the channel and thus the fact that the SINR is a random

variable are neglected. However, the volatility of the channel cannot be ignored in

wireless networks [11, 14]; the inaccuracy of “disk models” has also been pointed

out in [67] and is easily demonstrated experimentally [13, 44]. In addition, the

“prevalent all-or-nothing model” [64] leads to the assumption that a transmission

over a multihop path either fails completely or is 100% successful, ignoring the fact

that the end-to-end packet loss probabilities increase with the number of hops.

To overcome some of these limitations of the “disk model”, we employ a simple

Rayleigh fading link model that relates transmit power, large-scale path loss, and

the success of a transmission [21].

Based on the Rayleigh fading link model, we study regular one- and two-

dimensional networks. To find the lower and upper throughput bounds, we present

3



several optimized MAC schemes. In particular, for regular two-dimensional net-

works, we consider three different topologies. At the other extreme, random net-

works whose nodes are uniformly randomly placed are explored. Comparisons

between regular networks and their random counterparts are given.

Uniformly random or Poisson distributions are widely accepted models for the

location of the nodes in wireless sensor networks if nodes are deployed in large

quantities and there is little control over where they are dropped. On the other

hand, by placing nodes in regular topologies, we expect benefits both in coverage

and efficiency of communication. We describe and analyze a basic localized algo-

rithm and three modifications for topology control that provide a tradeoff between

performance and deployment cost. The objective is to regularize the topology for

improved energy efficiency. The basic algorithm produces quasi-regular networks,

which only use nodes as sentries and relays that are approximately evenly spaced,

thereby emulating a regular grid topology. It is shown that quasi-regular networks

have a significant energy and lifetime advantage compared with purely random

networks.

1.2 Related Work

There is a rich literature on throughput capacity for ad hoc wireless networks

[5, 15, 16, 23, 57, 65, 81]. The seminal paper [16] shows that, under certain

assumptions, in a static two-dimensional network with N nodes and N/2 randomly

selected source-destination pairs, the end-to-end throughput of a connection is at

most W/
√

N , where W is the maximum transmission rate for each node. This

result states that with an increasing number of nodes per unit area, the end-to-

end throughput goes to zero. This work stimulated research in this problem (e.g.
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[15, 61, 75]). However, such “order of” results do not provide any guidelines for

protocol design, since the scaling behavior is very robust against changes in MAC

and routing protocols [78]. Using ideal shortest path routing for the same ad hoc

network model as in [16], [51] confirms the 1/
√

N decay of the throughput by

an alternative approach and provides the relations of various network parameters.

The authors in [49], claim that they computed an exact expression for throughput.

They partition the network into non-overlapping square grid cells of equal size and

assume that nodes can only communicate with the nodes in the same cell. This

assumption neglects the fact that nodes within neighboring cells may have a higher

SINR than nodes within the same cell.

All the above research work assumes networks with randomly located nodes.

There are also research efforts focusing on networks with regular topologies which

allow for mathematical tractability and provide valuable insight. In [65], the au-

thors calculate the throughput of a regular square networks with a slotted ALOHA

channel access scheme. For heavy traffic, they calculate the throughput as the

expected number of successful packets received per slot summed over the whole

network divided by the expected path length in hops. They find that the through-

put grows proportionally to the square root of the number of nodes in the network

if the number of nodes within transmission range is kept small. This result can

be intuitively explained by spatial reuse. [63] also uses a square grid network

to reveal the condition of connectivity and coverage if the nodes are unreliable.

Moreover, when considering the exposure which is the capability of observing a

target moving in a sensor field, [47] studies and compares three regular networks —

square, triangle and hexagon networks. Their experimental results show that the

exposure of the networks with regular topologies is higher than that with random
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topology. Although some researchers focusing on random networks argue that

it is more realistic and others argue that regular topologies are mathematically

tractable, none of them have analyzed how big the performance gap is between

these two classes of networks in terms of throughput, energy consumption and

delay. We investigated the performance difference of these two classes networks.

Energy consumption is one of the most important performance metrics for

wireless ad hoc networks with energy-constraint devices. It is often assumed that

low-power transmissions reduce the interference and increase the throughput by

spatial reuse, while, at the same time, consuming less energy. However, a route

that contains more hops may experience a higher probability of route failure. [22]

shows that routing as far as possible is a very competitive strategy in many cases.

To achieve robustness, the use of multipath routing is suggested [33]. [29] proves

that using a single path routing scheme with higher transmit power can also

be an energy-efficient solution for robustness against node failures. Taking into

account delay, throughput and reliability for specific MAC and routing protocols,

minimizing the transmit power sustaining the connectivity may not be a desired

strategy. All these considerations complicate the design of routing algorithms [60]

and require the coordination of routing and access control protocols across the

whole network. [59] presents a distributed protocol to find the minimum energy

consumption topology for static ad hoc networks. Since the topology is found

via a local search in each node’s surrounding, they argue that it is applicable to a

mobile scenario, which is “proved” by simulation. Since [68] shows that idle energy

consumption can not be ignored compared to transmitting and receiving energy

consumption, the authors in [79] present Geographical Adaptive Fidelity (GAF)

— an energy saving protocol focusing on identifying nodes that are equivalent from
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a routing perspective and then turning off unnecessary nodes, keeping a constant

level of routing fidelity, which is defined as the uninterrupted connectivity between

communicating nodes.

Most of the work above is based on a“disk model”, often denoted as protocol

model [16]. This model assumes every source node has the same transmission

range r, and other transmitting nodes with distance further than (1 + ∆)r to the

source node do not interfere the source node for some 0 < ∆ ≤ 1. This disk

model generates no interference outside a distance (1 + ∆)r, and it assumes the

same received power level over the whole disk. Obviously, it is not a good model.

The physical model [16] calculates the total interference over the whole network.

The reception probability is 1 if the SINR is greater than a threshold Θ and 0

if it is less than Θ. We call this model threshold model without fading or simply

threshold model in the thesis. It takes into account the power law path loss model

and the interference over the entire network. But it is idealized, too, since even in

the non-fading case, the actual reception probability is not a simple step function

of the source-destination distance [83]. [32] examines the forwarding methods for

wireless mobile multihop network both in Rayleigh fading [66] and non-fading

channels. It models the channel power gain by an exponential distribution and

assumes a path loss exponent α of 3. Adding the multipath fading effect and taking

into account the total interference provides a more realistic model. However, it

did not focus on the analytic study of the link model, instead simulations of

different algorithms were provided. [82] extends the work in [67] which adopts

a disk model without considering the random propagation effects, by combining

both the fading and shadowing effects. As a result, the reception probability

is a function of the threshold. Further, [28] characterizes the multipath fading
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channel dynamics mostly by simulations at the packet level and examines the data

queueing performance with respect to node speed, SNR, and average data message

size. Although fading effects were considered in earlier work, their impact on the

end-to-end reliability and the associated energy issues have not been addressed.

Therefore, the detailed analysis of the performance of the multihop networks with

fading is a very important research topic.

1.3 Contributions

The contributions made by this thesis are the following:

1. We analyze regular and random one-dimensioal (line) networks with Rayleigh

fading channels [38], [39]. Based on a simple random MAC scheme, we

show that regular line networks (equidistant nodes) outperform random line

networks (uniformly randomly distributed nodes) in terms of throughput

and, more drastically, in energy consumption. For regular line networks,

we present the optimum scheduler that takes full advantage of spatial reuse

and show that the throughput gain from the optimum scheduler is about

100% at nearly the same energy consumption. For random line networks, we

present a throughput balancing strategy with power control and an energy

balancing strategy without power control.

2. We study and compare the performance of several two-dimensional net-

works with regular topologies utilizing a Rayleigh fading link model [40].

For nearest-neighbor and shortest-path routing, analytical expressions of

the path efficiency, delay, and energy consumption for a given end-to-end

reception probability are derived. For the interference analysis, the maxi-

mum throughput and optimum transmit probability are determined, and a
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simple MAC scheme is compared with an optimum scheduler, yielding lower

and upper performance bounds.

3. We present closed-form expressions of the average per-node throughput for

two dimensional sensor networks with a slotted ALOHA MAC protocol in

Rayleigh fading channels [41], [42]. We compare networks with three regular

topologies in terms of per-node throughput, transmit efficiency, and trans-

port capacity. For random networks with nodes distributed according to a

two-dimensional Poisson point process, the average per-node throughput is

analytically characterized and numerically evaluated.

4. We describe and analyze a basic localized algorithm and three modifications

for topology control that provide a tradeoff between performance and deploy-

ment cost [43]. The objective is to regularize the topology for improved en-

ergy efficiency. The basic algorithm produces quasi-regular networks, which

only use nodes as sentries and relays that are approximately evenly spaced,

thereby emulating a regular grid topology. We consider two specific types

of quasi-regular networks: the ones that are based on a Gaussian deviation

about an ideal grid point, and the ones that consist of a subset of nodes

taken from a Poisson point process.

1.4 Organization of the Thesis

In the next chapter, the Rayleigh fading link model is introduced. Chap-

ter 3 discusses the throughput and energy consumption for regular and random

one-dimensional networks. For these two classes of networks, a simple random

MAC scheme and an optimized scheduler are presented, yielding lower and upper

throughput bounds. For random networks, two transmit power control strate-
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gies are provided, and their energy consumption is compared. Chapter 4 deals

with two-dimensional regular networks with three topologies — square, triangle,

hexagon. Chapter 5 discusses the load distribution for regular square networks

under the peer-to-peer traffic assumption (ad hoc network) and many-to-one traf-

fic assumption (sensor network). Chapter 6 compares the performance of regular

and random networks. In particular, for random sensor networks without power

control, a strategy with retransmissions is discussed. Chapter 7 provides the anal-

ysis of the average link throughput for sensor networks of regular and random

topologies with a slotted ALOHA MAC protocol in Rayleigh fading channels.

Chapter 8 introduces and analyzes quasi-regular networks, where only nodes that

are approximately evenly spaced to emulate a regular grid network are active and

other nodes are put to sleep to save energy. Chapter 9 concludes the thesis.
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CHAPTER 2

THE RAYLEIGH FADING LINK MODEL

2.1 Shortcomings of the Disk Model

The protocol or disk model in [16] assumes all nodes use the same transmit

power which determines a circle with radius r, the so-called transmission radius

[9, 27, 63, 65, 71]. The transmission is successful if the receiver lies inside the circle

and every other simultaneously transmitting node lies outside the circle centered

at the receiver with radius r(1 + ∆) for some small positive ∆.

One of the drawbacks of the model is illustrated by Fig. 2.1. The transmit

power determines the circle with radius r denoted by the solid circle. The dashed

circle with radius of r(1 + ∆) centered at the receiver determines the interference

range, i.e., any simultaneous transmission from a node within this circle leads to

a collision. In Fig. 2.1 (a), the receiver is inside the solid circle and many other

interfering nodes are outside the dashed circle, so the transmission is successful

according to the model. In Fig. 2.1 (b), there is a collision since the interfering

node is inside the dashed circle. However, from a communication theory point of

view, it is clear that the SINR is the parameter that determines the success of a

transmission. For example, let us assume all the nodes in Fig. 2.1 transmit at the

same power level, and the noise power is zero. In Fig. 2.1(a), if RI = 2TR = 2q,
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Figure 2.1. Shortcoming 1 of the disk model. T, R, and I denote
transmitter, receiver, and interfering nodes, respectively. (a) Successful

transmission. (b) Collision.

then the SIR is

SIR =
q−α

10 · (2q)−α
=

2α

10
, (2.1)

assuming the number of interferers is 10, where α is the path loss exponent. In

Fig. 2.1 (b), if RI = 5TR = 5q, for example, the SIR is

SIR =
q−α

(5q)−α
= 5α. (2.2)

Obviously, the SIR of Fig. 2.1(b) is much greater than that of Fig. 2.1 (a), about

25dB for α = 4.

Another shortcoming can be explained by Fig. 2.2. The nodes use transmit

power P1 in Fig. 2.2 (a) and P2 in Fig. 2.2 (b). P1 < P2 so that r1 < r2. The

interferer is inside the dashed circle in Fig. 2.2 (a) but outside the dashed circle in

Fig. 2.2 (b). So the transmission is successful in Fig. 2.2 (a) but fails in Fig. 2.2
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Figure 2.2. Shortcoming 2 of disk model. T, R, and I denote
transmitter, receiver, and interference nodes, separately. r1 < r2. (a)

Successful transmission. (b) Collision.

(b) although the SIR is the same for the two cases. The weakness of this disk

model is that it does not take into account the difference of the distances if both

transmitters are inside the solid circle.

The physical model [15, 16] is a threshold model (without fading). Let the

desired source node transmit at power P0 over a distance d0 and have k interferers

transmitting at power Pi, i = 1, ..., k over distance di, i = 1, ..., k respectively.

The desired transmission is successful if

P0d
−α
0

N0 +
k∑

i=1

Pid
−α
i

≥ Θ. (2.3)

where Θ is the SINR threshold and N0 is the noise variance. Note that for α → ∞,

this reduces to a disk model with transmission radius 1, irrespective of Pi. Without

interference, the physical model assumes the reception probability is one if the
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transmitter-receiver distance is smaller than a threshold and zero if it is greater

than the threshold, like the disk model. In reality, even with long packets (and

accordingly, long channel codes), the packet reception probability cannot reach

1. For example, with a one-hop link reception probability of 0.95, over a 10-

hop connection, the end-to-end reliability is only 0.60 due to error propagation.

However, by the above models, the end-to-end reliability is 1 or 0. Further, both

models neglect the random fading effect of the radio channel.

2.2 The Rayleigh Fading Link Model

We assume a narrowband multipath wireless channel with a coherence time

equal to or longer than the packet transmission time. The channel can then be

modeled as a flat block Rayleigh fading channel [56] with an AWGN process z.

Therefore the received signal at time k is yk = ak xk +zk , where ak is the path loss

multiplied by the fading coefficient. The variance of the noise process is denoted

by N0.

The transmission from node i to node j is successful if the SINR γ is above a

certain threshold Θ that is determined by the communication hardware and the

modulation and coding schemes (normally 2 ≤ Θ ≤ 100 or 3dB ≤ Θ ≤ 20dB)

[11].

With the assumptions above, the SINR γ is given by

γ =
Q

N0 + I
. (2.4)

Q is the received power, which is exponentially distributed with mean Q̄. Over

a transmission of distance d = ‖xi − xj‖2 with an attenuation dα, we have Q̄ =
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P0d
−α, where P0 is the transmit power1, and the path loss exponent is 2 6 α 6 5.

I denotes the interference power affecting the transmission, i.e., the sum of the

received power from all the undesired transmitters.

Our analysis is based on the following Theorem [21]:

Theorem 1 In a Rayleigh fading network, the mean reception probability P[γ >

Θ] can be factorized into the reception probability of a zero-noise network and the

reception probability of a zero-interference network.

Proof: Let Q0 denote the received power from the desired source and Qi, i =

1, . . . , k, the received power from k interferers. All the received powers are ex-

ponentially distributed, i.e., pQi
(qi) = 1/Q̄i e

−qi/Q̄i , where Q̄i denotes the average

received power Q̄i = Pid
−α
i . The probability of correct reception is2:

pr = EI

[

P[Q0 > Θ(I + N0)]|I
]

= EI

[

exp
(

− Θ(I + N0)

Q̄0

)]

=

∫ ∞

0

· · ·
∫ ∞

0

exp
(

− Θ(
∑k

i=1 qi + N0)

Q̄0

)

·
k∏

i=1

pQi
(qi) dqi

= exp
(

− ΘN0

P0d
−α
0

)

︸ ︷︷ ︸

pN
r

·
k∏

i=1

1

1 + Θ Pi

P0

(
d0

di

)α

︸ ︷︷ ︸

pI
r

. (2.5)

pN
r is the probability that the SNR γN := Q0/N0 is above the threshold Θ, i.e.,

the reception probability in a zero-interference network as it depends only on the

noise. The second factor pI
r is the reception probability in a zero-noise network.

2

1This equation does not hold for very small distances. So, a more accurate model would be
Q̄ = P ′

0 ·(d/d0)
−α, valid for d > d0, with P ′

0 as the average value at the reference point d0, which
should be in the far field of the transmit antenna. At 916MHz, for example, the near field may
extend up to 3-4ft (several wavelengths)[22].

2A similar calculation has been carried out in the Appendix of [82] for a network with
spreading gain and equal transmit powers for all nodes.
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This allows an independent analysis of the effect caused by noise and the effect

caused by interference. For each interferer, there is one factor in the product. It

assumes all the distances are known, and it is known precisely who is transmitting.

Theorem 1 will be extended in Chapter 7 to the case of slotted ALOHA where

the transmitting nodes are selected randomly. Note that this is still a threshold

model, but it includes Rayleigh fading.

16



CHAPTER 3

PERFORMANCE ANALYSIS OF ONE-DIMENSIONAL NETWORKS

We study the performance of line networks — regular line networks (equidis-

tant nodes) and random line networks (uniformly randomly distributed nodes)

— since optimum routes in higher-dimensional networks approximately follow a

straight line. Fig. 3.1 displays a 5-node regular line network and a typical random

line network. It is assumed that the left end node is the source node and the

right end node is the destination node. For every transmitting node, its next-hop

receiver is its right neighbor. Both line networks have density one, i.e., the ex-

pected number of nodes in an interval of length one is one. From Theorem 1, we

know that the reception probability is the product of the reception probability in

a zero-interference network pN
r and the reception probability in a zero-interference

network pI
r. We fix pN

r by fixing the transmit power P0 and consider networks

where the reception is only corrupted by interference, not by noise (interference

analysis). The throughput is defined as the expected number of successful packet

transmissions of a given node per timeslot. The end-to-end throughput over a

multihop connection is the minimum of the link throughput values.
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Figure 3.1. A 5-node regular line network and a 5-node random line
network.

3.1 Regular Line Networks

3.1.1 Simple MAC scheme

First, we study a very simple MAC scheme, with the aim of finding a lower

performance bound for more elaborate schemes. For the network, it is assumed

that nodes are transmitting packets independently in every timeslot with transmit

probability p at equal transmit power level. The same MAC scheme was considered

in [27] and [65]. It is called slotted ALOHA MAC in [65]. The packets are of equal

length and fit into one timeslot. In Fig.3.2 (a), the simulation results for various

path loss exponents α are plotted.

3.1.2 Optimum scheduler

Exploiting spatial reuse, we can devise a scheduling scheme that maximizes

the throughput. Assume that in a regular line network, every q-th link is used in

a given timeslot for unidirectional traffic. Therefore, q phases are needed for all

the nodes to make one transmission attempt. In Fig. 3.2 (b), the throughput as

a function of q is plotted. Optimum scheduling is achieved at qopt = 8, 5, 4, 3 and

the throughput ratio between the simple MAC scheme and the optimum one is

between [0.5, 0.6] for α = 2, 3, 4, 5. Since pmax ≈ 1/qopt for all α, where pmax is

the throughput-maximizing transmit probability of the simple MAC scheme, the
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Figure 3.2. (a). Simultion results of received packets per node and
timeslot for Θ = 10 and α = 2, 3, 4, 5 for a large regular line network
based on the simple MAC scheme. (b). Received packets per node and
timeslot for Θ = 10 and α = 2, 3, 4, 5 for a large regular line network
where every q-th link is used unidirectionally. The points marked with

⊗ are the throughput-optimum points.

link utilizations1 (and thus the energy consumption) are almost identical for the

two MAC schemes. The throughput gain from the optimum scheduler is about

100%. The comparison is shown in Table 3.1.

3.2 Random Line Networks

For regular line networks with equidistant nodes, a fixed pN
r means that nodes

transmit at equal transmit power level. However, for random line networks where

nodes are uniformly randomly placed in a line, a fixed pN
r requires transmit power

adaptation. Different transmit power levels will cause some nodes to die soon,

which will decrease the lifetime2 of the whole network; on the other hand, the

1The fraction of timeslots that a node is transmitting.

2We assume the lifetime of the line network is the time until the first node dies. This definition
is a consequence of the strict nearest-neighbor routing policy.
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TABLE 3.1

COMPARISON OF SIMPLE MAC SCHEME WITH OPTIMUM

SCHEDULER FOR A REGULAR NETWORK.

α = 2 α = 3 α = 4 α = 5

pmax of simple MAC 0.1200 0.2060 0.2600 0.2970

1/qopt of optimum scheduler 0.1250 0.2000 0.2500 0.3333

maximum throughput of simple MAC 0.0433 0.0811 0.1096 0.1288

maximum throughput of optimum scheduler 0.0758 0.1599 0.2174 0.2504

equal transmit power strategy is energy balanced, but it results in different pN
r .

Therefore, we consider and compare two strategies — adaptive transmit power

and equal transmit power.

3.2.1 Adaptive transmit power

From Chapter 2, we know that for a zero-interference network, the link recep-

tion probability over a link of distance d0 is given by pN
r = e

− ΘN0

P0d−α
0 . Solving for

P0, we find the necessary transmit power to achieve a link reliability pN
r to be

P0 =
dα

0 ΘN0

− ln pN
r

. (3.1)

If the link reception probability pN
r is fixed, we can adapt the transmit power

based on (3.1).

3.2.1.1 Simple MAC scheme

Throughput. Again, we consider the simple MAC scheme for random line net-

works. We plot the average throughput for a large random line network in

Fig. 3.3(a). In comparison with the regular line network in Fig. 3.2 (a), we can
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Figure 3.3. (a) SImulation results of received packets per node and
timeslot for simple MAC scheme of unidirectional traffic in a large

random line network. (b) Throughput distribution of a network where
nodes of 4 groups with 50 nodes each are placed in a line with distance
3 for the first group, distance 1 for the second group, distance 3 for the

third group, and distance 1 for the fourth group.

see that the regular line network has a higher throughput than the random line

network and that the difference is higher for larger α. To better understand

how the distance interval distribution affects the throughput, we investigate the

throughput distribution for a network with abruptly changing node density and

plot the throughput distribution over the nodes for α = 2 and α = 4 in Fig. 3.3

(b), where 50 nodes are placed with distance 3 for the first group, 50 nodes with

distance 1 for the second group, 50 nodes with distance 3 for the third group, and

50 nodes with distance 1 for the fourth group. Nodes in the dense area and close

to the junction have lower throughput due to nearby interfering nodes with high

transmit power.
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Energy consumption. For a random line network of density one with n nodes and

transmit probability p, the total expected energy consumption is

Etot = np
ΘN0

− ln pN
r

E[dα
r ]

where dr are the internode distances of the random line network. When normalized

by E0 = ΘN0

− ln pN
r

, we get3

Erm
tot = npE[dα

r ]. (3.2)

dr is a random variable with mean d̄r = 1 and exponential distribution

fdr(x) =
1

d̄r

e−x/d̄ru(x) = e−xu(x). (3.3)

This holds when nodes form a (homogeneous) Poisson point process on a line.

Therefore, E[dα
r ] = Γ(1+α) = 2, 6, 24, 120 for α = 2, 3, 4, 5. For an n-node regular

line network with transmit probability p, the total expected energy consumption

is Eed
tot = npE[dα

e ] normalized by E0 = ΘN0

− ln pN
r

, where pN
r is the same as that of

the random network and de = 1 is the internode distance of the equidistant line

network. So E[dα
e ] = 1 for all α. For a regular line network, at p = 0.25 and n =

100, the total normalized energy consumption is Eed
tot = 25 for all α. For random

line networks, the total normalized energy consumptions are Erm
tot = 50, 150, 600,

3000 for α = 2, 3, 4, 5. Our simulation running on 3000 node distributions and

1000 timeslots for each distribution shows the total energy consumptions are 44.4,

160.4, 494.2, 2812.0 for α = 2, 3, 4, 5. The simulation results are within ±10% of

the total expected energy consumption, which confirms the theoretical results.

3It is assumed that E0 expresses the energy required to send a packet at a power level ΘN0

− ln pN
r

.
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3.2.1.2 Throughput balancing strategy

Finding the globally optimum scheduling scheme for random networks is an

NP-hard problem [52]. Here we propose a simple and scalable near-optimum

scheduling scheme that takes nearest interferers into account and balances the

throughput of each node to achieve higher end-to-end throughput4.

ddd0i 0jI

A B C D

Figure 3.4. Distances in a random line network. The filled circles
denote the receivers.

As shown in Fig. 3.4, if node A is transmitting in this timeslot, node C can

be the nearest right neighbor that transmits if the reception probability of node

B and node D is higher than some threshold. We know when only node A and

node C transmit in the same timeslot,

pI
rB =

1

1 + Θ/SIRB

=
1

1 + Θ
PCd−α

I

PAd−α
0i

=
1

1 + Θ
dα
0jd−α

I

dα
0id

−α
0i

=
1

1 + Θ
(

d0j

dI

)α . (3.4)

and

pI
rD =

1

1 + Θ
(

d0i

d0i+dI+d0j

)α . (3.5)

4When this scheduler is applied to regular line networks, the optimum result of Fig. 3.2 is
obtained. So we denote this scheduler as near-optimum scheduler.
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Figure 3.5. (a) The five phases of the scheduler of throughput balancing
strategy with power adaptation of a random network. (b) The five
phases of the scheduler of the energy balancing strategy with equal

transmit power of the same random network.

If both pI
rB and pI

rD are higher than some threshold, then (d0i + dI + d0j)/d0i > β

and d0j/dI < 1/β, where β is a function of the path loss exponent α. Therefore,

for the nearest right node C of node A, if the distances satisfy the conditions







(d0i + dI + d0j)/d0i > β

d0j/dI < 1/β,

(3.6)

node C can transmit in the same timeslot as node A. Otherwise, the next nearest

node that satisfies the above two conditions will be selected.

Fig. 3.5(a) exhibits the five phases of the near-optimum scheduler for a ten-

node line network, where the ten nodes N1, N2, ..., N10 are uniformly randomly

located. N1 is the source, and N10 is the destination. The coordinates of the ten

nodes are 0.01, 1.08, 1.98, 2.30, 3.70, 4.20, 4.60, 6.10, 6.80 and 7.40. Figs. 3.6(a),

(b) compare the throughput distributions over the 10-node network and a 100-
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Figure 3.6. Comparison of the throughput distribution for the simple
MAC scheme and the near-optimum scheduler for α = 4. (a) 10-node
network. The short vertical lines with the circles on top indicate the
locations of the nodes. Note that N1 does not receive any packet. (b)

100-node network.

node network of the simple MAC scheme and the near-optimum scheduler for

α = 4. For the 100-node network, the end-to-end throughput is 0.0936 for the

near-optimum scheduler and 0.0473 for the simple MAC scheme. For the simple

MAC scheme, the average throughput is 0.0898 which is about twice the end-

to-end throughput. Extensive simulation results confirm that the near-optimum

scheduler achieves about twice the end-to-end throughput of the simple MAC

scheme.

3.2.2 Equal transmit power without retransmissions

With power adaptation, the transmit power of each node of the previous anal-

ysis satisfies P0 ∝ dα
0 , where d0 is the distance between the transmitting node

and the next-hop receiver. Therefore, the nodes with bigger d0 suffer from higher

energy consumption than those with shorter d0. The unbalance of the energy
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Figure 3.7. Comparison of the throughput distribution for the simple
MAC scheme and the energy balancing strategy for α = 4 for random

line networks. (a) 10-node network, (b) 100-node network.

consumption will cause some nodes to die fairly soon and decrease the lifetime of

the whole network. To avoid this problem, we study an energy balancing strategy

in which every node transmits at equal transmit power level. Again, spatial reuse

is optimized for a high end-to-end throughput.

Energy balancing strategy. Similar to the scheduler of the throughput-balancing

strategy, we get the conditions of the scheduler for the energy balancing strategy

to be 





(d0i + dI + d0j)/d0j > δ

d0i/dI < 1/δ.

(3.7)

Again, δ is a function of the path loss exponent α.

Fig. 3.5 (b) displays the five phases of the energy balancing strategy for the

same ten-node random line network as Fig. 3.5 (a). Figs. 3.7 (a) and (b) present

the throughput distribution comparison of the simple MAC scheme and the en-
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Figure 3.8. Comparison of the transmit power and pN
r for scheme 1, 2

and 3 for a random line network with 100 nodes for α = 4. (a) Transmit
power. (b) pN

r .

ergy balancing strategy for random line networks with 10 nodes and 100 nodes.

It is shown that the average throughput and end-to-end throughput of the two

optimized schedulers with adaptive power and equal power are almost the same

for zero-noise networks. However, for the simple MAC scheme, the throughput

distribution of the strategy with equal transmit power is much more uneven than

that of the strategy with adaptive transmit power, as shown in Figs. 3.6 and 3.7.

All the above analyses are based solely on interference. Considering both the

noise and interference, the product of pN
r (noise analysis) and pI

r (interference

analysis) gives the practical reception probability pr. Although for the two op-

timized schedulers, the throughput performance from the interference analysis is

similar, their pN
r (thus the energy consumption) could be quite different, which

results in different pr. We investigate this problem with three schemes. Scheme

1 uses adaptive transmit power such that pN
r is fixed at 0.9. Scheme 2 uses equal

transmit power at the level of the maximum transmit power in scheme 1, which
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means the minimum pN
r of scheme 2 is 0.9. Scheme 3 uses equal transmit power at

the level of the average transmit power in scheme 1. Fig. 3.8 displays the transmit

power distribution and pN
r distribution for scheme 1, 2 and 3. It is shown that

scheme 2 consumes the highest total transmit energy although it has the same

lifetime as scheme 1. Scheme 3 has the same energy consumption as scheme 1,

but its minimum pN
r is only 0.0001. A detailed probabilistic analysis shows that

very small pN
r always exist with a certain probability for scheme 3 (See Section

6.3). In summary, for scheme 1, 2 and 3, the minimum pN
r are 0.9, 0.9, and 0.0001

and scheme 1 and 3 have the same total energy consumption which is smaller than

that of scheme 2. Therefore, we conclude that the strategy with power control

(scheme 1) outperforms the strategy with equal transmit power when considering

both the total energy consumption and minimum pN
r .

3.3 Conclusions

In this chapter, we investigated the throughput and energy consumption of

line networks. For regular line networks, a simple random MAC scheme and

optimum scheduler are studied. For random line networks, in addition to the

simple MAC scheme, two near-optimum schedulers — one with transmit power

adaptation to adjust the transmit power according to the link distance, the other

with equal transmit power — are presented. By simulation, we show that the

equal transmit strategy either consumes very high energy or suffers from very low

link reception probability. In Section 6.3, we will demonstrate analytically that

low link reception probabilities are unavoidable at medium transmit power levels.

Hence, power control is crucial to avoid links with very low reception probability.
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CHAPTER 4

PERFORMANCE ANALYSIS OF REGULAR TWO-DIMENSIONAL

NETWORKS

For certain multihop networks, in particular, for sensor networks, we expect

that in typical scenarios, the nodes are stationary for most of the time after deploy-

ment. For example, in the applications of monitoring environmental conditions,

chemical/biological detection, security in a shopping mall or parking lot, the nodes

are fixed at certain positions for most of the time. Moreover, to guarantee high

exposure of the events of interest [47], uniform coverage is beneficial, suggesting

the use of regular node placement schemes. Finding the optimal placement of

nodes for a good trade-off between energy consumption, throughput, and delay is

an important and challenging problem. In this chapter, we investigate networks

with regular topologies (square, triangle, hexagon) in which each node has the

same number of nearest neighbors and the distance between all pairs of nearest

neighbors is the same. In [12], such networks are called perfect networks. We call

them square, triangle, and hexagon networks.

4.1 Noise Analysis

First, we study the performance of zero-interference networks, where only one

node is transmitting at transmit power P0 in every timeslot. For each connection,
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the source and destination are uniformly randomly chosen. For the network, it

is assumed that the network is large (in terms of node numbers). Based on this

assumption, the distributions of the Euclidean distance r between the source and

destination are identical for all three networks, and the direction φ is uniformly

distributed. We employ nearest-neighbor and shortest-path routing, which routes

the packet via nearest neighbors along the shortest path toward its destination.

4.1.1 Square networks

We first analyze square networks with N = m × m nodes and distance d0

between all pairs of nearest nodes. The next-hop receiver of each packet is a

neighbor of the transmitter. For the 4-neighbor case, the four nearest neighbors

(top, bottom, left and right) constitute the set of next-hop receivers. Because

the 4-neighborhood may be not the best case, we also consider additional neigh-

borhoods – the 8-neighbor and 12-neighbor cases. For the 8-neighbor case, the 4

diagonal neighbors with distance
√

2d0 to the transmitter are included. For the

12-neighbor case, the nodes with distance 2d0 to the transmitter are added to

the 8-neighbor case. We denote the hops of distance d0,
√

2d0, and 2d0 as unit,

diagonal, and 2-unit hops, respectively.

In most cases, the diagonal hops are preferred in terms of hop numbers. We

can measure the optimality of a path by the ratio between the Euclidean distance

and the travelled distance. As in [20], we define the path efficiency as

η =
Euclidean distance

travelled distance
, 0 < η ≤ 1. (4.1)

In Fig. 4.1(a), O is the source and A is the destination, φ is the angle between

−→
OA and the horizontal axis. For the 4-neighbor case, by using nearest-neighbor
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Figure 4.1. (a) Path efficiency of square networks and (b) relationship
between path efficiency and φ for the 4-neighbor case (solid) and

8-neighbor case (dashed).

and shortest-path routing, the Euclidean distance r is |OA|, and the travelled

distance dT is |OB| + |BA|. We have

η(φ) =
r

dT

=
r

|r cos φ| + |r sin φ| =
1

| cos φ| + | sin φ| . (4.2)

If we move the destination along the line OA, the path efficiency will not change, so

η is only a function of φ, and it is periodical with period π/2. Thus, although φ is

a uniformly distributed random variable in [0, 2π], we may restrict φ to be between

0 and π/2 in the following analysis. We can see that when φ = π/4, ηmin = 1/
√

2;

when φ = 0 or π/2, ηmax = 1. The expected value of η is 2
√

2
π

arctan(
√

2
2

) ≈ 0.7935.

φ is uniformly distributed based on the previous assumptions.

For the 8-neighbor case, the travelled distance is
√

2 min{|OB|, |BA|} +
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∣
∣|OB| − |BA|

∣
∣, so we find

η(φ) =
1√

2 min{cos φ, sin φ} + | cos φ − sin φ|
. (4.3)

For φ = π/8 or 3π/8, ηmin ≈ 0.9239; for φ = 0 or π/4 or π/2, ηmax = 1. The

expected value of η is 0.9486. Fig. 4.1(b) displays the path efficiency as a function

of φ between 0 and π. For the 12-neighbor case, the travelled distance is the

same as that of the 8-neighbor case, so the path efficiency is the same. From

Fig. 4.1(b), we can see that the introduction of diagonal neighbors increases the

path efficiency. In the 8-neighbor case, the fraction of diagonal hops β depends

on φ:

β(φ) =
min{cos φ, sin φ}

min{cos φ, sin φ} + | cos φ − sin φ| , 0 ≤ φ ≤ π

2
. (4.4)

The mean of β is

E[β] =

∫ π
4

0

sin φ

cos φ

1

π/2
dφ +

∫ π
2

π
4

cos φ

sin φ

1

π/2
dφ =

2 ln 2

π
≈ 0.4413. (4.5)

Thus the expected distance covered by diagonal hops is about 53% of the total

distance, which suggests diagonal hops and unit hops are almost equally impor-

tant.

We assume that every packet has a given end-to-end reception probability PEE,

dictated by the application (or the transport) layer. From Chapter 2, we know

the link reception probability over a link of distance d0 is given by PL = e
− ΘN0

P0d−α
0 .

Solving for P0, we find the necessary transmit energy to achieve a link reliability

PL to be EL =
dα
0 ΘN0

− ln PL
. If there are h hops with equal distance d0, the link reception
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probability PL is P
1/h
EE . Then the transmit energy at each hop is

EL = h
dα

0 ΘN0

− ln PEE

. (4.6)

In the following, we investigate the total energy consumption of the 4-, 8- and

12-neighbor cases.

4.1.1.1 The 4-neighbor case

Using nearest neighbor and shortest path routing, the travelled distance is

dT = r cos φ + r sin φ, where r is the Euclidean distance. The number of hops is

h = dT /d0. The total energy consumption of this route is

E4
tot(φ) = hEL = h2 dα

0 ΘN0

− ln PEE

=
r2

d2
0

(cos φ + sin φ)2 dα
0 ΘN0

− ln PEE

. (4.7)

Let E0 :=
dα
0 ΘN0

− ln PEE
. Considering the uniform distribution of φ, we can find the

expected total energy consumption in units of E0 as

E
4

tot

E0

=
r2

d2
0

∫ π
2

0

(cos φ + sin φ)2fΦ(φ)dφ =
r2

d2
0

(

1 +
2

π

)

≈ 1.6366
r2

d2
0

. (4.8)

Fig. 4.2(a) displays the total energy consumption in units of E0
r2

d0
2 for the 4-

neighbor case. Note that the energy consumption increases with the hop number

squared.

4.1.1.2 The 8-neighbor case

Strategies A and B. In the 4-neighbor case, a fixed transmit power level results

in a fixed link reception probability since there exist only unit hops. However, in

the 8-neighbor case, there are both diagonal hops and unit hops. If each link has

the same reception probability, the nodes transmitting over diagonal hops need

33



0 0.5 1 1.5
0.5

1

1.5

2

2.5

3

3.5

φ

N
or

m
al

iz
ed

 e
ne

rg
y 

co
ns

um
pt

io
n

(a) 4-neighbor scheme

0 0.5 1 1.5
0.5

1

1.5

2

2.5

3

3.5

φ

N
or

m
al

iz
ed

 e
ne

rg
y 

co
ns

um
pt

io
n

α=2

α=5
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Figure 4.2. Normalized energy consumption for the 4-, 8- and
12-neighbor case. For (b),(c), the solid line is the energy consumption

of strategies A and B, and the dashed line is the energy consumption of
the minimum energy strategy.

more power; on the other hand, if each node transmits at the same power level,

the diagonal hops suffer from a smaller reception probability. How to distribute

the link reception probability to minimize the total energy consumption for a

fixed PEE? In strategy A, we assume that all the nodes transmit at a fixed link

reception probability PL. In strategy B, we assume all the nodes transmit at the

same power level. Since neither A nor B might be optimal, we will also find the

minimum energy strategy.

For each connection, let hU and hD denote the total number of unit hops and

diagonal hops, respectively, and let PLU denote the link reception probability over

a unit hop, and PLD the link reception probability over a diagonal hop; ELU is the

energy consumed at each node in a unit hop, and ELD is the energy consumed at

each node in a diagonal hop. For the 8-neighbor case, using nearest-neighbor and

shortest-path routing, we have

hU =
r

d0

| cos φ − sin φ|, hD =
r

d0

min{cos φ, sin φ}, h = hU + hD. (4.9)
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For strategy A, PA
LU = PA

LD = PL,

EA
LU =

dα
0 ΘN0

− ln PL

= h
dα

0 ΘN0

− ln PEE

= (hU + hD)E0.

EA
LD =

(
√

2d0)
αΘN0

− ln PL

= 2α/2h
dα

0 ΘN0

− ln PEE

= 2α/2(hU + hD)E0. (4.10)

For strategy B, EB
LU = EB

LD = EL,

PB
LU = e

− dα
0 ΘN0
ELU , PB

LD = e
− (

√
2d0)αΘN0

ELD = (PB
LD)2α/2

.

PEE = (PB
LU)hU (PB

LD)hD = (PB
LU)hU+2α/2hD , (4.11)

from which we can find

PB
LU = PEE

1

hU +2α/2hD , PB
LD = PEE

2α/2

hU +2α/2hD .

EB
LU =

dα
0 ΘN0

− ln PLU

= (hU + 2α/2hD)E0. (4.12)

Table 1 lists the expressions of both strategies for the 8-neighbor case.

In total, we have

E8A
tot = hUELU + hDELD = (hU + 2α/2hD)(hU + hD)E0,

E8B
tot = (hU + hD)EL = (hU + 2α/2hD)(hU + hD)E0, (4.13)

which shows that the total energy consumptions for the two strategies are equal.

Strategy A may be preferred because every node in strategy A has the same

lifetime since they transmit at the same power level. Substituting hU and hD

into the above equation, we plot the total energy consumption in units of E0
r2

d0
2 of

strategy A, B in Fig. 4.2(b) by solid lines. The expected total energy consumption
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TABLE 4.1

PER-HOP ENERGY CONSUMPTION AND RECEPTION

PROBABILITIES FOR STRATEGIES A AND B OF 8-NEIGHBOR

CASE.

Strategy A Strategy B

ELU (hU + hD)E0 (hU + 2α/2hD)E0

ELD 2α/2(hU + hD)E0 (hU + 2α/2hD)E0

PLU PEE

1
hU +hD PEE

1

hU +2α/2hD

PLD PEE

1
hU +hD PEE

2α/2

hU +2α/2hD

in units of E0
r2

d0
2 is (1

2
+ 2α/2

π
). For α = 2, 3, 4, 5, this yields E

8A

tot/(E0r
2/d0

2) =

E
8B

tot/(E0r
2/d0

2) = 1.1366, 1.4003, 1.7732, 2.3006.

Minimum energy strategy. With τ := ELD

ELU
, the total energy consumption is

Etot(φ) = (hU + τhD)(hU +
2α/2

τ
hD)E0

= (| cos φ − sin φ| + τ min{cos φ, sin φ}) (4.14)

×
(

| cos φ − sin φ| + 2α/2

τ
min{cos φ, sin φ}

)

E0
r2

d0
2 . (4.15)

The optimal τ corresponding to the minimum Etot does not depend on φ. At

τ opt = 2α/4,

E8min
tot =

(
| cos φ − sin φ| + 2α/4 min{cos φ, sin φ}

)2
E0

r2

d0
2 . (4.16)
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The minimum total energy consumption with various α is plotted in Fig. 4.2(b) by

dashed lines. The expected minimum total energy consumption in units of E0
r2

d0
2

is 4τ−2τ2−2
π

+ τ2−2τ+2
2

at τ = τ opt. For α = 2, 3, 4, 5, this yields E
min

tot /(E0r
2/d0

2) =

1.1132, 1.3368, 1.6366, 2.0411. The gains compared to strategies A and B are

2.0588%, 4.5347%, 7.7036%, 11.2797%. From Fig. 4.2(b), we can see the total

energy consumptions for strategies A, B and minimum energy consumption at

φ = π/4 are equal, because there are only diagonal hops in these routes. In this

case, minimum energy means equal transmit power which also means equal link

reception probability. Also we can find that for strategies A, B the maxima are

near φ = π/4 and they depend on α. In fact, φmax is arctan(2α/2 − 1)/2 for

strategies A,B when φ is between 0 and π/4. Because when φ is increased, the

hop number decreases (more diagonal hops), but increased diagonal hops consume

more energy than unit hops. The combination of the two effects moves the maxima

slightly away from π/4.

4.1.1.3 The 12-neighbor case

For large networks, we can neglect the number of unit hops since it is either 0

or 1. Denote the number of 2-unit hops as h2U . We have

h2U =
| cos(φ) − sin(φ)|

2

r

d0

, hD = min{cos(φ), sin(φ)} r

d0

. (4.17)

As in the 8-neighbor case, we have the same total energy consumption for strate-

gies A and B:

E12A
tot = E12B

tot = 2α/2(hD + h2U)(hD + 2α/2h2U)E0 (4.18)
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The expected total energy consumption in units of E0
r2

d0
2 is (2α

2π
+ 2α/2

4
). For α = 2,

3, 4, 5, this yields E
12A

tot /(E0r
2/d0

2) = E
12B

tot /(E0r
2/d0

2) = 1.1366, 1.9803, 3.5465,

6.5074. For the minimum energy strategy, we have E12
tot(φ) = 2α/2(hD+τh2U)(hD+

2α/2

τ
h2U)E0. Inserting h2U and hD of (18), we find at τ opt = 2α/4,

E12min
tot = 2α/2

(

min{cos(φ), sin(φ)} +
| cos(φ) − sin(φ)|

2
τ

)2

E0
r2

d0
2 . (4.19)

The expected minimum total energy consumption is τ 2(4τ−2τ2−2
2π

+ τ2−2τ+2
4

) at

τ = τ opt. For α = 2, 3, 4, 5, this yields E
min

tot /(E0r
2/d0

2) = 1.1132, 1.8905, 3.2732,

5.7730. The gains are 2.0588%, 4.5347%, 7.7062% and 11.2856%. The total

energy consumption of strategies A, B and minimum energy strategy are plotted

in Fig. 4.2(c) by solid and dashed lines separately. From Fig. 4.2(c), we can see

that for strategies A,B the minima are at π/4 instead and that the maxima are

close to 0 and π. Compared with Fig. 4.2(b), the 12-neighbor case can be viewed

as an 8-neighbor case rotated by π/4 and scaled by
√

2.

An interesting observation is that E8min
tot (φ) = E4

tot(φ) for α = 4 and E8
tot(φ) =

E12
tot(φ) for α = 2 for strategies A,B and the minimum energy strategy. We can

explain it in the following way: Between the 4-neighbor case and the 8-neighbor

case (minimum energy strategy), the only difference is that one diagonal hop

replaces two unit hops. Let the reception probability over one diagonal hop be the

same as the one over two unit hops. The energy consumption for one diagonal hop

is (
√

2d0)αΘN0

− ln PL
= 2α/2E0 and the total energy over two unit hops is

dα
0 ΘN0

− ln P
1/2
L

= 2E0.

For α < 4, the first expression is smaller, for α = 4 they are equal, and for α > 4,

the first one is greater. Similarly we can find when α = 2, the energy consumption

over one 2-unit hop is equal to that over two unit hops1.

1In fact, for α = 2, the energy consumption in a line network is completely independent of

38



From the above analysis, we see that introducing longer hops results in higher

energy consumption and less delay. To resolve this, we need to take into account

the end-to-end delay. The hop numbers for each case are

h4 =
r

d0

(cos φ + sin φ),

h8 =
r

d0

(min{cos φ, sin φ} + | cos φ − sin φ|),

h12 =
r

d0

(

min{cos φ, sin φ} +
| cos φ − sin φ|

2

)

. (4.20)

Averaging over φ, the expected hop numbers h for fixed r are listed in Table 4.2,

for α = 4. When considering r as a random variable with source and destination

uniformly distributed in a square network with m × m nodes, the expected value

of r is 0.5214m [48]. For d0 = 1, the expected number of hops for the 4-, 8-

and 12-neighbor cases are 0.6639m, 0.4694m, and 0.3319m. The 4-neighbor and

8-neighbor schemes consume the same energy on average; the former may be

preferred since it uses the same energy at each hop. The 8-neighbor scheme is

better in terms of delay and path efficiency. For a delay threshold less than

0.4694m, the 12-neighbor scheme is to be chosen, albeit at higher energy cost.

If we use the energy-delay product as the performance metric, we get 1.0865m,

0.7682m, 1.0865m for 4-, 8- and 12-neighbor cases. Therefore the 8-neighbor case

is to be preferred in terms of the energy-delay product in light traffic which is

noise-limited instead of interference-limited. The energy-delay products for the

4-neighbor and 12-neighbor cases are the same.

the number of hops.
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TABLE 4.2

COMPARISON OF SQUARE NETWORKS FOR α = 4 (NOISE

ANALYSIS) WITH 4-, 8-, AND 12-NEIGHBOR.

Energy (A,B) Energy (Min.) Hop nr. h/(r/d0) Path efficiency η

4-nbr 1.6366 1.6366 1.2732 0.7935

8-nbr 1.7732 1.6366 0.9003 0.9486

12-nbr 3.5465 3.2732 0.6366 0.9486

4.1.2 Triangle networks and hexagon networks

Two other regular topologies of interest are the triangle topology (each node

has 6 nearest neighbors) and its dual, the hexagon topology (each node has 3

nearest neighbors). For each triangle, there are three vertices and six nearest

neighbors for each vertex, while for the hexagon, there are six vertices for each

hexagon and three nearest neighbors for each vertex. The distance between all

pairs of nearest nodes is d0. We use the same assumption as for the square

networks, i.e., the networks are large (in terms of node numbers) such that the

distribution of r and φ for all the topologies are identical, so we can compare

the path efficiency, the energy consumption, and the hop numbers for different

topologies.

Fig. 4.3(a) shows a triangle network. O is the source and A is the destination.

We want to find the number of hops h by using nearest-neighbor and shortest-path

routing. We can split the network into groups such that the members of the group

are equidistant (in hops) to the source. These groups are the nodes in hexagons

centered around the source as shown in Fig. 4.3(a). Thus, the first group will be 6
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Figure 4.3. Path efficiency of triangle network and hexagon network

nodes that are one hop away in the hexagon with perimeter 6d0, the second group

will be 12 nodes that are two hops away in the hexagon with perimeter 12d0, and

so on. In Fig. 4.3(a), because the angle φ between
−→
OA and the horizontal axis Ox

is between 0 and π/3, we draw the vertical |AB| to the line with 2π/3 to Ox. The

hop number h is |AB| divided by d0 sin(π/3). The travelled distance is hd0. We

will restrict φ within 0 and π/3 because h is a periodic function of φ with period

π/3. Thus we have

h =
r sin(2π/3 − φ)

d0 sin(π/3)
=

r

d0

(

cos φ +
1√
3

sin φ

)

, 0 ≤ φ ≤ π/3. (4.21)

The path efficiency is also a periodic function of φ:

η(φ) =
r

dT

=
r

hd0

=

√
3

2 sin(2π/3 − φ)
=

√
3√

3 cos φ + sin φ
, 0 ≤ φ ≤ π/3.

(4.22)

The expected value of η is 3
√

3 ln 3
2π

≈ 0.9085.

For the hexagon topology, we use a similar method to find the group of nodes
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that are equidistant (in hops) from the source. The first group consists of the

vertices of an equilateral triangle centered at the source, all the other groups

consists of hexagons. Some of them are equilateral hexagons, some are not. In

Fig. 4.3(b), O is the source, A is the destination. To find the hop numbers from O

to A by nearest-neighbor and shortest-path routing, we draw the vertical |AB| to

the line with 2π/3 to Ox. If |AB| divided by 3/2d0 is an integer, the hop number

is twice the integer; if |AB| divided by 3/2d0 is not an integer, the hop number is

|AB|−1/2d0

3/2d0
· 2 + 1. Thus for φ within 0 and π/3, with ρ := |AB|

3/2d0
= r sin(2π/3−φ)

3/2d0
, we

have

h =







2ρ, ρ ∈ N

2ρ + 1
3
, ρ − 1

3
∈ N.

(4.23)

Because we assume that the number of hops between the source and the destina-

tion is large, we can neglect the 1
3

term in the following analysis. The number of

hops is again a periodic function of φ, this time with period π/3. So we have the

expression for h and η as

h =
2r sin(2π/3 − φ)

3/2d0

=
2r√
3d0

(

cos φ +
1√
3

sin φ

)

, 0 ≤ φ ≤ π/3, (4.24)

and the path efficiency

η(φ) =
r

dT

=
r

hd0

=
3/2

2 sin(2π/3 − φ)
=

3

2
√

3 cos φ + 2 sin φ
, 0 ≤ φ ≤ π/3.

(4.25)

The expected value of η is 9 ln 3
4π

≈ 0.7868. Fig. 4.4(a) shows the relationship

between the path efficiency and φ for triangle and hexagon topology networks for

φ within 0 and 2π/3.

Similar to the square network, we determine the total transmit energy con-
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Figure 4.4. Path efficiency and energy consumption as a function of φ
for triangle and hexagon networks.

sumption for a given end-to-end reception probability provided the Euclidean dis-

tance from the source to the destination is fixed for all the topologies. The total

energy consumption is Etot(φ) = hEL = h2 dα
0 ΘN0

− ln PEE
= h2E0. Inserting the expres-

sions of h for the triangle and hexagon topologies yields the energy consumption

in both topologies (Fig. 4.4(b)):

ET
tot(φ) = h2E0 =

(
√

3 cos φ + sin φ)2

3
E0

r2

d0
2 , 0 ≤ φ ≤ π/3,

EH
tot(φ) = h2E0 =

4(
√

3 cos φ + sin φ)2

9
E0

r2

d0
2 , 0 ≤ φ ≤ π/3. (4.26)

The expected total energy consumption in units of E0
r2

d0
2 is

√
3

π
+ 2

3
≈ 1.2180 for

the triangle topology and 4√
3π

+ 8
9
≈ 1.6240 for the hexagon topology. From the

above equations and the plots, we can see that the path efficiency and energy

consumption of the triangle network are a scaled version of those of the hexagon

network. Averaging the number of hops of (22) and (25) over φ, the expected
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TABLE 4.3

COMPARISON OF LATTICE, TRIANGLE, HEXAGON

NETWORKS FOR α = 4 (NOISE ANALYSIS).

Energy Hop numbers h/(r/d0) Path efficiency η

Square network 1.6366 1.2732 0.7935

Triangle network 1.2180 1.1027 0.9085

Hexagon network 1.6240 1.4702 0.7868

hop numbers h for fixed r in unit of r/d0 is 2
√

3
π

≈ 1.1027 and 8
√

3
3π

≈ 1.4702.

We compare the parameters of the square network (4-neighbor case), triangle

network, and hexagon network for α = 4 in Table 4.3. We conclude that in a

zero-interference network, the triangle topology is the best one due to its lowest

energy consumption, least delay and highest path efficiency. However, it may not

be the best one in the zero-noise network when considering the throughput, as we

show in the following interference analysis.

4.2 Interference Analysis

In this section, we consider a network of N nodes, where every node always has

a packet to transmit (heavy traffic assumption). The reception is only corrupted

by interference, not by noise.

4.2.1 Analysis of the simple MAC scheme

For the network, it is assumed that nodes are transmitting packets indepen-

dently in every timeslot with transmit probability p and the next-hop receiver

44



of every packet is one of its randomly chosen neighbors. The performance mea-

surement is the throughput which is the expected number of successful packet

transmissions per node in one timeslot. For a transmission over a distance d0 with

one interferer at distance di, the mean SIR is γI = (di/d0)
α, yielding a reception

probability of p
(1)
r = e

−Θ(
d0
di

)α

. If there are n interferers, the reception probability

is

p(n)
r =

n∏

i=1

e
−Θ(

d0
di

)α

. (4.27)

If we let sk denote the expected number of successful packet transmissions when

k nodes transmit in one timeslot for a network with N nodes, then

sk = ckP[k nodes transmit and N − k nodes do not ] = ckp
k(1 − p)N−k, (4.28)

where p is the transmit probability of a node in every timeslot and ck is the

summation of the success probabilities given any k nodes transmit and the other

N − k nodes do not transmit in one timeslot. So sk depends on the topology of

the networks. For a simple line network with N = 3, k = 2 nodes transmitting

at the same timeslot will cause interference. If the left end node and middle

node transmit, the transmission success probability is 0.5e
−θ(

d0
2d0

)α

= 0.5e−θ2−α
.

The 0.5 term comes from the fact that the middle node will transmit to its right

neighbor with probability 0.5. Similarly, if the right end and middle node transmit,

the successful transmission probability is also 0.5e−θ2−α
. If the two outer nodes

transmit, it is 2e−θ. Then s2 = (e−θ2−α
+ 2e−θ) p2(1− p). Generally we can write

the total throughput for a network of N nodes as a polynomial of order N :

gN(p) =
N−1∑

k=1

sk(p) =
N−1∑

k=1

ckp
k(1 − p)N−k (4.29)
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In the following, we will analyze the lattice, triangle and hexagon topology net-

works. We assume d0 is one for all the topologies. For the square network, we

study the 4-, 8- and 12-neighbor cases.

4.2.1.1 Square networks

The 4-neighbor case. We can derive the analytical expressions for the throughput

of small networks. For N = 2× 2, g2×2(p) = 4p(1− p)3 + (4e√2 + 4e1)p
2(1− p)2 +

4e1e√2p
3(1−p). Table 4.4 presents the coefficients for N = 2×3. The throughput

functions for N = 2 × 2 and N = 2 × 3 are plotted in Fig. 4.5.

For small networks (small number of nodes) with N nodes and relatively small

α, we may assume all N nodes can hear each other and interfere with each other.

If more than one node is transmitting, there is a collision and all packets are lost.

So the throughput is P[success] = Np(1−p)N−1. The optimal transmit probability

is 1/N , and the maximum throughput is (1 − 1
N

)N−1. If N goes to infinity, the

throughput approaches 1/e, as pointed out in [30, 65] as the maximum throughput

of slotted ALOHA without spatial reuse. The network with 2×2 nodes satisfies the

small networks requirement, so the optimal transmit probability is 1/4. Similarly,

the optimal transmit probability is 1/6 for network with 2 × 3 nodes and small

path exponents. We can see this from Fig. 4.5(a), (b) at α = 2. However, if

the network is larger or α is 4 or 5, nodes in different locations can use the

channel simultaneously (spatial reuse) if they are sufficiently separated so that

mutual interference will not prevent simultaneous successful transmissions. For

large networks, we use simulation results instead of analytic calculations due to the

“combinatoric explosion” of the number of terms. In Fig. 4.6(a), the simulation

result is plotted for Θ = 10 and various α for a network with 30 × 30 nodes. The
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TABLE 4.4

COEFFICIENTS OF THE THROUGHPUT POLYNOMIAL gN(.)

FOR N = 2 × 3. et := e−Θt−α
.

c1 6

c2
26
3 e1 + 26

3 e√2 + 10
3 e2 + 10

3 e√5

c3
8
3e1e1 + 14e1e√2 + 10

3 e1e2 + 10
3 e1e√5 + 8

3e√2e
√

2 + 10
3 e√2e2 + 10

3 e√2e
√

5 + 10
3 e2e√5

c4
16
3 e1e1e√2 + 16

3 e1e√2e
√

2 + 10
3 e1e√2e2 + 10

3 e1e√2e
√

5 + 10
3 e1e2e√5 + 10

3 e√2e2e√5

c5
8
3e1e1e√2e

√
2 + 10

3 e1e√2e2e√5
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Figure 4.5. Received packets per timeslot as a function of the transmit
probability for a square network(4-neighbor) for α = 2, 3, 4, 5 and

Θ = 10. The crosses indicate the maxima.
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Figure 4.6. Received packet per node per timeslot for Θ = 10 and
α = 2, 3, 4, 5 for the 4-, 8- and 12-neighbor cases in a square network

with N = 30 × 30 nodes.

relationship between pmax and gmax can be linearly approximated. We find

gmax ≈ 0.37Npmax. (4.30)

For α = 2, 3, 4, 5, pmax = 0.0128, 0.0397, 0.0748, 0.1044, this yields gmax/N =

0.0046, 0.0144, 0.0277, 0.0403. Without interference, we would have gmax/N =

pmax. We can define the interference loss as LI := 1 − gmax/N
pmax

and its comple-

ment, the transmission efficiency as Teff := gmax/N
pmax

. In the 4-neighbor case, the

transmission efficiency is about 0.37, which is similar to that of slotted ALOHA,

namely e−1.

The 8- and 12-neighbor cases. The simulation results for the 8-neighbor and the

12-neighbor cases are displayed in Fig. 4.6(b) and (c). The transmission efficiency

is 0.34 for the 8-neighbor case and 0.31 for the 12-neighbor case.

To compare the 4-, 8- and 12-neighbor cases fairly, we use the effective transport

capacity. We define the effective hop length as lh = E[r/h] for fixed r from the
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TABLE 4.5

COMPARISON OF SQUARE NETWORKS FOR α = 4

(INTERFERENCE ANALYSIS).

Optimum Maxi. through- Transmit Effective Effective tran-

probability put per node efficiency hop length sport capacity

4-nbr 0.0748 0.0277 0.37 0.7935 0.0220

8-nbr 0.0590 0.0201 0.34 1.1222 0.0226

12-nbr 0.0466 0.0145 0.31 1.5870 0.0230

expressions in (21). The effective transport capacity is the distance-weighted

throughput, defined as Z := gmax

N
· lh. We list the comparisons for α = 4 in Table

4.5. We can see that the effective transport capacity is about 0.02 for the three

cases. Hence on average, a packet can be successfully delivered over distance one

every 50th link in one timeslot. From the analysis, we find that 8-neighbor and

12-neighbor strategies can not increase the transport capacity in heavy traffic.

This is because the gain of the hop length is offset by the decreased throughput

due to the increased interference caused by additional neighbors at the same or

smaller distance than the intended receiver.

4.2.1.2 Triangle and hexagon networks

Since including more neighbors barely improves the performance, we will not

take into account different neighborhoods in the triangle and hexagon networks.

Our comparison will be restricted to square (4-neighbor), triangle and hexagon

networks. For triangle and hexagon networks, the relationship between the through-

put and the transmit probability is displayed in Fig. 4.7.
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Figure 4.7. Received packets per timeslot as a function of the transmit
probability for Θ = 10 and α = 2, 3, 4, 5 for triangle and hexagon

networks with N = 30 × 30 nodes.

The transmission efficiency is about 0.37 for both topologies. However, gmax

and pmax are larger in the hexagon topology than in the triangle topology. To

interpret this, we can split the possible interferers into groups whose members

have the same distance to the transmitter. For the transmitter in a hexagon

network, the first group are the three neighbors at distance d0, and the second

group are nine nodes at distance
√

3d0. For the 4-neighbor case in square network,

there are four nodes in the first group with distance d0 and four nodes in the second

group with distance
√

2d0 and four nodes in the third group with distance 2d0.

Fewer nearest neighbors and other potential interferers further away can explain

the larger pmax and gmax of hexagon networks.

The comparison of square (4-neighbor), triangle and hexagon networks for

α = 4 is shown in Table 4.6. The effective hop length of the three networks is

identical to the path efficiency. We conclude that the hexagon network has the

highest transmit probability, throughput and effective transport capacity, mainly
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TABLE 4.6

COMPARISON OF LATTICE, TRIANGLE AND HEXAGON

NETWORKS FOR α = 4 (INTERFERENCE ANALYSIS).

Optimum Maxi. through- Transmit Effective Effective tran-

probability put per node efficiency hop length sport capacity

Square 0.0650 0.0243 0.37 0.7935 0.0193

Triangle 0.0568 0.0210 0.37 0.9085 0.0191

Hexagon 0.0851 0.0320 0.37 0.7868 0.0252

since there are at most two interfering nodes at the same distance as the desired

transmitter.

4.2.2 Comparison with optimum scheduler

Exploiting spatial reuse, we can devise a scheduling scheme that maximizes

the throughput. There are several scheduling algorithms for general multihop

wireless networks, e.g., [55]. Here we will deal with the scheduling problem in a

square network for the 4-neighbor case. Assume that in every square area with

q2 nodes, one node is transmitting. Fig. 4.8(a) shows the optimum scheduling

scheme for q = 2 for the first 4 phases (the number indicates the phase number).

Shifting the four links connecting four nodes in the squares to their right and

bottom squares, we can get another 4 phases. Since the traffic is bidirectional, 16

phases are needed. The total number of phases is 2q(q − 1) + 4 + 2(q − 2) = 4q2.

In Fig. 4.8(b), the throughput as a function of q2 is plotted. Optimum scheduling

is achieved at q = 16, 5, 3, 3 for α = 2, 3, 4, 5. The throughput ratio between

the simple MAC scheme and the optimum one is 0.64, 0.44, 0.38 for α = 3, 4, 5,
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which shows that the relative performance of the simple MAC scheme is better

for lower α than higher α.
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Figure 4.8. (a). The optimum transmit scheduler for q = 2. (b).
Received packets per node and timeslot for Θ = 10 and α = 2, 3, 4, 5

for a large square network (4-neighbor) where every q2-th node is
transmitting in every timeslot.

Interestingly, the curve for α = 2 is quite different from the simulation results of

the simple MAC scheme shown in Fig. 4.6(a). For α = 2, the received interference

power will be infinite for a receiver located in an infinite plane with a uniform and

finite density of transmitters, as pointed out in [64, 67]. The results of the simple

MAC scheme are for a 30×30 network, while the result of the optimum scheduler

is for a very large network. So, in the latter case, the SIR is much smaller than

in the first case since the fact that the per-node throughput for α = 2 converges

to zero with increasing network size. To see this, we carry out simulations for the
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simple MAC scheme for α = 2. For square networks (4-neighbor) with m × m

nodes, Fig. 4.9(a) shows that the per-node throughput decreases with m (solid

line). We approximate the relationship between the per-node throughput and m

by a/ ln(bm) with a = 0.0062 and b = 0.1452. The approximation is plotted

in Fig. 4.9(a) by dashed line. We see they match perfectly. This confirms the

result in [64], where it was shown that for α = 2, the total interference power

of a network of radius r is given by integrating c/r (for some constant c) from

some R0 to r. Hence, the SIR depends logarithmically on r. In Fig. 4.9(b), the

throughput distribution over the location of the nodes is recorded for a network

with 50 × 50 nodes at the optimal transmit probability pmax = 0.0081 with the

per-node throughput gmax/N = 0.0031. We see that nodes at the boundary of

the network, especially at the corner, contribute the most to the throughput,

since they are subject to less interference. To show this more clearly, we plot the

throughput distribution over the nodes in the main diagonal of the network and in

an edge of the network as two profiles shown in Fig. 4.9(c). The average per-node

throughput for nodes in the center, middle of the edge, and in the corner is 0.0024,

0.0038, and 0.0051, respectively. This shows that even for fairly large networks,

the boundary nodes can not be neglected. On the contrary, routing algorithms

should take advantage of the higher throughput that boundary nodes offer.

4.3 Conclusions

In the noise analysis, the triangle network gives the best performance due to

its smallest energy consumption and delay and highest path efficiency. For the

square network, we find that the 8-neighbor scheme is better than the 4-neighbor

and 12-neighbor schemes in terms of the energy-delay product. If the delay is
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Figure 4.9. Throughput investigation for the simple MAC scheme with
square networks (4-neighbor) for α = 2. (a) The simulation result and
approximation (by a/ ln(bm) with a = 0.0062 and b = 0.1452) of the

relationship between the per-node throughput and m. (b) Distribution
of throughput over 50 × 50 nodes. (c) Distribution of the throughput

over nodes in diagonal and edge profiles.
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critical, longer hops (12-neighbor scheme) are preferred, albeit at higher energy

expense.

In the interference analysis, the hexagon network exhibits the highest trans-

mit probability, throughput, and effective transport capacity. By comparing the

topologies and results, we find that connecting through fewer nearest neighbors

can improve the throughput. An interesting observation for the square network

is that for α = 4, the transport capacities for the 4-, 8-, and 12-neighbor schemes

are almost the same, since the gain of the hop length is offset by the decreased

throughput due to increased interference. In the 4-neighbor case, for α > 2, the

throughput ratio between the simple MAC scheme and the optimum one is be-

tween [0.35, 0.65] — the simple MAC is closer to the optimum for lower α. The

performance of any practical MAC layer will lie between the bounds provided by

these two MAC schemes. By investigating the distribution of the throughput over

the nodes of the whole network, we find that for small α (in particular, for α = 2),

the per-node throughput is not a meaningful measure since a major part of the

total network throughput comes from the boundary nodes, a fact that should be

taken into account in routing protocols.

Thus, in the noise-limited regime (where the mean interference is much smaller

than the noise), the triangle topology is best, whereas in the interference-limited

regime, the best scheme is the hexagon topology.

Also we confirm that for α = 2 (free space propagation), spatial reuse is not

possible in large (in terms of node numbers) networks, since the interference power

diverges to infinity as the number of nodes in the network grows.
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CHAPTER 5

LOAD DISTRIBUTION FOR REGULAR SQUARE NETWORKS

In this chapter, we consider the load distribution in terms of the number of

transmissions, e.g. the accumulated traffic at each node in the square network.

Therefore, for each communication, we count the number of source and relay nodes

as the load. We consider two classes of multihop networks — ad hoc networks and

sensor networks. For ad hoc networks, we assume peer-to-peer traffic (source nodes

and the destination nodes are uniformly randomly chosen); for sensor networks,

we assume many-to-one traffic (the common destination node is the base station

which is fixed at a corner of the network or in the center of the network).

5.1 Ad Hoc Networks

We use two strategies for nearest neighbor and shortest path routing in square

networks (4-neighbor case) as shown in Fig. 5.1.

5.1.1 Strategy 1

In Fig. 5.1 (a), the source node O wants to send packets to destination node

A. In Strategy 1 (4-neighbor case), the packet takes 2 min{|OB|, |OA|}/d0 hops

along the diagonal direction first from O to C and then takes ||OB| − |BA||/d0

hops from C to A. With probability 0.5, it goes horizontal first or vertical first.
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Figure 5.1. Two strategies of nearest neighbor and shortest path
routing in square networks (4-neighbor case).
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Figure 5.2. Analytically derived load distribution for Strategy 1 in a
50 × 50 ad hoc square network (4-neighbor case).
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4-neighbor case. We derive the analytic function of the load for Strategy 1 in the

4-neighbor case. For any node with coordinate (x,y) in an m × m grid network,

we obtain

L(x, y) = −y3 +
(

− 5

2
m +

3

2

)

y2 +
(5

2
m2 − m − 9

2

)

y + (7m + 7)xy − 7x2y

+
(1

2
m2 − 3m − 7

2

)

x +
(

− 1

2
m +

7

2

)

x2 − 3

2
m2 +

1

2
m + 2

for 2 ≤ x ≤ m/2, 1 ≤ y ≤ x − 1. (5.1)

The load of nodes in the diagonal lines is

L(x, y) = −8y3 + (4m + 11)y2 + (3m2 − 3m − 7)y − 2m2 + 2

for 1 ≤ x ≤ m/2, y = x. (5.2)

The derivation of the analytic function is given in the Appendix to this chapter.

By symmetry, (5.2) can be extended to the whole network. The load per commu-

nication is plotted in Fig. 5.2(a). Fig. 5.2(b) displays the load distribution of the

nodes in the diagonal, center, and edge line. The average load for nodes in the

center, middle of the edge, and in the corner is 0.03, 0.003, and 0.0004.

8-neighbor case and load balancing strategies. Similar to the 4-neighbor case, we

can define the strategy 1 for 8-neighbor case – go along the diagonal direction first

and then along the vertical or horizontal direction. Fig. 5.3 displays the simulation

results. The expected load for nodes in the center, middle of the edge, and in the

corner is 0.02, 0.003, 0.0004.

We can see the center nodes carry more traffic than the edge nodes, and much

more than the corner nodes. To balance the load distribution, we route the packet
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Figure 5.3. Simulation results of load distribution for Strategy 1 in a
50 × 50 ad hoc square network (8-neighbor case).
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Figure 5.4. Simulation results of one-step strategy in a 50 × 50 ad hoc
square network (8-neighbor case).
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to a neighboring node which is not in the diagonal direction and has the longest

distance from the center nodes for the first hop or the first two hops. The former

is called the one-step strategy, while the latter is denoted as two-step strategy.

Fig. 5.4 displays the simulation results for the one-step strategy. The average load

for nodes in the center, middle of the edge, and in the corner is 0.0134, 0.0036

and 0.0016. Fig. 5.5 displays the simulation results for the two-step strategy. The

average load for nodes in the center, middle of the edge, and in the corner is

0.0118, 0.0040 and 0.0041.

5.1.2 Strategy 2

In Fig. 5.1(b), the source node O sends packets to destination node A. In

Strategy 2 (4-neighbor case), the packet takes |OB|/d0 hops along the horizontal

direction from O to B and then takes |AB|/d0 hops along the vertical direction

from B to A. With probability 0.5, it goes horizontal first or vertical first. For

node (x, y), we find the load L(x, y) to be

L(x, y) = (−2m + 1)(x2 + y2) + (2m2 + m − 1)(x + y) − 2m2, (5.3)

which is derived in the Appendix of this chapter. The load distribution and

corresponding profiles based on (5.3) are shown in Fig. 5.6. The average per-node

load for nodes in the center, middle of the edge, and in the corner is 0.0198, 0.0103,

and 0.0008.

5.2 Sensor Networks

For sensor networks, we assume the common destination node is the base

station which is fixed at a corner of the network or in the center of the network.
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Figure 5.5. Simulation results of two-step strategy in a 50 × 50 ad hoc
square network (8-neighbor case).
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Figure 5.6. Analytically derived load distribution for Strategy 2 in a
50 × 50 ad hoc square network.
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5.2.1 Strategy 1

4-neighbor case and improvement strategy. The load L(x, y) at node (x, y) in a

square regular grid network of size m × m where every node generates packets

that are routed towards the common sink (m,m) with strategy 1 is

L(x, y) =







2y − 1
2

1 ≤ x ≤ m − 1, 1 ≤ y ≤ x − 1

2y − 1 1 ≤ x < m, y = x

1
2
y2 + y x = m, 1 ≤ y < m

0 x = m, y = m (sink node)

(5.4)

for the lower triangular part of the network where x ≥ y. The load in the upper

triangle is symmetric. We can see for interior nodes, the load is a linear function

of the coordinate, for nodes in the two edges near the destination node, the load

is a quadratic function of the coordinate. The derivation is given in the Appendix

to this chapter. We plot the load distribution for nodes of the whole network, the

inside network, and one edge in Fig. 5.7.

Based on previous results on ad hoc networks, it is apparent that the one-step

and two-step strategies can improve most of the load distribution over the nodes

in the main diagonal. For sensor networks, let Nhv = ||OB| − |BA||/d0 as shown

in Fig. 5.1 (a), we route the packet along the horizontal or vertical direction over

h1 hops with h1 a random number uniformly distributed in 0 and Nhv, then along

the diagonal direction. We call this random step strategy and plot the simulation

results in Fig. 5.8.

8-neighbor case and improvement strategy. Similar to the 4-neighbor case, the

load L(x, y) at node (x, y) in a square sensor network (8-neighbor) with strategy
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Figure 5.7. Analytically derived load distribution for Strategy 1 in a
50× 50 square sensor network (4-neighbor case). (a) the whole network,

(b) the interior of the network, and (c) one edge connected with the
sink node.
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Figure 5.8. Simulation results of random step strategy in a 50 × 50
square sensor network (4-neighbor case). (a) the whole network, (b) the
interior of the network, and (c) one edge connected with the sink node.
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1 is

L(x, y) =







y 2 ≤ x ≤ m − 1, 1 ≤ y ≤ x − 1

y 1 ≤ x ≤ m, y = x

1
2
y2 + 1

2
y x = m, 1 ≤ y ≤ m

0 x = m, y = m (sink node)

(5.5)

for the lower triangular part of the network where x ≥ y. The load in the upper

triangle is symmetric. The load distribution for nodes of the whole network, the

interior of the network, and one edge is shown in Fig. 5.9. The simulation results

for the random step strategy are shown in Fig. 5.10.

5.2.2 Strategy 2

Similar to Strategy 2 of ad hoc networks, for node (x, y) in a square sensor

network (4-neighbor case), we find the load L(x, y) to be

L(x, y) =
1

2
(x − 1) +

1

2
(y − 1), (5.6)

since there are (x − 1) paths passing through node (x, y) with probability 0.5 of

going vertical first and there are (y − 1) paths passing through node (x, y) with

probability 0.5 of going horizontal first. The load distribution and corresponding

profiles based on (5.6) are shown in Fig. 5.11.

5.3 Conclusions

For ad hoc networks, the analytic functions and simulation results of strategy

1 (nearest neighbor and shortest routing for square regular networks, starting

diagonally) shows that the nodes in the center area carry significantly more traffic
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Figure 5.9. Analytically derived load distribution for Strategy 1 in a
50× 50 square sensor network (8-neighbor case). (a) the whole network,

(b) the interior of the network, and (c) one edge connected with the
sink node.
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Figure 5.10. Simulation results of random step strategy in a 50 × 50
square sensor network (8-neighbor case). (a) the whole network, (b) the
interior of the network, and (c) one edge connected with the sink node.
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Figure 5.11. Analytically derived load distribution for Strategy 2 in a
50 × 50 square sensor network.

than those at the edge. For sensor networks, the load increases linearly when

approaching the sink node along the main diagonal and quadratically along the

edge, hence the critical nodes are located near the sink node. Those nodes are the

bottleneck for the network lifetime. To balance the load, we use a one-step and

a two-step strategy for ad hoc networks and a random step strategy for sensor

networks. It is shown that one- and two-step strategies can mainly balance the

load of the nodes in the main diagonal. The random step strategy can move

some of the load from the edge to the diagonal and interior area. However, it

can not solve the high burden problem of the nodes which are neighbors of the

corner destination. The APR (Alternate Path Routing) protocol [80] indirectly

balances the load by distributing the traffic to a set of diverse paths for one source-

destination connection. [76] uses an analytic model to show that multipath routing

can improve the end-to-end reception probability and balance the load among

nodes. However, the increased overhead traffic load might offset the benefits.

68



This multipath routing scheme works only for peer-to-peer traffic, not for sensor

networks. For ad hoc and sensor networks, strategy 2 outperforms strategy 1 in

terms of load balance.

5.4 Appendix: Derivation of Analytic Functions

Strategy 1. Consider the lower triangle, main diagonal, and bottom edge of the

lattice square network as shown in Fig. 5.12(a), (b) and (c), respectively. For any

node with coordinate (x,y) in an m × m (m is even) grid network, the possible

source nodes whose packets will pass through node (x, y) are contained in a poly-

gon (the solid polygon if the packet travels horizontally first, the dashed polygon

if it travels vertically first). We denote the number of all the possible source nodes

of node (x, y) located at the lower triangle, diagonal and bottom edge as nh
1 , nh

2

and nh
3 if the packet travels horizontally first, and nv

1, nv
2 and nv

3 if the packet

travels vertically first. We find

nh
1 = 2(y − 1) + 1 = 2y − 1,

nh
2 = 2(y − 1) + 1 = 2y − 1,

nh
3 =

y(y + 1)

2
=

1

2
(y2 + y). (5.7)

and

nv
1 = 2(y − 1) + 1 + 1 = 2y,

nv
2 = 2(y − 1) + 1 = 2y − 1,

nv
3 =

(y + 1)(y + 2) − 1

2
=

1

2
(y2 + 3y). (5.8)
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Figure 5.12. Set of source nodes of a packet traveling through node
(x, y) for Strategy 2. (a) For a node inside the lower triangle. (b) For a

node in the main diagonal. (c) For a node in the bottom edge.

Since the packet travels horizontally or vertically first with 50% probability, we

get the expected number of transmissions of node (x, y) as

n1 =
1

2
nh

1 +
1

2
nv

1 = 2y − 1

2
,

n2 =
1

2
nh

2 +
1

2
nv

2 = 2y − 1,

n3 =
1

2
nh

3 +
1

2
nv

3 =
1

2
y2 + y , (5.9)

from which (5.3) follows. For m is odd, the derivation is similar to the even case.

Strategy 2. As shown in Fig. 5.13, if the possible source nodes locate at the solid

line left to the node (x, y), the possible destination nodes locate at the right plan of

node (x, y) plus the vertical line passing through node (x, y). Since the probability

of going horizontal is 0.5, the number of those paths is 0.5(y−1)[(m−y+1)m−1].

If we switch the source nodes and destination nodes, we can get another 0.5(y −

1)[(m − y + 1)m − 1] paths passing through node (x, y). Similarly, if the possible
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Figure 5.13. Derivation of the load distribution for Strategy 2 of ad hoc
square networks (4-neighbor).

source or destination nodes locate at the dashed line right to node (x, y), there are

(m−y)(ym−1) paths passing through node (x, y). Because the paths from nodes

in the left line to the nodes in right dashed line are counted twice, we subtract

(y − 1)(m − y). Similarly, we add the path number when the possible source or

destination nodes locate at the dotted line area or dash-dotted line. Finally we

add m2 − 1 because node (x, y) can be the source node transmitting to all the

other nodes. The load L(x, y) is

L(x, y) =
1

2
(y − 1)[(m − y + 1)m − 1] · 2 +

1

2
(m − y)(ym − 1) · 2

−(y − 1)(m − y) +
1

2
(x − 1)[(m − x + 1)m − 1] · 2

+
1

2
(m − x)(xm − 1) · 2 − (x − 1)(m − x) − (m − x)(y − 1)

−(y − 1)(x − 1) − (x − 1)(m − y) − (m − y)(m − x) + m2 − 1

= (−2m + 1)(x2 + y2) + (2m2 + m − 1)(x + y) − 2m2. (5.10)
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CHAPTER 6

COMPARISON OF REGULAR AND RANDOM NETWORKS

A uniformly random distribution is a widely accepted model for the location

of the nodes in wireless sensor networks if nodes are deployed in large quantities

and there is little control over where they are dropped. A typical scenario is a

deployment from an airplane for environmental or battlefield monitoring. Cur-

rent testbeds, however, often have regular topologies (equidistant nodes), and it

may be assumed that their performance gives a good indication of how a ran-

dom network would perform with the same set of protocols and algorithms. This

chapter will show that this assumption is fundamentally wrong, i.e., that the per-

formance of regular and random networks differs greatly, and that, consequently,

different protocols are needed for random networks. In this chapter, we employ

a Rayleigh fading link model assuming a transmission over an effective distance

d = max{1, R} instead of R, where R is the Euclidean distance ‖xi − xj‖2. This

way, the problem that the received power diverges for R → 0 is avoided.

6.1 One-dimensional Networks

We study the performance of line networks first. It is assumed that the left

end node is the source node and the right end node is the destination node. For

every transmitting node, its next-hop receiver is its right neighbor. Although part

of the results are derived in Chapter 3, we list them here for convenience. The
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throughput and energy consumption of regular line networks and random line

networks with adaptive transmit power are compared in the following.

6.1.1 Throughput

The average per-node throughput for regular and random line networks is

plotted in Fig. 6.1. The regular line network has a higher throughput than the

random line network, and the difference is higher for larger α.
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Figure 6.1. (a) Simulation results of average per-node throughput for
Θ = 10 of a large regular line network based on the simple MAC

scheme. (b) Simulation results of average per-node throughput for
Θ = 10 of a large random line network based on the simple MAC

scheme.

6.1.2 Energy consumption

The analysis of the average energy consumption has been carried out in Section

3.2.1.1 (p. 20). Since the maximum energy consumption is related to the lifetime

of a connection, we determine the expected maximum Rα in an h-hop connection,
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TABLE 6.1

COMPARISON OF THROUGHPUT AND ENERGY

CONSUMPTION FOR 20-HOP REGULAR AND RANDOM LINE

NETWORK WITH SIMPLE MAC SCHEME.

α = 2 α = 3 α = 4 α = 5

gave of regular line network 0.0538 0.0875 0.1138 0.1327

gave of random line network 0.0495 0.0811 0.1080 0.1266

gmin of regular line network 0.0576 0.0855 0.1078 0.1231

gmin of random line network 0.0352 0.0503 0.0614 0.0669

Eave of regular line network 1 1 1 1

Eave of random line network 2 6 24 120

Emax of regular line network 1 1 1 1

Emax of random line network 14.5 66.2 340.2 1974.5
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e.g., E[Rα
max|h] := E[max{Rα

1 , Rα
2 , ...Rα

h}]. The cumulative density function (cdf)

of Rα is

FRα(y) = P[Rα ≤ y] = P[R ≤ y1/α] =

∫ y1/α

0

e−xdx = 1 − e−y1/α

. (6.1)

Thus we get

E[Rα
max|h] =

∫ ∞

0

[1 − (FRα(y))h]dy =

∫ ∞

0

1 − (1 − e−y1/α

)hdy, (6.2)

which is plotted in Fig. 6.5(c) for α = 4.

6.1.3 Comparison

Let gave and gmin denote the average and end-to-end throughput1, and Eave

and Emax the average and maximum energy consumption, respectively. We list

the throughput and energy consumption (normalized by the corresponding energy

consumption of the regular network) for 20-hop regular and random line networks

for different α in Table 6.1 for the simple MAC (slotted ALOHA) scheme. We can

see that with power adaptation, the random line network consumes one or two

orders of magnitude more energy than the regular line network and has 2-25%

smaller throughput. Moreover, the maximum energy consumption is drastically

higher, and the penalty on the end-to-end throughput is more severe since the

minimum throughput is typically about 40% lower than the average.

1As mentioned in the introduction, the end-to-end throughput over a multi-hop connection
is the minimum of the throughput values of the nodes involved.
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6.2 Two-dimensional Networks

In this section, we consider two-dimensional sensor networks and compare

regular square grid networks with random networks. For the former, nodes are

regularly placed in A := [1/2,m + 1/2]2 at positions A ∩ Z
2, and the next hop

receiver of each node is one of the four nearest neighbors. For random networks,

nodes are uniformly randomly located in an area m × m. The base station is

assumed to be located at (m,m) for both networks, and the two networks have the

same size and node densities. We assume that for each connection, no other nodes

except the source node and relay nodes in that route are transmitting. So we just

consider the intra-connection or intra-route interference, not the inter-connection

or inter-route interference. To find an upper bound on the throughput, we employ

the near-optimum scheduler in Chapter 3 to take advantage of spatial reuse and

balance the per-node throughput. We assume that traffic is only generated at a

single node (i, j), but let i and j vary over 1 ≤ i, j ≤ m so that all possible cases

are considered. To compare the regular and random networks, we also study the

simple MAC scheme for a single connection.

6.2.1 Regular square sensor networks

We consider regular square networks (4-neighbor case) such that the routing

strategy is to select one of the four neighbors which is closer to the base station.

6.2.1.1 Throughput

For the connections originating at all the nodes, we determine the end-to-end

throughput for a 15 × 15 square grid network. This throughput is plotted in

Fig. 6.2 for α = 4. Averaging the throughput over all the connections, the mean
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Figure 6.2. End-to-end throughput for traffic originating from the nodes
at positions (x, y) in a 15 × 15 regular square grid network for α = 4.

value is 0.1799, the variance is 0.0085.

6.2.1.2 Energy consumption

A packet originating at position (x, y) takes m− x + m− y hops to be relayed

to the base station (m,m). From Chapter 2, we know that if there are h hops with

unit distance d0 = 1, the transmit energy at each hop for an end-to-end reliability

pEE is EL = h
dα
0 ΘN0

− ln pEE
= h ΘN0

− ln pEE
. The total energy consumption to deliver one

packet to the base station is hEL = h2 ΘN0

− ln pEE
= h2E0, where h = 2m− x− y and

E0 := ΘN0

− ln pEE
. Thus, we have

Etot =
m∑

y=1

m∑

x=1

(2m − x − y)2E0 =

(
7

6
m4 − 2m3 +

5

6
m2

)

E0. (6.3)

6.2.2 Two-dimensional random networks

We adapt the transmit power to dα to compensate for the path loss and employ

the generic routing strategy from [21]: each node in the path sends packets to

77



its nearest neighbor that lies within a sector φ, i.e., within ±φ/2 of the source-

destination direction, which results in the routing trees shown in Fig. 6.3.

6.2.2.1 Throughput

We expect the end-to-end throughput to increase with decreasing angle φ since

the path follows a straight line more closely for smaller φ. For φ = π/6 and

φ = π/2, Fig. 6.4 displays the throughput distribution for α = 4. The average

end-to-end throughput per connection is 0.2310 and 0.1595, with variance 0.0202

and 0.0067 for φ = π/6 and φ = π/2, respectively. As expected, routing within

a smaller sector has better throughput performance. Note that for Fig. 6.3(a),

there are 5 nodes with throughput 1 since they are directly connected to the base

station, whereas for φ = π/2, there is only a single node with throughput 1.

6.2.2.2 Energy consumption

Similar to one-dimensional case, we determine the expected value of Rα, where

R has a Rayleigh distribution2 [21], i.e., fR(x) = xφe−x2φ/2.

E[Rα] =

∫ ∞

0

xαfR(x)dx =

(
2

φ

)α/2

Γ(1 +
α

2
), (6.4)

shown in Fig. 6.5(a). The energy consumption is decreasing with increasing φ.

For φ = π/2 and α = 4, E[Rα] = 3.6393, which is much smaller than in the one-

dimensional case, Γ(1 + α) = 24. In terms of averages, the difference of energy

consumption between 2-d random networks and square grid networks is not as big

as in the one-dimensional case. How about the maximum energy consumption?

Again, we need to determine E[Rα
max|h] := E[max{Rα

1 , Rα
2 , ...Rα

h}], where h is the

2For simplicity, we use the Euclidean distance R rather than the effective distance d, which
yields a tight lower bound.
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Figure 6.3. Routing trees from all the nodes to the base station for a
random network with area 15 × 15 and density 1. (a) Routing within

sector φ = π/6. (b) Routing within sector φ = π/2.
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Figure 6.4. End-to-end throughput for traffic originating from all the
nodes to the base station for a random network with area 15 × 15 and

density 1 for α = 4.
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Figure 6.5. (a) E[Rα] vs. φ for two-dimensional random network for
α = 2, 3, 4, 5. (b) E[Rα

max|h] vs. h for two dimensional random
networks for α = 4 and φ = π/2. (c) E[Rα

max|h] vs. h for random line
networks for α = 4.

hop number. The cdf of Rα is

FRα(y) = P[Rα ≤ y] =

∫ y1/α

0

xφe−
x2φ
2 dx = 1 − e−

y2/αφ
2 . (6.5)

and

E[Rα
max|h] =

∫ ∞

0

[1 − (FRα(y))h]dy =

∫ ∞

0

1 − (1 − e−
y2/αφ

2 )hdy, (6.6)

which is plotted in Fig. 6.5(b) for α = 4 and φ = π/2. Will the curves in

Fig. 6.5(a) (b) have the relationship a log h + b with h? We can see that the

maximum transmit energy increases with the number of hops for one connection

in random networks. For example, for a two-dimensional random network with

area 40 × 40 and density 1, the average number of hops per connection is about

34 using (6.20) with φ = π/2. From Fig. 6.5(b), we can see E[R4
max|h = 34] is

about 30, indicating that the lifetime of a connection is only 1/30 of the lifetime
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TABLE 6.2

COMPARISON OF TWO DIMENSIONAL REGULAR AND

RANDOM NETWORKS (φ = π/2) FOR A SINGLE CONNECTION

WITH 10 HOPS AND 20 HOPS FOR α = 4. gave AND gmin DENOTE

THE AVERAGE PER-NODE THROUGHPUT AND END-TO-END

THROUGHPUT.

Regular network Random network

10-hop 20-hop 10-hop 20-hop

gave of simple MAC 0.1296 0.1176 0.1124 0.1004

gmin of simple MAC 0.0960 0.0903 0.0762 0.0644

gave of opt. MAC 0.1802 0.1698 0.1575 0.1373

gmin of opt. MAC 0.1725 0.1611 0.1476 0.1256

E[Rα] 1 1 3.6 3.6

E[Rα
max|h] 1 1 16.4 23.6

of a connection in a regular network, where E[dα
0 ] = 1.

6.2.3 Comparisons

To fairly compare the two-dimensional regular and random networks (with

adaptive power) in terms of path efficiency, we use a routing sector φ = π/2 which

is equivalent to nearest-neighbor routing in regular square grid networks. Table

6.2 compares the throughput and energy consumption (normalized) for single

connections with 10 and 20 hops. For the random network, we can approximate

the total energy consumption per connection as h̄2
E[ RαΘN0

− ln pEE
] using h̄ from (6.20)
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(see the Appendix of this chapter). We have

Etot = (m2 − 1)h̄2
E[Rα]E0 = (m2 − 1)




0.769m

√
π
2φ

2
φ

sin(π
4
)





2

E[Rα]E0, (6.7)

where E0 = ΘN0

− ln pEE
. Using (6.3), (6.7) and simulation result, we compare the

average end-to-end throughput and total energy consumption (normalized by E0)

in Table 6.3 for networks with area 15 × 15 and 30 × 30 (density 1).

6.3 Equal Transmit Power Strategy

Since strategies with equal transmit power are energy-balanced, we study

schemes with and without retransmissions. Let the normalized SNR γN := P0/(ΘN0),

from (2.5), resulting in a link reception probability pN
r = e

− dα

γN .

6.3.1 Without retransmissions

For random line networks, the conditional link reception probability given

d = max{1, R} is pN
r = e

− dα

γN , since the internode distance R is exponentially

distributed, the cumulative distribution function (cdf) is

FpN
r
(y) =







e−(−γN ln y)
1
α , 0 ≤ y < yth,

1, y ≥ yth,

where yth := e
− 1

γN (see the Appendix for the proof).
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TABLE 6.3

COMPARISON OF TWO DIMENSIONAL REGULAR AND

RANDOM NETWORKS (φ = π/2) FOR WHOLE NETWORK FOR

THE NETWORKS WITH AREA 15 × 15 AND 30 × 30 AND

DENSITY 1 FOR α = 4.

Regular network Random network

Area size 15 × 15 30 × 30 15 × 15 30 × 30

Average min. throughput 0.1799 0.1611 0.1595 0.1344

Etot of analysis 52500 891750 1.33 · 105 2.14 · 106

Etot of simulation 1.26 · 105 2.09 · 106

For α = ∞,

FpN
r
(y) =







e−1, 0 ≤ y < yth,

1, y ≥ yth.

(6.8)

This is of interest because it shows that for α → ∞, the model degenerates to a disk

model. Fig. 6.6 (a) illustrates the cdf of the link reception probability for α = 4

and γN = 10 in one-dimensional line networks. It is shown that with medium

transmit power, very small link reception probabilities exists with a certain non-

negligible probability. If γN = 10 and α = 4, for example, the probability that pN
r

is below 10% is 0.11. Over an h-hop connection, the cdf of the minimum reception

probability is

P[min{pN
r1, p

N
r2...p

N
rh} ≤ y] = 1 − (P[pN

r > y])h = 1 − (1 − FpN
r
(y))h. (6.9)
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Figure 6.6. Cdf of link reception probability pN
r for (a) one-dimensional

random networks and (b) two-dimensional random networks.

Therefore, for a 30-hop connection, even with γN = 100, corresponding to pN
r =

0.99 for d = 1, there is a 25% chance that the minimum pN
r is below 0.01 for α = 4.

This illustrates that strategies without power control will suffer from either very

low end-to-end throughput or very high energy consumption (and interference)

over short links.

For two-dimensional random networks, the distance between a node and its

nearest neighbor in a sector φ is Rayleigh distributed [20]. Similar to the one-

dimensional network, we obtain for the cdf of pN
r

FpN
r
(y) =







e−
φ
2
(−γN ln y)

2
α , 0 ≤ y < yth,

1, y ≥ yth,

where yth := e
− 1

γN . Fig. 6.6(b) illustrates the cdf of pN
r for φ = π/6 and φ = π/2
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for α = 4 and γN = 10.

6.3.2 With retransmissions

The previous analysis indicates that the equal transmit power strategy may

lead to very small pN
r . Therefore, retransmissions are necessary. For an h-hop con-

nection and desired end-to-end reliability pEE, the desired link reliability should be

p
1/h
EE. If p

1/h
EE ≤ pN

r = e
− dα

γN , no retransmission is needed. So, if d > (−γN ln pEE

h
)1/α,

the number of transmissions for one hop is given by

nt =
log(1 − p

1/h
EE)

log(1 − pN
r )

=
log(1 − p

1/h
EE)

log(1 − e
− dα

γN )
. (6.10)

Combining the above expressions, we find

nt =







1, d ≤ D

log(1−p
1/h
EE )

log(1−e
− dα

γN )
, d > D.

(6.11)

where D := (−γN ln pEE

h
)1/α. Fig. 6.7(a) displays the mean transmission number

per hop, E[nt], and the average maximum transmission number E[ntmax|h = 40]

for 40-hop connections in two-dimensional random networks. The average energy

consumption per hop for the retransmission strategy is Eretr = E[nt]γNΘN0; for

the adaptive power strategy it is Eadp = E[ dαΘN0

− ln pEE
1/h ]. Let βE denote the energy

ratio

βE =
Eretr

Eadp

=
−γN ln pEEE[nt]

hE[dα]
. (6.12)
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Figure 6.7. Investigation of retransmission strategy for 40-hop
connections in two dimensional random networks at α = 4. (a) E[nt] vs.
γN and E[ntmax|h = 40] vs. γN . (b) Energy ratio βE vs. γN and lifetime
ratio βlife vs. γN of the retransmissions strategy to the adaptive power

strategy.

Since the maximum energy consumption determines the lifetime of the connec-

tions, we define the lifetime ratio for an h-hop connection as

βlife =
−γN ln pEEE[ntmax|h]

hE[dα
max|h]

. (6.13)

The energy ratio and lifetime ratio versus different γN are plotted in Fig. 6.7(b)

for 40-hop connections in two dimensional random networks for α = 4. It is shown

that for the retransmission strategy, the minimum lifetime ratio can be achieved

at γN = 35, βlife = 1.5; however the energy consumption is 3.4 times higher than

for the of adaptive power strategy. The minimum energy ratio can be achieved at

γN = 20, βE = 2.7, but the average maximum transmission number is 20 and the

average transmission number per hop is 2.6, which means for a 40-hop connection,

104 transmissions are needed on average.
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6.4 Conclusions

The comparison of networks with regular and random topology shows that

regular networks outperform random ones in terms of achievable throughput and,

more significantly, in terms of energy consumption. The difference is bigger in 1-d

networks than in 2-d networks due to the bigger variance of the distance distribu-

tion (exponential vs. Rayleigh). If we focus on a single multi-hop connection (2-d)

and compare the maximum node energy consumption (that determines the life-

time of the connection) and the minimum per-node throughput (that determines

the end-to-end throughput), the difference is even more prominent: for a path loss

exponent of 4 and a connection of 10-20 hops, the lifetime of a connection in a

random network is about 20× smaller, and the end-to-end throughput penalty is

25-30%, depending on the MAC scheme.

This analysis assumed that nodes adapt their transmit power according to

the hop distance to keep the link reception probability pN
r constant. Strategies

with constant power would better balance the energy consumption among the

nodes, but they are impractical since the connections would suffer from very low

reception probabilities or intolerably high delay due to the many retransmissions

that would become necessary. Clearly, the cause of these problems is the variance

in the distances over which the nodes transmit. The only solution is to abandon

the principle of nearest-neighbor routing and have every node transmit over a

similar distance. For low latency, nodes should always transmit as far as possible,

i.e., as far as the maximum available power permits. In so doing, the nodes chosen

as relays approximately form a regular subnetwork, thereby emulating a regular

topology. It has been shown in [18] that this “distance equalization” scheme also

solves the problem of power amplifier inefficiencies, since it avoids power control
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over a large dynamic range and, in turn, the use of the amplifiers at operating

points with low efficiency (low power).

In terms of deployment, these results suggest that one should aim at a regular

node spacing whenever possible. So, uniform coverage and efficient communication

go hand in hand. This is addressed in Chapter 8.

6.5 Appendix

Pdf, cdf of link reception probability in random line networks. For random line

networks where nodes are uniformly randomly placed in a line with density 1, the

internode distance R is exponentially distributed with mean 1, which is fR(x) =

e−xu(x). The link reception probability over a distance d is

pN
r = g(d) = e

− dα

γN , d = max{1, R}. (6.14)

where d is the effective internode distance, R is the Euclidean internode distance,

and γN := P0/(ΘN0) is the normalized SNR. For R ≥ 1, we can calculate the cdf

as

FpN
r
(y) = P[pN

r ≤ y] = P[e
− xα

γN ≤ y] = P[x ≥ (−γN ln y)
1
α ]

=

∫ ∞

(−γN ln y)
1
α

e−xdx = e−(−γN ln y)
1
α , 0 ≤ y < e

− 1
γN . (6.15)

And the pdf as

fpN
r
(y) =

d

dy
[FpN

r
(y)] = −(−γN ln y)

1
α e−(−γN ln y)

1
α

αy ln y
, 0 ≤ y < e

− 1
γN . (6.16)
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Figure 6.8. The approximation and simulation results of average path
length in hops for two dimensional random network with area 15 × 15

and density 1.

For R < 1, pN
r = g(d) = e

− 1
γN , we have the cdf and pdf as

FpN
r
(y) = 1, y ≥ e

− 1
γN

fpN
r
(y) = (1 − e−1)δ(y − e

− 1
γN ), y ≥ e

− 1
γN (6.17)

Average path length in hops for 2-d random networks. For two-dimensional ran-

dom sensor networks (area m×m, density 1, routing within sector φ, base station

at (m,m)), we can approximate the average path length in hops from [8]

h̄ =
r̄

R̄η
. (6.18)

where r̄ denotes the expected distance between the source-destination pair, R̄ the

expected internode distance and η the expected path efficiency, where the path

efficiency is the ratio between the Euclidean distance and the travelled distance.
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From [45, Exercise 2.4.5], it is known that

r̄ =

[√
2

3
+

1

3
arctanh(

1√
2
)

]

m ≈ 0.769m,

R̄ =

√
π

2φ
, η =

2

φ
sin(

φ

2
). (6.19)

So we have

h̄ ≈ 0.769m
√

π
2φ

2
φ

sin(φ
2
)
. (6.20)

For m = 15, The approximation and simulation result of the expected number of

hops are plotted in Fig. 6.8. Therefore, we can see that the average number of

hops in one connection is increasing with the network size and sector angle φ.
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CHAPTER 7

THROUGHPUT ANALYSIS OF FADING SENSOR NETWORKS WITH

REGULAR AND RANDOM TOPOLOGIES

In previous chapters, the throughput of large networks with different topologies

is obtained from simulation results. In this chapter, we present closed-form expres-

sions of the average link throughput for sensor networks with a slotted ALOHA

MAC protocol in Rayleigh fading channels. We compare networks with three reg-

ular topologies in terms of throughput, transmit efficiency, and transport capacity.

In particular, for square lattice networks, we present a sensitivity analysis of the

maximum throughput and the optimum transmit probability with respect to the

signal-to-interference ratio threshold. For random networks with nodes distributed

according to a two-dimensional Poisson point process, the average throughput is

analytically characterized and numerically evaluated. It turns out that although

regular networks have an only slightly higher average link throughput than ran-

dom networks for the same link distance, regular topologies have a significant

benefit when the end-to-end throughput in multihop connections is considered.

We define the (per-link) throughput as the expected number of successful

packet transmissions of a given link per timeslot. The end-to-end throughput

over a multihop connection, defined as the minimum of the throughput values of

the links involved, is a performance measure of a route and the MAC scheme.
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7.1 Slotted ALOHA MAC Scheme

We consider a variant of the slotted ALOHA channel access scheme, originally

devised in [1], that takes advantage of spatial reuse. It is assumed, as in [6, 50,

65, 73], that in every timeslot, each node transmits independently with a certain

fixed probability p. While often a “heavy traffic” model is used [50, 65], where

nodes always have packets to transmit and p only reflects the channel access

probability, we do not restrict ourselves to this “MAC-centric” case. Rather,

we consider p to be composed of two factors, i.e., p = pqpt, where pq is the

probability that there is a packet in a node’s queue awaiting transmission, and pt

is the probability of transmission conditioned on having a packet in the queue (the

channel access probability). So, pq is given by the traffic model, pt is the actual

slotted ALOHA channel access probability, and p is the unconditioned probability

of transmission. The heavy traffic case mentioned above corresponds to pq = 1,

pt = p, and the other extreme case is pq = p, pt = 1, where Bernoulli traffic

is generated with probability pq and each node with a packet to transmit has

immediate access to the channel. Since there is no need for a MAC scheme in this

case, we may denote it as “traffic-centric”. Hence the decomposition of p shows

that the throughput analysis and optimization with respect to p in fact includes a

range of traffic intensities and channel access probabilities. The Bernoulli traffic

model is well justified by the following three observations: (1) In [73], it was

shown that the traffic from a slotted ALOHA population of nodes can indeed be

modeled as Bernoulli; (2) in [7, p. 278] it is pointed out that the re-transmission

traffic is usually Bernoulli (since an unsuccessfully transmitted packet re-enters

the queue); and (3) the Bernoulli traffic model is memoryless and thus the discrete-

time counterpart of the ubiquitous Poisson model.
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The traffic distribution in a sensor networks is usually spatially and temporally

bursty, i.e., busy periods alternate temporally and busy areas alternate spatially

with periods and areas with little or no traffic. It may therefore be impractical to

employ reservation-based MAC schemes such as TDMA and FDMA that require

a substantial amount of coordination traffic and cannot be implemented efficiently

and in a fully distributed fashion1. In any case, the slotted ALOHA scheme is the

simplest meaningful MAC scheme and therefore provides a lower bound on the

performance for more elaborate schemes. Since areas of the network or periods

with little or no traffic pose no problems, our analysis focuses on and applies to

busy areas and busy periods of the network where collisions are unavoidable and

the throughput is interference-limited. During such a burst of traffic, we assume

that the parameters p, pq, and pt remain constant. An important example of a busy

area is certainly the critical area around the base station or fusion center, where

traffic accumulation due to the many-to-one transmission scheme often results in

heavy traffic [17] (see also Chapter 5).

7.2 The Rayleigh Fading Link Model with slotted ALOHA

The following theorem is an extension of Theorem 1 to slotted ALOHA.

Theorem 2 In a Rayleigh fading network with slotted ALOHA, where nodes

transmit at equal power levels with probability p, the success probability of a trans-

mission given a desired transmitter-receiver distance d0 and n other nodes at dis-

tances di (i = 1, . . . , n) is

Ps|d0,...,dn = exp
(

− ΘN0

P0d
−α
0

)

·
n∏

i=1

(

1 − Θp
(

di

d0

)α

+ Θ

)

(7.1)

1In general this problem is NP-hard.
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where P0 is the transmit power, N0 the noise power, and Θ the SINR threshold.

Proof: Let Q0 denote the received power from the desired transmitter and Qi,

i = 1, . . . , n, the received power from n potential interferers. All the received

powers are exponentially distributed, i.e., pQi
(qi) = 1/Q̄ie

−qi/Q̄i , where Q̄i denotes

the average received power Q̄i = Pid
−α
i . The cumulated interference power at the

receiver is

I =
n∑

i=1

SiQi,

where Si is a sequence of iid Bernoulli random variables with P(Si = 1) = p and

P(Si = 0) = 1 − p. The success probability of a transmission is2

Ps|d0,d1,...,dn = EI

[

P[Q0 > Θ(I + N0) | I ]
]

=EQ,S

[

exp
(

− Θ(
∑n

i=1 SiQi + N0)

Q̄0

)]

= exp
(

− ΘN0

Q̄0

)

EQ,S

[ n∏

i=1

exp
(

− Θ(SiQi)

Q̄0

)]

= exp
(

− ΘN0

P0d
−α
0

) n∏

i=1

{

P (Si = 1) ·
∫ ∞

0

exp
(

− Θqi

Q̄0

)

pQi
(qi)dqi + P (Si = 0)

}

= exp
(

− ΘN0

P0d
−α
0

) n∏

i=1

( p

1 + Θ
(

d0

di

)α + 1 − p
)

= exp
(

− ΘN0

P0d
−α
0

) n∏

i=1

(

1 − Θp
(

di

d0

)α

+ Θ

)

(7.2)

2

Since the throughput in large sensor networks is limited by the interference,

in the following, we focus on the interference part (the second factor of (7.2),

2A similar calculation has been carried out in Theorem 1 for the case where in every timeslot
it is known exactly who is transmitting. In contrast, Theorem 2 incorporates the uncertainty at
the MAC level: we only assume we know the probability of a transmission, but not exactly who
is transmitting in every timeslot.
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assuming N0 = 0) to determine bounds that are fundamental in the sense that

they cannot be exceeded even if the transmit power is not constrained. The first

exponential term is easily evaluated if N0 6= 0.

Corollary 2.1 Under the same assumptions as in Theorem 2 but with N0 = 0

and unit transmit power Pi = 1, the success probability given a desired link of

normalized distance r0 = d0/d0 = 1 and n other nodes at normalized distances

ri = di/d0 is:

Ps|r0,r1,...,rn =
n∏

i=1

(

1 − p

1 + ri
α/Θ

)

= LI(Θ), (7.3)

which is the Laplace transform of the interference power I evaluated at the SIR

threshold Θ.

Proof: With unit transmit power, the mean power from the i-th interferer at

distance ri is 1/rα
i . The Laplace transform of the exponential distribution with

mean 1/µ is µ/(µ + s), thus the Laplace transform of I is [46]:

LI(s) =
n∏

i=1

( prα
i

rα
i + s

+ 1 − p
)

=
n∏

i=1

(

1 − p

1 + rα
i /s

)

(7.4)

From (7.2) and with ri = di/d0 (normalized distances), if N0 = 0,

Ps|r0,r1,...,rn =
n∏

i=1

(

1 − p

1 + ri
α/Θ

)

(7.5)

we get (7.3). 2

7.3 Regular Networks

In this section, we investigate networks with three regular topologies (square,

triangle, hexagon) in which every node has the same number of nearest neighbors
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AO

Figure 7.1. The topology of a square network. Node O is the receiver
and node A is the desired transmitter such that the link distance

d0 = |OA| = 1.

and the same distance to all nearest neighbors.

7.3.1 Square networks

We first analyze square networks with N nodes placed in the vertices of a

square grid with distance 1 between all pairs of nearest nodes (density 1). The

next-hop receiver of each packet is one of the four nearest neighbor nodes of the

transmitter, so the transmitter-receiver distance d0 = 1. If the receiver node O is

located in the center of the network as shown in Fig. 7.1 and node A is the desired

transmitter, the success probability for node O based on (7.5) can be written as:

Ps(p) =
(

1 − Θp

1α + Θ

)3

·
(

1 − Θp

(
√

2)α + Θ

)4

×
√

N/2
∏

i=2

{(

1 − Θp

iα + Θ

)4

·
(

1 − Θp

(
√

2i2)α + Θ

)4

·
i−1∏

j=1

(

1 − Θp

(
√

i2 + j2)α + Θ

)8}

.

(7.6)
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Figure 7.2. The analytic throughput g(p) based on equation (7.6) for a
square network with 40 × 40 nodes, with Θ = 10.

The first term in (7.6) accounts for the other three nearest neighbor nodes of the

receiver; the second term for the 4 diagonal nodes at distance
√

2; all the other

terms from the nodes located on the dashed squares with edge ≥ 2 in Fig. 7.1.

The throughput3 is given by

g(p) = p(1 − p)Ps(p), (7.7)

where p is the probability that A transmits and 1−p is the probability that O does

not transmit in the same timeslot. Note that g is the throughput achievable with

a simple ARQ scheme (with error-free feedback) [3]. The analytic throughput g(p)

based on (7.6) and (7.7) for a regular square network with 40 × 40 nodes with

node density λ = 1 is displayed in Fig. 7.2. For α = 4, the maximum throughput

gmax = 0.0247 is achieved at an optimal transmit probability popt = 0.066. The

transmit efficiency, defined as Teff = gmax/popt, is 37.4%.

For the sensitivity analysis of the throughput with respect to Θ, we need to

3The throughput is calculated as the throughput of the center link of the busy area under
consideration. This is the worst case since most other nodes experience a lower interference. In
the case of infinite networks, the interference distribution is the same at every node.
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determine popt(Θ) and gmax(Θ). We use three analytic approximations for popt(Θ)

and gmax(Θ). From (7.5), g can be written as

g = p(1 − p)
n∏

i=1

(

1 − p

1 + rα
i /Θ

)

, (7.8)

where ri = di/d0.

Since popt = arg maxp g(p) = arg maxp log
(
g(p)

)
, we maximize

log(g) = log(p) + log(1 − p) +
n∑

i=1

log
(

1 − p

1 + rα
i /Θ

)

, (7.9)

using log(1 + x) ≈ x for small x,4 yielding

p2
opt − popt(1 + 2s) + s = 0, (7.10)

with

s =
1

∑n
i=1

1
1+rα

i /Θ

. (7.11)

Note ri = di for d0 = 1. So, popt is given by

popt = s +
1

2

(

1 −
√

1 + 4s2
)

. (7.12)

gmax can be obtained by gmax = popt(1 − popt)Ps(popt), where Ps(popt) is obtained

by plugging popt into (7.6). This method is called Analytic 1.

For α = 4, we use i2 to approximate d4
i for the nodes located in one quadrant.

As shown in Fig. 7.3, the distance of node i (i = 1, . . . , 8) in the first quadrant to

4The approximation is accurate for p in the range of interest, i.e., 0 < p < 0.3.
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Figure 7.3. Node numbering scheme pertaining to Table 7.1 for nodes in
the first quadrant of a square network. O is the receiver.

TABLE 7.1

COMPARISON OF d4
i AND i2.

i 1 2 3 4 5 6 7 8

d4
i 1 1 4 16 16 25 25 64

i2 1 4 9 16 25 36 49 64

the receiver node O is di.

Table 7.1 compares d4
i and i2 for i = 1, . . . , 8. By Euler’s summation formula,

d4
i ≈ i2 allows a simplification (the node at distance 1 is the desired transmitter):

k+1∑

i=2

1

1 + i2/Θ
≈

√
Θ

(

arctan
k + 3/2√

Θ
− arctan

3

2
√

Θ

)

. (7.13)

For k → ∞,

s ≈ 1

4
√

Θ
(

π
2
− arctan 3

2
√

Θ

) , (7.14)

where the factor 4 in (7.14) comes from the fact that nodes are located in 4
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Figure 7.4. For a square network with 40 × 40 nodes and α = 4, the
numerical results and analytic results from Analytic 1, Analytic 2 and

Analytic 3 for (a) the relationship between popt and Θ; (b) the
relationship between gmax and Θ.

quadrants. Plugging (7.14) into (7.12) is our method Analytic 2.

In method Analytic 3, we use the approximation s ≈ 1/(4
√

Θ), which is within

∓20% for the practical range 9/(2 cot(0.8))2 ≈ 2.4 < Θ < 9/(2 cot(1.2))2 ≈ 14.9,

and substitute it into (7.12), which yields

popt =
1

4
√

Θ
+

1

2

(

1 −
√

1 +
1

4Θ

)

. (7.15)

Based on (7.9) and (7.11), gmax is given by

gmax = popt(1 − popt) e−popt/s. (7.16)

The numerical result obtained by direct maximization of (7.6) for different Θ is

compared with the results from the three analytical approximations in Fig. 7.4. In

Analytic 2, approximating interfering nodes at distance di by the larger distance
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(a) (b)

Figure 7.5. The topology of (a) triangle network and (b) hexagon
network

i1/2 (shown in Table 7.1) results in lower interference. The interference has a more

significant impact on the throughput (and popt) for small Θ (see (7.13)). Thus for

small Θ, this lower interference leads to a higher popt than for Analytic 1. The

transmit efficiency is Teff = gmax/popt = (1 − popt)e
−popt/s, which is monotonically

increasing from lims→0 Teff = e−1 ≈ 0.37 to lims→∞ Teff = 1/2. The upper bound is

achieved if the interference goes to zero, in which case popt = 1/2 and gmax = 1/4.

For the lower bound, as s → 0, we have popt → 0 and gmax → 0, and Teff converges

to e−1. Hence s is a measure for spatial reuse. Indeed for s → 0, which happens for

α → 0 5 or Θ → ∞, the network does not permit any spatial reuse. In this case,

the transmit efficiency reduces to the efficiency of conventional slotted ALOHA [1],

where for a network with N nodes, popt = 1/N and Teff = limN→∞(1−1/N)N−1 =

e−1, as pointed out earlier [65]. The fact that our limit coincides with the limit

for conventional slotted ALOHA further validates our approximations.

5In fact, α → 2 is sufficient for infinite networks.
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Figure 7.6. The analytic throughput g(p) vs. p for two-dimensional
networks with (a) triangle topology and (b) hexagon topology, where

Θ = 10 and N = 1600 nodes.

7.3.2 Triangle networks and hexagon networks

Other regular topologies of interest are the triangle topology and its dual, the

hexagon topology (Fig. 7.5). For each triangle, there are three vertices and six

nearest neighbors for each vertex, while for the hexagon, there are six vertices for

each hexagon and three nearest neighbors for each vertex. Again, the next-hop

receiver of each packet is one of the nearest neighbor nodes of the transmitter,

so the transmitter-receiver distance d0 is equal to the side length of the regular

polygon. In the triangle network, each node is located in a hexagon with area

(
√

3d2
0)/2. For node density is 1, d2

0 = 2/
√

3. Similarly, for hexagon networks,

d2
0 = 4/(3

√
3).

Similar to the calculation of square lattice networks as in (7.6), we obtain

the relationship between the throughput g and the transmit probability p and

compare the performance of triangle and hexagon networks in Fig. 7.6. For a

fair comparison, we introduce the transport capacity which can be defined as
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TABLE 7.2

COMPARISON OF SQUARE, TRIANGLE AND HEXAGON

NETWORKS FOR α = 4 AND Θ = 10, WHERE popt, gmax AND Teff

DENOTE THE OPTIMUM TRANSMIT PROBABILITY, MAXIMUM

THROUGHPUT AND TRANSMIT EFFICIENCY.

popt gmax Teff d0 gmaxd0

Square 0.0660 0.0247 0.37 1.0 0.0247

Triangle 0.0570 0.0213 0.37 1.0746 0.0229

Hexagon 0.0870 0.0326 0.37 0.8774 0.0286

Z := gmaxd0. The results for square, triangle, and hexagon networks for α = 4 are

shown in Table 7.2. The performance difference among the three topologies can

be explained by the distance and number of the potential interfering nodes. Note

that the transmit efficiency Teff is very close to the one of conventional slotted

ALOHA and does not depend on the topology.

7.4 Random Networks

Here, we assume that the positions of the nodes constitute a Poisson point

process6. In the following, we will investigate the throughput averaged over net-

work realizations when the transmitter-receiver distance d0 is fixed (Section 7.4.1)

and not fixed (Section 7.4.2).

6For large networks, this is equivalent to a uniformly random distribution for all practical
purposes.
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7.4.1 Average throughput for fixed d0

In this case, we assume the distance between the desired transmitter and re-

ceiver is fixed and there are N other nodes constituting a two-dimensional Poisson

point process. Although (7.5) gives the success probability conditioned on node

distances, we still need to find the joint density of d1, d2, . . ., dN (ordered dis-

tances). It is well known that for one-dimensional Poisson point processes with

density λ, the ordered distance from nodes to the desired receiver form the arrival

times of a Poisson process [46]. The inter-arrival intervals are iid exponential with

parameter λ:

fdi−di−1
(xi − xi−1) = λe−λ(xi−xi−1) (7.17)

So for the ordered distance 0 ≤ d1 ≤ · · · ≤ dN , the joint density function of the

inter-arrival intervals is

fd1,d2,··· ,dN
(x1, x2, · · · , xN)

=fd1,··· ,dN−dN−1
(x1, x2 − x1, · · · , xN − xN−1)

=
(
λe−λx1

)(
λe−λ(x2−x1)

)
· · ·

(
λe−λ(xN−xN−1)

)

=λNe−λxN , 0 ≤ x1 ≤ x2 ≤ · · · ≤ xN . (7.18)

When nodes are distributed according to a two-dimensional Poisson point process

with density λ, the squared ordered distances from the desired receiver have the

same distribution as the arrival times of a Poisson process with density λπ [46].
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The squared ordered distances have a joint distribution with density

fd2
1,··· ,d2

N
(x1, · · · , xN) = (λπ)Ne−λπxN ,

0 ≤ x1 ≤ x2 ≤ · · · ≤ xN , (7.19)

because from [26], we have

fd2
i−d2

i−1
(xi − xi−1) = λπe−λπ(xi−xi−1). (7.20)

The conditional success probability can be written as (see (7.5))

Ps|d0,d1,··· ,dN
=

N∏

i=1

(d2
i )

α
2 + (1 − p)Θdα

0

(d2
i )

α
2 + Θdα

0

. (7.21)

Integrating (7.21) with respect to the joint density (7.19), and in particular, eval-

uating it for α = 4, we obtain

Ps|d0 =

∫ ∞

0

(λπ)Ne−λπxN

{∫ xN

0

· · ·
∫ x2

0

N∏

i=1

x2
i + (1 − p)Θd4

0

x2
i + Θd4

0

dx1 · · · dxN−1

}

dxN .

(7.22)

By applying a similar inductive technique as in [46], it can be shown that

∫ xN

0

· · ·
∫ x2

0

N−1∏

i=1

x2
i + (1 − p)Θd4

0

x2
i + Θd4

0

dx1 · · · dxN−1

=
1

(N − 1)!

(

xN − p
√

Θd4
0 arctan

( xN
√

Θd4
0

))N−1

. (7.23)
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Figure 7.7. For α = 4 and Θ = 10, the analytical average throughput
E[g|d0 = 1] based on equation (7.24) for networks with node number

N = 100, 121 and 144.

Combining (7.22) and (7.23), we have

Ps|d0 =

∫ ∞

0

(λπ)N

(N − 1)!
e−λπx x2 + (1 − p)Θd4

0

x2 + Θd4
0

(

x − p
√

Θd4
0 arctan

( x
√

Θd4
0

))N−1

dx.

(7.24)

Based on (7.24), we numerically evaluate the average throughput E[g|d0] = p(1−

p)Ps|d0 (averaged over all network realizations) and plot it as a function of p in

Fig. 7.7 for a network with node numbers N = 100, 121 and 144, where d0 = 1. It is

shown that they are very close, indicating that only a portion of the nodes interfere

at the receiver and nodes further away have little impact on the transmission.

7.4.2 Average throughput for variable d0

In the previous analysis, we assumed that the transmitter-receiver distance d0

is fixed and there are N potential interfering nodes uniformly distributed. Now

we assume that the receiver located at the center selects its nearest neighbor
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node as its desired transmitter. Then there are N − 1 nodes further away than

the desired transmitter. The distance to the nearest neighbor has the Rayleigh

density function (as shown in [21]):

fd0(x) = 2πxe−πx2

. (7.25)

Since d0 is the nearest distance, d2
i in (7.21) can be varying from d2

0 to d2
i+1. So

we integrate xi from d2
0 to xi+1:

Ps|d0 =

∫ ∞

d2
0

fd2
1,...,d2

N−1|d2
0
(x1, . . . , xN−1|d2

0)
{∫ xN−1

d2
0

· · ·
∫ x2

d2
0

N−1∏

i=1

x2
i + (1 − p)Θd4

0

x2
i + Θd4

0

dx1 . . . dxN−2

}

dxN−1 (7.26)

and

fd2
1,...,d2

N−1|d2
0
(x1, . . . , xN−1|d2

0) = (λπ)N−1e−λπ(xN−1−d2
0),

where 0 ≤ d2
0 ≤ x1 ≤ · · · ≤ xN−1. (7.27)

By induction, it can be shown that

∫ xN−1

d2
0

· · ·
∫ x2

d2
0

N−2∏

i=1

x2
i + (1 − p)Θd4

0

x2
i + Θd4

0

dx1 . . . dxN−2

=
1

(N − 2)!

{

xN−1 − d2
0 − p

√

Θd4
0 ·

[

arctan
( xN−1
√

Θd4
0

)
− arctan

( d2
0

√

Θd4
0

)]}N−2

.

(7.28)

The success probability is Ps|d0 averaged over d0:

Ps =

∫ ∞

0

fd0(x)Ps|d0dx (7.29)

107



0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

p

E
[g

]

Analytic
Simulation

Figure 7.8. For α = 4 and Θ = 10, E[g] vs. p for random network with
N = 144. The analytic result from (7.26) and (7.29) is displayed by

solid line; the simulation result over 10000 runs by + mark.

Substituting (7.27) and (7.28) into (7.26) and evaluating (7.29) with (7.25), we

obtain the relationship between E[g] = p(1 − p)Ps and p, which is plotted in

Fig. 7.8. It is shown that the analytic (solid line) and simulation result (marked

by +) match perfectly.

Fig. 7.8 implies that random networks have better average throughput for local

data exchange than regular networks. This can be explained by d0, the trans-

mitter-receiver distance. In random networks, a variable d0 leads to a variable

throughput. Fig. 7.9 (a) displays E[g|d0] vs. p for d0 from 0.5 to 1.5. Fig. 7.9 (b)

shows the relationship for d0 = 0.1, 0.5, 1.0 and 1.5. Not surprisingly, smaller

d0 results in higher throughput. For the variable d0 case, it is assumed that the

desired transmitter is the nearest neighbor of the receiver. With the pdf of (7.25),

the probability that d0 is greater than 1 (the transmitter-receiver distance in the

square lattice network) is P[d0 > 1] = e−π = 0.043. So for most nodes, the received

signal power from the desired transmitter is greater than that in regular networks.

In Fig. 7.9 (b), for d0 = 0.1, it is shown that the strong signal power resulting from
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Figure 7.9. For α = 4 and Θ = 10, average throughput (a) E[g|d0] vs. p
for d0 from 0.5 to 1.5. (b) E[g|d0] vs. p for d0 = 0.1, 0.5, 1.0 and 1.5.

very small d0 offsets the impact of interference even for high transmit probabilities

p.

Now consider the generic routing strategy from [21]: each node in the path

sends packets to its nearest neighbor that lies within a sector φ, i.e., within ±φ/2

of the source-destination direction. The previous scheme where d0 is obtained as

the distance to the nearest neighbor makes no progress in the source-destination

direction. Such a choice of d0 would correspond to routing within φ = 2π, clearly

an inefficient choice of φ. More sensible is φ ≤ π. Let d0 be the distance to the

nearest neighbor within sector φ. The probability density of d0 is given by [21]:

fd0(x) = xφe−x2φ/2. (7.30)

If the routing sector φ = π/2, then E[d0] = 1. For d0 = 1, Fig. 7.10 displays the

throughput for square network and random network with N = 1600. It turns out

that for the same transmitter-receiver distance, square networks have a slightly
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higher average throughput than random networks.

We compare the transport capacity gmaxd0 of regular and random networks.

Fig. 7.11 (a) shows gmax vs. d0 and popt vs. d0 for a random network. Fig. 7.11 (b)

compares the transport capacity of random and regular networks. It is shown that

at a specific transmitter-receiver distance d0, regular networks slightly outperform

random networks in terms of transport capacity.

7.4.3 End-to-end throughput gEE in a random network

In wireless sensor networks with multihop communication, the end-to-end

throughput (the minimum of the throughput values of the links involved) of a

route with an average number of hops is a better performance indicator than

the average throughput. For two-dimensional random sensor networks (busy area

m × m, density 1, routing within sector φ) with uniformly randomly selected

source and fixed destination located at the corner7, As mentioned in the Ap-

pendix of Chapter 6, we can approximate the average path length in hops h̄ by

plugging (6.19) into:

h̄ ≈ r̄

R̄η
. (7.31)

where r̄ denotes the expected distance between the source and the destination,

R̄ the expected hop length and η the expected path efficiency, where the path

efficiency is the ratio between the Euclidean distance and the travelled distance

of a path. To evaluate the end-to-end throughput of a route with h̄ hops, we

use a semi-analytic approach by generating an h̄-hop path with each hop length

obtained as a realization of R according to the pdf in (7.30), and evaluate the

throughput of each hop based on Fig. 7.9 (a). The average end-to-end throughput

7For the many-to-one traffic typical in sensor networks, we assume the data sink for all
connections to be in one of the corners of the (square) network.

110



0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

0.025

p

E
[g

|d
0]

Regular

Random

Figure 7.10. Comparison of the average throughput of regular square
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Figure 7.11. With N = 1600, α = 4 and Θ = 10, (a) gmax vs. d0 and
popt vs. d0 for a random network, (b) transport capacity gmaxd0 for

random and regular networks with the same size and node density. For
random networks, E[d0] = 1 for φ = π/2.
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is then obtained by taking the minimum of each path and averaging the minimum

over the number of realizations of the simulated routes. It is shown in Fig. 7.12

that the maximum end-to-end throughput gEE is 0.0086, 0.0053 and 0.0039 for

φ = π, π/2 and π/3.

What is the end-to-end throughput for regular networks? It can be directly

obtained from Fig. 7.2 (a) and Fig. 7.6, which is 0.0247, 0.0213 and 0.0326 for

square, triangle and hexagon networks. For regular networks, every hop has the

same length, and the throughput is calculated for a link in the center of the net-

work, which is the worst case, so the end-to-end throughput is the throughput of

the center link of the busy area. In terms of the end-to-end throughput for multi-

hop communication, regular networks significantly outperform random networks.

For larger networks, the benefit is larger since larger m results in longer paths.

7.5 Conclusions

We have shown that for a noiseless Rayleigh fading network with slotted

ALOHA, the success probability of a transmission is the Laplace transform of the
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interference evaluated at the SIR threshold Θ. We assume that in every timeslot,

each node transmits independently with a certain fixed probability p = pqpt, where

pq is the intensity of the Bernoulli traffic and pt is the channel access probability.

This decomposition of p shows that the throughput analysis and optimization with

respect to p includes a range of traffic intensities and channel access probabilities.

Among the three regular networks (square, triangle, hexagon), the hexagon

network provides the highest throughput since every node has only three nearest

neighbors which is the smallest among the three networks. The sensitivity analysis

of the maximum throughput gmax and optimum transmit probability popt with re-

spect to Θ for square networks explains why the transmit efficiency Teff = gmax/popt

is approximately 37%. These results hold quantitatively for the other two regular

networks — triangle and hexagon networks.

For random networks, two scenarios are considered — fixed and variable trans-

mitter-receiver distance d0. If d0 is the same for regular and random networks,

regular networks slightly outperform random networks in terms of throughput

and transport capacity. In the case of variable d0 where the receiver selects the

nearest neighbor node as its desired transmitter, the average throughput of ran-

dom networks is better than that of regular ones. This is because strong signal

powers resulting from very small d0 offset the impact of interference even for high

transmit probabilities. This result, however, only pertains to local data exchange.

When multihop communication and routing is taken into account, regular topolo-

gies have a significant advantage in terms of end-to-end throughput. The reason

for the inferior end-to-end performance of random networks is the large variance

in the node distances.
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CHAPTER 8

TOWARDS QUASI-REGULAR SENSOR NETWORKS: TOPOLOGY

CONTROL ALGORITHMS

So far, we focused on networks with uniformly random and completely regular

topologies. Uniformly random and completely regular topologies are the two ex-

treme cases. For some applications, a model that incorporates some uncertainty

into a regular distribution may be more realistic, as it may not be possible to

deploy nodes completely regularly.

The idea to partition the network area into regular square grid cells has been

explored for energy-saving purposes. [79] comes up with virtual grids which are

defined such that the nodes in one square cell can communicate with all the nodes

in the neighboring cell. In that way, nodes in one cell are considered equivalent

for routing. So only one node needs to be active in each cell, while the other

nodes can sleep to save energy. The problems with this model is that there may

be empty cells, that active nodes may still be very close, and that nodes need to

be able to transmit reliably over distances larger than twice the length of the cell.

Due to the large variance in the inter-node distances, it is very difficult to

efficiently communicate and balance the energy consumption in a network with

uniformly random distribution, as was shown in Chapter 5. Hence it is highly

desirable to make the node distribution more regular by selecting an appropriate

subset of random nodes. We describe and analyze a basic localized algorithm and
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three modifications for topology control that achieve this objective of regularizing

the topology for improved energy efficiency while maintaining the coverage prop-

erties. The basic algorithm produces quasi-regular networks, where only nodes

that are approximately evenly spaced to emulate a regular grid network are ac-

tive and other nodes are put to sleep to save energy. After nodes remain active

for a period of time, the virtual grid is shifted and nodes closest to the shifted

grid points are active for the same period of time (or phase). We analyze the

network lifetime of quasi-regular networks in two operating modes, a monitoring

mode where a subset of nodes is active, acting as sentries, and a reporting mode,

where an event of interest has been detected and a set of nodes forming a route

to a base station is relaying messages. It is shown that quasi-regular networks

substantially outperform random networks in both modes.

8.1 A Topology Control Algorithm for Sensor Networks

In regular networks, the nodes are placed on the vertices of a regular grid.

Here, we focus on square grids (square lattices). In (purely) random networks,

the position of the nodes constitute a Poisson point process with density λ. Note

that λ does not affect the relative distances, since all the distances are simply

scaled by 1/
√

λ compared with the network with λ = 1. Quasi-regular networks

are networks that are more regular than the Poisson point process but not per-

fectly regular. We offer two definitions for quasi-regular networks. To be concise

and avoid tedious border effects, we focus on infinite networks. Let R be the dis-

tance to the nearest neighbor of a node that lies within a sector π/2 of a desired

direction (the source-destination axis). For a fair comparison, the network has to

be normalized such that E[R] = 1. In the Poisson case, this corresponds to a net-
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work with density 1. Both definitions are based on a measure of the uncertainty

in R.

(1) A quasi-regular network is a network where the differential entropy h(R)

[10] (expressed in nats) satisfies −∞ < h(R) < 1 + γem−log π
2

, where γem is the

Euler-Mascheroni constant. The upper bound is the differential entropy of the

Rayleigh distribution with mean 1, which is the distribution of R in a Poisson

point process [21].

(2) A quasi-regular network is a network with 0 < Var[R] < 4/π − 1. Again,

the upper bound is the variance of the Rayleigh distribution with mean 1.

The closer a network is to the lower bounds, the more regular it is. The two

definitions seem equivalent in the sense that they order networks in the same

way, since the relationship h(R) ∝ Var[R] holds for other distributions than the

Rayleigh distribution [10, p. 225].

We will focus on a particular type of quasi-regular networks, namely the ones

that can be obtained by thinning a random network. The resulting sub-network

only activates nodes as sentries and relays that are approximately evenly spaced,

thereby emulating a regular topology. For example, as shown in Fig. 8.1, a network

with uniformly randomly distributed nodes (marked by circles) can emulate a

regular square network by appropriately selecting a subset of random nodes. In

the first phase, the nodes closest to the integer grid points (marked by squares)

are selected to be active and all the other node are put to sleep. In the second

phase, the original grid points are shifted and a new set of nearest nodes to the

shifted grid points (marked by up-triangles) are selected. In each phase, the grid

that the selected nodes are closest to is called the active grid. For example, in

Fig. 8.1, in the 1st, 2nd, 3rd, and 4th phase, the active grid points are marked by
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Figure 8.1. A part of a network where nodes are uniformly distributed
in an area 100 × 100. The circles denote the random nodes. The

squares, up-triangles, diamonds, and down-triangles denote the active
grids in the 1st, 2nd, 3rd, and 4th phase and all of them constitute the

dense grid.

squares, up-triangles, diamonds, down-triangles, respectively. The density of the

active grid in each phase is one, without loss of generality due to scale-invariance.

The grid consisting of all the original integer grid points and all the shifted grid

points is denoted as dense grid. The active grid is always a subset of the dense

grid. In this way, we can construct a quasi-regular network. Next we formally

define two specific infinite quasi-regular networks:

Quasi-regular network of type A: Gaussian distribution. For each grid point

(xi, yi) ∈ Z
2, place a node in the plane with coordinates (Xi, Yi) with Xi ∼

N (xi, σ
2), Yi ∼ N (yi, σ

2), where σ2 < 1/(2π).

Quasi-regular network of type B : Subset of Poisson point process. Denote the

set of vertices of a Poisson point process in R
2 with density λ > 1 by P . Network

B consists of the smallest subset S ⊂ P of nodes as follows: For each p ∈ P\S and
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any grid point, there is a node s ∈ S such that s is closer to that grid point than

p, i.e., for all s ∈ S, ∃ zi ∈ Z
2 s.t. s = arg minp∈P ‖C(p) − zi‖, where C(p) ∈ R

2

are the coordinates of point p. Note that for each lattice point, there is a unique

(with probability one) nearest neighbor in the Poisson point process.

The uncertainty in the nearest-neighbor distance is reduced since the proba-

bility that it is very small or very large is substantially smaller than for a purely

random network. So both type A and B networks are indeed quasi-regular1.

This definition of quasi-regular network of type B implies a basic local topology

control algorithm to achieve quasi-regularity (of type B): by exchanging position

information with its neighbors, each node determines whether it is closest to a

virtual integer grid point.

Basic algorithm:

1. Perform synchronization and localization of the network nodes.

2. Calculate distances to the nearest grid points, exchange this information

with neighboring nodes, and decide whether to enter sleep mode or stay

active as a sentry.

3. After a certain period, wake up all nodes, shift the virtual grid by a certain

amount. Go back to step 2 unless the desired number of periods has passed.

Note that this is a local algorithm since it is fully distributed and only requires local

data exchange. Many distributed synchronization and localization algorithms have

been proposed for sensor networks, see, e.g., [31, 69] and references therein. The

outcome of the localization step is that all the nodes know their position with

1For a detailed analysis, please refer to Theorem 3 (page 119), Theorem 4 (page 137) and
Subsection 8.4.2.
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respect to a common coordinate system, i.e., a joint grid, which is exactly what

is required for step 2 in the algorithm. The number of neighbors with which

each node needs to share its distance information is limited; it does not exceed

the average number of nodes within a finite radius that is of the order of the

grid distance. This algorithm will be analyzed in detail in Section 8.3, and three

modifications will be suggested in Section 8.5 to overcome its shortcomings.

Note that switching periods or phases incurs a substantial expenditure of en-

ergy, since all nodes need to woken up first before steps 2 and 3 of the basic

algorithm can be carried out. Therefore it is normally preferred to perform phase

shifts only if necessary, i.e., when the currently active set of nodes is about to run

out of energy. Also, phase shifts should only happen during monitoring mode.

The detection of an event of interest by a sentry is assumed to cause the net-

work to switch from monitoring to reporting mode. In reporting mode, the active

set of nodes should not be changed to not perturb the ongoing transmission and

avoid re-routing. Furthermore, if fresh nodes are being added to the network,

they can be naturally integrated at the beginning of the next phase. As the phase

shifts, the new nodes are considered part of the network, and after localization

and synchronization, they may be selected as active nodes in the next phase.

8.2 Properties of Quasi-Regular Networks

Theorem 3 The distributions of quasi-regular networks of type A and B are

equivalent if 2πσ2 < 1 and

λ =
1

2πσ2
. (8.1)

By equivalence, we mean that the distances between the integer grid point and its

nearest neighbor node are identically distributed.
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Proof: For network type A, the distance D =
√

(Xi − xi)2 + (Yi − yi)2 from node

(Xi, Yi) to the grid point (xi, yi) is Rayleigh distributed with mean E[D] = σ
√

π/2

since the square root of the square summation of two Gaussian random variables is

Rayleigh distributed. For network type B, the distance from an arbitrarily chosen

point to its nearest node is also Rayleigh distributed with mean 1/(2
√

λ) [21].

In particular, this is true if the arbitrarily chosen point is a grid point. So for

λ = 1/(2πσ2), the two distributions are identical. 2

In practice, we may consider finite areas and uniformly random distributions

rather than Poisson point processes. We expect Theorem 3 to hold with good

accuracy if the number of nodes is large, in which case the uniform distribution

is equivalent to the Poisson process for all practical purposes2. For example, for

a network of type A, consider an area [−1
2
, 19

2
]2 and place 100 nodes close to the

integer square grid points with σ = 1/
√

2π · 16 ≈ 0.0997 in X and Y . This

yields a grid with Gaussian uncertainty. Manual placement (with some Gaussian

uncertainty) as for networks of type A may be costly and impractical, so we focus

on type B, where we start with a Poisson point process and apply thinning to make

it more regular. This thinning procedure is exactly the topology control algorithm

described in the previous section. In the subsequent analysis, we therefore focus

on networks of type B. So, for the network of type B, place N nodes uniformly

randomly in the same area and pick the 100 nodes closest to the 100 active grid

points. Due to the localization (step 1 in the basic algorithm), the nodes can easily

determine whether they are closest to an active grid point. Since the area is 100,

N = 1600. So for each phase, almost 1 − 100/1600 ≈ 94% nodes can be put to

sleep. They will be activated later when the grid is shifted. For the quasi-regular

2Note that, conditioned on the number of nodes in an area, the distribution of points in a
Poisson process is uniformly random.
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network to emulate a square regular network in all phases, the phase number np

and the shift interval δ are related by np = 1/δ2. The shift interval and the density

λ can, in principle, be chosen independently. However, the case where the number

of dense grid points equals the number of points in the Poisson point process is

of particular importance and will henceforth be referred to as the natural choice.

For the previous example, if the active grid has density one, the shift interval δ

should be δ = 1/
√

λ so that the total number of selected nodes in all the phases is

approximately the total number of random nodes. In this case, the total number

of phases is np = 1/δ2 = λ, which implies that for the natural choice the number

of phases equals the density, i.e., np = λ.3 The grid shift selection scheme of

the natural choice for λ = 16 is shown in Fig. 8.2(b), where A, B, C, D are the

original grid points in the active grid for the 1st phase. The 16 circles within the

dashed box except A are the 15 shifted grid points of the original grid point A.

The shift interval is δ = 1/
√

λ = 1/4. Since a particular node may be closest to

both an original grid point and the shifted grid points, the node could be selected

several times (see Fig. 8.1). The usage number U of a node in a quasi-regular

network of type B is defined as the number of dense grid points a node is closest

to. For the natural choice, the mean usage number is one because

E[U ] =
∞∑

i=0

i · Ui =
density of dense grid

density of Poisson points
= 1, (8.2)

where Ui denotes the probability mass function (pmf) of U , i.e., Ui = P[U = i]

with 0 ≤ i < ∞, which means the probability that a node is selected by i dense

grid points.

3For non-integer density λ, np = [round(
√

λ)]2, where rounding is used to obtain an integer
that is close to the natural choice.
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Figure 8.2. Shift assignment of quasi-regular network of type B. where
A, B, C, D are the original square grid points with density one. (a)

λ = 4, natural choice has 4 phases and δ = 1/2, where for original grid
point A (1st phase), the shifted grid points are E, F and G (2nd, 3rd,
and 4th phases). For the 16−phase case, the 15 filled circles consist of

the 15 shifted grid points of the original grid point A. (b) λ = 16,
natural choice has 16 phases and δ = 1/4, where the 16 circles within
the dashed box except A are the 15 shifted grid points of the original
grid point A. For the 4−phase case, E, F , G are the 3 shifted grid

points of the original grid point A.
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We focus on a specific network with node density λ = 4. The phase number

for the natural choice is 4. The grid shift selection scheme is shown in Fig. 8.2(a),

where A, B, C, D are the original grid points in the active grid for the 1st phase.

For the natural choice with 4 phases, for original grid point A (1st phase), the

shifted grid points are E, F and G (2nd, 3rd, and 4th phases). The dense grid

consists of the original grid points and the shifted grid points. The shift interval

is δ = 1/
√

λ = 1/2. In the next section, a detailed analysis on the node usage

number U will be provided.

8.3 Analysis of Node Usage

8.3.1 Numerical investigation

To determine how often a node is selected, we simulated 109 points of the

Poisson process. For λ = 4, in addition to the natural choice, we also consider

another shift value by increasing the phase number from 4 to 16. As shown in

Fig. 8.2(a), for the 16−phase case, the 15 filled circles consist of the 15 shifted grid

points of the original grid point A. The normalized histograms (probability mass

functions or pmfs) of the usage numbers for the natural choice and the 16−phase

case are illustrated in Fig. 8.3(a) and (b).

For node density λ = 16, the natural choice has 16 phases. We also study the

case with 4 phases. As shown in Fig. 8.2(b), for the 4−phase case, E, F , G are

the 3 shifted grid points of the original grid point A. The normalized histograms

of the node usage numbers for the natural choice and the 4−phase case are shown

in Fig. 8.3(c) and (d).

An interesting observation from comparing Fig. 8.3(a) and (c) is that the

normalized histograms of the node usage number with natural choice are similar,
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Figure 8.3. Normalized histogram (pmf) of node usage numbers for
λ = 4, 16 and different phase numbers. (a) and (c) are natural choices.

e.g., the probability that a node is not active is approximately 25% in Fig. 8.3(a)

and (c). Furthermore, we can see that employing more phases than the natural

choice decreases the number of nodes that are not active, as expected.

8.3.2 Asymptotic behavior

If the shift interval δ gets smaller and smaller, the number of phases increases.

In the limiting case, there is an infinite number of shift phases so that the usage

number of a node will be proportional to the area of the Voronoi cell of that node.

Fig. 8.4 (a) plots the normalized histogram of the usage numbers for 64 phases

as λ = 4. Fig. 8.4 (b) displays the normalized histogram of the Poisson Voronoi

cell area (solid curve) which match the generalized gamma distribution (dashed

curve):

f(x|a, b, c) =
abc/a

Γ(c/a)
xc−1 exp(−bxa) (a, b, c > 0), (8.3)

where a = 1.07950, b = 3.03226 and c = 3.31122 are from [72].
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Figure 8.4. (a) Normalized histogram (pmf) of usage numbers of nodes
for 64 phases for λ = 4. (b) Normalized histogram (pmf) of Voronoi

cells area (solid curve) and the generalized gamma distribution in eqn
(8.3) (dashed curve).

8.3.3 Analytic bounds

The natural choice for the density of the underlying Poisson process for net-

works of type B is appealing since it provides a good tradeoff between regularity

and hardware cost. An exact and complete analysis of the usage numbers for this

case is elusive. It is, however, possible to derive sharp bounds.

8.3.3.1 Probability that a node is not active

Here we determine the lower bound of the probability that a node is not active.

The exact probability calculation is given in the appendix. If a node is not active,

it is not the nearest neighbor of any grid point. In particular, it is not the nearest

neighbor of its 4 neighbor grid points. In addition, it is not the nearest neighbor

of any more distant grid points. We consider the probability that a node at (X,Y )

125



is not the nearest neighbor of its 4 neighbor grid points A, B, C, D4 (shown in

Fig. 8.5(a)) because this is the most likely event. Note here the grid points are A

and its shifted versions B, C, D. We have

P[node(X,Y ) is not the nearest neighbor of A,B,C,D] ≥ p̂

=E[(1 − e−λπr2
1)(1 − e−λπr2

2)(1 − e−λπr2
3)(1 − e−λπr2

4)]. (8.4)

p̂ is the lower bound since (8.4) does not consider the overlaps between the circles

(the shaded areas in Fig. 8.5(b)). It is assumed that we need four different other

nodes that are closer to the four cell corner grid points, although two or three nodes

may be sufficient if one or more lies in the intersection of any two circles. The

probability that a node is not active by its four nearest neighbor grid points but

is active by more distant grid points is rather small and neglected here. Plugging

the coordinate of A, B, C, D (0, 1√
λ
), ( 1√

λ
, 1√

λ
), ( 1√

λ
, 0), (0, 0) into (8.4), and

considering the uniform distribution of X and Y , we obtain

p̂ =1 − erf2(
√

π) + erf(

√
2π

2
) erf

√
2πe−

π
2 + erf2(

√
2π

2
)e−π

− 1

3
e−

4π
3 [erf(2

√
π

3
) + erf(

√
π

3
)]2 +

1

4
e−2π erf2(

√
π) ≈ 0.2362. (8.5)

For λ = 4, the fraction of never active nodes is 24.68% (see Fig. 8.3(a)), which

confirms the above lower bound.

4Here the points A, B, C, D are different from the integer grid points A, B, C, D in Fig. 8.2.
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Figure 8.5. In a quasi-regular network, node (X,Y ) and its 4 nearest
neighbor grid points A, B, C, D. The distance from node (X,Y ) to A,

B, C,D is r1, r2, r3, r4. The shift interval for the natural choice is
δ = 1√

λ
, so the coordinates of A, B, C, D are (0, 1√

λ
), ( 1√

λ
, 1√

λ
), ( 1√

λ
, 0),

(0, 0).

8.3.3.2 Probability that a node is active

The probability that a node is activated by its nearest grid point is

p = 4λ

∫ 1

2
√

λ

0

∫ 1

2
√

λ

0

e−λπ(x2+y2)dxdy = erf(

√
π

2
)2 ≈ 0.624, (8.6)

which is a lower bound of the probability that a node is active.

8.3.3.3 Probability that a node is selected 4 times

As shown in Fig. 8.5(b), the area covered by the 4 circles is smallest if the

random node (X,Y ) is in the center of the square. In this case, the area is
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1
λ
(2 + π), so the probability that the area has no other random nodes is

p = e−λ 1
λ
(2+π) ≈ 0.58%. (8.7)

which is an upper bound of the probability that a node is selected 4 times, which

is, from the simulation, about 0.36%.

8.3.3.4 Approximation of usage numbers

Since the usage number approaches the generalized gamma function (appro-

priately re-scaled) as δ2λ gets small, the usage number can be approximated

as follows: Let F (x) be the cdf and ne := 1 + 4/(δ2λ) be an estimate for the

number of essentially non-zero values of the pmf of U . Now, with c := 7/(2ne)

the first order difference of F evaluated at ck is an approximation of Uk, i.e.:

Uk ≈ F (c(k + 1)) − F (ck). This approximation is better for ne not too small.

8.3.3.5 Decay of the usage numbers Ui for large i

Since the probability that a node is used n times is related to the probability

that a certain area around a node is empty, we can give a simple logarithmic

approximation of these usage numbers. The solid line in Fig. 8.6 shows the ap-

proximation for larger usage numbers. The proportionality to n is intuitively

clear, since the probability that no node is in an area A is e−4A, since λ = 4. The

area that needs to be empty is proportional to n, and can be assumed circular,

therefore the factor π. Now the exact expression (n− 3)π − 2 comes from (8.7) –

the approximation is ”calibrated” to obtain an approximation of (8.7) for U4.
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Figure 8.6. The approximation of how the usage numbers Ui decay for i
larger than the natural number of cases. The circles indicate the

logarithmic of usage numbers. The solid line shows the approximation
for larger usage numbers.

8.3.4 Reliability analysis for different phases

In this subsection, we assume that the network is in monitoring mode, i.e.,

that most of the nodes’ energy is consumed to stay awake for surveillance. So

we define the node lifetime L as the duration of a node being continuously active

(awake), which is identical for every node. The lifetime of network type B is

defined as the time during which in each phase at least a threshold ratio η of the

selected subset is alive. So in the following, we will determine the fraction of live

nodes in each phase. Again, we first consider the important natural choice with

λ = 4 for the reliability analysis. Again, at first, we use the natural choice case of

λ = 4 as an example for the reliability analysis. For network type B, we define the

subset Si (i ∈ N), to be the set of selected nodes in the i−th phase. We extend

this notation by introducing S0 — the set of nodes that are never used. Fig. 8.1

displays the active grid points and active nodes in one phase. The subset in that

phase is the set of nodes marked by ×. The subset of nodes that are selected
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in different phases are not disjoint, i.e., nodes may be selected repeatedly. As

shown in Fig. 8.1, some nodes are selected in several phases, which means they

are the nearest neighbor of several dense grid points (connected to two, three, or

four dense grid points by black lines). It is important to find the probability that

a node belongs to multiple Si, i.e., is selected in several phases. To this end, we

introduce a probability measure µ(·) as follows: µ(·) : S → [0, 1] is the probability

that a node of the original Poisson point process belongs to a set S ∈ S, where S

is the σ-algebra of the Poisson point set5 and therefore constitutes a measurable

space with µ(S0 ∪S1 ∪S2 ∪ . . .) = 1, so µ(·) is a probability measure. With Ui the

pmf of the usage number U (the fraction of nodes that are selected i times), we

have µ(S1∪S2∪ . . .) = 1−U0. Moreover, as shown in Fig. 8.5(b), the probabilities

that a node is selected in phase 1 and/or 2 and/or 3 and/or 4 (nearest neighbor

of D and/or C and/or B and/or A) satisfy the following equalities due to the

homogeneity of the Poisson point process:

µ(S1) = µ(S2) = µ(S3) = µ(S4) =: µ1

µ(S1 ∩ S2) = µ(S2 ∩ S3) = µ(S3 ∩ S4) = µ(S4 ∩ S1) =: µ2n

µ(S1 ∩ S3) = µ(S2 ∩ S4) =: µ2d

µ(S1 ∩ S2 ∩ S3) = µ(S1 ∩ S2 ∩ S4) = µ(S1 ∩ S3 ∩ S4) = µ(S2 ∩ S3 ∩ S4) =: µ3

µ(S1 ∩ S2 ∩ S3 ∩ S4) =: µ4

(8.8)

So we denote µ1 as the probability that a node belongs to Si with i > 0; µ2n as

the probability that a node is selected by two nearest-neighbor dense grid points,

e.g. µ(S1 ∩ S2) (selected by D and C in Fig. 8.5(b)); µ2d as the probability that

5So, in particular, S includes all the possible unions and intersections of the sets Si.
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a node is selected by two diagonal dense grid points, e.g. µ(S2 ∩ S4) (selected

by C and A in Fig. 8.5(b)); µ3 as the probability that a node belongs to the

intersection of three of these sets, etc. Our simulation considering 109 points (as

shown in Fig. 8.3(a)) indicates U0 = 24.6829%, U1 = 54.1292%, U2 = 18.0906%,

U3 = 2.7125%, U4 = 0.3644%, U5 = 0.0189%. U5 > 0 shows that there is a small

fraction of nodes that actually are selected by two points in the active grid in the

same phase. For higher i, Ui becomes too small to be seen in the figure. Since

the Ui values are very small for i > 4 (and exponentially decreasing) as shown in

Subsection 8.3.3.5, we can safely ignore them and assume that only U0 through U4

are non-zero. In terms of probabilities, this means that we are looking at nodes

that are selected at most four times only. Analogously to µ2n and µ2d, there are

two different probabilities that a node is selected by two dense grid points, we

denote them as U2n (nearest neighbor) and U2d (diagonal), so U2 = U2n + U2d.

From the simulation, we obtain U2n = 16.7661%, U2d = 1.3245%. Note that there

are 5 µ values and 5 U values and there is a one-to-one relationship between

them. For example, the probability that a node is only selected in phase 1 (but

not selected in phase 2, 3, 4) can be expressed as:

µ
(
S1\(S2 ∪ S3 ∪ S4)

)
=U1/4 = µ(S1) − µ(S1 ∩ S2) − µ(S1 ∩ S4) − µ(S1 ∩ S3)

+ µ(S1 ∩ S2 ∩ S3) + µ(S1 ∩ S2 ∩ S4) + µ(S1 ∩ S3 ∩ S4)

− µ(S1 ∩ S2 ∩ S3 ∩ S4)

=µ1 − 2µ2n − µ2d + 3µ3 − µ4, (8.9)

Since the intersections of two and more sets have to be added and subtracted

appropriately to yield the measure for S1\(S2 ∪ S3 ∪ S4). Carrying this out for
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all values of Ui, the relationship between the pmf of the usage number and the

measures µi can be summarized as follows:
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Since the matrix T is upper triangular it is very easily invertible. The µi values

are given by
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(8.11)

For the natural choice, the duration of a phase is assumed to be equal to the

lifetime of the nodes. Because shifting the grid and activating a different set of

nodes causes overhead, there is no reason to do this before the current set of nodes

expires. In each phase, 1/λ = 1/4 = 25% of all nodes are selected. Then, after

phase 1, 25% of the nodes are dead. Let fi denote the fraction of live nodes in

phase i. f1 = 1 and, since a fraction µ(S1∩S2) of the nodes are in S1∩S2, in phase

2 there are only f2 = 1− µ(S1∩S2)
1/λ

= 1− 4µ2n of the nodes in S2 alive. Taking into

account the fraction of nodes that have been active already in previous phases,
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TABLE 8.1

LIFETIME COMPARISON OF TWO QUASI-REGULAR

NETWORKS OF TYPE B WITH DIFFERENT PHASE NUMBER np

AND DENSITY λ. THE NETWORK LIFETIME IS DEFINED AS

THE TIME DURING WHICH IN EACH PHASE AT LEAST A

FRACTION η OF THE SELECTED SUBSET IS ALIVE.

λ = 4 λ = 9 λ = 16 λ = 25

Phase number np 4 (natural) 16 9 (natural) 4 16 (natural) 25 (natural)

Lifetime (η = 0.75) 2L L 4L 4L 6L 9L

Lifetime (η = 0.5) 4L 2L 9L 4L 16L 25L

we obtain for phases 3 and 4:

f3 = 1 − 1

1/λ

(
µ(S2 ∩ S3) + µ(S1 ∩ S3) − µ(S1 ∩ S2 ∩ S3)

)
= 1 − 4

(
µ2n + µ2d − µ3

)

f4 = 1 − 4
(
µ(S1 ∩ S4) + µ(S2 ∩ S4) + µ(S3 ∩ S4) − µ(S1 ∩ S2 ∩ S4)

− µ(S1 ∩ S3 ∩ S4) − µ(S2 ∩ S3 ∩ S4) + µ(S1 ∩ S2 ∩ S3 ∩ S4)
)

= 1 − 4
(
2µ2n + µ2d − 3µ3 + µ4

)
(8.12)

From the above analysis and (8.11), we have f1 = 1, f2 = 0.7635, f3 = 0.7099,

f4 = 0.5422. So by simple inspection of f1, f2, f3, and f4, it is straightforward

to obtain the first column of Table 8.1 (which is the natural choice for λ = 4):

For the threshold η = 0.75, only f1 and f2 are greater than η, so there are two

phases that have an alive node percentage greater than η = 0.75, which results

in a lifetime of 2L. We also consider the natural cases for λ = 9, 16, and 25 and
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include the results in Table 8.1. For all the natural cases, we can proceed as in

(8.12) to obtain the fi values. For λ = 4 and 16, we also consider non-natural

cases, see Table 8.1. For the case λ = 4, np = 16, one may also assume to switch

phases after L/4, so that the maximum duration of the entire network is 4L, as in

the natural case λ = np = 4. The resulting lifetime is 2.5L for η = 0.75 and 3.75L

for η = 0.5. Although this is slightly better for η = 0.75 than the natural case,

the energy consumption to switch phases needs to be considered, too, and is likely

to offset the benefit of choosing a larger np. In conclusion, the natural choice best

enhances the lifetime of quasi-regular networks. Note that for a regular network

with unity density, the lifetime is L. This analysis confirms that emulating a

regular network from a random one indeed increases the network lifetime, at the

price of more nodes deployed in the network. As can be seen from the four natural

cases considered in Table 8.1, increasing the node density results in longer lifetime,

so there is a tradeoff between hardware cost and lifetime.

If the node density λ is not exactly i2 for some i ∈ N, the phase number has to

be chosen as np = [round(
√

λ)]2 to ensure that each node is used approximately

once, i.e., to get close to the natural case. If np > λ, nodes will be selected more

than once on average, and if np < λ, some nodes will never be used. The above

choice of np best balances these two problems of shortened lifetime and waste of

nodes.

8.4 Comparison of the Route Lifetime for Different Networks

In this section, we assume the network operates in reporting mode, i.e., there

is a phenomenon of interest detected in the network, causing heavy traffic along

at least one route. In this case, the lifetime of this route is determined by the
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transmit (and possibly receive) energy consumption. We will focus on the former.

8.4.1 Regular and random networks

The lifetime of a route is determined by the maximum energy consumption

among the nodes in the route. In regular networks, we assume the nodes are

placed on an integer square grid over an area m×m, and the next-hop receiver of

each node is one of the four nearest neighbors. For random networks, the Poisson

point process has density one, and the nodes are distributed in the same area. So,

random networks have the same size and node densities as regular networks.

8.4.1.1 Random networks

With power control. We adapt the transmit power to dα to compensate for the

path loss and employ the generic routing strategy from [21]: each node in the path

sends packets to its nearest neighbor that lies within a sector φ, i.e., within ±φ/2

of the source-destination direction. The maximum energy consumption has been

calculated in Subsection 6.2.2.2. As was derived in [19], for α ≥ 2

E[max{R1, R2, ..., Rh}α] ≥ (E[max{R2
1, R

2
2, ..., R

2
h}])

α
2 (8.13)

> E[R2](ln h + γem)α/2,

where γem ≈ 0.5772 is the Euler-Mascheroni constant. Thus for α ≥ 2, the

maximum energy consumption is at least logarithmically increasing with the hop

number h. For example, for a 30-hop route, E[R4
max|h = 30] is about 28, indicating

that the lifetime of this route is only 1/28 of that of a regular network, where

E[Rα] = 1.

In a square regular network with unit density, the energy consumption is the
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Figure 8.7. Cdf of PD
r for random networks with γN = 10.

same for all nodes in a route, i.e., the normalized energy consumption is E[Rα] =

E[Rα
max|h] = 1 for any h. In a random network (with φ = π/2 and α = 4),

however, we obtain E[Rα] = 3.6 and E[Rα
max|h = 10] = 16.4 for a 10-hop route

and E[Rα
max|h = 20] = 23.6 for a 20-hop route, respectively. So the lifetime of the

routes in random networks is considerably shorter.

Without power control. Strategies with equal transmit power which are energy

balanced, are already studied in Section 6.3.1. Let the normalized SNR γN :=

P0/(ΘN0) from (2.5), resulting in a link reception probability pN
r = e

− dα

γN . Con-

sidering the link distance d a random variable, then PD
r = e

− dα

γN is a transformation

of the random variable d. Fig. 8.7 illustrates the cdf of PD
r for α = 2, 3, 4 and

γN = 10 in random networks. It is shown that with medium transmit power, very

small link reception probabilities exist with a certain probability.
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8.4.2 Quasi-regular networks

By comparing the energy consumption for random and regular networks, we

demonstrated that random distributions incur substantially higher energy expen-

ditures. The large variance in the link distances necessitates power control with a

large dynamic range, which, in turn, entails a proportional variance in the nodes’

lifetime. The only way to avoid these fundamental problems is to abandon the

principle of nearest-neighbor routing and only use nodes as relays that are ap-

proximately evenly spaced.

Theorem 4 In quasi-regular networks (of type A or B), the node distance between

nearest neighbors (inter-node distance) follows a Ricean distribution.

Proof: The distances in the x− and y− axes of a node to the ideal grid point

are Gaussian random variables. As shown in Fig. 8.8, we assume the ideal grid

points are (0, 0) and (0, 1), and the real location of the two nodes is (X1, Y1) and

(X2, Y2). Thus X1 ∼ N (0, σ2), X2 ∼ N (1, σ2) and Y1 ∼ N (0, σ2), Y2 ∼ N (0, σ2).

We have

∆X = X2 − X1 ∼ N (1, 2σ2), ∆Y = Y2 − Y1 ∼ N (0, 2σ2). (8.14)

The inter-node distance R =
√

∆X2 + ∆Y 2 is Ricean distributed with pdf

pR(r) =
r

2σ2
exp

(
− 1 + r2

4σ2

)
I0(

r

2σ2
), r ≥ 0, (8.15)

where I0(·) is the zero-order modified Bessel function of the first kind [54]. 2

Therefore, quasi-regular networks turn the Rayleigh inter-node distance distribu-

tion of Poisson random networks into Ricean distribution. This is analogical to
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Figure 8.8. Inter-node distance in a quasi-regular network.

turning the Rayleigh fading channel into a Ricean channel by adding a strong line

of sight (LOS) component.

Now we study the differential entropy and variance of the inter-node distance R

to see if they meet the requirement of the two definitions of quasi-regular networks.

Because the variance of R comes from the variance of ∆X and ∆Y , under the

condition that 2πσ2 < 1 (see Theorem 3), it is reasonable to assume that the vari-

ance is dominated by the distance along the axis that has N (1, 2σ2) distribution.

So the variance of R can be approximated by the variance of ∆X, namely, 2σ2.

Consider the 4−phase natural choice, where λ = 4 and σ ≈ 0.1995 (see Theorem

3), the variance of R is 2σ2 = 1/(4π), which is less than the upper bound 4/π − 1

given by definition (2) of quasi-regular networks. With 2σ2 as the variance of the

approximated Gaussian inter-node distance, we have h(R) = 1/2 · log(2πe2σ2)

[10]. So in the case λ = 4, we obtain h(R) = 1/2 · log(2e/4) ≈ 0.15, which is less

than the 0.72 upper bound given by definition (1) of quasi-regular networks.

Next we will determine the lifetime benefit that results from Ricean distances

rather than Rayleigh distances. The simulation results of average maximum Rα

for an h−hop route E[Rα
max|h] is plotted in Fig. 8.9 for α = 2, 3, 4 by solid

lines. The dashed line is E[Rα
max|h] for random network for α = 4. Obviously,
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Figure 8.9. E[Rα
max|h] vs. h for (a) λ = 4 and (b) λ = 16. The solid

lines are for quasi-regular networks for various α. The dashed line is for
random networks for α = 4. The dash-dotted line is for a square regular

network with unit density, where E[Rα] = E[Rα
max|h] = 1.

the maximum energy consumption in a route for quasi-regular networks is much

smaller than that of random networks.

8.5 Modified Algorithms for Extended Lifetime

In the basic topology control algorithm introduced in Section 8.1, there is a

fraction of nodes that is never used, and there are more and more nodes missing in

the quasi-regular topology with increasing phase numbers. To alleviate this prob-

lem, we suggest three improvements over the basic algorithm which make better

use of the nodes. The numerical results presented in this section are obtained

from simulations with area 100 × 100.
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8.5.1 Modification I

From the previous analysis, we know that for the natural choice, approximately

25% (Figs. 8.3(a) and (c)) of the nodes are never activated. However, they can be

turned on in an additional phase at the end. By doing so, the modified algorithm

I extends the network lifetime by one more phase duration L. So the network has

original phases (the ones already present in the basic algorithm) and an additional

phase. The distribution of the distance between a grid point and its nearest node

in this additional phase may be approximated by the distribution of the distance

between nearest neighbors in a Poisson point process with density λ/4, which is

simply Rayleigh with mean 1/
√

λ [21]. The difference stems from the fact that

the selected nodes in previous phases are not chosen independently. Fig. 8.10 (a)

displays the comparison of such two distance distributions in the additional phase

for λ = 4. Note that in previous phases, the distance between a grid point and its

nearest node has Rayleigh distribution with mean 1/(2
√

λ). The disadvantage of

this modified algorithm is that certain nodes are still selected in multiple phases.

8.5.2 Modification II

To avoid the problem that certain nodes are selected in multiple phases, Mod-

ification II lets each node be picked only once, which means once a node has been

selected by one grid point, it can not be selected again even it is also the nearest

node of other grid points. The advantage of Modification II is that every node is

selected exactly once, which increases the lifetime in the original phases in mon-

itoring mode compared to Modification I. The disadvantage is that the distances

between the grid points and their nearest nodes grow larger at later phases (as

shown in Fig. 8.10(b), (c)). The analysis in Subsection 8.4.1 shows that larger
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distances from the grid points imply a higher variance in the inter-node distance,

which results in higher energy consumption for a route in a reporting mode.

8.5.3 Modification III

The problem of smaller reliability in later phases and very large distance in the

final phase can be solved by the third proposed modification, which is a tradeoff

between Modification I and II. In each phase, pick the closest node to the active

grid point from the nodes that are alive. The simulation result (λ = 4) shows

that the fraction of live nodes in Modification III for phases 2, 3, and 4 are 0.9879,

0.9195 and 0.7059, which are better than 0.7635, 0.7099 and 0.5422 of Modification

I, but there are still 10.1% of the total number of nodes never activated. The

difference to Modification II is that in Modification III, the same node may be

picked by two active grid points in the same phase so that there is less than 100%

of the nodes alive in phase 2. The normalized distance histograms of four phases

(Fig. 8.11 (a)) can be approximated by the Rayleigh distributions (Fig. 8.11 (b))

with mean 1/
(
2
√

λ(1 − f)
)
, where f is the fraction of nodes that has been selected

in the previous phase(s). The advantage of Modification III is that it decreases

the fraction of nodes that are selected multiple times, which increases the lifetime

in the original phases in monitoring mode compared to Modification I, and it has

smaller distances in higher phases than Modification II (by comparing Fig. 8.10(c)

and Fig. 8.11(a)).

8.6 Conclusions

We proposed and analyzed topology control algorithms for improved energy ef-

ficiency. The basic algorithm turns a random network into a quasi-regular network
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Figure 8.10. For λ = 4, for Modification I, (a) comparison of the
distribution of distance in the additional phase with the Rayleigh

distribution with mean 1/
√

λ = 1/2. For Modification II, (b)
normalized distance histograms of phase 1, 2, and 3, and (c) of phase 4.
Note that a logarithmic scale is used for (c) to better visualize the small

but non-zero probabilities of large distances.
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Figure 8.11. For λ = 4, for Modification III, (a) normalized distance
histograms of different phases, (b) Rayleigh distributions with mean

0.2500, 0.2886, 0.3523, 0.4780.

of type B, which is equivalent to the Gaussian quasi-regular network of type A. It

abandons the principle of nearest-neighbor routing and has every node transmit

over a similar distance. This way, the nodes chosen as sentries and relays ap-

proximately form a regular subnetwork, emulating a regular topology. We suggest

differential entropy and variance of the nearest-neighbor distance as measures

for regularity. If the variance of the nearest-neighbor distances goes to zero, the

network is completely regular. Similarly, since differential entropy is a measure

for the uncertainty of a random variable, the higher it is for the nearest-neighbor

distances, the “more random” the network topology is. The two measures are

closely related and both capture the (ir)regularity of a node distribution.

We have analyzed the network lifetime of regular, random, and quasi-regular

networks in two operating modes, a monitoring mode and a reporting mode. In

both cases, quasi-regular networks have substantial advantages over purely ran-
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dom ones.

Monitoring mode: Compared with regular networks (that have λ times less

nodes), the lifetime of quasi-regular networks of type B is extended, i.e., the

quasi-regular network can to some extent exploit the higher number of nodes.

For the natural choice in quasi-regular networks of type B, where the number

of nodes corresponds to the total number of dense grid points, approximately

25% of the nodes are never activated. An improved algorithm (Modification I)

extends the network lifetime by activating all the unused nodes in an additional

phase (but does not solve the problem that nodes may be selected repeatedly in

previous phases). Modification II lets each node be selected exactly once, with

the disadvantage that the distances between a grid point and its nearest live node

grow large for the later phases. Modification III presents a tradeoff between I

and II, selecting the closest node to the active grid point from nodes that are still

alive. However, there are still some nodes never activated.

Reporting mode: The comparison of the maximum node energy consumption

(that determines the lifetime of the route) of a single route in networks with

regular and random topology shows that regular networks drastically outperform

random ones: for a path loss exponent of 4 and a route of 10-20 hops, the lifetime

of a route in a random network is about 20× smaller. This analysis assumes that

nodes adapt their transmit power according to the hop distance to keep the link

reception probability pN
r constant. Equal power strategies would better balance

the energy consumption among the nodes but the routes would suffer from very low

reception probabilities. Clearly, the cause of these problems is the variance in the

transmission distances. It is shown that quasi-regular networks of type B provide

a solution to the energy consumption problem in random networks. Based on the
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premise that route longevity implies network longevity, quasi-regular networks of

type B outlive random networks although the number of nodes is the same.

The proposed “distance equalization” scheme also solves the problem of power

amplifier inefficiencies addressed in [18], since it avoids power control over a large

dynamic range and, in turn, permits the amplifiers to use operating points with

high efficiency. In terms of deployment, these results suggest that one should aim

at a regular node spacing whenever possible. For sensor networks, more regular

topologies also have an obvious advantage in terms of coverage [47]. By turning

random into quasi-regular networks by means of the proposed algorithm, we expect

little or no loss in coverage, since isolated nodes will still be active. Clearly, by

thinning, it is not possible to improve the coverage, but if it is done in a clever

way as suggested, there is no significant loss in coverage.

8.7 Appendix: the probability that a node is not active for the natural choice

A node is not activated means it is not closest to any dense grid points. Denote

p as the probability that node (X,Y ) is not the nearest neighbor of dense grid

point A,B,C,D (shown in Fig. 8.5). We have

p = 1 − p1 + p2 − p3 + p4, (8.16)

where p1 = 4µ1 is the probability that node (X,Y ) is closest to any one grid point

of A, B, C, D; p2 = 4µ2n + 2µ2d is the probability that node (X,Y ) is closest to

any two grid points; p3 = 4µ3 is the probability that node (X,Y ) is closest to any

three grid points; p4 = µ4 is the probability that node (X,Y ) is closest to the four

grid points. We denote the area of circle centered at A as MA, the area covered by

the overlap between circles centered at A, B as MA∩B, the area covered by circles
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centered at A, B is MA∪B, and so on. So,

p1 = E[e−λMA + e−λπMB + e−λMC + e−λπMD ] = E[e−λπr2
1 + e−λπr2

2 + e−λπr2
3 + e−λπr2

4 ],

p2 = E[e−λMA∪B + e−λMB∪C + e−λMC∪D + e−λMD∪A + e−λMA∪C + e−λMB∪D ],

p3 = E[e−λMA∪B∪C + e−λMB∪C∪D + e−λMC∪D∪A + e−λMD∪A∪B ],

p4 = E[e−λMA∪B∪C∪D ]. (8.17)

When calculate p3, we neglect the area where three circles overlaps, shown by the

area filled by dense square grids in Fig. 8.5(b), since for some node locations, this

area should be added, whereas in others, it should be deducted. We obtain

MA∪B∪C∪D = πr2
1 + πr2

2 + πr2
3 + πr2

4 − MA∩B − MB∩C − MC∩D − MD∩A

+ MB∩D + MA∩C ;

MA∪B∪C = πr2
1 + πr2

2 + πr2
3 − MA∩B − MB∩C − sign(X + Y − 1√

λ
)MA∩C ;

MA∪B = πr2
1 + πr2

2 − MA∩B. (8.18)

The area covered by circles centered at A, B, C is the sum of the area of

circles centered at A, B, C minus the overlap area of MA∩B + MB∩C and minus

sign(X +Y − 1√
λ
)MA∩C . The terms of sign(X +Y − 1√

λ
) comes from the fact that

if the node is in the left-lower triangle, the area of MA∩C should be added, if the
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node is in the right-upper triangle, the area of MA∩C should be subtracted.

MA∩B = r2
1 arcsin

1/
√

λ − Y

r1

+ r2
2 arcsin

1/
√

λ − Y

r2

− (
1√
λ
− Y )

1√
λ

.

MA∩C = r2
1 arcsin

Y ′

r1

+ r2
3 arcsin

Y ′

r3

− Y ′
√

2√
λ

,

Y ′ = r1

∣
∣
∣ sin

(π

4
− arctan

X
1√
λ
− Y

)
∣
∣
∣.

MB∩D = r2
2 arcsin

Y ′′

r2

+ r2
4 arcsin

Y ′′

r4

− Y ′′
√

2√
λ

,

Y ′′ = r4

∣
∣
∣ sin

(
arctan

Y

X
− π

4

)
∣
∣
∣. (8.19)

Note although MA∩C is different from MB∩D for a specific point, their average

values after integration are the same. Using MATLAB’s dblquad function, p is

0.2479 which does not depend on λ. The simulation shows that the probability

that a node is not active is 0.2468 (Fig. 8.3(a)).
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CHAPTER 9

CONCLUDING REMARKS

9.1 Conclusions

This thesis presents our work on the performance analysis of large ad hoc

networks, especially sensor networks based on a Rayleigh fading channel model. A

typical sensor network consists of a large number of sensor nodes which are placed

inside or near a phenomenon. Uniformly random or Poisson distributions are

widely accepted models for the location of the nodes in wireless sensor networks,

if nodes are deployed in large quantities and there is little control over where they

are dropped. A typical scenario is a deployment from an airplane for battlefield

monitoring. On the other hand, depending on the application, it may also be

possible to place sensors in a regular topology, for example in a square grid. By

completely regular node deployment, we expect benefits both in coverage and

efficiency of communication.

To measure the performance of networks with different topologies, we use

a set of well-known metrics — throughput, energy consumption, delay, end-to-

end reliability. For one-dimensional networks, by comparing two (extreme) MAC

schemes, we have shown that the regular networks outperform random networks

in terms of throughput and energy consumption (thus lifetime). Power control is

crucial for random networks since low link reception probabilities are unavoidable

148



at low to medium (common) power levels, and energy waste and interference are

substantial at high (common) power levels. For regular two-dimensional networks,

three topologies are studied. In the noise analysis, the triangle network gives the

best performance due to its smallest energy consumption, delay and highest path

efficiency. In the interference analysis, the hexagon network exhibits the highest

transmit probability, throughput and effective transport capacity. For regular

networks with peer-to-peer and many-to-one traffic model, we present the load

distribution and study several load balancing strategies. The comparison of the

random two-dimensional networks with adaptive transmit power and regular two-

dimensional networks demonstrates that the regular ones has higher throughput

at smaller energy consumption. For noiseless Rayleigh fading sensor networks with

slotted ALOHA at equal transmit power levels, we present closed-form expressions

of the average link throughput. For random networks, strategies with constant

transmit power would better balance the energy consumption among the nodes,

but the connections would suffer from very low reception probability (thus end-

to-end throughput) or intolerably high delay. A tradeoff between the cost of

regular deployment and communication efficiency is a quasi-regular network that

incorporates some uncertainty into a regular distribution. Our topology control

algorithms can achieve the goal of higher energy efficiency.

9.2 Important Future Work

9.2.1 Channel Models

Shadowing. Random signal variations due to large obstructing objects are called

shadowing. The power of a received signal measured in dB subject to shadow

fading follows a normal distribution, with the mean determined by the large scale
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path loss. When the shadow fading distribution for the average received power

in dB is normal, we call this log-normal shadowing. In [24, 25], the authors

use a log-normal shadowing model and show the relationship between the link

reception probability and distance is not a simple step function, similar to our

Rayleigh fading channel model.

Shadowing and Rayleigh fading could be combined for the performance anal-

ysis. Also, for some applications and environments, the fading process is more

accurately modeled by the Ricean distribution. However, the Ricean model comes

with the drawback of reduced analytical tractability.

Pure AWGN channel. [83, 84] showed that the threshold model with fading

(which corresponding to our Rayleigh fading model) at the bit level is accurate.

We can evaluate the accuracy of the threshold model with fading for the non-fading

AWGN channel.

The impact of the threshold Θ. So far, we have assumed Θ to be a constant.

Actually the threshold depends on bit rate, modulation, channel code, and packet

length. How to select Θ and what is minimum Θ? For example, from information

theory view, the maximum transmit rate is R = 1
2
log(1 + SNR). So if we want

to communicate reliably at rate R, we need an SNR of at least 22R − 1. In the

future, we need to study the role and impact of the threshold Θ.

9.2.2 Energy Consumption

Use more refined consumption models. For the energy consumption, until now

we just considered the transmit power. In the future, the receive and standby

power consumption can be added.
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9.2.3 Throughput Analysis

An outage is said to occur if the the S(I)NR is lower than a threshold [35].

Hence the probability of an outage event for the Rayleigh fading link model can

be interpreted as the probability of a link failure. Information theory uses the

outage event probability for non-ergodic channels. We can borrow the idea in our

throughput analysis for the Rayleigh fading channel model.

In [23], the authors use a regular lattice to model the possible location of

nodes and shows it allows to calculate an upper bound of the expected SIR. By

using a simple power law model for path loss, they derive the expected SIR as

a function of network size, network density, and traffic per node. Finally they

use Shannon’s capacity formula to find an upper bound on the throughput. [5]

developed a SIR threshold model, combining Poisson statistics of the offered data

traffic with Rayleigh statistics for the fading channel. One of the benefits of

the SIR threshold model is that it allows spatial reuse. The results indicate a

throughput improvement with Rayleigh fading channel. It will be a starting point

for our further investigations. The SIR threshold model can be refined which has

been done by [58] for fast fading.

9.2.4 Load Balancing

There are important problems related to critical nodes left unsolved in Chapter

5. For square sensor networks (4-neighbor case), there are only two neighbor nodes

of the corner destination, so each of them will carry 1/2 of the load. For the 8-

neighbor case, there are three neighbor nodes of the destination and we can do

some improvement to evenly distribute 1/3 load to them. All these considerations

show that simple routing can not effectively balance the load distribution. A
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balanced load keeps individual nodes from being overloaded and thus ensures

longer network lifetime.

The APR (Alternate Path Routing) protocol [80] indirectly balances the load

by distributing the traffic to a set of diverse paths for one source-destination

connection. [76] uses an analytic model to show that their multipath routing

can improve the end-to-end reception probability and balance the load among

nodes. However, the increased overhead traffic load might offset the benefits.

This multipath routing scheme works only for peer-to-peer traffic, not for sensor

networks. Hence, an effective load balance strategy for sensor networks should be

devised.

One solution is to increase the number of the neighbors of destination which

means some nodes have to transmit further. Also, the critical nodes may have to

carry a bigger battery.

9.2.5 Opportunistic Scheduling

Opportunistic scheduling [36, 37] is a way to improve performance by exploit-

ing time-varying channel conditions. In a one-hop wireless communication system,

e.g. multi-cell system, every user in a cell communicates with the base station.

Every user has different channel gain due to different distances to the base station,

fading, etc. The time-varying channel condition results in difference performance

levels of the users. Throughput could be the main performance metric. The

scheduler decides which user should take the timeslot based on the performance

values of all the users. It cannot always select the user who has the best channel

condition, which would yield a greedy scheduler, since the users with worse chan-

nel condition will never transmit. Thus, it has to introduce fairness constraints
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into the scheduling scheme. Under such constraints, the scheduler cannot always

select the best user, rather it selects the “relatively-best” user in each timeslot to

maintain a certain level of QoS for each user.

[37] investigates scheduling problems involving two fairness requirements —

temporal fairness and utilitarian fairness — and a minimum-performance require-

ment. In the temporal fairness scheme, each user shares at least a certain part

of the entire resource, i.e., time. In the utilitarian fairness scheduling scheme,

each user shares a certain portion of the overall performance. The minimum-

performance guarantee scheduling scheme provides each user a direct QoS assur-

ance, but brings the additional complication of feasibility. They confirm their

work by simulations. In the simulation, they adopt a path loss and log-normal

shadowing model and define the performance value of each user as a function of

its SINR. Similarly, the link reception probability pI
r in our Rayleigh fading link

model is a function of the SIR. The work in [37] does not consider multihop con-

nections but focuses on the last-hop wireless link. The interference power comes

from neighboring cell and the signal power comes from the base station located

at the center of the user’s cell. It is quite different from our multihop networks.

We can employ the idea of opportunistic scheduling in our system, too. For

example, the nodes who have better channel can be given a higher transmit proba-

bility instead of the common transmit probability. How to combine opportunistic

scheduling and multihop routing with our Rayleigh fading link model is another

research direction.
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