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This thesis focuses on the modeling and analysis of wireless multihop networks,

employing a combination of ideas from a well-known tool in stochastic geometry,

namely the Poisson shot noise theory and an unfamiliar concept in statistical

mechanics, namely the totally asymmetric simple exclusion process (TASEP).

We begin our study by considering the simplest wireless multihop network

topology - the line network, where the source, destination and all the relays are

located in a collinear fashion. First, we propose a simple buffering and transmis-

sion scheme for wireless line networks which not only guarantees packet delivery

but also helps keep packet delays small whilst regulating the flow of packets in

a completely decentralized fashion. Second, we characterize the end-to-end de-

lay distribution and achievable throughput of the wireless multihop line network

for two different channel access schemes, randomized-TDMA and ALOHA. Ad-

ditionally, we use our results to provide some useful design insights in long line

networks.

Next, we consider a more intricate network topology comprising an infinite

number of source-destination flows and analyze design-level issues such as deter-

mining the optimum density of transmitters or the optimal number of hops along
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a flow that maximizes the throughput performance of the network. We also con-

sider several other complex topologies comprising intersecting flows and propose

the partial mean-field approximation (PMFA), an elegant technique that helps

tightly approximate the throughput (and end-to-end delay) of such systems. We

then demonstrate via a simple toy example that the PMFA procedure is quite

general in that it may be used to accurately evaluate the performance of multihop

networks with arbitrary topologies.

Finally, we identify that when reliable delivery of packets is not very critical,

a viable solution towards balancing end-to-end delay and reliability in multihop

networks is to have the nodes forcibly drop a small fraction of packets. Based

on this principle, we present an analytical framework that helps quantify the

throughput-delay-reliability performances of the ALOHA multihop network. We

find that while in the noise-limited regime, dropping a small fraction of packets in

the network leads to a smaller end-to-end delay at the cost of reduced throughput,

in the interference-limited scenario, dropping a few packets in the network can

sometimes help mitigate the interference in the network leading to an increased

throughput.

We intend to promote TASEPs as a powerful tool to analyze the performance

of multihop networks and hope that this introductory work instigates interest in

solving other relevant wireless networking problems employing ideas from statis-

tical mechanics.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Related Work

The past few years have witnessed a surge of revolutionary research develop-

ments in the area of wireless communications and networking. Notable contri-

butions include the near-capacity-achieving LDPC and turbo codes, which have

now become a standard in the developing market for highly efficient transmission

schemes, and technical breakthroughs such as CDMA, OFDM, and MIMO that

have brought completely new perspectives on how to intelligently communicate

over wireless channels. Such advances in information theory and communication

theory have significantly helped further wireless systems’ performance in a very

short span of time and have provided the thrust for the rapid evolvement of high-

rate data communication. Despite these advancements, we are only very gradually

evolving from the era of tetherless connectivity predominated by systems with a

single-hop architecture such as centralized cellular networks and WLANs to the

era of ubiquitous wireless connectivity, that are also expected to subsume systems

with multihop architecture such as ad hoc [1] and multihop cellular [2] networks.

Wireless multihop networks are decentralized: they do not rely on pre-existing

infrastructure and are typically formed by deploying nodes that possess self-

organizing capabilities. In other words, the nodes handle the necessary control

1



DS

R1

R4R2

R3

Figure 1.1: A multihop network with a single source S, a single destination D and
four potential relays (R1, R2, R3 and R4).

and networking tasks by themselves (generally via the use of distributed control

algorithms), thus facilitating “anywhere, anytime communication”. Due to the

stringent energy constraint in these devices, a natural communication strategy to

conserve battery life is to reduce the range of transmission and employ multihop

routing1, wherein relays assist in the delivery of packets from the source to the

destination. Thus, in general, multihop networks comprise multiple (concurrent)

multihop flows across several source-destination pairs.

A simple multihop network with a single source and a single destination is illus-

trated in Figure 1.1. One possible route2 from S to D occurs across relays R2 and

R3, i.e., S → R2 → R3 → D).

Multihop networks are highly appealing for several reasons such as being

rapidly deployable and reconfigurable, and lacking single points of failure com-

pared to traditional network architectures, such as cellular networks and WLANs.

1And hence the name, multihop networks.
2This is an example of a three-hop transmission.

2



Besides extending network coverage and reducing the per-node power consump-

tion, they also provide other benefits such as simplifying maintenance and decreas-

ing the load off end users. Immediate applications of multihop networks include

emergency and battlefield networks, metropolitan mesh networks for broadband

internet access, and sensor networks. Unfortunately, however, the lack of a capac-

ity theory capable of quantifying the performance of a general multihop network

has stunted its development and commercialization [3]. We identify three road-

blocks in this regard.

First, while classical information theory has been extremely successful for

studying point-to-multipoint links, it is not (and may never be) developed enough

to characterize the intricacies of multipoint-to-multipoint networks that arise due

to the inherent interactions between nodes – a network with N devices comprises

N(N − 1) possible one-way connections (not including multicasting). In fact, the

capacity of a network with just N = 3 nodes is still an open problem, owing to

the difficulties in modeling the interactions between the six possible one-way links

[4; 5]. In multihop networks, N can be of the order of tens or hundreds or even

thousands, and all the links are time-varying. On account of such intricate in-

teractions, multihop networks evade familiar link-based decompositions; studying

them using traditional methods such as information theory becomes intractable

and hence has yielded little in the way of results.

Second, the multihop nature of packet transmissions causes interweaving of

traffic flows, resulting in strong correlations, or interdependencies between the ac-

tivities of the nodes. For instance, since a traffic flow is relayed across several hops,

the packet arrival processes at the nodes (and hence, the departure processes) are

coupled with each other. Thus, the end-to-end delay in multihop networks, de-
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termined by the joint distribution of the successive delays of a packet traversing

multiple nodes may hardly be expressed in a product-form. Likewise, owing to

the existence of relay nodes that serve multiple packet flows, the throughputs of

the various flows in the network are correlated with each other. Queueing the-

ory has proven to be particularly useful for studying systems with such intricate

interactions, but the analysis gets very cumbersome as the network size grows.

Third, in order to optimize the performance of energy-limited multihop net-

works, a cross-layer design needs to be adopted wherein the interdependencies

among the layers of the protocol stack must be taken into account [6]. For ex-

ample, the most energy-efficient routing protocol in a sensor network may use a

centrally-located sensor to forward packets from other sensors. However, the bat-

tery of this sensor may then be exhausted quickly, which is undesirable from an

application layer standpoint. Likewise, suppose that the physical layer dictates

data to be transmitted at a low rate. This will clearly impact the MAC protocol

and also the application. Thus, each layer of the protocol stack must respond to

local variations and information from other layers, which forms the biggest hur-

dle in adaptive protocol design. Furthermore, the design approach needs to be

adaptive to changes in the environment (which can easily happen due to node

mobility) and thus is quite a challenging task.

The development of a novel, accurate and robust capacity theory for wire-

less multihop networks is one of the most difficult and important problems, and

has major ramifications on the field of wireless communications and networking.

Meeting this challenge requires new ideas, new tools, and a willingness to think

outside the confines of conventional information theory. In view of these chal-

lenges, researchers are turning to other branches of study to obtain ideas and
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methodologies that help better understand and characterize the dynamical be-

havior of wireless networks. Using analogous concepts from other subject areas

has considerably enhanced our understanding of wireless networks and has helped

further the research in the multihop networking community.

Of late, statistical physics has, in particular, captured the attention of the

research community since it contains a rich collection of mathematical tools and

methodologies for studying interacting many-particle systems, Methodologies such

as the mean field theory has been successfully applied to study coding over mul-

tiuser MIMO channels [7; 8]. In [9], the authors use ideas such as the replica

method to characterize the performance of multiuser detection in CDMA. The

statistical mechanics of interfering transmissions in wireless networks has been

studied in [10]. Tools from statistical physics have also been successfully applied

to study interesting problems in random communication networks such as perco-

lation, connectivity and capacity [11].

Since the performance of wireless networks depends critically on their spatial

configuration, stochastic geometry and random graph theory [12]-[15] have also

been indispensable tools towards the analysis of multihop networks. They have

allowed for analytical results on a number of concrete and important problems.

The delay and throughput performances for multihop networks in the presence

of a Poisson field of interferers is quantified in [16; 17]. In [18], the authors have

introduced the notion of random access transport capacity, which quantifies the

bits per second that can be reliably communicated over some distance in the

network.

Despite employing such ideas from other subject areas, researchers have how-

ever, fallen short of being able to tackle the problem at hand in its generality;
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optimal ways of designing and operating multihop networks are known only for a

few specific and/or oversimplified cases. Moreover, the analysis is often cumber-

some and not scalable with the size of the network3. Motivated thus, we employ

a combination of tools from stochastic geometry (namely, the Poisson shot noise

theory [25]), and statistical mechanics (namely, the totally asymmetric simple ex-

clusion process (TASEP) [26]) to analyze general multihop networks. Our work

has the advantage that it allows for a clean, yet rigorous analysis, and provides

results that are scalable with the number of nodes in the network; thus it provides

useful insights into the design of wireless networks. Also, the framework is quite

general in that it may be employed to study multihop networks with arbitrary

topologies.

1.2 Organization of the Thesis

The detailed organization of the thesis is as follows.

In Chapter 2, we analyze the simplest type of wireless network topology,

namely the multihop line network where the source, destination and relays are all

located on a line. First, we propose a simple buffering and transmission scheme for

wireless line networks, which not only guarantees delivery and helps keep packet

delays in the network minimal but also helps regulate the flow of packets in a

completely distributed fashion. We then use a combination of ideas from sta-

tistical mechanics and stochastic geometry to characterize the end-to-end delay

and achievable throughput of the wireless multihop line network for two different

channel access schemes. Additionally, we use our results to provide some useful

3An exception in this regard is the myriad of work on scaling laws for wireless networks (see
for e.g. [19]-[24]). These, however, only provide a high-level insight on how different networking
scenarios and approaches operate, but do not provide exact expressions for the “preconstants”,
which is where nearlly all the impact of any network design resides.
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design insights in line networks. This work has been published in parts, in [27],

[28].

In Chapter 3, we consider a more complex network model – a two-dimensional

multihop network comprising several source-destination pairs, each communicat-

ing wirelessly in a multihop fashion. We then characterize the per-flow throughput

and end-to-end delay performances for a typical flow in this 2-D wireless network,

for two different channel access mechanisms. Our study offers valuable insights

from a system design stand-point such as determining the optimum density of

transmitters or the optimal number of hops along a flow that maximizes the sys-

tem’s throughput. We corroborate our theoretical analyses via simulations. This

work has been published in [29].

In Chapter 4, we analyze multihop networks with complex topologies. In

particular, we consider network models comprising intersecting flows, and propose

the partial mean-field approximation (PMFA), an elegant technique that helps

tightly approximate the throughput (and end-to-end delay) performance of the

system. Moreover, we demonstrate via a simple example that the PMFA procedure

is quite general in that it may be used to accurately evaluate the performance of

multihop networks with arbitrary topologies. This work has been published in

[28].

In Chapter 5, we characterize the throughput-delay-reliability (TDR) tradeoffs

of the ALOHA-based multihop network. Specifically, we present an analytical

framework that helps quantify the TDR performances of the system. We find

that while in the noise-limited regime, dropping a small fraction of packets in the

network leads to a smaller end-to-end delay at the cost of reduced throughput, in

the interference-limited scenario, dropping a few packets in the network can help
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mitigate the interference in the network leading to an increased throughput. We

also present some empirical (simulation-based) results which closely match the

values obtained analytically. This work has been published in [30].
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CHAPTER 2

THE MULTIHOP WIRELESS LINE NETWORK

2.1 Introduction

In this chapter, we begin our analysis by focusing on the simplest type of

wireless network topology, namely the multihop line network where the source,

destination and relays are all located in a collinear fashion. Our contribution is

two-fold:

First, we propose a simple buffering and transmission scheme for multihop wireless

line networks, which not only guarantees packet delivery but also helps keep packet

delays small whilst helping regulate the flow of packets in a completely decentral-

ized fashion. Second, using a combination of ideas from statistical mechanics and

stochastic geometry, we characterize the end-to-end delay and achievable through-

put of the wireless multihop line network employing the revised buffering policy

for two different channel access schemes. Additionally, we employ our findings to

provide useful design insights in long wireless line networks.

The rest of this chapter is organized as follows. Section 2.2 describes the system

considered and the channel model. Section 2.3 introduces a novel transmission

policy that helps regulate traffic in the line network in a completely decentralized

fashion. Section 2.4 introduces the statistical mechanics-based tool that we use

for our analysis. Section 2.5 discusses prior work. Section 2.6 characterizes the
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throughput and delay for the wireless line network for two different channel access

schemes. Section 2.7 concludes the chapter.

2.2 System Model

We consider a multihop wireless line network (see Figure 2.1) with a unidirec-

tional data flow from the leftmost to the rightmost node. The source node S is

numbered 0 and generates packets of fixed length at a constant rate. We also take

that the source node is backlogged, i.e., it always has packets to transmit. The

network contains N relay nodes (numbered 1 through N) and a destination D,

numbered N+1. Throughout this chapter, we also take that the physical arrange-

ment of nodes is regular (on a lattice grid) with a separation of d between any

pair of adjacent nodes. Time is slotted to the duration of a packet, transmission

attempts occur at slot boundaries, and each transmitting node transmits at unit

power.

We assume that all the nodes in the network use the same channel; thus, simul-

taneous transmissions cause interference between links. We take the attenuation

in the channel to be modeled as the product of a Rayleigh fading component and

the large-scale path loss component with exponent γ. The noise in the network

is taken to be AWGN with variance N0. We define the transmission from node

i to target node j to be successful if the (instantaneous) signal-to-interference-

and-noise ratio (SINR) at j is greater than a predetermined threshold Θ; the

probability of successful reception1 is denoted by ps = Pr [SINR > Θ]. Note, how-

ever, that this transmissions can occur only when there is space left in j’s buffer.

In Figure 2.1, node N − 1 cannot accept any more packets from node N − 2 since

1In this chapter, we only consider scenarios wherein the reliabilities across each link is the
same; we thus drop the dependence of ps on i or j.
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its buffer is full.

NN−1N−23210
(DEST.)(SOURCE)

d d d d

ps ps ps

Figure 2.1. A regular linear multihop network topology. The source
(node 0) attempts to deliver packets to the destination via N relays.

Filled circles indicate filled buffers, while empty circles indicate buffers
with room for accepting more packets. The hopping probability across

each node is ps.

2.3 A Revised Transmission Policy for Multihop Networks

Despite being decentralized, multihop networks are not just intended to carry

small volumes of data in an energy-efficient manner, but may also be used to pro-

vide broadband services under QoS constraints, for example in mesh networks [31].

However, as reported in [32]-[34], existing buffering schemes for multihop wireless

networks involving large buffer sizes and a drop-tail policy have certain inherent

drawbacks such as buffer overflows, excessive queueing delays and scheduling is-

sues resulting in uncoordinated transmissions. Consequently, the end-to-end delay

and throughput performance in such systems is disappointing.

To overcome these shortcomings, we propose the following novel transmission
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policy for the linear flow in the network characterized by the following two rules.

1. All the buffering in the network is performed at the source node, while each

relay node has a buffer size of unity. Thus, all the queueing occurs at the

source node, while relay nodes may hold at most one packet.

2. Transmissions are not accepted by relay nodes if their buffer already contains

a packet. Furthermore, packets are retransmitted until they are successfully

received. In other words, the network reliability is kept at 100%; packet

delivery is guaranteed.

Rule 1 ensures that nodes have at most one packet in their buffer and is

favorable for the following reasons.

• First, keeping buffer sizes small can prevent the mean and the variance of

the in-network end-to-end delay both from getting excessive2 . Indeed, when

buffer capacities are large, several packets may get stacked up, especially

when the link quality is poor, thus transportation of packets across the links

get delayed. Figure 2.2 plots the empirical mean and variance of the end-to-

end delays for CSMA (Carrier Sense Multiple Access)- and ALOHA-based

flows for some values of the relays’ buffer capacities (denoted by K). In

both cases, notice the increase in the mean and the variance of the end-

to-end delay with increasing buffer size, in particular at small values of

the link reliability ps. Conversely, the packet delays are much more tightly

2In this thesis, we neglect the queueing delay at the source. It is possible that queueing up
of packets at the source may lead to a larger total end-to-end delay (counted from the time the
packet is generated), in particular, when the relays’ buffer sizes are small. The advantage of the
single-buffer scheme predominates in applications such as sensing and monitoring, wherein the
source node can decide to drop older packets, and retain only the most recent packet(s). In such
cases, the queueing delay at the source is minimal; the in-network delay is drastically reduced
with decreasing buffer sizes (as seen in Figure 2.2).
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controlled when the buffer sizes are smaller. Thus, depending on the time a

packet spends in its buffer, the source node can judiciously decide whether

to drop it (and replace it with a more recent packet).

• Second, employing single-sized buffers can also help lessen estimation errors

in networked control systems. This is quite critical in applications such as

monitoring physical or environmental conditions, or battlefield surveillance.

To this end, consider a process evolving as

x[k + 1] = Ax[k] + w[k], k ∈ Z
+,

where x[k] ∈ R
n is the process state and w[k] is the process noise assumed

to be AWGN with covariance Rw. The process state is observed using a

sensor that generates measurements, or observations, of the form

y[k] = Cx[k] + v[k], k ≥ 0,

where y[k] ∈ R
m and the measurement noise v[k] is also AWGN with a

positive definite covariance matrix Σv. We assume that the pair (A,C) is

observable. Considering the optimal encoder and decoder designs described

in [36], the estimation error covariance at time slot k becomes

Error[k] =
k∑

m=−1

Pr(ts(k) = m)fk−m(M(m + 1)), (2.1)

where f(S) = ASAT + Rw is the Lyapunov recursion [36], and ts[k] = m

denotes the event that m ≤ k packets are received by time slot k.

Figure 2.3 plots the time evolution of the error covariance (of the estimated
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Figure 2.2. Empirical values of the mean (solid lines) and variance
(dashed lines) of the end-to-end delay in CSMA-(top) and

ALOHA-based (bottom) wireless flows versus the link reliability and
buffer size at nodes. In each case, we see that the larger the buffer

capacities of the nodes, the higher are the delay mean and variance.
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state values) for a CSMA-based flow. We clearly observe that the fastest

convergence is obtained for the case K = 1; the rate of convergence de-

creases with increasing buffer size. In essence, the in-network delay for the

single-buffer network is the smallest, thus the decoder has access to more

observations, and can perform a better estimation of the process states. The

same qualitative behavior is expected for the ALOHA-based network as well.
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Figure 2.3. Error covariance of the estimates for the CSMA-based flow
for different values of buffer sizes K. It is clearly seen that the

estimation error converges to its steady state value faster for the
single-buffer system.

• Third, large buffers increase hardware cost and energy consumption.
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Using Rule 1 alone may lead to a loss in throughput due to dropped packets;

Rule 2 is needed mainly to reduce interference and consequently keep the number

of failed transmissions small. In fact, Rules 1 and 2 together mean that a successful

transmission can occur only when a node has a packet to transmit and its target

node has an empty buffer. This is a distributed method to prevent packets from

getting too closely spaced and ensure spacing between packets in the network,

which is essential for the efficient operation of wireless systems that are subject

to interference. Together, the rules help efficiently regulate the flow of traffic in

the network in a completely distributed fashion. The revised transmission scheme

also intrinsically enforces congestion control and works similar to reactive back-

pressure algorithms [35] wherein the load at each server is balanced dynamically

based on the states of upstream and downstream queues.

We now introduce the reader to TASEP, a subject area in statistical mechanics

which we extensively use for our analysis of multihop wireless networks.

2.4 The Totally Asymmetric Simple Exclusion Process (TASEP)

The TASEP refers to a family of simple stochastic processes used to describe

the dynamics of self-driven systems with several interacting particles (such as the

kinetics of biopolymerization and traffic) and is a paradigm for non-equilibrium

systems [26]. The classical 1D TASEP model with open boundaries is defined

as follows. Consider a system with N + 1 sites, numbered 0 to N . Site 0 is

taken to be the source that injects particles into the system. The model is said to

have open boundaries, meaning that particles are injected into the system at the

left boundary (site 1) and exit the system on the right boundary (site N). The

configuration of site i, 1 ≤ i ≤ N at time t is denoted by τ
(N)
i [t] (or simply by
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τi[t]), which can only take values in {0, 1}, i.e., each site 1 ≤ i ≤ N may either

be occupied (denoted as τi[t] = 1) or empty (denoted as τi[t] = 0). The source,

however, is taken to be always occupied (τ0[t] ≡ 1, ∀t > 0). Also, at t = 0, all

sites other than the source are empty (τi[0] = 0, 0 < i ≤ N).

In the discrete-time version of the TASEP, the movement of particles is defined

to occur in time steps. Specifically, let (τ1[t], τ2[t], . . . , τN [t]) ∈ {0, 1}N denote the

configuration of the system in time slot t. In the subsequent time slot t+ 1, a set

of sites is chosen at first, depending on the updating procedure (which we describe

shortly). Then, for every site chosen, if it contains a particle and the neighboring

site on its right has none, then the particle hops from that site to its neighbor with

a certain probability (which in general, is site-dependent). This way, the particles

are transported from site 0 through the system until their eventual exit at site

N . The movement of particles to the right is equivalent to the movement of holes

(or empty sites) to the left. This particle-hole symmetry leads to some interesting

system dynamics – as we shall see later, studying only the first ⌈(N + 1)/2⌉ sites

is sufficient to characterize the system completely.

Mathematically, the evolution of the classical TASEP particle flow is defined

as follows. Suppose that the ith site is chosen in time slot t.

If 1 ≤ i ≤ N−1, the particle on site i (if there is any) jumps to site i+1 (provided

it is empty) with probability p. Accordingly,

P(τi[t+ 1] = 0) = 1 − τi[t](1 − p+ pτi+1[t])

P(τi[t+ 1] = 1) = τi[t](1 − p+ pτi+1[t])
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and

P(τi+1[t+ 1] = 0) = (1 − τi+1[t])(1 − pτi[t])

P(τi+1[t+ 1] = 1) = pτi[t] + τi+1[t](1 − pτi[t]).

If i = 0, site 1 remains occupied at time t+ 1 if it was occupied at time t and gets

occupied with probability αp if it was empty. Thus,

P(τ1[t+ 1] = 0) = (1 − αp)(1 − τ1[t])

P(τ1[t+ 1] = 1) = αp+ (1 − αp)τ1[t].

If i = N , site N remains empty at t+1 if it was empty at time t, and gets emptied

with probability βp if it was occupied, i.e.,

P(τN [t + 1] = 0) = 1 − (1 − βp)τN [t]

P(τN [t + 1] = 1) = (1 − βp)τN [t]

The quantities α, β and p may thus be regarded as the ’influx’, and ’outflux’

rates and the hopping probability, respectively. A snapshot of the TASEP system

model is depicted in Figure 2.4.

The TASEP model is known to exhibit rich non-equilibrium behavior, even at

steady state, where the rate of particle flow between any two adjacent sites is a

constant. Here, the non-equilibrium nature of the model refers to the fact that

the source and destination nodes are never at equilibrium, i.e., data always flows

from the source node to the destination node. In this dynamical system, it is of

interest to compute the steady state probabilities of the particle configurations,
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βpαp p

N − 1N − 2320 1

Figure 2.4. Snapshot of a TASEP system model along with the hopping
probabilities. The source is numbered 0, and there are N other sites.

Filled circles indicate occupied sites and the rest indicate holes. Jumping
from site i is possible only if the configuration (τi, τi+1) is (1, 0). In the
above example, hopping is not possible between sites N − 2 and N − 1.

the occupancies of the sites and the rate of particle flow [37; 38]. The values of the

aforementioned quantities, however, explicitly depend on the updating procedure,

i.e., the order in which the spatio-temporal hopping, injection and removal of

particles is performed. There are four basic and commonly considered TASEP

updating procedures:

1. Random-sequential update: A site is randomly picked with a uniform prob-

ability of 1/(N + 1) at each time step. Hopping is performed based on rules

defined above with probabilities αp, βp and p for particles at sites i = 0,

i = N and i /∈ {0, N} respectively.

2. Sublattice-parallel update: Assume that the number of sites N is even. We

first apply injection/removal rules to sites 0/N and also perform hopping on

pairs (2, 3), (4, 5), and so on. In the subsequent time step, updating rules

are applied to site pairs (1, 2), (3, 4), etc.

3. Ordered-sequential update: As the name suggests, this is a procedure where

updating is performed in an orderly, sequential fashion. One usually starts
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from the right end of the chain and updates the particle at node N . Then,

the pairs (N − 1, N), (N − 1, N − 2), and so on are updated until the left

end of the chain (node 0) is reached. In this form of updating, a series of

adjacent particles can all be transported sequentially, unlike the previous

updating schemes.

4. Parallel update: The updating rules are simultaneously applied to all the

sites, and in each time slot, all particles at sites that have an empty site

to their right jump concurrently. This updating scheme is often used to

model vehicular traffic flow and is a special case of the well-known Nagel-

Schreckenberg model [39].

It is apparent from the description of the TASEP model that it exhibits a

similarity to a flow in an multihop network. The sites can be taken to represent the

relay nodes and the particles the packets. The hopping probability p is analogous

to the link reliability ps while the exclusion principle models the unit buffer size at

the relay nodes. Also, the condition τ0[t] = 1, ∀t, models the fact that the source

node is always backlogged. Figure 2.5 depicts the TASEP-equivalent network flow,

wherein we assume that the source has a large buffer and regulates the packet flow

into a TASEP model.

2.4.1 The Matrix Product Ansatz Formulation

The starting point for studying the stochastic one-dimensional TASEP model

is to write down its master equation. Let P (τ [t]) denote the probability of finding

the system in the configuration τ [t] = (τ1[t], τ2[t], . . . , τN [t]) in time slot t. The

master equation describes the evolution of the system with time and takes the
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Figure 2.5. TASEP-equivalent network flow along with the
(site-dependent) hopping probabilities αp, βp and p. The (backlogged)
source node with a large buffer connected to the TASEP particle flow

model with N + 1 sites, each with a buffer size of unity.

form

∆P (τ [t]) =
∑

τ
′[t]

[
ζ (τ ′[t], τ [t])P (τ ′[t]) − ζ (τ [t], τ ′[t])P (τ [t])

]
,

where ∆P (τ , t) = P (τ [t + 1]) − P (τ [t]), and ζ(τ [t], τ ′[t]) denotes the rate of

transition from τ [t] to another configuration τ
′[t]. For further details on the

master equation and its formulation, we refer the reader to [26; 40].

As intuitively expected, in the long time limit (t → ∞), the probability

of finding the system in any configuration τ becomes independent of t, i.e.,

limt→∞ ∆P (τ [t]) = 0 (for each of the four updating procedures) [26]. The TASEP

flow is then said to have reached a steady state. Solving for the steady state config-

uration probabilities is a formidable task which may be accomplished by consider-

ing recursion-based techniques on the system size N (see for e.g. [37; 38]). A more

elegant and direct procedure however is to use a matrix product ansatz (MPA)

[40], wherein the probability of each configuration at steady state is decomposed
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into a product of matrices.

According to the MPA formulation [40], for each of the four updating pro-

cedures, the probability of finding the TASEP system in the configuration τ =

(τ1, τ2, . . . , τN) at steady state is independent of t and given by

P (τ ) =
〈W |

∏N
i=1(τiD + (1 − τi)E)|V 〉

〈W |CN |V 〉 , (2.2)

where D and E are square matrices that operate on occupied and empty sites, re-

spectively, C = D+E, and |V 〉 and 〈W | are column and row vectors respectively

(represented here by the “ket” and “bra” notation). Evidently, the elements of the

matrices and vectors depend strongly on the updating procedure, and in general,

they are infinite-dimensional [26]. Nevertheless, the MPA provides an analytical

framework for describing the asymmetric exclusion process in a completely alge-

braic manner. We will employ it extensively for our analysis, in particular in the

Section 2.6.

2.5 Related Work

The delay and throughput performances of the classical TDMA, spatial TDMA,

ALOHA and several other MAC schemes have been extensively studied for point-

to-point links, often using queueing-theoretic approaches (e.g. [41], [42]). Queue-

ing theory has also been used to characterize the throughput and delay perfor-

mance of flows involving multiple hops (e.g. [43], [44]). However, such analyses

are less tractable and often yield only approximate results. In order to circum-

vent these issues, authors have considered very small [45] or infinitely large [46]

networks. Moreover, previous studies have either considered unlimited buffer ca-

pacities [47] or neglected queueing delays in the system [48], both of which are not
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realistic assumptions. In this chapter, we use existing results from the TASEP

literature to derive exact analytical results on the throughput and delay perfor-

mance of wireless line networks with an arbitrary number of nodes. The TASEP-

based framework also has the advantage of obviating the often unwieldy queueing

theory-based analysis.

Since we consider relays with unit buffers, the queueing delays at the relay

nodes are zero, and we only need to consider access and retransmission delays.

The benefits of keeping relay buffer sizes equal to unity has been studied earlier

in literature. [49] considers a buffering policy similar to the one described earlier

in this chapter, and proposes several amendments to the MAC layer, such as the

notion of shadow packets to stabilize the system and achieve the optimal through-

put. In [50], the authors show that buffering and network coding implemented

at the source node can lead to comparable packet drop rates as to buffering at

every intermediate router. In the case of large networks with multiple links, the

coding-based scheme can also provide buffer gains. In [51], it is proven that for

a line network, the optimal scheduling algorithm that minimizes the end-to-end

buffer usage gives preference to serving links closer to the destination. Hence,

much of the buffering should occur at the source node.

2.6 Throughput and Delay Analysis for the Wireless Line Network

We study the delay and throughput performances of the wireless line net-

work using ideas from the TASEP literature, for two analytically tractable MAC

schemes in this chapter: randomized TDMA (r-TDMA) and ALOHA. They oper-

ate as follows.

• r-TDMA: r-TDMA is a modified version of the traditional TDMA MAC
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scheme, wherein the transmitting node in each time slot is simply chosen

uniformly randomly from the set of all nodes in the network instead of being

picked in an deterministic fashion (as in conventional TDMA).

The r-TDMA scheme may also be viewed as a time-slotted version of the

CSMA protocol since in each time slot, only a single transmitter node gains

the right to access the wireless channel (or verifies the absence of other

traffic before attempting to transmit over the channel). The only difference

between slotted CSMA and r-TDMA is that in r-TDMA, nodes not having

packets in their buffers may also be scheduled for transmission in some time

slots. This, however, is equivalent to simply “stretching” the time axis. Also,

note that the r-TDMA protocol does not entail spatial reuse. However, in

small networks, spatial reuse is impractical, and the performance of the

r-TDMA-based network is quite good (compared to other MAC schemes).

• ALOHA: In ALOHA, in every time slot, each node having a packet inde-

pendently transmits with some (contention) probability q or remains idle

with probability 1 − q.

The r-TDMA and ALOHA schemes may be linked to the TASEP with random

sequential and parallel updates. Throughout this thesis, we will only focus on

these two updating procedures.

2.6.1 Throughput and Delay Analysis for the r-TDMA-based Line Network

In this section, we characterize the throughput and delay performances of the

r-TDMA-based wireless line network. Additionally, we analytically derive (i) the

probability mass functions (pmfs) of the delays incurred by packets at each node

along the flow and (ii) the joint pmfs of the packet delays across adjacent nodes in
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the line network. We also apply our findings to studying the interesting short-hop

versus long-hop routing problem.

Since there is no interference in the r-TDMA-based network and the fading

power is exponentially distributed, we obtain

ps = Pr[SNR > Θ] = exp (−ΘN0d
γ) . (2.3)

Also, since the links are spaced equally, the success probability across any link is

the same. This is equivalent to taking α = β = 1, and p = ps in the corresponding

TASEP model. Incidentally, at the operating point α = β = 1, the network

accepts as many packets as it can (when the first relay node’s buffer is empty),

and also provides the highest possible service rate3.

We now provide some useful results from the TASEP literature with random

sequential update. The first step is to establish the forms of the square matrices

and vectors in (2.2). It is known [40] that in general, the matrices D,E and vectors

V,W in (2.2) are all infinite-dimensional4. A convenient choice of the matrices

and vectors (assuming p > 0) is [26]

D =
1

p















1/β γ1 0 0 . . .

0 1 1 0 . . .

0 0 1 1 . . .

0 0 0 1 . . .

...
...

...
...

. . .















,

3Equivalently, the rate of packet flow across the r-TDMA-based network is maximized when
α = β = 1.

4The only case for which the matrices are finite-dimensional (in fact, scalars) is when α+β = 1
[40].

25



E =
1

p















(1 − αp)/α 0 0 0 . . .

γ2 1 − p 0 0 . . .

0 1 − p 1 − p 0 . . .

0 0 1 − p 1 − p . . .

...
...

...
...

. . .















(2.4)

with

〈W | = (1, 0, 0, . . . ) and |V 〉 = (1, 0, 0, . . . )T ,

where (·)T denotes transpose. Here, γ1 and γ2 may be chosen so as to satisfy

γ1γ2 =
1

αβp
[1 − p− (1 − αp)(1 − βp)].

When α = β = 1 and p = ps, we may take γ1 = 1, and γ2 = 1 − ps in (2.4) so

that

D =
1

ps















1 1 0 0 . . .

0 1 1 0 . . .

0 0 1 1 . . .

0 0 0 1 . . .

...
...

...
...

. . .















, E = DT .

For these forms of matrices D and E, and vectors W and V , the following two

properties hold:

C = D + E = psDE (2.5a)

pN
s 〈W |CN |V 〉 := η(N) =

(2N + 2)!

(N + 2)!(N + 1)!
(2.5b)

While (2.5a) is straightforward to establish, (2.5b) is a consequence of [40, Eqns.

80,81]. We use these results in the remainder of this section.
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2.6.1.1 Steady State Probabilities

Using (2.2) along with the forms of matrices and vectors discussed earlier,

the steady state probabilities can be computed in a straightforward manner, in

particular for small values of N . As examples, we have for N = 1,

P (0) =
〈W |E|V 〉
〈W |C|V 〉 = 1/2, and P (1) =

〈W |D|V 〉
〈W |C|V 〉 = 1/2.

Likewise, using (2.5a) and (2.5b), one can also show for N = 2,

P (0, 0) = P (0, 1) = P (1, 1) = 1/5, and P (1, 0) = 2/5.

2.6.1.2 Steady State Occupancies

Next, we compute the steady state occupancy of each node 0 ≤ i ≤ N , defined

as the probability that it is occupied at steady state, i.e., P(limt→∞ τi[t] = 1).

Hereafter, we use the simplified notation τi :, limt→∞ τi[t] to denote the configu-

ration of node i, 0 ≤ i ≤ N at steady state. From (2.2), we obtain the occupancy

of node i to be

P(τi = 1) =
〈W |Ci−1DCN−i|V 〉

〈W |CN |V 〉 , 0 ≤ i ≤ N.

Now, since τi can take values only in {0, 1}, P(τi = 1) = Eτi and P(τi = 0) =

1−Eτi. In other words, the occupancy of node i is the same as the average number

of packets at the ith node’s queue. From [37, Eqn. 48], we have for 0 ≤ i ≤ N ,

Eτi =
1

2
+

1

4

(2i)!

(i!)2

(N !)2

(2N + 1)!

(2N − 2i+ 2)!

[(N − i + 1)!]2
(N − 2i+ 1). (2.6)
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In particular, the values at the end nodes are

Eτ1 =
3N

2(2N + 1)
and EτN =

N + 2

2(2N + 1)
. (2.7)

Surprisingly, the node occupancies are independent of ps. Also, notice the particle-

hole symmetry, i.e., Eτi = 1 − EτN+1−i. Thus, the average number of occupied

relays is
N∑

i=0

Eτi = 1 +N/2. (2.8)

In a system with an odd number of relays, the middle relay has an occupancy of

exactly 1/2. Figure 2.6 shows the occupancies Eτi for a multihop network with

N = 10 relay nodes. Also observe that the node occupancies monotonically

2 4 6 8 101 3 5 7 9
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Node i

N = 10

E
τ i

Figure 2.6. The steady state occupancy of each relay node for a
r-TDMA-based multihop network with N = 10 relays. Notice the

particle-hole symmetry, i.e., Eτi = 1 − EτN+1−i.
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decrease with proximity to the destination node. In other words, node 1 is the

bottleneck node. This can be explained by noting that the destination is always

willing to accept packets; thus the N th relay node can empty its buffer at the

highest rate. However, the N − 1th relay needs the N th relay to be empty to

transmit its packet, so the likelihood that it will be occupied is higher when

compared to node N , and so on.

2.6.1.3 Steady State Throughput

We now derive the throughput of the line network at steady state, defined as

the average number of packets successfully delivered (to the destination) in a unit

step of time.

Theorem 1. For the r-TDMA-based line network with N nodes, the throughput

at steady state is

T =
ps(N + 2)

2(N + 1)(2N + 1)
. (2.9)

Proof: At any instant of time, node N ’s buffer contains a packet w.p. τN ;

furthermore, it is picked for transmission w.p. 1/(N + 1), and the transmission is

successful w.p. ps. Thus, the throughput of the line network is simply

T = psEτN/(N + 1). (2.10)

Using (2.6) in (2.10), we obtain the desired result. �

The system throughput at steady state is proportional to the link reliability

and upper bounded by ps/4, but decreases with increase in the system size: T ∼

ps/(4N) for5 N ≫ 1. Also, since the reliability of the network is 100%, the rate of

5The notation f(n) ∼ g(n) means that the ratio f(n)/g(n) approaches 1 asymptotically (as
n → ∞).

29



packets across each link is the same, and equal to (2.9). Noting that the probability

that node i has a packet and node i+1 none is P(τi = 1, τi+1 = 1) = E[τi(1−τi+1)],

T may also be obtained using any of the N + 1 equivalent expressions

T = psE[τi(1 − τi+1)]/(N + 1), (2.11)

which is equivalent to (2.9).

2.6.1.4 Average End-to-End Delay at Steady State

Corollary 2. For the wireless multihop network with N relays running the r-

TDMA scheme, the average delay experienced by a packet at node i is

EDi =
2(N + 1)(2N + 1)Eτi

(N + 2)ps
, 0 ≤ i ≤ N, (2.12)

and consequently, the average in-network end-to-end delay is

EDe2e =
N∑

i=0

EDi =
2N2 + 3N + 1

ps
. (2.13)

Proof: Recall that the rate of packet flow across each node is equal to T ,

and that the average number of packets at node i, 0 ≤ i ≤ N is Eτi. From Little’s

theorem [52], the average delay at node i is simply Eτi/T . �

We see that the average end-to-end delay is proportional to the node occupancies

and inversely proportional to the link reliability. Also, it is interesting to note

that the product of throughput and delay is 1 +N/2, which is independent of ps.
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For large N , we immediately see from (2.13) that

EDe2e ∼ 2N2/ps. (2.14)

The average end-to-end delay grows quadratically with the number of relay nodes

N .

2.6.1.5 Delay Distributions

In this subsection, we analytically derive the pmfs of the steady state delays

incurred by packets at each node along the linear flow, i.e., we evaluate P(Di = k),

k ≥ 1, 0 ≤ i ≤ N in closed-form.

To this end, suppose that a packet arrives at a node i in an arbitrary time slot

t (at steady state). The three events that need to occur in the following order for

the packet to be able to hop to node i+ 1 successfully are:

(1) Node i+ 1 has an empty buffer.

(2) Node i is picked for transmission.

(3) Node i’s transmission is successful.

While (2) occurs w.p. 1/(N + 1), (3) happens (independently of (2)) w.p. ps.

Thus, at time t, if node i+1’s buffer is empty, the delay experienced by the packet

at node i is simply geometrically distributed with mean (N + 1)/ps, i.e.,

P(Di = k) =
ps

N + 1

(

1 − ps

N + 1

)k−1

.

If instead, there is another packet present in node i+1’s buffer, however, no packet

at node i+ 2’s buffer, the probability that the delay at the ith node is k time slots

is equal to the probability that a single successful transmission (of the packet at
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node i+1) occurs within k−1 slots, and then the packet at node i hops in the kth

time slot. Extending this argument, if j nodes adjacent to node i have a packet,

and the j + 1th adjacent node has none, i.e., if

(τi+1, . . . , τi+j , τi+j+1) = (1, · · · , 1
︸ ︷︷ ︸

j ones

, 0), j ≥ 0,

then the packet at node i will successfully hop to node i + 1 in exactly k time

steps if j packets (those at nodes i+ j, i+ j−1, . . . , i+1 in that order) hop within

k−1 time slots, and then, the packet present at node i hops (in the kth time slot).

Let ei,j denote the event that given a packet arrives at node i (at some time t),

j nodes adjacent to it are occupied. We now compute ∆
(N)
i,j := P(ei,j). We have

P(τi+1[t] = 1, . . . , τi+j [t] = 1, τi+j+1[t] = 0 | packet arrives
at node i )

=
P(τi+1[t] = 1, . . . , τi+j[t] = 1, τi+j+1[t] = 0, packet arrives

at node i )

P(packet arrives at node i)

= P (τi−1[t− 1] = 1, τi[t− 1] = 0, τi+1[t− 1] = 1, . . .

. . . , τi+j [t− 1] = 1, τi+j+1[t− 1] = 0)

× 1

P (τi−1[t− 1] = 1, τi[t− 1] = 0)

×P(the packet at node i− 1 hops to node i)

P(the packet at node i− 1 hops to node i)
.

Using the MPA formalism, we may write at steady state,

∆
(N)
i,j =

〈W |Ci−2DEDjECN−i−j−1|V 〉
〈W |Ci−2DECN−i|V 〉

(a)
=

〈W |Ci−1Dj−1CN−i−j|V 〉
ps〈W |CN−1|V 〉 , (2.15)

where in (a), we have used (2.5a) thrice (twice in the numerator term and once
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in the denominator term).

The evaluation of ∆
(N)
i,j is relatively straightforward for small values of j. For

instance,

∆
(N)
i,0 =

〈W |Ci−2DEECN−i−1|V 〉
〈W |Ci−2DECN−i|V 〉

=
〈W |Ci−1ECN−i−1|V 〉

〈W |CN−1|V 〉
= 1 − Eτ

(N−1)
i , (2.16)

and

∆
(N)
i,1 =

〈W |Ci−2DEDECN−i−2|V 〉
〈W |Ci−2DECN−i|V 〉

=
〈W |CN−2|V 〉
〈W |CN−1|V 〉

= η(N − 2)/η(N − 1) (2.17)

In order to compute ∆
(N)
i,j for higher values of j, we use the following lemmas.

Lemma 1. The following relationship holds for j ≥ 2:

∆
(N)
i,j = ∆

(N)
i,j−1 − ∆

(N−1)
i,j−2 η(N − 2)/η(N − 1). (2.18)
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Proof: Using the fact that C = D + E, we obtain

∆
(N)
i,j =

〈W |Ci−1Dj−2(C − E)CN−i−j|V 〉
〈W |CN−1|V 〉

=
〈W |Ci−1Dj−2CN−i−j+1|V 〉

〈W |CN−1|V 〉

− 〈W |Ci−1Dj−3DECN−i−j|V 〉
〈W |CN−1|V 〉

(a)
= ∆

(N)
i,j−1 −

〈W |CiDj−3CN−i−j+1|V 〉
ps〈W |CN−1|V 〉

= ∆
(N)
i,j−1 − ∆

(N−1)
i,j−2

〈W |CN−2|V 〉
ps〈W |CN−1|V 〉 ,

which is equivalent to (2.18), upon using property (2.5b). Here, (a) is derived

using (2.15) and (2.5a). �

Lemma 2. For j ≥ 2, we have

∆
(N)
i,j =

⌊ j−1

2
⌋

∑

k=0

(−1)k η(N − k − 2)

η(N − 1)
×

[(
j − k − 2

k

)

Eτ
(N−k−2)
i +

(
j − k − 2

k − 1

)]

, (2.19)

where Eτ
(N)
i denotes the occupancy of node i in the flow with N relays.

Proof: The proof involves induction. Using (2.16) and (2.17) in (2.18), we

obtain for the case j = 2,

∆
(N)
i,2 = Eτ

(N−2)
i

η(N − 2)

η(N − 1)
,

which satisfies (2.19). Similarly, using (2.18) for j = 3, we have

∆
(N)
i,3 = Eτ

(N−2)
i

η(N − 2)

η(N − 1)
− η(N − 3)

η(N − 1)
,
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which conforms with (2.19).

Suppose that (2.19) is valid for the cases j = m,m− 1, m > 2. Now, consider

the case j = m+ 1. From (2.18), we have

∆
(N)
i,m+1 = ∆

(N)
i,m − ∆

(N−1)
i,m−1 η(N − 2)/η(N − 1)

=

⌊m−1

2
⌋

∑

k=0

(−1)k η(N − k − 2)

η(N − 1)
×

[(
m− k − 2

k

)

Eτ
(N−k−2)
i +

(
m− k − 2

k − 1

)]

−η(N − 2)

η(N − 1)

⌊m−2

2
⌋

∑

k=0

(−1)k η(N − k − 3)

η(N − 2)
×

[(
m− k − 3

k

)

Eτ
(N−k−3)
i +

(
m− k − 3

k − 1

)]

=

(
m− 2

0

)
η(N − 2)

η(N − 1)
Eτ

(N−2)
i +

⌊m−1

2
⌋

∑

k=1

(−1)k

η(N − k − 2)

η(N − 1)

[(
m− k − 2

k

)

Eτ
(N−k−2)
i +

(
m− k − 2

k − 1

)]

+

⌊m−2

2
⌋+1

∑

k=1

(−1)k η(N − k − 2)

η(N − 1)
[(

m− k − 2

k − 1

)

Eτ
(N−k−2)
i +

(
m− k − 2

k − 2

)]

=

(
m− 2

0

)
η(N − 2)

η(N − 1)
Eτ

(N−2)
i +

⌊m−1

2
⌋

∑

k=1

(−1)k

η(N − k − 2)

η(N − 1)

[[(
m− k − 2

k

)

+

(
m− k − 2

k − 1

)]

Eτ
(N−k−2)
i +

[(
m− k − 2

k − 1

)

+

(
m− k − 2

k − 2

)]]

+ (−1)m/2 η (N −m/2 − 2)

η(N − 1)
1[m is even],
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where the last term involves an indicator function since it occurs only when ⌊(m−

2)/2⌋ + 1 6= ⌊(m− 1)/2⌋, i.e., when m is even. Using the identity

(
r

s

)

+

(
r

s− 1

)

≡
(
r + 1

s

)

, (2.20)

we obtain

∆
(N)
i,m+1 =

⌊m/2⌋
∑

k=0

(−1)k η(N − k − 2)

η(N − 1)
×

[(
m− k − 1

k

)

Eτ
(N−k−2)
i +

(
m− k − 1

k − 1

)]

. (2.21)

We see that (2.19) is valid for the case j = m+1 as well. By induction, the lemma

holds. �

Theorem 3. The pmf of the packet delay at node i, 0 ≤ i ≤ N is given by

P(Di = k) =
N−i∑

j=0

∆
(N)
i,j

(
k − 1

j

)

χj+1 (1 − χ)k−1−j , (2.22)

where χ = ps/(N + 1).

Proof: The conditional probability P(Di = k | ei,j) is the probability that j

packets (present at nodes i+ 1, . . . i+ j) hop out successfully in k − 1 time slots,

and then, the packet at node i is transmitted successfully only in the kth time slot.

Hence,

P(Di = k | ei,j) =

(
k − 1

j

)

χj (1 − χ)k−1−j × χ.

Summing up the joint pmf P(Di = k, ei,j) over all the possible values of j (0 ≤
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j ≤ N − i) yields the desired result, i.e.,

P(Di = k) =
N−i∑

j=0

P(ei,j)P(Di = k | ei,j), k > 0,

which is equivalent to (2.22). �

Figure 2.7 plots the delay pmfs at each node in a line network with N = 3.

Note that apart from the delay at the final relay, none of the other delays are

geometrically distributed, i.e., they are not memoryless. Also note that D0 ≥ 2.

This may be explained by the fact that whenever a packet hops out of the source

node (node 0), another packet arrives at the head of the source. Thus, the packet

at node 0 has to wait for at least one time slot (for the packet at node 1 to hop

out) before attempting to hop.

2.6.1.6 Joint Delay Distributions

Since the flow of packets in a wireless multihop network is relayed across mul-

tiple links, the delays experienced by a packet across hops are correlated. As

mentioned earlier, the study of delay correlations has often been neglected in

prior work; it is, however, crucial for the design of smarter retransmission and

flow control algorithms.

For instance, suppose it is known that the conditional delay probability P(Di+1 =

j | Di = k) is high for some specific value j = ℓ, i.e., given that a packet stayed at

node i for k slots, it is likely to be present in node i+ 1’s buffer for ℓ slots. Node

i+1 can then decide to hold back the transmission of a packet for ℓ−1 slots, thus

reducing the number of unnecessary transmissions. Knowing the spatial delay

correlations also helps determine the variance of the end-to-end delay.
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Figure 2.7. The pmf of the delay incurred by packets at various nodes in
the line network with N = 3. For this plot, all link reliabilities are taken

to be equal to ps = 0.8.

We begin by stating the following simple lemma.

Lemma 3. In a wireless line network with N nodes, DN is independent of all the

other hop delays. As a special case, when N = 1, D0 and D1 are independent.

Proof: Irrespective of the delay experienced by a packet at any arbitrary

node, it can hop from node N to the destination (node N+1) if node N is picked,

and its transmission is successful. Thus, DN follows a geometric distribution with

mean (N + 1)/ps and is independent of all other delays. �

We next compute P(Di+1 = ℓ,Di = k), i.e., the probability that a packet will

stay at nodes i and i+ 1 for k and ℓ slots respectively at steady state? The same

procedure may be extended (with extra care) to evaluate the joint pmfs of the

delays at nodes farther apart.

To this end, let ei,j1,j2 denote the event that given a packet arrives at node i,
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we have

(τi+1, . . . , τi+j1, τi+j1+1, τi+j1+2 . . . , τi+j1+j2+1, τi+j1+j2+2)

= (1, . . . , 1
︸ ︷︷ ︸

j1 ones

, 0, 1, . . . , 1
︸ ︷︷ ︸

j2 ones

, 0).

We first evaluate κ
(N)
i,j1,j2

:= P(ei,j1,j2). Using the same idea as in (2.15), we may

write

κ
(N)
i,j1,j2

=
〈W |Ci−2DEDj1EDj2ECN−i−j1−j2−2|V 〉

〈W |Ci−2DECN−i|V 〉

=
〈W |Ci−1Dj1EDj2−1CN−i−j1−j2−1|V 〉

ps〈W |CN−1|V 〉 .

Simplifying further, we get

κ
(N)
i,j1,j2

(a)
=

〈W |Ci−1Dj1−1CDj2−1CN−i−j1−j2−1|V 〉
p2

s〈W |CN−1|V 〉
(b)
=

η(N − 2)

η(N − 1)

[〈W |Ci−1Dj1+j2−1CN−i−j1−j2−1|V 〉
ps〈W |CN−2|V 〉 +

〈W |Ci−1Dj1−1EDj2−1CN−i−j1−j2−1|V 〉
ps〈W |CN−2|V 〉

]

=
η(N − 2)

η(N − 1)

[

∆
(N−1)
i,j1+j2

+ κ
(N−1)
i,j1−1,j2

]

. (2.23)

To derive (a), we used (2.5a) for the term in the numerator, and to derive (b), we

used the identity C = D + E.

We obtain closed-form expressions for κ
(N)
i,j1,j2

considering the following two

cases.
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Case 1: j1 = 0. From (2.23), we obtain

κ
(N)
i,0,j2

=
〈W |Ci−1EDj2ECN−i−j2−1|V 〉

〈W |CN−1|V 〉

=
〈W |CiDj2ECN−i−j2−1|V 〉

ps〈W |CN−1|V 〉 − 〈W |Ci−1Dj2+1ECN−i−j2−1|V 〉
ps〈W |CN−1|V 〉

= ∆
(N)
i+1,j2

− ∆
(N)
i,j2+1. (2.24)

Case 2: j1 > 0. Using the recursive equation (2.23), we obtain

κ
(N)
i,j1,j2

=
η(N − j1 − 1)

η(N − 1)

(

∆
(N−j1)
i+1,j1+j2

+

j1∑

s=2

∆
(N−j1−1+s)
i,s+j2

)

.

The following theorem establishes the joint pmfs between delays across adja-

cent hops in the network.

Theorem 4. The joint pmf of the delays at nodes i and i + 1 is given by

P(Di+1 = ℓ,Di = k) =

s1∑

j1=0

s2∑

j2=0

2j1+j2∑

j=j1

κ
(N)
i,j1,j2

(
k − 1

j

)

×
(

ℓ− 1

2j1 + j2 − j

)

χ2j1+j2+2 (1 − χ)k+ℓ−2−2j1−j2

+

s3∑

j1=0

2j1−1
∑

j=j1

κ
(N)
i,j1,j2

(
k − 1

j

)(
ℓ− 1

2j1 − 1 − j

)

χ2j1+1

× (1 − χ)k+ℓ−1−2j1 , (2.25)

where χ = ps/(N + 1), s1 = min{k− 1, N − i− 1}, s2 = min{k+ ℓ− 2j1 − 2, N −

i− 1 − j1}, and s3 = min{k − 1, (k + ℓ− 1)/2}.

Proof: We condition on the event ei,j1,j2, which happens w.p. κ
(N)
i,j1,j2

:=

P(ei,j1,j2). For clarity, we treat the following two cases separately.

Case 1: 0 ≤ j1 ≤ N − i− 1. Since Di = k by assumption, at least j1 packet hops
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(for the ones at nodes i + j1, . . . i + 1, in that order) occur within k − 1 slots. In

addition, Di+1 = ℓ, thus the packets at nodes i+ 1, . . . i+ j1 hop out twice, which

also means that j2 other packet hops (from nodes i+ j1 + 2, . . . , i+ j1 + j2 + 1 to

their respective adjacent nodes) occur, all within k + ℓ− 2 slots. The flow length

of N nodes also places a constraint on the possible values that j1 and j2 can take.

Thus, the following hold:

(i) j1 ≤ k − 1.

(ii) 2j1 + j2 ≤ k + ℓ− 2.

(iii) i+ j1 + j2 + 1 ≤ N .

Equivalently, we have

• 0 ≤ j1 ≤ min{k − 1, N − i− 1}, and

• 0 ≤ j2 ≤ min{k + ℓ− 2j1 − 2, N − i− 1 − j1}.

The conditional joint pmf P(Di+1 = ℓ,Di = k | ei,ji,j2) is equal to the sum of

the probabilities of having j successful packet hops, j1 ≤ j < 2ji + j2, occurring

in k − 1 time slots, then the packet at node i hopping successfully to node i + 1

in the kth time slot, then 2j1 + j2 − j successful transmissions occurring in ℓ− 1

slots, and finally, the packet at node i + 1 hopping to node i + 2 in the k + ℓ th

time slot.

Case 2: j1 = N − i. For this case, when a packet arrives at node i, the config-

uration of the nodes i + 1, . . . , N is simply (τi+1, . . . τN) = (1, . . . , 1). As in Case

1, at least j1 packet hops (for the ones at nodes i + j1, . . . i + 1, in that order)

occur within k − 1 slots. However, once the packet at node N is delivered to the

destination, it does not hop further. Thus, Di+1 = ℓ would mean that 2j1−1 (and
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not 2j1) successful transmissions must occur in k+ ℓ−2 time slots. The following

constraints hold:

(i) j1 ≤ k − 1.

(ii) 2j1 − 1 ≤ k + ℓ− 2.

Putting together (i) and (ii), 0 ≤ j1 ≤ min{k − 1, (k + ℓ− 1)/2}.

The conditional joint pmf P(Di+1 = ℓ,Di = k | ei,ji,j2) is obtained by adding

up the probabilities of having j successful packet hops, j1 ≤ j < 2ji−1, occurring

in k− 1 time slots, and the packet at node i hopping successfully to node i+ 1 in

the kth time slot, then 2j1 −1− j successful transmissions occurring in ℓ−1 slots,

and lastly, the packet at node i+ 1 hopping to node i+ 2 in the k+ ℓ th time slot.

Summing up P(Di+1 = ℓ,Di = k, ei,ji,j2) over all possible values of j1 and j2

considering both the cases yields the joint pmf, which is given in (2.25). �

The conditional delay pmf may be obtained by using (2.25) together with

(2.22). Figure 2.8 plots the conditional delay pmfs P(D1 = ℓ | D0 = k) in a line

network with N = 3 and ps = 0.8, for several values of ℓ and k.

2.6.1.7 Empirical Results

Evaluating the joint pmfs between delays across nodes lying farther apart can

be performed by essentially following the aforementioned procedure, but it gets

computationally intensive and unwieldy. Instead, we resort to simulation and

present the behavior of the spatial delay correlation coefficients. The correlation

coefficient between delays at nodes i and j is defined as

ρi,j =
E [(Di − EDi) (Dj − EDj)]

σDi
σDj

,
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Figure 2.8. The conditional delay pmfs P(D1 = ℓ | D0 = k) for several
values of ℓ and k.

where σDi
and σDj

represent the standard deviations of the delays at node i and

j, respectively.

Figure 2.9 plots the empirical values of correlation coefficients across one-, two-

and three-hop neighbors in an r-TDMA-based wireless network with N = 10 relays

and ps = 0.8. Observe that all the delay correlation coefficients are non-positive.

This can be explained by noting that if the transmission of a packet is delayed

at any node, the adjacent nodes’ buffers get emptied so that the packet traverses

faster across them. Likewise, if the waiting time of a packet at any particular

node is small, the neighboring relay node buffers are still occupied and therefore

it takes longer for the packet to get transported across the system. Also, delays

across hops closer to the destination, and delays across nodes farther apart are

relatively lightly correlated compared to the corresponding values near the source
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node. In fact, ∀i, ρi,N = 0, since DN is independent of all other delays (which is

also a consequence of Lemma 3).
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Figure 2.9. The correlation coefficients ρi,i+1, ρi,i+2 and ρi,i+3 for
ps = 0.8 in a multihop r-TDMA-based system with N = 10 relays. The

delay correlations across nodes farther apart and closer to the
destination are seen to be relatively light.

2.6.1.8 The Short-hop versus Long-hop Routing Problem

We now present a simple application of our results: the short-hop versus long-

hop routing problem [53] in long (N ≫ 1) regular r-TDMA-based wireless net-

works. Specifically, we determine if it is beneficial to route over many short hops

or a smaller number of longer hops. The metrics we use for comparison are the
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average end-to-end delay and throughput.

To this end, let us suppose that communication occurs only across nodes that

are in general, m hops (1 ≤ m ≤ N) apart. Manipulating (2.3), it is straightfor-

ward to see that

ps = exp (−ΘN0(md)γ) .

We now determine the optimum spacing between the communicating hops,

mopt, that minimizes the average end-to-end delay for this general line network.

Since there are N/m relays now, we have from (2.14) (assuming that N is a

multiple of m),

EDe2e ∼ 2(N/m)2/ps = 2N2 exp (ΘN0(md)γ) /m2, (2.26)

Upon differentiating (2.26), we obtain6

mopt =
1

d

(
2

ΘN0γ

)1/γ

, (2.27)

which is independent of N .

The values of mopt (2.27) for several values of γ and Θ is plotted in Figure 2.10.

Depending on the value of the SNR threshold, routing needs to be performed over

longer or shorter hops in order to keep the packet delay minimal.

Likewise, let m′
opt denote the optimum value of the spacing between hops for

which the network throughput is maximized. We can express the throughput for

the N/m-relay system as

T ∼ ps/ (4N/m) = m exp (−ΘN0(md)γ) /4N, (2.28)

6We allow m to assume any real value here. In practice, mopt will be rounded up or down to
an integer.
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Figure 2.10. Delay-optimum hop spacing mopt (2.27) and
throughput-optimum hop spacing m′

opt (2.29) versus Θ for different
values of the path loss exponent.

which is maximized at

m′
opt =

1

d

(
1

ΘN0γ

)1/γ

. (2.29)

We see that mopt/m
′
opt = 21/γ . The values of m′

opt are also depicted in Figure

2.10.

2.6.2 Throughput and Delay Analysis for the Slotted ALOHA-based Line Net-

work

In this section, we employ existing results from the TASEP particle model with

parallel update to analytically derive the buffer occupancies, throughput and av-

erage end-to-end delay7 for the slotted ALOHA-based network at steady state.

7Computing the complete delay distribution and its correlations analytically is quite a
formidable task, and is not presented in this thesis.
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Additionally, we apply our findings to determine the optimum contention param-

eter that minimizes the average end-to-end delay in long wireless line networks.

2.6.2.1 Steady State Buffer Occupancies

Suppose that the link reliabilities8 are each equal to ps. Also, let q denote the

contention probability, i.e., in each time slot, nodes having a packet independently

transmit w.p. q or stay idle w.p. 1 − q. We can take the effective hopping

probability in the corresponding parallel TASEP model to be p = qps. Then, the

steady state occupancies are given by [54, Eqn. 10.16]

Eτi =
(1 − qps)

∑N−i
n=0 B(N − n)B(n) + qpsB(N)

B(N + 1) + qpsB(N)
, (2.30)

where B(0) = 1, and

B(k) =
k−1∑

j=0

1

k

(
k

j

)(
k

j + 1

)

(1 − qps)
j , k > 0.

The steady state occupancies depend nontrivially on p (and hence, on q and ps)

as depicted in Figure 2.11. Also, owing to the particle-hole symmetry, we have

Eτ⌈(N+1)/2⌉ = Eτ⌊(N+1)/2⌋, and
∑N

i=0 Eτi = 1 + N/2. For the special case p = 1,

i.e., q = ps = 1, the steady state configuration of each node alternates between

ones and zeros, and the occupancy of each relay node is exactly 1/2.

When N ≫ 1, Eτ1 =
(
2p− 1 +

√
1 − p

)
/2p and EτN =

(
1 −√

1 − p
)
/2p [54].

Also, the occupancy in the bulk is approximately equal to 1/2, i.e., Eτi ≈ 1/2 for

1 < i < N . Again, we see that the node occupancies monotonically decrease with

proximity to the destination node.

8In general, the link reliability ps is a function of the contention probability q, since the
interference in the network depends on q. This will be discussed in Subsection 2.6.2.4.
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Figure 2.11. The occupancies for the parallel TASEP particle flow model
for several values of p. Unlike the r-TDMA case (see Figure 2.6), Eτi

depends on p.

2.6.2.2 Steady State Throughput

The following theorem quantifies the throughput and mean end-to-end delay

across a typical flow in the network in closed-form.

Theorem 5. For an ALOHA-based line network, the steady state throughput is

T =
qB(N)

B(N + 1) + qpsB(N)
. (2.31)

Proof: The proof is very similar to that of Theorem 1. Indeed, at any

instant of time (in steady state), relay node N ’s buffer has a packet w.p. EτN ;

furthermore, it transmits w.p. q, and the transmission succeeds w.p. ps. Thus,

the throughput is simply given by T = qpsEτN , which is identical to (2.31). (3.25)

follows from Little’s theorem. �
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For N ≫ 1, the network throughput at steady state is

T ∼
(

1 −
√

1 − qps

)/

2. (2.32)

2.6.2.3 Average Steady State Delay

Corollary 6. For the ALOHA-based wireless line network with link reliability ps,

the average steady state delay Di of a packet at node i is

EDi = Eτi/(qpsEτN ), 0 ≤ i ≤ N. (2.33)

Consequently, the average end-to-end delay is

EDe2e =
1

qpsEτN

N∑

i=1

Eτi =
N + 2

2qpsEτN
. (2.34)

Proof: The proof is identical to the one used to derive the delay across

the r-TDMA-based network (see Corollary 2), and follows directly from Little’s

theorem [52]. �

For large N , we have

EDe2e ∼
N + 2

1 −√
1 − qps

. (2.35)

As in the r-TDMA-based network, T ×EDe2e = 1 +N/2 here. For the special

case q = ps = 1, every alternate node transmits successfully in each time slot; the

throughput is equal to 1/2, and the delay at each hop is 2.
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2.6.2.4 Optimizing the Contention Probability in Long ALOHA-based Line Net-

works

Consider a long (N ≫ 1) ALOHA-based wireless line network employing the

modified transmission scheme. For small q, nodes hold on to packets for a long

time before transmitting them, which results in a long delay. Likewise, for high q,

the interference in the network is high and the delay is large. In this subsection,

we study the interesting question of how to choose the optimum q that minimizes

the end-to-end delay at steady state. An alternative problem is choose the value

of q that maximizes the steady state throughput.

We assume that the system is interference-limited, thus ps = Pr[SIR > Θ].

Now, from [55], the success probability ps for the considered line network model

is well-approximated by9

ps ≈ exp(−qc/2), (2.36)

where c = πΘ1/γ
/√

γ/2 − 1.

Using (2.36) in (2.35), we obtain

EDe2e ∝
(

1 −
√

1 − q exp(−qc/2)
)−1

. (2.37)

Differentiating (2.37) and noting that 0 ≤ q ≤ 1, the optimum value of the

contention parameter that minimizes the average end-to-end delay is obtained as

qopt = min{1, 2/c}. (2.38)

9Note that this is independent of the node separation d.
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From (2.32), we see that T ∝ 1 −
√

1 − q exp(−qc/2), thus qopt maximizes the

steady state throughput as well. Figure 2.12 plots analytical values of qopt (2.38)

versus the SIR threshold Θ, for several values of γ (dashed lines). It also shows

empirical values of qopt obtained via simulation (solid lines), which are seen to

match the analytical values closely.
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Figure 2.12. The analytical (dashed lines) and empirical (solid lines)
values of the optimum contention parameter qopt that minimizes the
end-to-end delay (as well as maximizes the steady state throughput)

versus Θ for different values of γ, in a long (N ≫ 1) regular
ALOHA-based wireless network.
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2.7 Summary and Concluding Remarks

We propose a modified transmission policy for wireless networks that helps

regulate the flow of packets in a completely decentralized manner. Using known

results from statistical mechanics, in particular, the TASEP particle flow model,

we characterize the steady state end-to-end delay and throughput performances of

multihop line networks running the r-TDMA and slotted ALOHA MAC schemes.

We also extend the results derived to long networks and provide applications

to important wireless networking problems. This chapter is intended to provide

insight into the dynamics of packet transport in multihop wireless networks.

The TASEP particle-flow model permits the application of statistical mechan-

ics to wireless networking. It helps provide closed-form expressions for the average

end-to-end delay and throughput of the multihop line network and has the advan-

tage of obviating the cumbersome queueing theory-based analysis. Furthermore,

the results obtained are scalable with the number of nodes and thus can provide

helpful insights into the design of wireless networks. We wish to promote TASEPs

as a powerful tool to analyze the performance of multihop networks and hope

that this introductory work instigates interest in solving other relevant wireless

networking problems employing ideas from statistical mechanics.
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CHAPTER 3

A SYSTEM OF MULTIHOP WIRELESS LINE NETWORKS

3.1 Introduction

Having studied the multihop wireless line network, we consider in this chapter

a more complex network model: a two-dimensional multihop network compris-

ing several source-destination pairs, each communicating wirelessly in a multi-

hop fashion. The network may thus be observed as consisting of many multihop

wireless line network flows (or routes). Considering the modified transmission

policy (proposed in the Chapter 2) for each flow in the network, we characterize

the throughput and end-to-end delay performances of a typical flow for this 2-D

wireless network for the two different channel access mechanisms, r-TDMA and

ALOHA. Our study also offers valuable insights from a system design stand-point

such as determining the optimum density of transmitters or the optimal number

of hops along a flow that maximizes the system’s throughput performance. We

corroborate our theoretical analyses via simulations.

The rest of this chapter is organized as follows. Section 3.2 describes the system

and channel models. Section 3.3 reviews prior work in this area, and highlights our

contributions. Section 3.4 investigates the design and analysis of r-TDMA-based

wireless networks, while 3.5 studies ALOHA-based wireless networks. Section 3.6

discusses the issues of having relays serving multiple routes. Section 3.7 provides
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some simulation results to corroborate the theory. Section 3.8 characterizes the

throughput-delay tradeoff for each MAC scheme in the network, and Section 3.9

concludes the chapter.

3.2 System Model

3.2.1 Network Geometry

We consider a wireless network comprising an infinite number of source nodes,

each of which initiates a (in general, multihop) flow of packets to a certain (desti-

nation) node lasting over an infinite duration of time. This framework is suitable

for modeling general multihop networks since the aggregate traffic in such a net-

work can always be decomposed into several multihop flows. The distribution of

source nodes is assumed to be a homogeneous Poisson point process (PPP)1 on the

infinite plane R
2 with density δ. Additionally, the network consists of a countably

infinite population of other nodes (potential relays and destinations) arranged as

a homogeneous PPP with density 1− δ. Thus, the total density of the network is

(without loss of generality) equal to unity. For each source node, the destination

node is chosen at a random direction, and at a finite distance.

3.2.2 Routing Strategy

Across each flow, we then take that packets are then routed in a general manner

as follows2. Each node that receives a packet relays it to its nth-nearest neighbor

1For the resulting so-called “Poisson network” of density δ, the number of nodes in any given
set V of Lebesgue measure |V | is Poisson with mean δ|V |, and the numbers of nodes in disjoint
sets are independent. The PPP is a well accepted model for nodal distribution (in particular
when nodes are randomly deployed in large numbers) also owing to its analytical tractability,
and helps obtain some useful insights in real-world networks.

2For implementation, each source needs to know its own location and the direction towards
its intended destination.
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(n ≥ 1) in a sector of angle φ ∈ [0, π], i.e., the next-hop node is the nth-nearest

neighbor that lies within ±φ/2 of the axis to the destination. Figure 3.1 illustrates

the case of nearest-neighbor routing (n = 1).

A sample realization of the system model comprising several source-destination

pairs is shown in Figure 3.2 with δ = 0.05 and φ = π/2. In the figure, each

destination node is taken to be located 5 nearest-neighbor (n = 1) hops away

from its corresponding source, at a random direction.

φ/2

D

i

i + 1
i + 2

φ/2

Figure 3.1. Illustration of nearest-neighbor routing in a sector of angle
±φ/2 along the axis to the destination for an arbitrary flow. The packet
is routed from node i (for some i) to node i+ 1, which then relays it to
node i+ 2. We denote the argument to the destination by the random

variable Ψ. The thick solid lines along the axes to the destination
represent the progress (to be defined later) of packets across the links

i→ i + 1 and i+ 1 → i+ 2.

Note that in this setup, the same common relay node may be a part of multiple

flows, in particular when δ is not small.
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Figure 3.2. A sample realization of the system model with δ = 0.05 and
φ = π/2. The triangles depict the sources, while the circles represent

destinations. The thick solid lines mark the flows in the network. In this
illustration, each destination is assumed to be located 5 nearest-neighbor
(n = 1) hops away from its corresponding source node, along a randomly

chosen direction.

3.2.3 Channel Model

We consider the case where all nodes use the same frequency band such that

simultaneous transmissions cause interference between links. Furthermore, we

assume that the transmit power at each transmitting node is equal to unity. Also,

we model the attenuation in each link as the product of a large-scale path loss

with exponent γ and a block i.i.d. Rayleigh fading component. Now, let Φ = {xi}

denote the set of transmitters in an arbitrary time slot. Then, the total received
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power at location y on the plane is

IΦ(y) =
∑

x∈Φ

Gxyg(x− y),

where Gxy denotes the (power) fading gain of the wireless link between x and y,

and g(z) = ‖z‖−γ . We take the noise power to be negligible compared to the

interference and define the transmission of a packet from a node located at x to

another located at y to be successful if and only if the instantaneous signal-to-

interference-ratio (SIR) at y is greater than a threshold Θ, i.e., the probability of

a successful transmission across the link x → y (denoted by ps) equals

ps = Pr

(
Gxy‖x− y‖−γ

IΦ\{x}(y)
> Θ

)

. (3.1)

All the results in this chapter are obtained by averaging over all possible realiza-

tions of the channels and the underlying point processes.

3.2.4 MAC Schemes and the Transmission Policy

We assume a slotted system and analyze the same (those analyzed in Section

2.6) two MAC schemes for each flow in the system: r-TDMA and ALOHA. How-

ever, unlike in Chapter 2, we take that only the nodes having a packet may be

chosen for transmission (rather than being chosen from the set of all nodes in that

particular flow, including those that may not have a packet to transmit).

Also, we assume the transmission policy described in Section 2.3 for each flow

in the network. Accordingly, each relay node have a buffer size of unity (for each

flow it is associated with), and incoming transmissions are not accepted by relays
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if their buffer (corresponding to that flow) already contains a packet.

3.2.5 Performance Metrics

Again, we are interested in the performance of the multihop network in its

steady state (as t → ∞). Specifically, in this work, we focus on two important

end-to-end metrics: the (spatial) throughput density and the mean end-to-end

delay, each evaluated for a typical flow at steady state.

In the remainder of the chapter, we suppose that each source-destination pair

in the network is separated by N hops. Since the distribution of nodes is homo-

geneous, it is sufficient to simply analyze a “typical” flow in the system. Thus, in

the rest of this chapter, we focus only on a representative flow occurring across

N relays. Furthermore, we take that the source nodes are backlogged, i.e., they

always have packets to transmit.

The metrics of interest are formally defined as follows.

• The throughput of the typical flow, T (N), is defined as the average number

of packets successfully delivered (to the destination) in unit time.

The (spatial) throughput density, ρT (N), is then defined as the mean

number of packets successfully delivered (in unit time) per unit surface area.

Since the density of destination nodes3 is δ, ρT (N) = δT (N).

• The mean end-to-end delay, D(N), is defined as the average number

of time slots it takes for the packet at the head of the source node4 to

successfully hop to the destination.

3For each source node, there exists a corresponding destination node.
4Note that we consider only the in-network delay (and neglect the queueing delay at the

source) since the source nodes are always backlogged.
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3.3 Related Work

While wireless networks with single-hop flows are fairly well understood, there

has been limited contribution in the study of interference-limited multihop net-

works. For analytical tractability, previous work on Poisson multihop networks

considered only a single link of a typical route (with the implicit assumption that

the source-destination distance being infinitely large) and focused on metrics such

as energy consumption [56], transmission range [57], spatial density of progress

[58; 59], or the transmission capacity [60]. Furthermore, prior work assumed that

all nodes in the network are backlogged, i.e., they always have packets to transmit.

In recent papers [61]-[63], a problem of similar flavor as the one in this chapter

was studied, wherein the authors considered a random multihop network and em-

ployed tools from basic queueing theory to determine the number of relays and

their placements such that the mean network delay is minimized. However, the

authors make the idealized assumption that the relays are always located along

the source-destination axis, instead of being arranged as a PPP.

In this work, we characterize the performance of multihop networks assuming a

more realistic system model than the ones employed earlier. The unified approach

used here also has the following advantages. First, it allows for a rigorous and clean

analysis. In contrast to prior work, we only consider the nodes that have packets

as potential transmitters. Second, since we consider relays with unit buffer sizes,

we only need to concern ourselves with access and retransmission delays, and no

queueing analysis (which is often cumbersome) is required. Third, all our results

are scalable with respect to the number of hops per route (or equivalently the

source-destination separation) and help provide useful insights into the design of

wireless networks.
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3.4 Analysis and Design of r-TDMA-based Wireless Networks

In this section, we analyze the delay and throughput performance of r-TDMA-

based multihop networks employing ideas from stochastic geometry and the ran-

dom sequential TASEP literature. Our analysis helps provide some useful insights

into system design such as choosing the optimal density of source nodes or the

number of hops along a route that maximizes the spatial density of throughput.

We begin by presenting the following lemma.

Lemma 4 (Corollary 3, [64]). In a PPP with density λ, the probability density of

the distance Rn from any node to its nth-nearest-neighbor in a sector of angle φ is

pRn
(r) = r2n−1

(
λφ

2

)n
2

(n− 1)!
e−λr2φ/2, r ∈ R

+. (3.2)

Furthermore, we have

E[Rn] =

√
2

λφ

Γ(n+ 1/2)

Γ(n)
≈
√

2

λφ

√

n− 1 +
π

4
. (3.3)

The approximation may be obtained by using the series expansion of the Γ func-

tion, and is a generalization of [56, Eqn. 19]. For n large, E[Rn] ≈
√

2n/λφ.

3.4.1 Packet Success Probability

We next measure the packet success probabilities defined as the probability of

a successful packet transmission. The following proposition evaluates the packet

success probability for the transmission across a typical link5, i.e., between an

arbitrary node and its nth-nearest-neighbor in the r-TDMA-based network.

5Basically, any link along a typical route is said to be a typical link. Since the nodal arrange-
ment is homogeneous, the packet success probability across every typical link in the network is
the same.
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Proposition 7. For the r-TDMA-based multihop network, the probability of a

successful transmission ps = P[SIR > Θ] from any node to its nth-nearest-neighbor

in a sector φ is

ps =

(
(1 − δ)φ

(1 − δ)φ+ 2δc

)n

, (3.4)

where c = πΓ(1 + 2/γ)Γ(1 − 2/γ)Θ2/γ.

Proof: Recall that for the r-TDMA MAC scheme, only a randomly chosen

node having a packet transmits in each flow. Thus, the set of interferers in any

time slot6 forms a homogeneous PPP with density δ. From [58, Corollary 3.2], the

success probability ps(r) across any link of length r in a Poisson network equals

ps(r) = e−δcr2

, (3.5)

with c given above.

Given that the relay node density is 1 − δ, we may put together (3.2) (with

λ = 1 − δ) and (3.5) to obtain the success probability of a packet transmission

across nth nearest-neighbors as

ps =

(
(1 − δ)φ

2

)n 2
∫∞
0
e−((1−δ)φ/2+δc)r2

r2n−1dr

(n− 1)!

=

(
(1 − δ)φ

(1 − δ)φ+ 2δc

)n
∫∞
0
e−ttn−1dt

(n− 1)!
, (3.6)

where the latter equality is obtained by a simple change of variables t = ((1 −

δ)φ/2+δc)r2. Noting that the integral evaluates to Γ(n) = (n−1)!, (3.6) simplifies

to (3.4). �

6We neglect the temporal correlation of the interference.
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3.4.2 Steady State Throughput and Average End-to-end Delay

The following theorem uses the occupancies to characterize the throughput

and end-to-end delay for a typical flow in the r-TDMA-based multihop network.

Theorem 8. For an r-TDMA-based flow across N relays, the throughput at steady

state is

T (N) =
ps

2N + 1
, (3.7)

while the average end-to-end delay is

D(N) =
2N2 + 5N + 2

2ps
, (3.8)

where ps is as given in (3.4).

Proof: The proof very closely follows that of Theorem 1. Along the same

lines, consider first that an arbitrary node is picked for transmission with prob-

ability 1/(N + 1), as in the random sequential TASEP. At any instant of time,

relay node N ’s buffer contains a packet w.p. EτN ; furthermore, it is picked for

transmission (w.p. 1/(N + 1)), and the transmission is successful w.p. ps. Then,

the throughput across the flow is

T (N) = psEτN/(N + 1), (3.9)

where EτN is given by (2.7).

Now, instead of picking any of the N + 1 nodes randomly, if one only chooses

among the nodes having a packet, the throughput is improved by a factor of
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(N + 1)/
∑N

i=0 Eτi = 2(N + 1)/(N + 2), i.e.,

T (N) =
2psEτN
N + 2

=
ps

2N + 1
. (3.10)

Recall that at steady state, the average number of packets in the flow is

∑N
i=0 Eτi = 1 + N/2 (2.8). By Little’s theorem [52], D =

∑N
i=0 Eτi/T , which

equals (3.8). �

Putting together Proposition 7 and Theorem 1, we obtain the throughput for

a N -hop r-TDMA-based route wherein routing is performed across nth-nearest

neighbors in a sector φ as

T (N) =

(
(1 − δ)φ

(1 − δ)φ+ 2δc

)n
1

2N + 1
. (3.11)

In Section 3.7, we verify the correctness of (3.11) via simulations.

We remark that even though the r-TDMA scheme dictates only a single trans-

mission per flow, in principle, intra-route spatial reuse can also be incorporated

into the model. Indeed, suppose that in each time slot, for every node i that gains

the right to access the channel, several nodes . . . , i−m, i, i+m, . . . are also allowed

to transmit, where m is chosen such that simultaneous transmissions occurring at

nodes m hops apart still does not cause intra-flow interference. While several (ap-

proximately N/m) nodes harness the same space, the density of interferers from

other flows’ transmissions also (approximately) increases to mδ. Manipulating

(3.11), we see that the throughput across a typical flow becomes

T (N) ≈
(

(1 −mδ)φ

(1 −mδ)φ+ 2mδc

)n
N

m(2N + 1)

∼
(

(1 −mδ)φ

(1 −mδ)φ+ 2mδc

)n
1

2m
. (3.12)
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Depending on the values of δ and Θ, employing spatial reuse may turn out to be

beneficial or not.

We next provide some useful insights from a system design stand-point such as

determining the optimal fraction of sources and the optimum number of hops be-

tween the source and destination such that the throughput density of the network

is maximized. For clarity, we treat the cases n = 1 and n > 1 separately.

3.4.3 Nearest-neighbor Routing

Assume that the source-destination distance can be traversed in N+1 nearest-

neighbor hops (or equivalently, across N relays). For the case n = 1, the through-

put density is (using (3.11))

ρT (N) =
1

2N + 1

(1 − δ)δφ

(1 − δ)φ+ 2δc
. (3.13)

Clearly, for small δ, the throughput density is small. As δ increases, the den-

sity of flows increases as well, thus the throughput performance of the network

improves. However, as δ gets very large, the interference in the network becomes

high, and the link reliabilities begin to drop, resulting in a decreased through-

put density. Evidently, there exists an optimum value of δ that maximizes the

throughput density of the network.

Differentiating (3.13) w.r.t. δ and equating to 0 yields

(φ− 2c)δ2 − 2φδ + φ = 0.
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Noting that 0 ≤ δ ≤ 1, we see that ρT is maximized at

δopt =
φ−

√
2φc

φ− 2c
, (3.14)

irrespective of the value of N .

Figure 3.3 plots the throughput density-maximizing values of δ versus the

threshold Θ for the network adopting nearest-neighbor routing and the r-TDMA

MAC scheme for several values of the path loss exponent (PLE) γ. As expected

intuitively, the higher the threshold Θ and/or smaller the PLE γ, the smaller is the

packet success probability ps, thus the smaller is the optimum fraction of sources

δopt.
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Figure 3.3. The optimum values of δ (3.14) that maximize the
throughput density in the r-TDMA-based network employing the

nearest-neighbor routing strategy for several Θ and γ values.
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3.4.4 nth-nearest-neighbor Routing (n > 1)

Supposing now that each relay that receives a packet forwards it to its nth-

nearest neighbors (n > 1). For a fair comparison of the routing schemes for

different n, we take the total average progress7 made by the packet to be the same

for every value of n.

Now, recall that for the case n = 1, the mean progress8 of the packet over

N + 1 hops is

∆ = (N + 1)E[R1 cos(Ψ)] = (N + 1)E[R1]E[cos Ψ], (3.15)

where Ψ is the argument of the destination node (see Figure 3.1). Since Ψ is

uniformly distributed on [−φ/2, φ/2], we have

E[cos Ψ] =

∫ φ/2

−φ/2

1

φ
cosψdψ =

2

φ
sin

(
φ

2

)

. (3.16)

Substituting for (3.3) and (3.16) in (3.15), we obtain the average total progress of

packets (from the source to the destination) as

∆ =
(N + 1)

√
2π sin(φ/2)

√

(1 − δ)φ3/2
.

For the general case of nth nearest-neighbor routing (n > 1), the per-hop

progress in this case is E[Rn]E[cos Ψ]. Thus, the number of hops N ′ required to

7The progress of a packet across any link is defined as the effective distance travelled by it
along the axis to the destination (see Figure 3.1). The total progress is the sum of the progresses
across all the links from the source to the destination.

8The expectation is taken over several different realizations of the underlying PPP.
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achieve the same average (total) progress is approximately

N ′ = (N + 1)E[R1]/E[Rn] ∼ N/
√
n, (3.17)

using (3.3). Thus, for a flow employing nth-nearest neighbor routing, the number

of relays in the flow is approximately N/
√
n.

The throughput density in the general case then becomes

ρT (N) =
δ
√
n

2N +
√
n

(
(1 − δ)φ

(1 − δ)φ+ 2δc

)n

. (3.18)

Following the same steps as earlier, the throughput density-maximizing (opti-

mal) value of δ is obtained as

δopt =
(n− 1)c+ φ−

√

(n− 1)2c2 + 2nφc

(φ− 2c)
, (3.19)

which is also independent of N . The values of δopt versus the routing parameter

n are plotted in Figure 3.4 for different values of the PLE γ.

Another critical design issue in wireless networks is determining the optimum

routing parameter n. Indeed, as argued in [53], a smaller hop length does not

necessarily relate to an improved network performance. Differentiating (3.18)

with respect to n, and equating to 0, we obtain

(

2n+
n3/2

N

)

ln

(

1 +
2δc

(1 − δ)φ

)

− 1 = 0. (3.20)

The throughput density-maximizing routing parameter nopt may be evaluated

numerically. Figure 3.5 shows optimum values of the routing parameter nopt

(rounded off to the nearest integer) that maximize the throughput density in
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Figure 3.4. The optimum values of δ (3.19) that maximize the
throughput density in the r-TDMA-based network employing the
nth-nearest-neighbor routing scheme for different values of Θ and γ.

the network for several values of Θ and γ.

3.5 Analysis and Design of ALOHA-based Wireless Networks

In this subsection, we analyze the end-to-end delay and throughput perfor-

mances for the multihop network model considered with ALOHA. For our analysis,

we use known results from the parallel TASEP literature [54].

3.5.1 Node Buffer Occupancies

Recall from (2.30) that the occupancies of nodes along a typical ALOHA-based

flow are

Eτi =
(1 − qps)

∑N−i
n=0 B(N − n)B(n) + qpsB(N)

B(N + 1) + qpsB(N)
, (3.21)
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Figure 3.5. The optimum values of n (3.20) that maximize the
throughput density in a r-TDMA-based network with N = 4 nodes

versus the SIR threshold for successful transmissions, Θ.

where B(0) = 1, and

B(k) =

k−1∑

j=0

1

k

(
k

j

)(
k

j + 1

)

(1 − qps)
j , k > 0.

3.5.2 Packet Success Probability

We next measure the packet success probability for a typical link in the

ALOHA-based network. Recall that the average number of packets (at steady

state) in a flow with N relays is 1 + N/2. With δ being the density of source

nodes (or flows) and q the ALOHA contention probability, it follows that the
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density of interferers for the ALOHA-based network is at most9

λI / δq (1 +N/2) . (3.22)

Even though transmissions in the network are completely uncoordinated, the in-

terference is actually spatially and temporally correlated owing to the presence

of common randomness in the locations of nodes [65]. However, for analytical

tractability, we make the relaxed assumption that the set of interfering nodes

forms a PPP with density λI, which is quite accurate at small q [65].

We then have the following proposition concerning the packet success prob-

ability over a typical link between a node and its nth-nearest-neighbor in the

ALOHA-based network.

Proposition 9. For the ALOHA-based flow across N relays, the packet success

probability ps from any node to its nth-nearest-neighbor in a sector of angle φ is

ps =

(
(1 − δ)φ

(1 − δ)φ+ 2λIc

)n

. (3.23)

where λI is given by (3.22), and c = πΓ(1 + 2/γ)Γ(1 − 2/γ)Θ2/γ.

Proof: The proof is equivalent to the one for Proposition 7 with the density

of interferers in this case being λI (instead of δ, for the r-TDMA-based network).

�

9This term is actually an upper bound, owing to the existence of relay nodes having multiple
packets in their buffers (corresponding to several flows). The bound is tight for small q (when
the density of interferers is small), or small δ (when the flows in the network themselves are
sparse).
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3.5.3 Steady State Throughput and Average End-to-end Delay

Recall (2.31) - the throughput across a typical flow at steady state is

T (N) =
qB(N)

B(N + 1) + qpsB(N)
. (3.24)

Also, by Little’s theorem [52], the end-to-end delay along a typical flow in the

system is

D(N) =
1 +N/2

T (N)
. (3.25)

3.5.4 Throughput Density

Putting together (3.22), (3.23) and (3.24), we obtain a bound on the through-

put density for the ALOHA-based network as

ρT(N) '
δqB(N)

(

(1−δ)φ

(1−δ)φ+2δq(1+N/(2
√

n))c

)n

B(N + 1) + qB(N)

(

(1−δ)φ

(1−δ)φ+2δq(1+N/(2
√

n))c

)n . (3.26)

The above equation helps provide useful insights into network design. For instance,

the throughput density-maximizing values of δ or n may be computed numerically

using (3.26).

3.6 Common Relays Serving Multiple Flows

Note that in our analyses, we have neglected the occurrence of the event E,

wherein an arbitrarily chosen relay serves multiple routes at the same time. It is

important to consider E in the analysis because if it happens often, the density

of interferers would be smaller. Also, the occurrence of E would mean that the

average number of successful packet receptions in any time slot is reduced (as-
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suming that typical values of Θ are > 1) since each relay can successfully receive

at most one packet (corresponding to the transmitter with the strongest channel

to that relay). Moreover, event E may lead to a ‘transmit bottleneck’, where re-

lays end up with multiple packets in their buffer and the transmission scheduling

algorithms may then get complicated. However, we argue in the following that

ignoring the occurrence of E is not critical and that our analyses are still quite

accurate. We also later verify this argument via simulation results in Section 3.7.

We begin by approximating the arrangement of flows in the network as a

Poisson line segment process [66], according to which the mid-segment points

form a PPP of density δ, and take that all the nodes involved in the flows are

located on the corresponding line segments. Also, the segments are uniformly

randomly oriented, and the lengths of the line segments are finite and random,

drawn according to a certain distribution function FL(l). As per [66, Eqn. 14], the

density of intersecting points, λi, is given by λi = (δEL)2/π. When δ is small, this

is already much smaller than unity (which is the total density of the considered

network). For instance, taking δ = 0.05 and EL = 5 yields λi = 0.02 ≪ 1.

Now, the density of relay nodes serving multiple flows is smaller than λi, since the

points of intersection of the line segments do not always correspond to common

relay nodes’ locations. Furthermore, the probability that two nodes corresponding

to two intersecting flows transmit to the same (common) relay in the same time

slot for either MAC schemes (r-TDMA or ALOHA) is even smaller - given that a

node in the first flow transmits a packet to that (common) relay, the probability

that another node (along the second flow) also transmits to it in the same time

slot10 is simply its access probability. Thus, the occurrence of E is quite rare.

10The probability of k ≥ 2 nodes transmitting to that common relay in the same time slot is
1/Nk, and decays fast to 0 with increasing k.
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A few ways to circumvent the consideration of E are as follows. First, we

may assume δ ≪ 1, for which relays serving multiple flows are rare (as we have

seen above using ideas from the theory of Poisson line segment processes), and the

expression concerning the density of interferers is quite accurate. Second, the MAC

scheme may be modified such that relays having multiple packets may schedule

them in a sequential fashion. This however leads to an increased end-to-end delay

(and a decreased throughput) since packets stay in queues longer. Third, the

routing protocol may be revised such that packets are not routed through relays

that already support another flow. Modeling the interference (and in turn, the

success probabilities) is tricky in this case though, since the set of interferers no

longer forms a PPP.

3.7 Simulation Results

We now provide simulation results to illustrate the theoretical results. All the

results are obtained using MATLAB. The simulated multihop network comprises

nodes arranged as a PPP with unit density on a 50×50 square. Thus, on average,

there exist 2, 500 nodes in the network. We also choose the following values for

the system parameters: the source density δ = 0.01, the SIR threshold Θ = 10

dB, the routing angle φ = π/2, the PLE γ = 4, and the fading to be i.i.d. Rayleigh

with unit mean. The throughput of each flow is measured as the rate of packets

delivered to the destination, and its steady state value is computed by considering

only those packets delivered during the time slots 3, 000 through 5, 000. In order

to avoid border effects, we collect the metrics only for those routes completely

lying in the inner square of dimensions 40 × 40. We obtain results from 100

different realizations of the point process, which is found to be sufficient to obtain

73



good statistical confidence. Figure 3.6 plots the steady state throughput density

in both the r-TDMA- and ALOHA-based for N = 4. In both cases, we observe

that the empirical and analytical values match closely for a wide range of system

parameters, thus corroborating the theory.

3.8 Throughput-Delay Tradeoff

It is interesting to study the achievable tradeoff between the throughput and

delay across a typical flow for both the MAC schemes. For the r-TDMA-based

network, we may use (3.7) and (3.8) to see that the ratio D(N)/T (N) is a cubic

function of N .

As expected, the ALOHA-based network obtains a much better tradeoff since

it incorporates spatial reuse. Figure 3.7 plots the ratio D/T versus N (using (2.31)

and (3.25)) for the ALOHA-based network for some values of the effective link

reliability p = qps. It is seen that D/T is (approximately) a linear function of N ;

this is verified by the dashed lines that are also shown in the figure.

We now show that the ALOHA-based network achieves the same tradeoff scal-

ing that is obtained for the optimal operation of a wireless network flow. To this

end, consider a wireless flow across N relay nodes. It is always possible to choose

the optimal spatial-reuse parameter m, which is the minimum number of hops

separating any two transmitters i and j such that both their transmissions are

successful, i.e., at each receiver node, the condition SINR > Θ holds. The optimal

scheduling scheme thus is to have every mth node transmit simultaneously11. In-

deed, for this case, all transmissions are successful; the network end-to-end delay

is minimal, and equal to N + 1 time slots. Also, the throughput attains its max-

11A centralized scheduler is, however, required to perform this operation.
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imum value (of 1/m). Thus, the optimal throughput-delay scaling for a wireless

network flow is obtained as D ∝ NT .

The optimal scheduling that minimizes the end-to-end delay (and maximizes

the throughput) in a flow with N = 10 relays is illustrated in Figure 3.8, for

m = 3. This MAC scheme can be implemented by simply having all nodes with

packets transmit; it can be viewed as ALOHA with transmit probability 1.

In the above scenario, all the transmissions are successful. However, in the

presence of fading, unequal spacing between the nodes, or interference from other

networks, transmissions can fail, and the ALOHA scheme with contention param-

eter 1 may perform sub-optimally. Nevertheless, this example illustrates that for

efficient network operation, it is necessary that the transmitting nodes not be too

closely located. In fact, for half-duplex nodes, m needs to be always kept ≥ 2.

Also, since adjacent nodes cannot both transmit successfully at the same time, it

is not necessary to have K > 1 as packets are never stacked; unit-sized buffers

(K = 1) are sufficient for optimal network operation.

3.9 Summary

We consider a planar Poisson network comprising infinite packet flows from an

infinite number of sources to their corresponding destinations. Using concepts and

tools from both stochastic geometry and statistical mechanics, in particular, the

TASEP particle flow model, we analytically characterize the system throughput

for two different channel access schemes. We also provide valuable insights from

a network design stand-point such as choosing the optimum density of transmit-

ters and the number of hops in each route in the network such that the spatial

throughput density is maximized.
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We would also like to remark that we use the same (constant) number of

hops N in each flow for analytical tractability, in particular to obtain closed-form

expressions for the optimal network design parameters nopt and δopt. The results

in this chapter may however be generalized to the case wherein the lengths of

the flows are different. Indeed, we may simply treat N to be a random variable

with a certain distribution or a flow-specific value (that way, all destinations are

at random distances from their corresponding sources); the throughput density

would then simply have to be averaged w.r.t. the distribution of N .

76



1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−3 N = 4, φ = π/2

Routing parameter n

 

 

Empirical
Analytical

δ = 0.005

δ = 0.05

δ = 0.01

ρ
T

1 1.5 2 2.5 3 3.5 4
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Routing parameter n

N = 4, φ = π/2

 

 
Empirical
Analytical

q = 0.2

q = 0.05

q = 0.1ρ
T

Figure 3.6: Theoretical and simulation-based plots for ρT versus the routing pa-
rameter n for r-TDMA-based (left) and ALOHA-based (right) networks. The
empirical and analytical values are seen to match closely for a wide range of sys-
tem parameters, validating our analysis.
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Figure 3.8. The optimal scheduling assignment (in the absence of
fading) for a multihop flow with 10 relay nodes for m = 3. Here, d is the
spacing between adjacent relays. In the steady state (long-time limit),

there are three unique transmission phases, in each of which nodes three
hops apart transmit simultaneously. The system achieves a throughput

of 1/3 and an end-to-end delay of 11 time slots for each packet.
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CHAPTER 4

MULTIHOP WIRELESS NETWORKS WITH COMPLEX TOPOLOGIES

4.1 Introduction

So far, we have considered simple multihop networks comprising a single path

from every source to its corresponding destination. In general, however, the net-

work topology is more complex than just having the source-destination pair lo-

cated in a collinear fashion. Indeed, since these networks are formed on-the-fly,

the same (common) relay node may form part of several routes, resulting in merg-

ing and splitting of routes in the system. Examples of network structures other

than the line include tree, mesh, star and bus.

In this chapter, we consider more complex wireless network models comprising

intersecting flows, and propose the partial mean-field approximation (PMFA), an

elegant technique that helps tightly approximate the throughput (and end-to-end

delay) performance of the system. We also demonstrate via a simple example that

the PMFA procedure is quite general in that it may be used to accurately evaluate

the performance of multihop networks with arbitrary topologies.

The organization of this chapter is as follows. Section 4.2 provides an overview

of related literature. Section 4.3 outlines the system and channel model. Sec-

tion 4.4 analyzes the throughput performances of networks with several different

topologies comprising relays that serve multiple routes. It also introduces the
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PMFA, a framework that is quite useful towards analyzing networks with com-

plex topologies. Section 4.5 concludes the chapter.

4.2 Related Work

Most earlier attempts at analyzing multihop networks have neglected the cor-

relations in the system for tractability. An approximation commonly used in this

regard is Kleinrock’s Independence Assumption [52]. Accordingly, for a densely

connected network involving Poisson arrivals and uniform loading among source-

destination pairs, the queues at each link in the network behave independently

regardless of the interaction of traffic across different links. Kleinrock’s approxi-

mation has been used to characterize the delay performance of wireless systems

(see for example [68; 69]). Under general scenarios, however, this approximation

may be very loose; the correlations in the system cannot be neglected.

Much of the prior work on the performance analysis of multihop networks has

also focused on very small networks, (e.g., two-relay [45] or three-relay networks

[67]). Their results, however, do not directly extend to larger networks. More

recently, discrete-time queueing theory has been applied to the study of end-

to-end delay [43] and throughput [70] performances of multihop networks. The

authors however focus specifically on a linear multihop network model fed with a

single flow, and do not consider intersecting flows. To the best of our knowledge,

this is the first attempt at studying the throughput performances of multihop

networks with arbitrary topologies.
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4.3 System Model

We consider an multihop network comprising a set of source nodes intent to

deliver packets to a set of destinations over an infinite duration of time in a mul-

tihop fashion. We study several different network topologies in this chapter; the

specifics of each topology will be described in its corresponding analysis subsec-

tion. Time is slotted to the duration of a packet, and packet transmissions occur

at slot boundaries. No power control is employed, and the transmit power at each

node is taken to be unity. We take r-TDMA to be the channel access scheme.

4.4 Throughput Analysis of Networks with Arbitrary Topologies

4.4.1 Two Two-hop Flows via a Common Relay

We begin by considering the network model depicted in Figure 4.1. It com-

prises two source nodes S1 and S2 (each numbered 0 with respect to (w.r.t) its

corresponding flow) intending to deliver packets to destinations D1 and D2 (each

numbered 2) respectively, each via a common relay node R (numbered 1). Here,

we take that the relay node has a buffer size of two since it accommodates two

flows. Furthermore, the r-TDMA dictates that in any time slot, only one of the

three nodes (S1, S2 or R) is (uniformly) randomly picked (w.p. 1/3) for transmis-

sion. Let ps denote the reliability of each link. Whenever R is picked, any one of

the following event occurs:

1) If the relay’s buffer has no packet, it obviously does not transmit anything.

2) If the relay’s buffer contains only one packet (intended for either of the

destinations), that packet is transmitted.
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3) If the relay’s buffer has two packets (to be forwarded to both the destina-

tions), it transmits either the packet intended for D1 w.p. ω or the packet

meant for D2 w.p. 1− ω. Note that priority-based routing may be modeled

by setting ω = 1 (prioritizing the first flow) or ω = 0 (for the second flow).

ω = 0.5 models having equal priorities for the flows.

R

S1

S2

D1

D2

ω

1 − ω

Figure 4.1. The two flows S1 → R → D1 and S2 → R → D2, each
occurring via the relay node R are represented by solid and dashed

arrows respectively. When the relay node contains two packets, it routes
either the packet meant for D1 w.p. ω or the one for D2 w.p. 1 − ω. The

probability of a successful transmission across all links is ps.

For notational convenience, let τ
[i]
j represent the steady state configurations for

the buffers across the two flows, i = {1, 2}, for each of the three nodes involved in

each flow, numbered j = {0, 1, 2}. By definition, τ
[1]
0 = τ

[2]
0 = 1 and τ

[1]
2 = τ

[2]
2 = 0.

We shall now derive the steady state throughput, T [1], for the first flow; T [2] may

simply be obtained by replacing ω by 1 − ω.
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Using the fact that for each flow, the throughput across each link is the same

(2.11), we get from 1) - 3),

E

[

1 − τ
[1]
1

]

= E

[

τ
[1]
1

(

1 − (1 − ω) τ
[2]
1

)]

, (i)

and

E

[

1 − τ
[2]
1

]

= E

[

τ
[2]
1

(

1 − ωτ
[1]
1

)]

(ii)

for the first and second flows, respectively. In order to solve the above equations

analytically, we can use the mean-field approximation (MFA) [26], according to

which all the correlations between the buffer occupancies are neglected. Mathe-

matically, the MFA takes that

E

[

τ
[j]
i τ

[l]
k

]

= Eτ
[j]
i Eτ

[l]
k ,

for all (valid) node pairs (i, k) and flow pairs (j, l).

For this example in particular, we assume that E

[

τ
[1]
1 τ

[2]
1

]

= Eτ
[1]
1 Eτ

[2]
1 . Em-

ploying the MFA and the simplified notation Eτ
[1]
1 = x, Eτ

[2]
1 = y in (i) and (ii),

we obtain

1 − x = x− (1 − ω)xy

1 − y = y − ωxy.

Solving the above equations simultaneously, we obtain the only meaningful solu-

tion as

x =
2ω + 3 −

√
4ω2 − 4ω + 9

4q
.
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Since the channel access probability for each node in the system is 1/3, we see

that the throughput for the flow S1 → R → D1 is given by

T [1](ω) =
psEτ

[1]
1

3
=
ps

(
2ω − 3 +

√
4ω2 − 4ω + 9

)

12ω
. (4.1)

When ω = 1, i.e., when the first flow is always given priority over the second

flow, T [1](1) = ps/6. On the other hand, when ω = 0, we use the Ĺ Hôpital rule

to see that T [1](0) = ps/9. When both flows are prioritized equally, T [1](0.5) =

T [2](0.5) = ps(
√

2 − 1)/3. The achievable set of throughput for the first flow,

T [1] is plotted in Figure 4.2 for different values of ps. For comparison, we have

also shown empirical results, which match the theoretical ones (4.1) closely, in

particular when ps is small.

4.4.2 Two Three-hop Flows via a Common Relay

We next consider the case where again, the two source nodes S1 and S2 intend

to deliver packets to different destinations D1 and D2 respectively. Here, however,

we take that in each flow, packets traverse two hops each, one of which is the

common relay. Evidently, the common relay may be the node numbered 1 or

node one numbered 2 (see Figure 4.3). The channel access probability for each

node is 1/5.

4.4.2.1 Common Relay: Node 1

We first analyze the case wherein the common relay is the node numbered 1.

Since the throughput across each link is the same (for each flow), we obtain at
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Figure 4.2. Steady state throughput across the first flow, T [1] versus ω
for several values of the link success probability ps. The results obtained

numerically (dashed lines) closely approximate the empirical results
(solid lines).

steady state,

1 − Eτ
[1]
1 = E

[

τ
[1]
1

(

1 − (1 − ω) τ
[2]
1

)(

1 − τ
[1]
2

)]

= Eτ
[1]
2 ,

and

1 − Eτ
[2]
1 = E

[

τ
[2]
1

(

1 − ωτ
[1]
1

)(

1 − τ
[2]
2

)]

= Eτ
[2]
2 ,

Evidently, when ω = 1, the second flow (the one without the priority) does

not affect the throughput across the first flow. Following (2.6), Eτ
[1]
2 = 2/5;

T [1](1) = psEτ
[1]
2 /5 = 0.08ps.

For general ω, we may use the MFA to analytically evaluate the throughput.
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R

S1

S2

R1

R1

D1

D2

ω

1 − ω

Figure 4.3. The two three-hop flows S1 → R1 → R → D1 and S2 →
R2 → R → D2, each occurring via the relay R are represented by solid

and dashed lines respectively. In this case, the common relay is the node
numbered 2.

Indeed, setting Eτ
[1]
1 = x, Eτ

[2]
1 = y, Eτ

[1]
2 = u and Eτ

[2]
2 = v, we obtain the

following set of 4 equations:

1 − x = u

u = x(1 − u)(1 − (1 − ω)y)

1 − y = v

v = y(1 − v)(1 − ωx),

which may be solved numerically. It is easily seen that when ω = 0, the first flow

does not affect the throughput across the second flow. From (2.6), Eτ
[2]
1 = 3/5, so

that

Eτ
[1]
1 =

9 −
√

65

4
≈ 0.234,

and T [1](0) = Eτ
[1]
1 ps/5 ≈ 0.047ps.
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4.4.2.2 Common Relay: Node 2

We now consider the case when the common relay is the node numbered 1.

For this scenario, we have

1 − Eτ
[1]
1 = E

[

τ
[1]
1

(

1 − τ
[1]
2

)]

= E

[

τ
[1]
2

(

1 − (1 − ω) τ
[2]
2

)]

,

and

1 − Eτ
[2]
1 = E

[

τ
[2]
1

(

1 − τ
[2]
2

)]

= E

[

τ
[2]
2

(

1 − ωτ
[1]
2

)]

.

Using similar arguments as earlier, we obtain T [1](1) = 0.08ps. When ω = 0,

Eτ
[2]
2 = 3/5, and employing the MFA, we have T [1](0) = (11 −

√
85)/30 ≈ 0.06ps.

The above analysis suggests that the throughput across the flow is higher

when the bottleneck node is closer to the destination (also see Figure 4.4). This

is explained by the fact that the node occupancies monotonically decrease with

proximity to the destination.

4.4.3 Multiple Flows via a Common Relay

Next, we consider a network topology comprising multiple (> 2) flows passing

through a common relay (see Figure 4.5). Here the source nodes S1,S2,. . . ,Sn at-

tempt to deliver packets to their corresponding destinations D1,D2,. . . ,Dn, through

a common relay node R (that has a buffer size of n). We also take that routing is

priority-based with packets intended for D1 having the highest priority and those

meant for Dn the lowest. Thus, the relay node transmits the packet meant for

node k, 1 ≤ k ≤ n, only when it does not have other packets corresponding to the

destination nodes Dj, j < k in its buffer.

Since the throughput of each flow is conserved, we obtain the following set of
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Figure 4.4. Steady state throughput across the first flow, T [1] versus ω
for ps = 0.75 for different locations of the common relay node. The
results obtained numerically (dashed lines) closely approximate the

empirical results (solid lines).

equations:

1 − Eτ
[1]
1 = Eτ

[1]
1

1 − Eτ
[2]
1 =

(

1 − Eτ
[1]
1

)

Eτ
[2]
1

...

1 − Eτ
[n]
1 =

n−1∏

i=1

(

1 − Eτ
[i]
1

)

Eτ
[n]
1

Solving the above set of equations using the MFA yields Eτ
[k]
1 = k/(k + 1), 1 ≤

k ≤ n. In this case, the channel access probability for each node is 1/(n + 1), so

that

T [k] =
1 − Eτ

[k]
1

n+ 1
=

1

(k + 1)(n+ 1)
, 1 ≤ k ≤ n. (4.2)
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S1

S2

Sn

D1

D2

Dn

Figure 4.5. n flows S1 → D1, S2 → D2, . . . , Sn → Dn passing through a
common relay node R. When routing, packets intended for D1 are taken

to have the highest priority, and those meant for Dn, the lowest.

4.4.4 The Partial Mean-Field Approximation

While the MFA tightly approximates the throughput performance of networks

comprising short flows, it can get loose, in particular when the flows in the network

traverse several nodes, since it neglects the correlations between all the node

occupancies. In this subsection, we present the partial mean-field approximation

(PMFA), which (as we shall see later) is more accurate than the MFA. Later, in

Subsection 4.4.5, we illustrate (via a simple example) how to employ the PMFA

framework to evaluate the throughput performance of a network with an arbitrary

topology.

We begin by considering a scenario where two general multihop flows (of ar-

bitrary lengths) both pass through a common relay node. Suppose that source

node S1 delivers data to D1 in a multihop fashion via N1 nodes, while S2 forwards

90



packets to D2 via N2 relays, each via a common relay node R (see Figure 4.6).

We take that R is numbered 1 ≤ n1 ≤ N1 w.r.t. the first flow, and 1 ≤ n2 ≤ N2

w.r.t. the second flow.

S1

S2

R

Rn1−1 Rn1+1

Rn2−1 Rn2+1

D1

D2

ω

1 − ω

Figure 4.6. Two multihop flows S1 → D1 and S2 → D2 across N1 and N2

nodes each occur via a common relay node R. The common relay is
numbered n1 and n2 w.r.t. the first and second flows respectively.

In principle, the MFA may be used to compute the steady state throughput

of each flow. Indeed, we get for the first flow

1 − Eτ
[1]
1 = E

[

τ
[1]
1

(

1 − τ
[1]
2

)]

= . . .

= E

[

τ [1]
n1

(

1 − τ
[1]
n1+1

) (
1 − (1 − ω) τ [2]

n2

)]

= . . . = E

[

τ
[1]
N1−1

(

1 − τ
[1]
N1

)]

= Eτ
[1]
N1
,
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and the second flow

1 − Eτ
[2]
1 = E

[

τ
[2]
1

(

1 − τ
[2]
2

)]

= . . .

= E

[

τ [2]
n2

(

1 − τ
[2]
n2+1

) (
1 − ωτ [1]

n1

)]

= . . . = E

[

τ
[2]
N2−1

(

1 − τ
[2]
N2

)]

= Eτ
[2]
N2
.

Employing the MFA, the above set of N1+N2 equations may be solved for the

N1 +N2 buffer occupancies, and consequently, the throughput of the networks at

steady state for any 0 ≤ ω ≤ 1. However, as aforementioned, the MFA neglects

all the correlations between the node occupancies.

We now present a tighter approximation, which we term the partial mean-

field approximation (PMFA), wherein the correlations between the occupancies of

nodes involved in intersections alone are neglected1. The basic idea behind PMFA

is to “cut” the network flow into constituent linear flows, and to use the fact that

the throughput across each cut (or linear segment) in the flow is the same. To

this end, we present the following lemma.

Lemma 5. Consider an r-TDMA-based multihop network with N nodes (the chan-

nel access probability for each node is 1/(N+1)). Let ps denote the packet success

probability across each link in the network. The throughput across a cut in the

network comprising n nodes with influx and outflux rates and hopping probability

α, β and ps respectively (see Figure 2.5) is given by

T (α, β, n) =







ps/(N + 1) × min{α, β} n = 0

ps/(N + 1) × Z(α,β,n−1)
Z(α,β,n)

n ≥ 1,

1The PMFA gives exact performance results in networks without intersections, i.e., for a
linear flow of packets. The MFA, on the other hand, is fairly inaccurate [37].
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where Z(α, β, 0) = 1 and

Z(α, β, n) =
n∑

i=1

i(2n− 1 − i)!

n!(n− i)!

(1/β)i+1 − (1/α)i+1

1/β − 1/α
, n ≥ 1.

Proof: Proving the case n = 0 is straightforward; the rate of packet flow

across the cut is the minimum of the influx and outflux rates, multiplied by the

channel access and success probabilities (1/(N + 1) and ps respectively).

For the case n ≥ 1, the throughput across the flow is (2.10)

T (α, β, n) =
psEτn
N + 1

=
ps

N + 1

〈W |CN−1|V 〉
〈WCN |V 〉 .

From [37, Eqn. 39], the lemma is established. �

We now show how to use the PMFA framework to evaluate the throughput

for the multihop network shown in Figure 4.6. First, we cut each flow across

S → D at the common relay node R to form two line network flows. Thus,

the flow S1 → D1 is split into flows S1 → Rn1
and Rn1

→ D1. Now, the flow

S1 → Rn1
may be modeled as a line network flow across n1 − 1 relay nodes

(considering Rn1
as the destination node for that flow); it has an influx rate of

1 and an effective outflux rate of β
(1)
eff = 1 − Eτ

[1]
n1

. Likewise, for the latter flow

spanning N1 − n1 relays (through nodes Rn1
to D1), the effective influx rate is

α
(1)
eff = E

[

τ
[1]
n1

(

1 − (1 − ω)τ
[2]
n2

)]

, and the outflux rate is 1. Since the throughput

across each cut is the same, we have

T (1, β
(1)
eff , n1) = T (α

(1)
eff , 1, N1 − n1). (i)
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Similarly, considering the second flow, we obtain

T (1, β
(2)
eff , n2) = T (α

(2)
eff , 1, N2 − n2), (ii)

where β
(2)
eff = 1 − Eτ

[2]
n2

and α
(2)
eff = E

[

τ
[2]
n2

(

1 − ωτ
[1]
n1

)]

.

One may then use (i) and (ii) in conjunction with Lemma (5) to solve for the

two unknowns Eτ
[1]
n1

and Eτ
[2]
n2

, and subsequently evaluate the throughputs across

the two flows.

4.4.5 A Toy Example

We now describe how to use the PMFA to approximate the throughput perfor-

mance of networks with arbitrary topologies. As intuitively expected, the PMFA

method outperforms the MFA method. For the purpose of illustration, we consider

a simple example comprising two six-hop flows across two common relays (see Fig-

ure 4.7). The packet routing priorities for the first flow S1 → D1 at the common

relay nodes R1 and R5 are ω1 and ω2 respectively. We evaluate the throughput

only for the first flow; the computation of the throughput of the second flow is

quite similar.

The main idea to use is that for each flow, the throughput into a common

relay node equals the throughput out of it. Accordingly, we make some “cuts”

along the multihop flow, and equate the throughputs across the constituent linear

flows. For the toy example shown in Figure 4.7, we make two cuts I and II along

the flow.

Now, for notational convenience, let Eτ
[1]
1 = x, Eτ

[1]
5 = y, Eτ

[2]
1 = z and

Eτ
[2]
5 = w. Since the rate of packet flow across each cut is the same, we obtain for
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Figure 4.7. A toy example consisting of two multihop flows S1 → D1 and
S2 → D2. The packet routing priorities at the common relay nodes R1

and R5 are ω1 and ω2 respectively. The dotted lines I and II represent
two cuts along the flow.

the two flows, S1 → D1 and S2 → D2,

T (1, 1 − x, 1) = T (x(1 − (1 − ω1)z), 1 − y, 3),

T (1, 1 − x, 1) = T (y(1 − (1 − ω2)w), 1, 1)

and

T (1, 1 − z, 1) = T (z(1 − ω1x), 1 − w, 3),

T (1, 1 − z, 1) = T (w(1 − ω2y), 1, 1)

respectively. The above 4 equations may be solved to obtain the unknowns x, y,

z and w. The channel access probability for each node is 1/10; the steady state

steady state throughput is T [1] = ps(1 − x)/10.
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Alternatively, one may use the MFA to evaluate the throughput across the

first flow at steady state. For simplicity of notation, let Eτ
[1]
1 = x1, Eτ

[1]
2 = x2,

Eτ
[1]
3 = x3, Eτ

[1]
4 = x4, Eτ

[1]
5 = x5, Eτ

[2]
1 = x6, Eτ

[2]
2 = x7, Eτ

[2]
3 = x8, Eτ

[2]
4 = x9

and Eτ
[2]
5 = x10. We obtain the following 10 equations:

1 − x1 = x1(1 − x2)(1 − (1 − ω1)x6)

1 − x1 = x2(1 − x3)

1 − x1 = x3(1 − x4)

1 − x1 = x4(1 − x5)

1 − x1 = x5(1 − (1 − ω2)x10)

1 − x6 = x6(1 − x7)(1 − ω1x1)

1 − x6 = x7(1 − x8)

1 − x6 = x8(1 − x9)

1 − x6 = x9(1 − x10)

1 − x6 = x10(1 − ω2x5),

which may be solved numerically to obtain the steady state occupancies for any

ω1, ω2. Again, we have T [1] = (1 − x1)ps/10. Compared to the PMFA method,

the MFA approach, however, neglects correlations between the occupancies of all

pairs of nodes, and in particular, between the occupancies of nodes R2, R3 and

R4.

Figure 4.8 plots the (steady state) throughput T [1] across the first flow versus

ω1 for ω2 = 0.5, obtained upon using both the MFA and PMFA approaches, as

well as simulation results. The plots show that the throughput evaluation from

the PMFA framework closely matches the empirical result and is more accurate
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compared to the results yielded by the MFA approach, in particular, for high ω1.
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Figure 4.8. Steady state throughput across the first flow, T [1] versus ω1

for ω2 = 0.5 and ps = 0.75. The results obtained numerically using the
PMFA framework (solid line) closely approximate the empirical results,

and is more accurate than the MFA approach (dashed line).

4.5 Summary

In this chapter, we have employed ideas from the TASEP literature to study

multihop networks with random access. Specifically, we have introduced the

PMFA framework, a more accurate version of the MFA, which helps (tightly)
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quantify the throughput performances of multihop network models with arbitrary

topologies.
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CHAPTER 5

THROUGHPUT-DELAY-RELIABILITY TRADEOFFS IN MULTIHOP

NETWORKS

5.1 Introduction

Performance goals in wireless networks often conflict with one another. For in-

stance, it is hardly possible to guarantee a high rate of transmission, i.e., through-

put (or a small end-to-end delay) in conjunction with highly reliable packet deliv-

ery, due to the random transmission errors caused by the unpredictable behavior

of the wireless channel. In particular, when the link qualities in the system are

poor, packets require to be retransmitted several times across hops in order to

assure reliable end-to-end delivery. This, however, leads to queueing of packets

at the relay nodes, resulting in an unreasonably large average end-to-end delay,

as well as a low rate of transmission. Evidently, there exist tradeoffs between the

throughput, the end-to-end delay and reliability of multihop networks.

So far in this thesis, we have considered networks with unit reliability (guaran-

teed delivery). In scenarios where reliable delivery of packets is not very critical,

a viable solution to balance end-to-end delay and reliability is to have the nodes

forcibly drop a small fraction of packets. That way, even though the network

reliability is reduced slightly, the queueing delay of packets can be lessened con-

siderably. In order to determine the optimal operating point of the system and
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effectively study the achievable quality of service offered by the network, it is im-

portant to analyze the throughput-delay-reliability (TDR) tradeoffs, which is the

primary focus of this chapter.

We consider a multihop wireless network consisting of several source-destination

pairs communicating with each other employing the slotted ALOHA channel ac-

cess mechanism, and present an analytical framework that helps quantify the TDR

performances of the system. We find that while in the noise-limited regime, drop-

ping a small fraction of packets in the network leads to a smaller end-to-end delay

at the cost of reduced throughput, in the interference-limited scenario, dropping

a few packets in the network can help mitigate the interference in the network

leading to an increased throughput. We also present some empirical (simulation-

based) results which closely match the values obtained analytically.

5.1.1 Related Work

Scaling laws governing the tradeoff between throughput and delay in wireless

networks comprising several users are a fairly well-investigated topic [71], [72].

More recently, the effect of dropping packets on the delay and throughput perfor-

mance of single-hop wireless networks has been studied [47]. However, little work

exists towards characterizing TDR tradeoffs in the context of multihop wireless

network flows comprising a finite number of relays.

In [73], the authors evaluate the delay-reliability tradeoff in a wireless line

network for a bounded delay packet dropping strategy employing queueing theory.

However, their analysis neglects the dependence of the link success probabilities

on the packet dropping event. In [74], the author uses the notion of transmission

capacity to characterize the TDR tradeoffs in wireless networks employing a packet
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dropping scheme based on limited retransmissions. However, it is assumed that

all nodes in the network are backlogged, i.e, always have packets to transmit.

In this work, we use some ideas from the literature on statistical mechanics, in

particular the totally asymmetric simple exclusion process, a particle flow model,

and the mean-field approximation (MFA). Employing these tools, we present a

simple framework to analyze multihop networks, which also has the advantage

of obviating the often-unwieldy queueing theory-based analysis (that is typically

used to study multihop networks). To the best of our knowledge, this is the first

attempt at quantifying the TDR performances of ALOHA-based multihop wireless

networks, all together, whilst explicitly taking into consideration the nodes’ buffer

states and the effect of dropping packets on the interference in the network.

The rest of this chapter is organized as follows. Section 5.2 describes the

considered multihop network model, and also outlines the channel access, routing

and buffering schemes considered in this chapter. Section 5.3 studies the TDR

tradeoffs in multihop networks, treating the noise-limited and interference-limited

regimes separately. Section 5.4 concludes the chapter.

5.2 System Model

We consider the same system model as described in Section 3.2. Just to recap,

the multihop network comprised of an infinite number of source nodes, each of

which intends to establish a (in general, multihop) flow of packets to a certain

destination node lasting over an infinite duration of time. The distribution of

source nodes is assumed to be a homogeneous Poisson point process (PPP) on the

infinite plane R
2 with density δ. Additionally, the network consists of a countably

infinite population of other nodes (potential relays and destinations) arranged as
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a homogeneous PPP with density 1− δ. Thus, the total density of the network is

(without loss of generality) equal to unity. For each source node, the destination

node is chosen at a random orientation, and at a random finite distance.

As described in Chapter 3, the probability of a successful transmission at the

receiver at y is given by

ps = P

(
Gxjy‖xj − y‖−γ

N0 + IΦ\{xj}(y)
≥ Θ

)

, (5.1)

where N0 denotes the noise (AWGN) variance.

We remark that since the distribution of nodes is homogeneous, it is sufficient

to analyze a “typical” flow in the system. All the results in this chapter are

obtained for an “average” network, that is the one obtained upon averaging over

all possible realizations of the channels and the underlying point processes.

5.2.1 MAC Scheme: slotted ALOHA

We assume that transmissions in the network are completely uncoordinated;

the transmission scheme is slotted ALOHA. Accordingly, in each time slot, every

node having a packet independently transmits with some (contention) probability

q or remains idle w.p. 1 − q.

5.2.2 Performance Metrics

We are interested in the performance of the multihop network in its steady

state (as t → ∞). The performance of the system is characterized based on

three end-to-end metrics, throughput, mean end-to-end delay and reliability, each

evaluated for a typical flow at steady state. They are formally defined as follows.

• The per-flow throughput T , is defined as the average number of packets
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successfully delivered (to the destination) in unit time, along a typical flow

in the network.

• The mean end-to-end delay, D, is defined as the average number of time

slots it takes for the packet at the head of the source node1 to successfully

hop to the destination.

• The end-to-end reliability R is defined as the fraction of packets generated

at the source that are eventually successfully delivered. By definition, 0 ≤

R ≤ 1.

5.3 TDR Characterization for the ALOHA-based Wireless Network

In this section, we introduce a framework based on mean-field theory that we

will employ to characterize the TDR tradeoffs for the considered multihop network

model. For analytical tractability, we neglect the interactions between flows that

occur via common relays2. We treat the noise-limited and interference-limited

regimes separately.

5.3.1 The Noise-limited Regime

We first consider the scenario where the noise power in the network is much

stronger than the interference. This occurs, for instance, when the source density

δ is small, or when the path loss exponent γ is large. Transmission success events

1Note that we consider only the in-network delay since the source nodes are always back-
logged.

2In other words, it is not possible for the same common relay node transmit or receive
multiple packets (corresponding to different flows) simultaneously. This assumption is quite
reasonable for small values of the contention parameter q or small δ (when the flows in the
network themselves are sparse).
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across links are independent of the configurations of other nodes in the network

and occur w.p. ps = P(SNR ≥ Θ).

5.3.1.1 Case 1: R = 1

We first consider the case with perfect reliability: all packets along each flow

are retransmitted until they are successfully received. As described earlier (see

Section 2.6.2.1),

Eτi =
(1 − qps)

∑N−i
n=0 B(N − n)B(n) + qpsB(N)

B(N + 1) + qpsB(N)
, (5.2)

where B(0) = 1, and

B(k) =
k−1∑

j=0

1

k

(
k

j

)(
k

j + 1

)

(1 − qps)
j , k > 0.

Recalling (3.24) and (3.25) respectively, we have the steady state throughput

at full reliability (R = 1) for an ALOHA-based line flow along N relays to be

T =
qpsB(N)

B(N + 1) + qpsB(N)
, (5.3)

while the average end-to-end delay is given by

D = (1 +N/2)/T. (5.4)

Evidently, T → 0 while D → ∞ as ps → 0. Also, as N → ∞, T →
(
1 −√

1 − qps

)
/2 (2.32). It is interesting to note that irrespective of the val-

ues of q and ps, the product of throughput and average delay for the R = 1 case

is equal to the constant 1 +N/2.
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Figure 5.1 plots a portion of the TDR region for the slotted ALOHA-based flow

with R = 1 and q = 0.2, for different values of N ; they are essentially hyperbolas

along the R = 1 axis. For each value of N , the curves are obtained by plotting

the throughput (5.3) and delay (5.4) for different values of ps.
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Figure 5.1. A portion of the region (for ps = {0.1, . . . , 1}) depicting the
mean end-to-end delay versus the throughput for the ALOHA-based

network, along the R = 1 axis. For each value of N , the TD curve is a
hyperbola.

5.3.1.2 Case 2: R < 1

For the case with 100% reliability, the delay and throughput performances of

the network are very poor, in particular when the link reliability ps is small. In
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order to achieve favorable TDR tradeoffs, relay nodes may instead choose to drop

a small fraction of packets. In the rest of this chapter, we consider a stochastic

packet dropping scheme which is straightforward to implement in a distributed

fashion (with zero overhead). Accordingly, at every time slot, each node having a

packet decides to drop the packet in its buffer or not stochastically (based on the

toss outcome of a biased coin).

In this subsection, we evaluate the throughput, delay and reliability perfor-

mances of the ALOHA-based network in the noise-limited regime. We show that

dropping a small fraction of packets helps lessen the end-to-end delay (due to re-

duced queueing); however, it also results in a decreased flow throughput. We now

provide a mean-field theory-based analytical framework for analyzing the TDR

region of the wireless network.

Let ξ denote the packet dropping probability (or the bias of the tossed coins).

In an arbitrary time slot t→ t+1, the following events can alter the configuration

of node i.

1. If node i, 0 ≤ i ≤ N has a packet in its buffer,

• it decides to drop its packet w.p. ξ.

• it decides to transmit its packet w.p. (1 − ξ)q (product of the packet-

retention and the contention probabilities), and the packet hops to node

i + 1 (if its buffer is empty) w.p. ps.

2. If node i−1 (1 ≤ i ≤ N+1) has a packet in its buffer, it chooses to transmit

(w.p. (1− ξ)q), and its packet hops to node i (provided its buffer is empty)

w.p. ps.

In case 1), we have τi[t] = 1 and τi[t + 1] = 0. Likewise, the occurrence of 2)
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implies that τi[t] = 0 while τi[t + 1] = 1.

Following 1) and 2), the evolution of the node configurations, τi for 1 ≤ i ≤ N

takes the form

∆τi[t] = −ξiτi − (1 − ξi)qiτi(1 − τi+1[t])ps,i

+(1 − ξi−1)qi−1τi−1[t](1 − τi[t])ps,i−1, (5.5)

where ∆τi[t] = τi[t + 1] − τi[t], and {ξi, ξi−1}, {qi, qi−1}, and {ps,i, ps,i−1} are all

independent Bernoulli random variable pairs with means ξ, q and ps respectively.

At steady state, P(limt→∞ τi[t] = 1) becomes temporally stationary. In other

words, E limt→∞ ∆τi[t] = 0. From (5.5), this means that the set of equations,

−ξEτi − (1 − ξ)qps [E [τi(1 − τi+1)] − E [τi−1(1 − τi)]] = 0,

1 ≤ i ≤ N , has a solution. To solve for the node occupancies, we employ the

MPA3, according to which the occupancies of the nodes are assumed to be un-

correlated4, i.e., ∀i, j,E[τiτj] = EτiEτj . Then, for 1 ≤ i ≤ N , (5.5) simplifies

to

ps(1 − ξ)q
[
Eτi−1(1 − Eτi) − Eτi(1 − Eτi+1)

]
− ξEτi = 0. (5.6)

The steady state occupancies of nodes, Eτi, 1 ≤ i ≤ N are evaluated by si-

multaneously solving this set of N non-linear equations, and may be performed

numerically.

Figure 5.2 plots the numerically evaluated occupancies of the nodes in the

3The MPA is tight at small values of the ’effective’ link reliability qps, and gets looser with
increasing values of that product term [26].

4Since τi, τj ∈ {0, 1}, this also means that the node configurations are independent as P(τi =
1, τj = 1) = E[τiτj ] = EτEτj = P(τi = 1)P(τj = 1).
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ALOHA-based flow, for some values of the packet dropping probability ξ. As

expected, observe that the node occupancies decrease with increasing ξ. The

empirical (simulation-based) values are also shown, and they closely match the

values obtained numerically.
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Figure 5.2. Values of the node occupancies (solid lines) for several values
of ξ with N = 5 relays, obtained upon numerically solving the set of
equations (5.6). Values obtained empirically (dashed lines) are also

plotted, and are seen to closely match the values obtained numerically.

Asymptotics : When the number of nodes in the flow is large (N ≫ 1), the set

of non-linear equations (5.6) may be solved in closed form by explicitly considering

the quasi-continuum limit. Accordingly, we fix the total length of the line network
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to a constant l, and take the lattice spacing constant to be ǫ = l/N . Thus, for

N ≫ 1, ǫ≪ 1, and the rescaled nodal position variable xi = il/N = iǫ, 1 ≤ i ≤ N

(hence, 1/N ≤ xi ≤ 1) is quasi-continuous. Without loss of generality, we may

take the constant l = 1.

From the Taylor series expansion for Eτi−1 and Eτi+1 in powers of ǫ, we obtain

Eτi±1 = Eτi ± ǫ∂Eτi/∂xi +O(ǫ2). (5.7)

Employing (5.7) in (5.6) and neglecting terms with quadratic or higher orders in

ǫ, we obtain

∂Eτi (2 − 1/Eτi) ≈ K∂xi, 1 ≤ i ≤ N,

where K = ξ/ ((1 − ξ)qpsǫ). Integrating both sides, we get

2Eτi − ln Eτi ≈
ξi

(1 − ξ)qpsǫ
+ Ci, (5.8)

for some constants Ci, 1 ≤ i ≤ N .

Note that setting ξ = 0 emulates the case wherein packets are never dropped

(R = 1). Setting ξ = 0, we may write

Ci = 2∆i − ln ∆i, 1 ≤ i ≤ N,

where we have from (5.2),

∆i =
(1 − qps)

∑N−i
n=0 B(N − n)B(n) + qpsB(N)

B(N + 1) + qpsB(N)
.

Now, the solution to (5.8) is expressible in terms of the Lambert W function
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[75] as

Eτi ≈ −1

2
W
(

−2 exp

(

− ξi

(1 − ξ)qps

− Ci

))

, (5.9)

where W(z) denotes the value of the Lambert W function at z. The Lambert

W function, however, is a multi-valued function with two real branches, W0 and

W−1. The branches merge at z = −1/e where the Lambert W function takes

the value −1 [75]. To evaluate (5.9), we need to choose the right branch of the

Lambert W function. To this end, recall that the node occupancies monotonically

decrease with proximity to the destination node (Section 2.6.1.2).

Let ψi = −2 exp (− (Kix + Ci)). Evidently, ψi is always negative and ψi ↑ 0

as i → ∞. Now, for z < 0, W0(z) is an increasing function of z, while W1(z)

decreases with increasing z [75]. Noting that Eτi is be a decreasing function of i,

it is possible to show after some manipulations that

Eτi =







−1/2W−1(ψi) if i ≤ i∗

−1/2W0(ψi) if i > i∗,
(5.10)

where i∗ is the smallest value of i that satisfies φi < φi+1, i.e.,

i∗ = arg min
i
ψi.

Figure 5.3 depicts the analytically obtained values of Eτi in a long network (N =

20) (5.10) for several values of the packet dropping probability ξ.

End-to-end Delay, Throughput and Reliability : We now derive analytical ex-

pressions for the throughput, end-to-end delay and reliability in terms of the

steady state node occupancies, for the general case (R < 1).
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Figure 5.3. Analytical approximation of the occupancies of nodes (5.9)
in a long (N = 20) flow with ps = 0.75 and q = 0.05.

Proposition 10. For a (typical) ALOHA-based flow along N relay nodes, we have

the following.

(a) The steady-state throughput is

T = qpsEτN . (5.11)

(b) The delay experienced by a packet at the ith node, 0 ≤ i ≤ N , follows a

geometric distribution with parameter

si = qps(1 − Eτi+1). (5.12)
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Consequently, the mean end-to-end delay is

D =

N∑

i=0

(qps(1 − Eτi+1))−1 . (5.13)

(c) The end-to-end reliability of the network is

R =

N∏

i=0

si(1 − ξ)

si + ξ − siξ
, (5.14)

Proof: The proof of (a) is similar to the proof of Theorem 5. Indeed, as

explained earlier, the probability that the packet at node N successfully hops to

the destination in one time slot is qpsEτN .

In order to prove (b), let us suppose that a packet arrives at an arbitrary node

i, 0 ≤ i ≤ N . The three events that need to occur in the following order for the

packet to be able to hop to node i+ 1 successfully are:

(1) Node i transmits its packet.

(2) Node i+ 1 has an empty buffer.

(3) Node i’s transmission is successful.

Since the node occupancies are assumed to be independent of each other (by

the MPA), the probability of node i + 1 having an empty buffer conditioned on

the fact that a packet arrives at node i is still 1 − Eτi+1. The events (1), (2) and

(3) are also clearly independent of each other, thus the probability that it hops

successfully to i+ 1 in a time slot is

si = qps(1 − Eτi+1).

Consequently, the delay experienced by a packet at node i is geometrically dis-
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tributed with mean 1/si.

We now derive (c), i.e., compute the fraction of packets successfully hopping

from node i to i + 1, 1 ≤ i ≤ N . Suppose the packet stays at node i for ni slots

before hopping to node i + 1. The reliability ri across the link i→ i + 1, is

ri = (1 − ξ)ni (5.15)

From (5.12), we know that ni ∼ Geo(si). Therefore, we get

ri =
∞∑

k=1

(1 − si)
k−1si(1 − ξ)k =

si(1 − ξ)

1 − (1 − si)(1 − ξ)
.

The end-to-end reliability is simply R =
∏N

i=0 ri, which is equivalent to (5.14). �

Figure 5.4 depicts the achievable throughput, mean end-to-end delay and re-

liability values for a typical flow in the considered multihop network model for

ps = [0.1, 0.2, . . . , 0.9, 1], q = 0.2 and N = 5. The corresponding empirical val-

ues are also plotted (dashed lines), and are shown to closely match the analytical

curves. We see that in the noise-limited regime, the average end-to-end delay may

be reduced significantly by increasing the packet dropping probability. The trade-

off is that increasing ξ also results in emptying some buffers in the network, thus

the reliability and throughput performances of the multihop network deteriorate.

5.3.2 The Interference-limited Regime

Typically, the performance of multihop networks is limited not only by thermal

noise but also by the interference in the network due to concurrent transmissions.

We argue that in order to study this general case, it is sufficient to analyze the case

where the system is purely interference-limited. Indeed, under the conditions of
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Rayleigh fading, the success probability across a typical link in the PPP network

is equal to the product of the Laplace transforms of noise and interference [58].

Since the Laplace transform of noise for any given value of Θ is independent of the

occupancies of other nodes in the network (or equivalently, of the packet dropping

process), the effective value of the link reliability (in the general case) is simply the

link reliability for the interference-limited case scaled down by a constant factor.

Thus, it is adequate to analyze the TDR performance for the interference-limited

regime, and the results extend directly for the general scenario. In this section, we

define the success probability (across a typical link) as ps = P(SIR ≥ Θ), which

critically depends on the occupancies of other nodes in the network.

5.3.2.1 Case 1: R = 1

We first consider the case with 100% reliability, i.e., all packets are retrans-

mitted until successfully received. Recall from Subsubsection 5.3.1.1 that when

R = 1, the product of throughput and mean end-to-end delay is equal to 1 +N/2

(as a consequence of Little’s theorem). Thus, the TD curve is a hyperbola along

the R = 1 axis (equivalent to the plot in Figure 5.1).

5.3.2.2 Case 2: R < 1

Next, we consider the case where R < 1. Note that dropping a fraction of

packets leads to a decreased intensity of interfering nodes in the network, thus the

link reliabilities increase with increasing ξ. We now proceed to derive the success

probability across a typical link.

To this end, suppose that the node occupancies for a typical flow at steady

state are (1,Eτ1, . . . ,EτN ). The average number of potential interferers in each
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flow is 1 +
∑N

i=1 Eτi. With δ being the density of source nodes (or flows) and q

the ALOHA contention probability, it follows that the density of interferers is at

most5

λI / δq

(

1 +

N∑

i=1

Eτi

)

. (5.16)

Even though transmissions in the network are completely uncoordinated, the in-

terference is actually spatially and temporally correlated owing to the presence

of common randomness in the locations of nodes [65]. However, for analytical

tractability, we make the relaxed assumption that the set of interfering nodes

forms a PPP with density λI, which is actually quite reasonable at small q [65].

Substituting for λI in (3.23) using (5.16), we obtain the success probability

across a typical link to be lower-bounded as

ps '




(1 − δ)φ

(1 − δ)φ+ 2δq
(

1 +
∑N

i=1 Eτi

)

c





n

, (5.17)

where the approximation is tight for small q.

The steady state occupancies of nodes, Eτi, 1 ≤ i ≤ N , may be obtained by

simultaneously solving the set of N non-linear equations (5.6), where the value of

ps is as given by (5.17).

Figure 5.5 shows numerically obtained values (solid lines) of the node occu-

pancies for N = 5, n = 1, φ = π/2, γ = 4, q = 0.2 and Θ = 10 dB, and several

values of ξ. The corresponding empirical values (dashed lines) are also plotted,

and they corroborate the values obtained numerically.

The throughput, delay and reliability performances of the multihop flow are

5This term is actually an upper bound, owing to the existence of relay nodes having multiple
packets in its buffer (corresponding to several flows). The bound is tight for small q (when the
density of interferers is small), or small δ (when the flows in the network themselves are sparse).
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quantified using (5.11), (5.13) and (5.14) respectively, together with values of the

node occupancies. Figure 5.6 depicts the TDR performances of the ALOHA-based

line network versus ξ, in the interference-limited regime, for some values of the

system parameters. We observe the following.

• When δ is small (for example, when δ = 0.05), increasing the packet drop-

ping probability ξ reduces the system throughput. However, as δ gets larger

(for instance, when δ = 0.1), dropping a few packets helps mitigate the in-

terference, thus the link reliabilities increase, and the throughput across a

typical flow improves (for example, at ξ = 0.005). As ξ increases further, the

loss in throughput due to dropped packets exceeds the gain in throughput

due to interference mitigation, and the throughput begins to fall. Indeed,

there exists an optimum value of ξ that maximizes the throughput of the

flow (which may be obtained numerically).

• As expected, with increasing ξ or decreasing δ, the mean end-to-end delay

decreases; the reliability also suffers.

5.4 Summary

We considered a multihop wireless network consisting of several source-destination

pairs communicating with each other in a completely uncoordinated manner. Em-

ploying the MPA, we presented a framework for computing the steady state node

occupancies, and quantifying the network’s TDR performance. As intuitively ex-

pected, we found that in the noise-limited regime, dropping a small fraction of

packets in the network leads to a smaller end-to-end delay at the cost of reduced

throughput, whereas, in the interference-limited scenario, dropping a few packets

in the network can help mitigate the interference in the network leading to an in-
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creased throughput. We also provided some empirical (simulation-based) results

to corroborate the theory.

In conclusion, we view this work as an initial effort towards understanding the

throughput, delay and reliability tradeoffs in multihop wireless networks. Extend-

ing the analysis in order to accommodate different source traffic models such as

constant bit rate and Bernoulli, other MAC schemes such as CSMA and spatial

TDMA, and more sophisticated packet dropping strategies such as those based

on bounded delay and limited retransmissions are interesting directions for future

work.
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Figure 5.4: Analytically (solid lines) and empirically (dashed lines) obtained TDR
Tradeoffs for an multihop network flow along N = 5 relays. In the noise-limited
regime, increasing ξ helps reduce the end-to-end delay significantly, although the
throughput and reliability performances worsen.
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Figure 5.5. Values of Eτi obtained numerically (solid lines) using (5.6)
for some system parameter values. The empirical values (dashed lines)

are also plotted, and are seen to match the theoretical ones closely.
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Figure 5.6: TDR performances of the ALOHA-based flow versus ξ, for N = 5,
n = 1, φ = π/2, γ = 4, q = 0.2 and Θ = 10 dB. The empirical results (dashed
lines) match the analytical ones(solid lines). Note that at high δ, dropping a small
fraction of packets can actually help improve the system throughput.
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