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CHANNEL ACCESS AND PACKET SCHEDULING IN WIRELESS

MULTIHOP NETWORKS WITH QOS GUARANTEES

Abstract

by

Min Xie

Wireless Multihop Networking (WMN) has emerged as a key and promising

next-generation wireless technology. The ad hoc network formation and multihop

communications incur more challenges than conventional wireless networks. This

dissertation investigates channel access, medium access control (MAC), packet

scheduling, and their interactions with the physical layer in WMNs. Existing

wireless MAC and packet scheduling algorithms are briefly reviewed. Their anal-

ysis often does not consider the specific properties of WMNs, in particular in terms

of the wireless channels, the traffic characteristics, and their interaction.

In this thesis, we apply queueing theory to analyze typical MAC and schedul-

ing schemes in WMNs, including delay-balancing priority scheduling, TDMA and

slotted ALOHA. Packet dropping strategies are employed to guarantee delay con-

straints and reduce unnecessary energy consumption. The Quality of Service

(QoS) parameters under study include delay, packet loss rate, throughput, and

capacity.

Our analysis quantitatively explains why TDMA outperforms slotted ALOHA

not only in terms of throughput, but also of delay. An important feature caused

by multihop communications is the correlations, which exist between the wireless
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channels themselves, between the channels and traffic flows, between the traffic

flows themselves, and between the delays of each node. Due to such correla-

tions, the wireless channel performance is better than when all traffic flows are

independent. Besides, the traffic correlation helps to form a natural spacing be-

tween simultaneously transmitting nodes, achieve efficient spacial reuse, and more

importantly, avoid the overhead of establishing and maintaining the spacing. Fur-

thermore, the correlation between the delays of each node substantially improve

the end-to-end (e2e) delay variance. Therefore, taking advantage of these cor-

relation could be helpful in the cross-layer design of efficient, distributed and

cooperative protocols in WMNs.
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CHAPTER 1

INTRODUCTION TO WIRELESS MULTIHOP NETWORKS

1.1 Wireless Multihop Networks (WMNs)

Wireless multihop networking has emerged as a key and promising technology

evolving into the next generation wireless to provide better and new services.

WMNs are formed by a group of nodes that communicate with each other over

wireless channels and operate in a dynamically self-organizing manner. Each node

possesses at least memory, a processor, and a transceiver. If the destination node

cannot be directly reached by the source node over a single hop, the intermediate

nodes will assist the transmission by relaying the data over multiple hops.

WMNs are versatile. Their range of applications include broadband home net-

works, enterprise networks, transportation systems, health and medical systems,

and distributed control systems [8, 42]. Multihop networking techniques also con-

stitute the basis for wireless sensor networks (WSNs) [6] and wireless mesh net-

works (WMHNs) [8], and are evolving as an alternative to support inter-vehicle

communications. Mobile ad hoc networks (MANETs) are expected to become an

important part of the 4G architecture [25] since the introduction of Bluetooth,

IEEE 802.11 (WiFi), IEEE 802.15.4 (ZigBee), and IEEE 802.16 (WiMAX) has

been generating growing interest in research and development of ad hoc networks

in commercial applications. In the future, WMNs will be seamlessly and ubiq-

uitously integrated with other types of wireless networks and wire-line backbone

1
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networks to converge data, voice, and multimedia traffic over a single packet-

switched network (Fig. 1.1) [8, 25]. In other words, the next-generation networks

are heterogeneous and seamless connectivity is required in the protocol stack, as

shown in Fig. 1.2 [6, 22].

The network design is mainly investigated from two aspects, computation and

communication, which address what data and how these data are communicated

in the network. These two aspects turn out to be interdependent and conflicting.

Savings in communication are achieved by increasing computation, and vice versa.

Communication can be classified into broadcasting/multicasting, unicasting, and

convergecasting [11, 133]. If using flooding, broadcasting is relatively simple to

implement and immune to dynamic changes in the network topology. Converge-

casting is a many-to-one communication mode and can be regarded as the dual to

broadcasting. The data can be classified into application data and infrastructure

2
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Figure 1.2. Protocol stack of next-generation networks in a
heterogeneous environment [6, 22]

data [133]. The communication of application data could be cooperative in such a

way that a cluster of nodes is coordinated to implement data aggregation and thus

reduce the traffic load, at the expense of increased computational load. Infras-

tructure data refer to the information that is needed to configure, maintain and

optimize the network. As infrastructure communication represents the protocol

overhead, investing in this type of communication may result in a reduction in

application data while optimizing the overall network performance. The amount

of infrastructure data is highly influenced by the network protocols and dynamics.

Therefore, their characteristics are hardly predictable. Application data, on the

3



other hand, can be controlled or regulated by the nodes even if they are generated

randomly and unpredictably. We discuss only application data in this dissertation.

WMNs inherit the problems of wireless communications such as error-prone

dynamic channels, sparse bandwidth, and hidden and exposed terminal phenom-

ena [6, 8, 25]. On the other hand, the multihop transmission pattern and ad hoc

network formation impose more challenges on WMNs [25, 65]:

• Self-organization and lack of infrastructure. The network is formed dynami-

cally by an autonomous system of possibly mobile nodes that are connected

via wireless links without using a fixed network infrastructure or centralized

administration. Then, network management has to be distributed across the

network, causing additional difficulties in fault detection and management.

• Cooperation between nodes. The multihop transmission requires interme-

diate nodes to relay packets hop by hop. Without centralized control,

the relaying operations must be implemented cooperatively by all nodes

[6, 7, 34, 52]. The cooperation should both guarantee the efficient resource

utilization and avoid potential collision/interference.

• Dynamically changing network topology. The nodes are free to enter and/or

leave and/or move in the network and organize themselves arbitrarily. The

frequently changing network topology results in not only the change of con-

nectivity and coverage, but also route changes, network partitions, and pos-

sibly data losses and long delay.

• Variation in link and node capabilities. Each node may be equipped with one

or more radio interfaces that have varying transmit/receive capabilities and

operate across different frequency bands. Typical examples include direc-
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tional and smart antennas, MIMO systems, and multi-radio/multi-channel

systems [8].

• Energy constrained operation. Since additional energy is consumed for packet

forwarding, energy efficiency is crucial when energy is constrained like in

wireless sensor networks.

• Network scalability. Some WMNs are large scale and dense (e.g., sensor

networks). Many problems remain unsolved such as addressing, routing,

location management, configuration management, interoperability, security,

capacity (e.g., network transport capacity decreases to zero as the network

size increases to infinity [47]), etc.

• QoS guarantees. The multihop communication pattern incurs correlations

in the status of nodes and links in the network. More importantly, all QoS

parameters should be measured over end-to-end (e2e) and thus need to take

into account the impact of these correlations. In most cases, these correla-

tions are interdependent and affected by many factors such as transmission

rates, MAC schemes, and routing and packet scheduling protocols. It is

difficult to tractably analyze the correlations and provide explicit QoS mea-

surements.

The resulting challenges [6, 8, 25] are discussed from layer to layer in the following

section.
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1.2 Challenges in WMNs

1.2.1 The Physical Layer

The physical layer is responsible for frequency selection, carrier frequency gen-

eration, signal detection, and modulation. It is required to adapt rate, power, and

coding to meet the requirements of the application given the current channel

and network condition [72, 74, 75, 78, 79]. As RF and circuit design for wire-

less communications evolve, advanced physical layer techniques are enabled, such

as Multiple-Input-Multiple-Output (MIMO), multiple radio, and software defined

radio. But their complexity and cost are still too high to be implemented [8].

1.2.2 The Medium Access Control (MAC) Layer

The MAC layer is designed to adapt to the underlying link and interference

conditions as well as delay constraints. MAC protocols must form the basic in-

frastructure needed for wireless communication hop by hop and share commu-

nication resources fairly and efficiently between all nodes involved. In addition,

they must have built-in power conservation, mobility management and a failure

recover strategy. Power control can make the access protocols more efficient [41].

The the peer-to-peer (P2P) nature and the lack of infrastructure in WMNs make

random access protocols the natural choice for medium access control [7]. The

dynamic multihop topology further requires MAC to be distributed, cooperative

and adaptive. However, to guarantee Quality of Service (QoS), demand assign-

ment or reservation-based access schemes are more suitable. It is challenging

to design MAC schemes that achieves optimal balance between feasibility and

QoS guarantees. Moreover, classical wireless MAC schemes such as IEEE 802.11

(CSMA/CA) have been designed for single-hop communications and are not op-
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timized for multihop communications, in which there are more challenges, e.g.,

inter-flow interference and spatial reuse.

1.2.3 The Network Layer

The network layer is aimed at using the one-hop transmission services pro-

vided by the enabling technologies like IEEE 802.11, Bluetooth, to construct re-

liable e2e delivery services from a sender to one or more receiver(s). The network

layer protocols include a location service, routing and forwarding, scheduling, and

clustering. The location service answers queries about the nodes’ location. Tra-

ditional location services use centralized servers and are thus not applicable to

WMNs.

The routing protocols are classified into unicast, geocast, multicast or broad-

cast forwarding. Unicast forwarding is a one-to-one communication while multi-

cast and broadcast are one-to-many. Geocast is a special case of multicast when

the group of destination nodes is situated inside a specified geographical area.

The highly dynamic and unpredictable network topology and energy-constrained

devices in WMNs incur more challenges on routing design in WMNs, e.g., robust-

ness, scalability, and energy efficiency. Energy-efficient and power-aware routing

protocols generally select the route according to one of the parameters: maximum

available power (PA), minimum energy (ME), minimum hop (MH), or maximum

minimum PA node [6]. If combined with the location service, routing can be

location-aware in that a node selects the next hop based on the position of its

one-hop neighbors and the destination node.

For large heterogeneous networks, there is a large amount of data to be pro-

cessed and communicated. It is beneficial to use cluster-based routing that can
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combine or aggregate the data of a cluster in an intelligent way to reduce routing

overhead and the network load. For example, in dense sensor networks, there ex-

ist correlations among data generated by neighboring sensor nodes. A great gain

is obtained by combining these correlated unreliable data measurements so that

the common signal is enhanced, the uncorrelated noise is reduced, and the overall

data load is decreased [34, 46, 52, 106]. Optimal data aggregation, also known

as data fusion, enables load balancing, results in an increased SNR and induces

an improvement in detection and classification. Localized data fusion schemes

can achieve large energy savings and have significant robustness and scalability

advantages. Clustering also enables efficient centralized scheduling locally, which

is hard to implement with flat routing.

In wireless networks, packet scheduling needs to not only determine the trans-

mission order of packets, but also alleviate the impact of error-prone wireless chan-

nels whether or not the channel state information (CSI) is known. The scheduler

differentiates flows/nodes by their QoS requirements. For example, to guarantee

a certain e2e delay, the packets that have been relayed over multiple hops and

will expire soon should be given higher transmission priorities than those newly

generated. Moreover, since the e2e delay depends on the path length, the design

of optimal packet scheduling should be coupled with routing. With finite memory

size or a hard delay bound, packet dropping will occur, and the scheduler needs

to determine when and which packets are discarded.

1.2.4 Cross-Layer Design

In the layered approach, each layer in the protocol stack (Fig. 1.2) is designed

and operated independently. Their interfaces are static and independent of the
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individual network constraints and applications. Communication between layers is

limited with a minimum set of primitives. This paradigm has greatly simplified the

protocol design. However, in wireless networks, there is a direct coupling between

the physical and the upper layers. Hence the layered approach is not efficient

due to its inflexibility and suboptimality [121, 127]. For instance, the physical

layer affects MAC and routing decisions by its choice of transmission power and

rate. The MAC layer is responsible for allocating the wireless resources and will

determine the available bandwidth and potential delay, both of which can affect

the routing decision on how to select the link. On the other hand, the routing

decision has a significant influence on the contention level at the MAC layer,

which, in turn, accordingly changes the physical layer parameters. Moreover, in

WMNs, data transmission and reception at a node may be affected by nodes

within two or more hops away. However, in the layered approach, the MAC

schemes are limited to one-hop communications and the routing protocols take

care of multihop communications. In this sense, MAC and routing are closely

connected.

In contrast to the layered approach, a cross-layer design principle [25, 42, 62,

111, 121, 127] aims at actively and dynamically exploiting the dependence between

protocol layers to obtain performance gains. In Fig. 1.2, several management

planes cover all layers to ensure energy/power efficiency, mobility control, and fair

resource sharing in the network.

In cross-layer design, information must be exchanged across all layers such that

the protocols adapt in a global manner to the application requirements and un-

derlying network conditions [42]. It is fundamental to determine i) what and how

information should be exchanged; and ii) how global constraints and characteris-
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tics should be factored into the protocol design at each layer. Since communication

is usually more energy consuming than computation, the primary concern is to

minimize communication while achieving the desired network operation. In the

following, we specify several problems that are considered in a cross-layer manner

[25, 42, 62, 111, 121, 127].

1.2.4.1 Energy conservation

Mobile devices rely on batteries as energy supplies. Efficient energy manage-

ment is vital to ensure that application demands are satisfied at minimum energy

expenditure. For communications, the main sources of power consumption are the

transmit, receive, idle and sleep states [58]. A wireless interface consumes nearly

the same amount of power in the first three modes, but consumes much less in the

sleep mode. In WMNs with cooperation efforts, additional energy is consumed to

forward packets. Energy inefficiency mainly comes from [29, 150]

• collision, caused by the transmissions of multiple nodes to the same destina-

tion at the same time. If the received signal-to-noise-and-interference-ratio

(SNIR) is too small, retransmissions become necessary;

• overhearing and overemitting, when a node receives packets that are not

destined to itself or when the node is not ready yet;

• idle listening, listening to receive possible packets while no nearly node trans-

mits.

It is not sufficient to minimize only the sum energy consumption of all the nodes

since the network lifetime depends on the lifetime of the individual nodes, espe-

cially the bottleneck nodes. Therefore, energy saving is considered at two levels,
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local strategies operating at the node level and global strategies at the network

level [25]. Local strategies put the node in a power saving mode as aggressively

as possible and are typically implemented at the physical and MAC layers. For

example, at the physical or link layer, if CSI is available, unless a delay constraint

forces a transmission, power control generally uses a “water-filling” approach that

exploits good channels and prevents transmissions over bad channels to avoid use-

less transmissions. On the other hand, at the MAC layer, transmissions are with-

held to avoid collision when the channel is congested [42]. Energy consumption is

minimized if the network interface is tuned to the optimal channel utilization.

Global strategies dynamically decide which nodes should participate in packet

forwarding to guarantee network connectivity and which nodes can remain in the

sleep mode to save energy. Network connectivity can be guaranteed by increasing

transmit power levels, which, however, increases energy consumption and inter-

ference. On the other hand, decreasing transmit power and covering the sender-

to-receiver distance with a multihop path may require less energy from the trans-

mission standpoint, but also may increase the e2e delay and the processing energy

[49]. Therefore, minimizing the per-packet per-hop energy consumption does not

necessarily maximize the network lifetime. Cross-layer energy/power control is

desired to solve the tradeoff between energy consumption, delay, throughput, and

connectivity.

1.2.4.2 Cooperation

The cooperation requirements of WMNs may conflict with the selfishness of

each node. Sometimes the nodes do not cooperate because they are not willing

to spend their own battery life, CPU cycles, or available bandwidth to forward
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packets not of direct interest to them. Then they may intentionally drop relayed

packets, which significantly damages the network functionalities like routing and

forwarding. Cooperation enforcement schemes are needed to detect and isolate

these misbehaving nodes through mechanisms based on watchdogs and reputation

systems [87]. Watchdog-based mechanisms are related to the MAC layer in terms

of collisions and the physical layer in terms of the transmission range. Game

theory [89] is a natural way to model and analyze cooperation aspects.

1.2.4.3 Performance evaluation

QoS guarantees require evaluating system performance, which consists of two

steps, defining the system model and solving it with analytical and/or simulation

techniques. The selection of the system model affects multiple layers. For example,

the channel model and mobility model not only characterize the physical channel

properties, but also determine the design of the MAC layer and routing schemes.

The performance metrics of each layer are coupled with each other. For example,

the physical layer techniques determine the network throughput, a fundamental

parameter for the MAC layer; while the MAC schemes affect interference, which,

in turn, changes the throughput. Therefore, the network performance should be

evaluated over all layers.

1.2.5 QoS in WMNs

QoS is the performance level of a service offered by the network to the user.

The goal of QoS provisioning is to deliver information in a timely and reliable

fashion while efficiently utilizing network resources [111, 153]. A service can be

characterized by a set of measurements such as minimum bandwidth, maximum
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delay and delay variance (jitter), maximum packet loss rate, and maximum energy

consumption. The desired QoS parameters differ from application to application,

but are usually interdependent. Some of them are even conflicting, e.g., latency

vs. reliability.

A QoS framework mainly consists of QoS routing, QoS signaling for resource

reservation, QoS MAC, call admission control, and packet scheduling (Fig. 1.3).

QoS can be provided through several ways, e.g., per flow, per link, per class or

per node. For example, the IEEE 802.11e MAC supports best-effort traffic by

the distributed coordination function (DCF) and real-time traffic by the point

coordination function (PCF) (in infrastructure-based configurations) [15]. QoS

per class is provided by differentiating the DCF access to the wireless medium,

which is reflected through the backoff time [115].

In WMNs, the QoS framework could be cross-layer, e.g. Proactive Real-Time

MAC (PRTMAC, see Fig. 1.3) [111] that combines an on-demand QoS extension

of DSR routing protocol at the network layer with a real-time MAC protocol.

Depending on the requested QoS parameters, more modules can be added to the

framework such as traffic shaping/traffic rate control and mobility control.

It is challenging to guarantee QoS in WMNs [111]. For example, lack of central

coordination complicates the implementation of QoS provisioning. Due to the dy-

namic network topology and channel characteristics, the admitted QoS flows may

suffer from frequent path breaks and thereby are required to be re-established,

which may incur delay violations. Moreover, the resulting imprecise state in-

formation may lead to inaccurate MAC, scheduling and routing decisions. Also,

error-prone shared radio channels suffer from several impairments such as attenua-

tion, multi-path propagation, inter-flow and intra-flow interference. The inherent
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Figure 1.3. Modules in a QoS framework

hidden terminal phenomenon incurs energy waste, while the exposed terminal

phenomenon wastes time. Therefore, QoS is a critical issue in WMNs.

1.3 Versatile WMNs

1.3.1 Mobile Ad Hoc Networks (MANET)

MANETs represent complex distributed systems that comprise wireless mo-

bile nodes. Based on the coverage area, they can be classified into Body (BAN),

Personal (PAN), Local (LAN), Metropolitan (MAN) and Wide (WAN) area net-

works. The key feature of MANETs is the “ad-hoc” network topology. MANETs

are not limited to multihop communications. Ad hoc single-hop BAN, PAN and

LAN wireless technologies are already common on the market [25]. Currently,

two main standards have emerged for ad hoc wireless networks: the IEEE 802.11
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standard for WLANs and the Bluetooth or IEEE 802.15.1 specifications for short-

range wireless communications. These technologies constitute the building blocks

for constructing small, multihop ad hoc networks to extend their range over mul-

tiple radio hops.

The highly dynamic nature of a MANET results in frequent and unpredictable

changes of the network topology. The resulting challenges and complexities, cou-

pled with the critical importance of the routing protocol in establishing commu-

nications among mobile nodes, make routing the most active research area within

the MANET domain. MANET routing are typically subdivided into two main cat-

egories: proactive table-driven and reactive on-demand [113]. Proactive routing

protocols are derived from legacy Internet distance-vector and link-state protocols.

They attempt to maintain consistent and updated routing information for every

pair of network nodes. They require each node to maintain one or more tables to

store routing information, and they respond to changes in network topology by

propagating updates throughout the network in order to maintain a consistent net-

work view. They differ in the number of necessary routing-related tables and the

methods by which changes in network structure are broadcast. Existing table-

driven ad-hoc routing protocols include Destination-Sequenced Distance-Vector

Routing (DSDV), Wireless Routing Protocol (WRP), and Clusterhead Gateway

Switch Routing (CGSR).

On the other hand, reactive on-demand routing (RODR) is source-initiated

and establishes routes only when requested by the source node. Once a route has

been established, it is maintained by a route maintenance procedure until either

the destination becomes inaccessible along every path from the source or the

route is no longer desired. Typical on-demand routing protocols include Ad-hoc
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On-Demand Distance Vector Routing (AODV), Dynamic Source Routing (DSR),

and Temporally-Ordered Routing Algorithm (TORA).

In general, the proactive routing approach is similar to the connectionless

approach of forwarding packets since a route to every other node in the network

is always available regardless of whether it is needed or not. This feature provides

better QoS but also incurs substantial signaling overhead and power consumption

to maintain the routing tables. The reactive routing approach takes time to

establish the route before nodes can be served but routing information stored

is actually needed. Therefore, the reactive approach is more efficient than the

proactive approach though it is hard to guarantee QoS.

The other challenge brought up by mobility is security. Mobility makes the

network more vulnerable to information and physical security threats than fixed

wired or wireless networks. Note that security is a cross-layer issue involved with

the data link, network, presentation and application layers.

Since mobility affects the ability of network protocols to behave correctly, the

selection of an accurate mobility model is important in MANET. Due to the

resulting system complexity, the impact of mobility models is usually studied

through simulations. Popular network simulators used in ad hoc networks include

OPNET [98], ns-2 [3], Qual-Net [1], and GloMoSim [151].

1.3.2 Wireless Sensor Networks (WSNs)

The development of low-cost, low-power WSNs is inspired by improvements in

MEMS-based sensor technology, low-power analog and digital electronics, wireless

communications, computer networking, and countless applications. WSNs are

a subclass of WMNs, but the the unique characteristics of sensing devices and
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the application requirements make many of the solutions designed for WMNs

not suitable for WSNs. Sensor nodes are untethered and deployed in an ad hoc

fashion and communicate over short distances. Given that individual sensors are

neither reliable nor accurate, cooperation efforts are especially desirable in order

to construct high quality and fault-tolerant sensing networks. To cover the target

area successfully, sensor networks usually consist of a large number of nodes. Since

it is generally difficult or impractical to charge/replace the exhausted batteries in

sensor networks, the primary objective is to maximize node/network lifetime [105].

A WSN is usually composed of three components (Fig. 1.4) [133]: sensor nodes

that sense environmental phenomena and report their measurements; an observer

(or observers) that is interested in obtaining information disseminated by the sen-

sor nodes about the phenomenon; and the phenomenon, the entity to be sensed.

The sensed information is potentially analyzed or filtered by the sensor network.

All components can be either static or mobile. Unlike in ad hoc networks where

all nodes are assumed to choose their destination randomly, in WSNs, the ob-

server is the unique destination of all sensor nodes. Therefore, a special feature

of WMNs is “convergecasting” (many-to-one) communication [11]. In contrast to

convergecasting, broadcasting (one-to-many) communication is the way that the

observer broadcasts data (infrastructure or application) to all sensor nodes. For

example, in the reprogramming application, the new programs are loaded to each

sensor node in a broadcasting way.

Fig. 1.4 shows a WSN with a single observer at which all sensed information

converges. The closer a sensor node to the observer, the more data flows converge.

The area in proximity to the observer is referred to as critical area (dark nodes

in Fig. 1.4) and the nodes in the critical area are referred to as critical nodes
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Figure 1.4. A network of randomly deployed sensor nodes

[48]. The critical area delivers a large fraction of accumulated data. The critical

nodes consume more energy than non-critical nodes, which will create a cascading

effect that shortens system lifetime. Energy-balancing strategies can be used

to balance the energy consumption of the nodes and thus increase the network

lifetime substantially [48].

In practice, sensed data is often bursty and of very low rate when the sensor

nodes are driven by events and/or observer requests. Global Directed Diffusion

[34] and reactive routing appears better suited in this case. The sensed raw data

can be processed before being communicated, for example, compressed, to be

more succinct and/or accurate. WSN applications require accuracy and short la-

tency. The data generation pattern, along with the large scale, convergecasting

communication and application requirements, impose more challenges on the de-

sign of WSNs than general WMNs [6, 7, 34]. Correspondingly, localization and
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combination of routing and data aggregation [34] are proposed to deal with node

cooperations. Node addressing maps the observer interest into a set of sensor

nodes instead of a single sensor so that data is decoupled from the sensor that

generates it [133]. Delay-balancing and load-balancing principles are developed to

support real-time applications and meet energy constraints.

1.3.3 Wireless Mesh Networks (WMHNs)

WMHNs consist of a mix of fixed and mobile nodes interconnected via wireless

links to form a multihop ad hoc network [8, 19]. They inherit many properties from

MANETs but have civilian applications as the main target. More importantly,

mesh networks have already shown great potential in the wireless market [8, 19].

WMHNs are composed of two types of nodes, mesh routers and mesh clients.

Other than the routing capability for gateway/repeater functions as in a conven-

tional wireless router, a wireless mesh router contains additional routing functions

to support mesh networking, including multiple wireless interfaces, much lower

transmission power or higher rates through multihop communications, and scal-

able MAC protocols in a multihop mesh environment. Mesh clients can also work

as routers but without gateway or bridge functions. Since mesh clients have only

one wireless interface, their hardware platform and software can be much simpler

than those for mesh routers.

The architecture of wireless mesh networks is not necessarily infrastructure-

less. For example, in infrastructure/backbone wireless mesh networks [8], mesh

routers form an infrastructure for clients connecting to them. This infrastructure

mesh networking is the most commonly used type since it provides a backbone

for conventional clients and enables integration of WMHNs with existing wireless
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networks through gateways/bridges functionalities in mesh routers. The other

architecture includes client wireless mesh network and hybrid wireless mesh net-

work. In the former, clients communicate to each other in a P2P manner without

routers. This type is more infrastructure-less ad hoc and thus increases the re-

quirements on mesh clients that must perform additional functions such as routing

and self-configuration. In the latter, clients can access the network through mesh

routers or directly communicate with other clients. This type is a combination of

infrastructure and client meshing and will be more applicable in the future.

WMHNs distinguish themselves from other WMNs by:

• Broadband services : most mesh applications are broadband with various QoS

requirements. Thus, additional performance metrics such as delay jitter, ag-

gregate and per-node throughput, and packet loss rate, must be considered,

as well as delay and fairness.

• Heterogeneity : the presence of powerful and static or slowly moving mesh

routers and wireless backbone provides different coverage, connectivity, topol-

ogy change and robustness than ad hoc networks, in which the individual

contributions of end devices are almost equivalent (homogeneous networks).

The separation of functions between mesh routers and mesh clients signifi-

cantly decreases the load and energy consumption on end devices (clients).

• Multiple radios : mesh routers can be equipped with multiple radios to per-

form routing and access functionalities. Then infrastructure and application

data can be separated and the network capacity will be improved. In ad hoc

networks, there is usually only a single radio.

So, the additional challenges imposed on mesh networks include
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• compatibility and inter-operability. WMHNs are expected to support net-

work access for both conventional and mesh clients. Integration of WMHNs

with other wireless networks require certain mesh routers to have the capa-

bility of inter-operation among heterogeneous wireless networks.

• mesh connectivity. Mesh routers and clients move and function differently.

Network connectivity is different from ad hoc networks in which all nodes

are assumed to move randomly.

Currently, IEEE 802.11s, IEEE 802.15.4 and IEEE 802.16 standards provide sup-

port for mesh networks [8].

1.4 Wireless Channels

The performance of wireless communications systems is fundamentally limited

by wireless channels. Radio signals generally propagate according to four mecha-

nisms: reflection, diffraction, scattering, and regular electro-magnetic propagation.

As a result of these mechanisms, radio propagation can be roughly characterized

by three nearly independent phenomena [129]: path loss variation with distance,

large-scale log-normal shadowing, and small-scale multipath fading. The propa-

gation models focus on predicting the average received signal strength at a given

distance from the transmitter (T-R separation), as well as the variability of the

signal strength at a particular location [110].

1.4.1 Path Loss Propagation Model

The path loss model predicts the received signal strength when the transmitter

and the receiver have a clear, unobstructed line-of-sight (LOS) path between them.
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In free space, the received power Pr decays with the square of the T-R separation

distance d, given by the Friis free space equation [110]:

Pr(d) =
PtGtGrλ

2

(4π)2d2L
(1.1)

where Pt is the transmit power, λ is the wavelength, Gt and Gr are the gains of

the transmitter and receiver antenna, respectively. L is the system loss factor not

related to propagation (L ≥ 1).

The Friis free space model is valid only for values of d in the far-field of the

transmitting antenna. A refined predictor is

Pr(d) = Pr(d0)(
d0

d
)α

Pr(d) [dB] = Pr(d0) [dB] + 10α log10(
d0

d
), (1.2)

where d0 is the close-in distance for a reference point such that d > d0. Note that

the value of d0 depends on the frequency, antenna heights and gains, and other

factors. The path loss exponent α is a key parameter that affects the spatial reuse

of a wireless system. α usually ranges from 2 to 5.

This log-distance path loss model does not consider the fact that the surround-

ing environmental clutter may be vastly different at two different locations that

have the same T-R separation. A random variable is introduced to capture this

effect, shadowing.

1.4.2 Log-Normal Shadowing

Random shadowing effects occur over a large number of measurement locations

which have the same T-R separation, but have different levels of clutter on the
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propagation path. Measurements have shown that this shadowing follows a log-

normal distribution. Measured signal levels (in dB) at a specific T-R separation

have a Gaussian (normal) distribution about the distance-dependent mean of (1.2):

Pr(d) = Pr(d0) + 10α log10(
d0

d
) + Xσ, (1.3)

where Pr(d0) is the received signal power (in dBm) at a known reference distance

d0, and Xσ is a zero-mean Gaussian distributed random variable (in dB) with

standard deviation σΩ (in dB). The value of σΩ ranges from 5 to 12dB and increases

slightly with frequency, but is nearly independent of the T-R separation. A more

accurate path loss model leads to a smaller σΩ.

More specifically, the received signal power (in dBm) at the distance d is a

random variable of a probability density function (pdf) [110, 129]

pr(x) =
1√

2πσΩ

exp
{

− (x − µΩ(d))2

2σ2
Ω

}

, (1.4)

where

µΩ(d) = µΩ(d0) + 10α log10(
d0

d
) dBm

and µΩ = E[Pr].

The normal distribution of Pr(d) allows the use of Q-function or error func-

tion (erf) to calculate the reception probability or outage probability, i.e., the

probability that the received signal level exceeds or falls below a particular level.

1.4.3 Multipath Fading

As a consequence of reflections, scattering and diffraction, multiple copies of a

signal may arrive at the receiver and add up constructively or destructively. This
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is called multipath propagation, resulting in multipath fading. Multipath fading

possibly results in rapid variations in the received signal over a short distance,

approximately half a wavelength. The other possible effect caused by multipath

propagation is intersymbol interference (ISI) due to the interference overlap of the

delayed version of the previous symbol and the current symbol.

Fading effects can be classified into flat or frequency-selective [128] based on

the signal bandwidth with respect to the channel bandwidth. The frequency-

selective fading channel induces ISI, and thus the received signal is distorted. Or,

depending on how rapidly the transmitted signal changes as compared to the

symbol rate, the channel fading can be classified either as fast or slow. Coherence

time TC is a statistical measure of the time duration over which the channel is

essentially invariant [110]. If the baseband symbol duration is smaller than the

coherence time of the channel, then the channel may be assumed to be static over

one or several symbol transmissions. This is denoted as slow fading (block fading).

Note that all current wireless systems are subject to slow fading only.

Additive White Gaussian Noise (AWGN) is a simple channel model that can

be used to characterize space communication and some wire transmission. More

complex and accurate fading channel models, like Ricean and Rayleigh fading

[110, 128], are desired for terrestrial wireless communication,

1. Rayleigh Fading occurs when there are multiple indirect paths between

transmitter and receiver and no distinct dominant path, such as an LOS

path. This represent the worst-case scenario in terms of channel fluctua-

tions. Specifically, at any time t, the received complex envelope has a pdf

f(x) =
x

σ2
exp

{

− x2

2σ2

}

, x ≥ 0 (1.5)
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where σ2 is the time-average power of the received signal before envelope

detection. The squared-envelope or the received power is exponentially dis-

tributed with pdf

f(x) =
1

2σ2
exp

{

− x

2σ2

}

. (1.6)

Like log-normal shadowing, the exponential distribution of the received

power allows a simple expression of the reception probability and outage

probability in Rayleigh fading, e.g., given a received power threshold R, the

outage probability is

pout = Pr{x ≤ R} = 1 − exp
(

− R

2σ2

)

. (1.7)

2. Ricean Fading occurs when there is a direct LOS path in addition to a

number of indirect multipath signals. The Ricean distribution is given by

f(x) =
x

σ2
exp

{

− x2 + A2

2σ2

}

I0

(xA

σ2

)

, (1.8)

where A denotes the peak amplitude of the dominant signal and I0(·) is

the modified Bessel function of the first kind and zero order. The Ricean

distribution can be completely specified by a parameter K, which is defined

as

K =
power in the dominant path

power in the scattered paths
= 10 log10

A2

2σ2
(dB). (1.9)

When K = 0, the dominant component fades away and the Ricean distri-

bution degenerates to a Rayleigh distribution. When K = ∞, no indirect

multipath signals exist, and the channel is AWGN.

The Ricean model is often applicable in an indoor environment whereas the
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Rayleigh fading model characterizes outdoor settings. Both characterize the flat

fading channels [128].

Multipath fading results in correlated and bursty errors. Markov models have

been proposed to deal with correlated errors. In [139] it is confirmed that the

first-order continuous Markov channel provides a mathematically tractable and

accurate model for time-varying Rayleigh fading channels and uses only the re-

ceived SNR value immediately preceding the current one. In the sequel paper, a

finite-state Markov chain was proved to be accurate enough to approximate the

channel characteristics. The two-state model dates back to the early work by

Gilbert [40]. For this Gilbert-Elliott channel model, it is possible to find exact

expressions for the block-error rate. It was found in [154] that the block-error

process can be reasonably well modeled as Markov, which can be used to measure

delay, throughput, packet dropping probability, and packet transmission errors.

Throughout this dissertation, the error process of blocking fading channels is mod-

eled as a first-order two-state Markov chain. That is, let 0 and 1 denote successful

(or “good” state) and erroneous (or “bad” state) transmission in a given time slot.

The transition matrix for the packet-error process is

C =







c00 c01

c10 c11






, (1.10)

and the average packet error rate is

ε =
c01

c10 + c01

. (1.11)

Note that if c01 + c10 = 1, this Markov chain is reduced to a Bernoulli process, in

which all channel errors are independent. We will use this reduced version (i.e.,
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Bernoulli process) to characterize the channel errors in Chapter 4 to 7.

1.4.4 Composite Shadowing-Fading Distribution

For slow moving or stationary wireless devices, the receiver is unable to av-

erage over the effects of fading. Then a composite distribution is necessary for

performance evaluation to account for both shadowing and multipath fading. Two

different approaches have been suggested in the literature to obtain the composite

distribution [129]. In the first one, the envelope (or square-envelope) is expressed

as a conditional density on the average envelope strength V , and then integrate

over the density of V to obtain the composition distribution. For example, in a

composite log-normal shadowing and Rayleigh fading channel, the mean of the

Rayleigh distribution obeys a log-normal distribution. In the second one, the

composite received signal is expressed as the product of the small scale multipath

fading and the large scale shadow fading. As stated in [100], a mobile radio signal

composed of log-normal shadowing and Rayleigh fading can be approximated by

a log-normal distribution in terms of the received SNR as follows

f(x) =
1

sσ
√

2π
exp

{

− (− ln x − µ)2

2σ2

}

, (1.12)

i.e., ln(SNR) is normally distributed with mean µ and variance σ2. If the fading

and shadowing processes are independent, these two approaches lead to identical

results.

1.5 Our Contributions

In the previous sections we discussed the features and challenges of WMNs.

Our contributions lie in the investigation of MAC schemes, packet scheduling,
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and their interactions with other components of WMNs. First, we review current

MAC and packet scheduling protocols in wireless networks in Chapter 2. Second,

we propose a priority scheduling protocol that can achieve delay balancing in the

critical area of WSNs (Chapter 3). Combined with packet dropping strategies, a

hard delay bound is guaranteed. Discrete-time queueing theory is used to derive

the corresponding packet loss rates.

Third, we focus on the cross-layer analysis of the physical channel and MAC

schemes in one-dimensional (1-D) WMNs. The analysis starts with a single node

controlled by TDMA and fed with CBR traffic (Chapter 4). In wireless net-

works, assuming the channel errors are independent, a node controlled by TDMA

is modeled as a G/Geom/1 system but the interarrival times are not integer as

conventionally. We use probability generating functions (pgf) and eigenvalue ap-

proach to derive the distributions of the queue length and delay, and the output

characteristics. Then, we extend the analysis from the single node scenario to

the multihop scenario. Two typical MAC schemes, m-phase TDMA and slotted

ALOHA are studied in Chapter 5. Specifically, for Rayleigh fading channel, the

interaction between the physical channel, the MAC schemes and the traffic statis-

tics is investigated (Chapter 6). These analyses provide insight on the design of

multihop MAC schemes.

Finally, an energy-efficient and delay-constrained scheduling protocol is devel-

oped for networked control systems. For real-time applications, it is critical to

guarantee delay bounds with a small amount of packet loss. Therefore, scheduling

and MAC schemes are designed to be associated with packet dropping strategies

to reduce unnecessary energy consumption on obsolete packets and guarantee the

on-time transmission of useful packets (Chapter 7). Our conclusions are presented
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in Chapter 8.
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CHAPTER 2

WIRELESS MEDIUM ACCESS CONTROL AND PACKET SCHEDULING

The scarce bandwidth and contention-based multiple access of wireless net-

works motivate the need of effective scheduling algorithms. Scheduling can be in-

vestigated at two levels. Medium Access Control (MAC) is system-level scheduling

that determines the transmission orders over multiple nodes in the network, while

packet scheduling is node-level scheduling that allocates the transmission oppor-

tunities among multiple flows within a node. The packet scheduler is positioned

between the routing agent and the MAC layer. Multi-hop scheduling is quite com-

plex because of connectivity and spatial reuse. The schemes can be implemented

in a centralized or distributed way or as a hybrid of both. In general, centralized

scheduling outperforms distributed scheduling in terms of throughput and relia-

bility because the latter is non-work-conserving (i.e., the server or channel is kept

idle even though there are users waiting for service) and always incurs collisions,

but distributed scheduling is more practical in the multihop environment. In this

chapter, we review the wireless scheduling principles and their implementations

at the system level and node level, respectively.

2.1 Wireless Scheduling

Like wired scheduling, wireless scheduling is expected to support different levels

of service, like guaranteed and best-effort service, but its design and implementa-
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tion are more complex. For instance, the fluctuation in the link rate necessitates

a distinction between effort and outcome [20, 30, 78]. Effort is the resource al-

located to a user, whereas outcome is the service obtained by the user. In wired

networks, these two terms are equivalent. In wireless networks, some designated

resource is wasted due to channel errors and collision, and thus outcome is usually

smaller than effort. Performance metrics and criteria should be specified with

effort or outcome. For instance, effort/temporal fairness and outcome/throughput

fairness [30, 78] need different fair scheduling schemes. There are some uncertain

factors complicating the design of wireless scheduling [35, 92, 109]:

• Time- and location-dependent link errors, caused by interference, fading, and

path loss. The link errors are bursty in nature. Node failures, together with

link errors, lead to changes in the network topology and connectivity. The

scheduler should be aware of and keep track of these changes to adjust the

allocation scheme. Fairly accurate channel prediction can be achieved using

n-state Markov models [92].

• Contention for the shared wireless medium among all nodes. In the dis-

tributed environment, the contention possibly results in collision and hidden

and exposed terminal problems.

• Information collection and sharing, including the channel state, the number

of flows, their reserved rates and queue length. Most wireless schedulers

need this information to adjust the transmission order for better perfor-

mance. The more distributed the information, the more accurate and effi-

cient the scheduling algorithm. But the accuracy of such information cannot

be guaranteed in distributed and wireless networks.
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• Energy efficiency and fairness. Energy and power conservation should be

supported across all the layers, including MAC and packet scheduling. Through-

put and energy efficiency are maximized by transmitting each packet over

a very long period of time [42]. Allowing one node/flow to maximize its

throughput in this energy efficient way certainly causes other nodes/flows

to starve. They have less time to spend and thus consume more energy to

transmit their data within the delay bound. Unfair resource allocation incurs

unbalanced energy consumption and may shorten the network lifetime.

Based on the implementation, wireless scheduling algorithms can be classified as

follows [35]:

• Non-work-conserving vs. work-conserving. In order to avoid collisions, many

distributed scheduling algorithms require nodes to wait backoff period before

transmission even though the channel is idle. The resulting scheduler is thus

non-work-conserving.

• Timestamped vs. round robin (RR). In timestamped schedulers, each packet

is tagged with a timestamp the moment when it arrives in the system, and

all packets are transmitted according to their stamps. RR schedulers serve

packets simply based on their flow index. Timestamped scheduling usually

guarantees better QoS but is more complex than RR scheduling.

• Sorted-priority-based vs. frame-based. In sorted-priority-based scheduling,

each flow is assigned a priority level and served by priority scheduling. In

contrast, in frame-based scheduling, each flow reserves a portion of the frame

for transmission. The reservation mechanism is less flexible than the priority

schemes but can guarantee a minimum individual throughput for each flow.
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The scheduling algorithms are evaluated from the following parameters [35, 92]:

• Energy efficiency ξ, defined in [158] as

ξ =
Total number of packets delivered successfully

Total energy consumed
, (2.1)

which provides two ways to achieve high energy efficiency, i.e., maximizing

the throughput given a fixed energy constraint, or minimizing consumed

energy to transmit a certain amount of packets.

• Efficient link utilization. In a single-hop network, the scheduler attempts to

assign transmission slots to nodes/flows with good channels. In a multihop

network, due to signal attenuation with distance, the exploration of spatial

reuse can improve the link utilization.

• Delay. Delay-sensitive applications require hard delay bounds. If the chan-

nel errors are bounded in duration, so is the packet delay. Hence the delay

performance is channel-dependent.

• Fairness, defined in either the time-domain or the throughput-domain. In a

network supported by rate control, temporal/effort fairness is more suitable

than throughput/outcome fairness. In order to achieve throughput fairness,

the flows experiencing bad channels need to capture the medium for such a

long time that the throughput gains available due to a multi-rate physical

layer will be offset. Temporal fairness requires that the difference between

the time shares allocated to flow i and j, denoted by Ti(t1, t2) and Tj(t1, t2),

is bounded, i.e.,

| Ti(t1, t2) − Tj(t1, t2) | ≤ Tf (2.2)
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Effort fairness cannot guarantee outcome fairness while outcome fairness al-

ways implies effort unfairness. In addition, fairness guarantee also should be

specified in terms of the time scale, i.e., long-term or short-term. Short-term

fairness is more constrained, even in wireline networks. Energy efficiency is

sometimes traded off for high throughput fairness.

• Throughput, defined as

ω =
Total number of packets delivered successfully

Total time spent in delivery
, (2.3)

can be optimized by either maximizing the overall throughput or maximiz-

ing the minimum throughput of each user. Generally, a good scheduling

algorithm should maximize both. Simply maximizing the network through-

put leads to unfairness and cannot guarantee the individual throughput of

each flow.

• Implementation complexity. In wireless networks, if the scheduling algo-

rithms are distributed and implemented by nodes with limited memory,

energy, and processing capability, low complexity is certainly more desir-

able. Centralized scheduling allows algorithms of moderate complexity for

performance improvement.

• Isolation. The algorithm should isolate a node/flow from the effects of mis-

behaving nodes/flows. Isolation is usually coupled with fairness.

• Delay/bandwidth decoupling. For most rate-based schedulers, the delay is

tightly coupled with the reserved rate; that is, a higher reserved rate provides

a lower delay, and vice versa. However, many applications are of low rate

34



and small delay bound. Scheduling then should be able to decouple delay

from the reserved rate.

• Support for latency and reliability. Delay-sensitive applications usually can

tolerate a small amount of packet loss, while error-sensitive applications

could allow larger delays. It is not efficient to treat them identically. The

connection-level packet management policies should be decoupled from link-

level packet scheduling policies. This can be achieved by assigning additional

slot queues to each flow [92].

• Scalability. As the number of nodes/flows contending for transmission in-

creases, the algorithms should preserve their efficiency.

• Packet loss rate. Packet loss may be caused by channel errors, congestions

and/or a packet dropping strategy that is intentionally implemented by the

nodes.

Among these parameters, energy efficiency, fairness, delay, and throughput are

the most important ones. But they are conflicting, and it is almost impossible

to optimize them at the same time. The objective is to optimize few parameters

under the constraints of other parameters.

There are two approaches to deal with the channel errors and the resulting

incapability to transmit packets at a constant rate. One is to defer the trans-

mission and compensate later. The other one is to insist transmitting, but to

reduce the transmission rate until reliable communication is achieved. These two

approaches can be used separately or jointly. For example, fair scheduling exploits

the deferring and compensating scheme, whereas energy-efficient scheduling takes

advantage of the low transmission rate to save energy.
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Figure 2.1. A typical wireless scheduler

2.1.1 Wireless Fair Scheduling

Since wireline scheduling algorithms have been well developed to address the

fairness problem, it is natural to extend them to wireless fair scheduling. The

unfairness problem caused by wireless channel errors is usually solved by the

deferring and compensating approach. First, the channel state monitor/predictor

estimates the channel status, as shown in Fig. 2.1. Then, the compensation model

determines how the flows/nodes are compensated if these flows/nodes are not

served as allocated because of channel errors. Typically, a wireless fair scheduler

is composed of five components [35, 92]:

• An error-free service model, which emulates the service evolution in an error-

free scheduling system. Wireline scheduling schemes can be directly used in

this model, e.g., Weighted Fair Queueing (WFQ), Virtual Clock (VC), Self-

Clocked Fair Queueing (SCFQ), and Start Time Fair Queueing (STFQ).

• A lead/lag model, which compares the service received by each flow/node
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in reality to that allocated by the error-free service model. The lead/lag

counter indicates whether the flow/node is leading, is in sync with, or is

lagging its error-free service model and by how much. Obviously, a flow/node

is lagging if the channel is too bad to ensure a successful transmission. For

efficient resource utilization, other flows in sync or leading may replace the

lagging flow to transmit and become leading. The counter records the service

difference, e.g., the number of slots that are allocated to the lagging flow

but used by leading flows.

• A compensation model, which specifies how the lagging flows are compen-

sated once their channels become good. The compensation is either complete

or partial. In the complete compensation model, a lagging flow with a good

channel captures the medium until all its lags are compensated for or its

channel becomes bad again. All other flows will be prevented from trans-

mitting even they are in-sync and suffer starvation. On the other hand, the

partial compensation model punishes only the leading flows that replace the

lagging flows to transmit in the slots assigned to the lagging flows.

• Separate slot queues and packets queues. To drop Head of Line (HOL) pack-

ets will incur a decrease of precedence of the flow. Slot queues are added

to maintain the precedence of the flows. This component is used to support

for both delay-sensitive and error-sensitive data.

• A channel monitor/predictor.

The following are several instances of the above architecture.

• Channel State-Dependent Packet Scheduling (CSDPS) [14] may be the sim-

plest instance because it does not include the lead/lag and compensation
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models. The error-free service model can use any wireline service disciplines

such as RR, WFQ, Feasible Earlier Due Date (FEDD) [122], and Longest

Connected Queue (LCQ) [131]). If the channel is bad, the packet trans-

missions are simply deferred without further compensation. Apparently,

fairness and throughput are traded off for simplicity.

An enhanced CSDPS is proposed in [126] that uses a priority-based link

sharing mechanism Class Based Queueing (CBQ) to improve fairness and

throughput. CBQ provides a lead/lag and a compensation model. The

lead/lag model counts the percentage of the outcome instead of the service

difference. The performance is thus sensitive to the statistically reserved

fraction. CSDPS-based scheduling does not provide short-term guarantees

for fairness and throughput.

• Idealized Wireless Fair Queueing (IWFQ) [81] uses WFQ or WF2Q (Worst-

case Fair WFQ) as the error-free service model. Lagging flows are completely

compensated to guarantee long-term fairness and throughput though the

short-term fairness is violated and in-sync and leading flows may be starved.

In [81], a frame-based Wireless Packet Scheduling (WPS) algorithm is de-

veloped that uses a WRR with spreading slots as its error-free service. The

flow experiencing channel errors first attempts to swap its assigned slot with

flows behind it in the frame. If this fails, the flow is tagged as lagging and

partially compensated in the subsequent frames by increasing its weight ac-

cording to its lag counter. This approach limits the access capability of the

lagging flows and attenuates the starvation problem of IWFQ.

The other enhanced IWFQ is Wireless Fair Service (WFS) [80], in which

both the lead/lag counter and the compensation are partial. The punished
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leading flows give away only a dynamic fraction of their service, which is

fairly distributed among all lagging flows, rather than being solely captured

by a single lagging flow with the minimum service tag. To decouple band-

width and delay, each flows is assigned two parameters, a rate weight and

a delay weight. In general, WFS achieves almost all desired properties of a

wireless fair service.

• Channel-Condition-Independent Fair Queueing (CIF-Q) [96] is similar to

WFS in the lead/lag and compensation model. The major distinction from

WFS is its using Start Time Fair Queueing (STFQ) as the error-free ser-

vice model. With location-dependent channel errors, it is easier to schedule

packets based on their start time rather than the finish time. Therefore,

CIF-Q achieves the same performance as WFS but is simpler to implement.

• Server-Based Fairness Approach (SBFA) [109] reserves a fraction of band-

width, referred to as Long-Term Fairness Server (LTFS), for lagging flows to

guarantee long-term fairness and throughput. Within the LTFS, the lagging

flows are served in a WRR fashion. Like CBQ-CSDPS, the performance is

sensitive to the statistically reserved fraction of bandwidth.

• Effort-Limited Fair Scheduling (ELF) [30] follows a different compensation

principle. Both leading and in sync flows are required to yield to lagging

flows. The error-free service model is WFQ with dynamic flow weights that

vary with channel error rates. The compensation is partial by bounding the

flow weight with an “limited effort” so that one flow experiencing long bursty

channel errors cannot capture the medium for a long time. The performance

is tightly coupled with the weight bounds.
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• Wireless Credit-based Fair Queueing (WCFQ) [73] uses Credit-Based Fair

Queueing (CBFQ) as its error-free service model, which does not need service

tags as other fair scheduling algorithms. The channel condition is reflected

through a cost parameter, which, in combination with the flow credit, de-

termines the transmission order. The lead/lag counter and compensation

are implicitly expressed by the credit and cost parameters. Fairness and

throughput are balanced.

The distributed version of fair scheduling [138] provides an implementation ap-

proach for wireless MAC if broadcasting is allowed. For example, in IEEE 802.11,

the service tag of each packet can be calculated individually, piggybacked onto the

handshaking packets RTS and CTS, and then broadcast to all neighboring nodes.

Or, in a CSMA-based scheme, the node sets its backoff timer in proportion to the

service tag of the HOL packet [138]. Distributed fair scheduling can be applied to

both single-hop and multi-hop networks.

Note that above fair scheduling schemes aim at guaranteeing outcome/throughput

fairness. With modifications, they can achieve effort/temporal fairness.

2.1.2 Energy-Efficient Wireless Scheduling

Based on the definition of energy efficiency, high energy/power efficiency can be

obtained by maximizing the amount of information transmitted for a given average

power/energy constraint, or by minimizing the power/energy consumption per

specified amount of information being transmitted successfully [137]. Accordingly,

energy-efficient scheduling can be classified into opportunistic scheduling [78] and

lazy scheduling [103].
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2.1.2.1 Opportunistic scheduling

Opportunistic scheduling [72, 74, 75, 78, 79], as its name implies, schedules the

flows with the best transmission opportunity, which indicates the channel condi-

tion from the perspective of energy/power conservation. The rate and power are

adaptively allocated to take advantage of favorable channel conditions. Basically,

a constant signal-to-noise ratio Eb/N0 (in terms of the ratio of the signal energy

per bit to noise power spectral density) is maintained for reliable communication

but the transmit power level, symbol transmission rate, constellation size, coding

rate/scheme, space diversity, or any combination of these parameters can be var-

ied [41]. Fig. 2.2 illustrates the theoretical relationship between the bit error rate

(BER) and the Eb/N0 for several different modulation schemes and data rates. For

each modulation scheme, the BER decreases with better channel conditions and

increasing Eb/N0. For a given Eb/N0, an increase in data rate results in an increase

in BER. For a given BER, a decrease in data rate permits a decrease in Eb/N0

that is proportional to energy consumption. Opportunistic schedulers select the

maximum data rate available under the specific channel condition (Eb/N0) and

reliable communication constraint (BER) to achieve the best throughput perfor-

mance [53, 72, 74, 75, 78, 79, 116, 140]. This technique aims at compensating for

random channel variations due to multipath fading, reducing the transmit power

required for reliable communication and thus reducing the resulting interference,

minimizing the probability of link outage, satisfying delay constraints, prevent-

ing buffer overflow, achieving high network performance (e.g., throughput), and

controlling the level of QoS among all nodes [72, 74, 75, 78, 79].

The design of opportunistic scheduling usually consists of two steps [78]. First,

define a channel-dependent function, called utility function or channel condition
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and data rates

function [72, 74, 75, 78]. Second, translate the problem of maximizing the average

network performance subject to some constraints (e.g., delay, fairness, or mini-

mum throughput of each flow) into an optimization problem that can be solved

using conventional optimization tools. Additional parameters can be added into

the optimization formulation to further compensate for the capacity loss caused by

wireless channel errors and may achieve the same fairness as wireless fair schedul-

ing described in Section 2.1.1. Then, the obtained scheduler is good at both

fairness and throughput.

From the perspective of throughput optimization, [9, 10, 14, 67, 120, 130]

concluded that Longest Queue First (LQF) or Largest Delay First (LDF) based

scheduling is throughput-optimal even in the wireless environment. Compared to

their wireline counterparts, this class of wireless scheduling algorithms enhances

the performance by weighing the queue length or delay according to the channel
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condition and taking advantage of the multiuser diversity. Therefore, the scheduler

can select user i to transmit based on the link rate or queue length as follows [99],

where Ri(t) denote the maximum available rate under the channel condition at

time t, i∗(t) the user selected at time t, Ti(t) the average throughput of user i till

slot t, Di(t) the delay, and Qi(t) the queue length,

• The Maximum Rate (MR) algorithm [136] simply selects the user with the

maximum rate:

i∗(t) = arg max
i

Ri(t); (2.4)

• The Proportional Fairness (PF) algorithm [57] selects the user with the

maximum normalized rate:

i∗(t) = arg max
i

Ri(t)

Ti(t)
; (2.5)

• [78] favors the user of the maximum compensated rate, where vi is a com-

pensation factor that dynamically changes with the received performance,

i∗(t) = arg max
i

(Ri(t) + vi) (2.6)

• [17] determines the scheduling order based on the weighted data rate, scaled

by a weight wi

i∗(t) = arg max
i

wiRi(t) (2.7)
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• 0 − 1 indicator [14],

i∗(t) = arg max
i

Di(t)1{SNR≥SNRT },

i∗(t) = arg max
i

Qi(t)1{SNR≥SNRT }. (2.8)

where SNRT is a threshold for a reliable reception. Since the condition

{SNR ≥ SNRT} essentially indicates the probability of successful reception,

or the probability that the link exists, this scheme is akin to CSDPS (in-

troduced in Section 2.1.1). In other words, the scheduler chooses the user

with the longest queue length or largest delay among all backlogged users

experiencing a good channel.

• Logarithmically weighing [67],

i∗(t) = arg max
i

wi(t)Qi(t), (2.9)

where the weight wi(t) can be determined by the channel error rate εi(t)

(note that here we modify the set of wi in [67] in order to make it suitable

for the wireless system), wi(t) = − ln εi(t)/Bi, in which Bi is the maximum

queue length.

• Multiplicatively weighing [9],

i∗(t) = arg max
i

γiRi(t)(Qi(t))
β, (2.10)

where γi and β are constants. The channel condition is reflected through

the maximum available rate Ri(t).
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• Exponentially weighing [120],

i∗(t) = arg max
i

γiRi(t) exp
( aiQi(t)

β + (Q̄(n))η

)

, (2.11)

where β, η, and ai are positive constants. Q̄(t) is the average weighted queue

length over all sessions, i.e.,

Q̄(n) =
1

N

N
∑

i=1

aiQi(t). (2.12)

2.1.2.2 Lazy scheduling

Lazy scheduling saves energy by prolonging the transmission time. As observed

in [38], with many coding schemes, the energy needed to transmit a given amount

of information is strictly decreasing and convex in the transmission duration. This

observation becomes an important guideline to design energy-efficient scheduling

algorithms [39, 43, 64, 103, 108, 119, 137].

Lazy Scheduling was first proposed in [103] for a single flow. A batch of packets

arriving during a time period of T will be sent out in next T slots. Their transmis-

sion times are assigned as evenly as possible within the T slots. In other words,

with appropriate coding and modulation techniques, the scheduler attempts to

transmit each packet as long as allowed by the delay constraint. Several mecha-

nisms are involved, including the calculation of the optimal transmission time, on-

line implementation, and discretization of the transmission rates. [39, 64, 103, 137]

generalize single-flow Lazy Scheduling to multiple flows, but they treat the multi-

ple flow scenario as a special single-flow case. Each flow independently calculates

the transmission times of its queued packets, and the scheduler serves them using

conventional wireline scheduling, but with different transmission times. This gen-
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eralization is not feasible. With a deterministic delay bound, allowing one flow

to dominate channel access (particularly in TDMA systems) will preclude other

flows from transmitting. In order to guarantee QoS metrics such as like delay,

other flows must complete transmitting backlogged packets in a short time and

thus consume more energy.

The other disadvantage of Lazy Scheduling is its requirement on the knowledge

of the arrival pattern. Since the calculation of the optimal transmission time is

based on the packet arrivals in a frame, the on-line scheduler needs to estimate or

predict the real arrival pattern, which is not realistic in WMNs. Moreover, such

calculation is complex and energy-inefficient.

2.1.2.3 Comparison

In summary, wireless fair scheduling uses compensation techniques to guaran-

tee fairness without power and rate control. Each node transmits at a constant

rate when the channel is good. At the system level, throughput is normally

balanced among all nodes, but energy consumption is not constrained. On the

other hand, energy-efficient scheduling takes advantage of good channels and al-

locates low transmission rates with power and rate control. Lazy scheduling saves

energy at the cost of low link utilization and throughput and lack of fairness. Op-

portunistic scheduling can be combined with partial compensation mechanisms

to guarantee fairness constraints. With appropriately selected parameters, this

scheduling can better balance throughput, fairness, and energy efficiency.
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2.1.3 Telatar Model for the Analysis of Wireless Scheduling Algorithms

Energy-efficient scheduling algorithms involve rate control, which is supported

by dynamic modulation schemes. Modulation is the process of translating an

outgoing data stream into a form suitable for transmission on the physical medium.

For digital modulation, this involves translating the data stream into a sequence of

symbols. Each symbol may encode a certain number of bits, the number depending

on the modulation scheme. The symbol sequence is then transmitted at a certain

rate, the symbol rate. So for a given symbol rate, the data rate is determined by

the number of encoded bits per symbol [53].

Conventionally, the issue of reliably communicating data over a fading chan-

nel falls mainly within the province of information theory, at the physical layer.

Queueing is usually considered a network layer issue and divorced from physical

layer consideration. Cross-layer design abandons the separation of physical layer

coding and network layer queueing in wireless networks [13, 132].

Consider a discrete-time model. Assume that both the transmitter and the re-

ceiver have perfect knowledge about channel state information (CSI). Then trans-

mitters are capable of adaptively adjusting their transmission rate Ri(t) for reliable

communication. In [13, 132], a Telatar model is presented to combine the issue of

reliable communication with queueing theory.

In the Telatar model, the buffer occupancy corresponds to the reliability re-

quired by the data in the buffer plus the remaining reliability. Here the reliability

is denoted by the maximal allowable error probability ηi. We assume that each

time slot is divided into M subslots. A packet is encoded into L subslots if for

any ρ ∈ (0, 1):
L
∑

n=1

E0(ρ, SNRn
i (t)) ≥ ρ ln K − ln ηi, (2.13)
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where K is the number of codewords and

E0(ρ, SNRn
i (t)) , ρ ln(1 +

SNRn
i (t)

1 + ρ
). (2.14)

The above inequality guarantees the error probability ηi. From the perspective of

queueing theory, (ρ ln M − ln η) can be considered the demand of a packet once it

enters the encoder and E0(ρ, SNRn
i (t)) is the number of bits reliably transmitted in

the n-th subslot of the t-th slot given the channel state Hn
i (t). L ≥ 1 is the number

of subslots required to transmit the current packet with an error probability less

than ηi. Then the number of packets reliably transmitted in slot t, Ri(t) is

Ri(t) = bM

L
c. (2.15)

Note that if L is too large and exceed M , then Ri(t) = 0 and the scheduler decides

that node i does not transmit. In a block fading channel, the channel condition is

assumed to hold during the whole time slot, i.e., SNRn
i (t) = SNRi(t). Then the

channel-condition-dependent random variable L is reduced to

L = d ρ ln K − ln ηi

ρ ln(1 + SNRi(t))
1+ρ

)
e. (2.16)

This number L is now dependent only on the channel condition at time t. Then,

queueing theory can be used to analyze energy efficient scheduling algorithms in

a cross-layer manner.
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2.2 Wireless MAC

Wireless MAC schemes can be implemented by applying wireless scheduling

algorithms in a distributed way over all nodes in the network. However, the dis-

tributed implementation not only requires global information exchange that adds

overhead, but also results in performance degradation, especially in the wireless

environment. Therefore, many wireless MAC algorithms do not follow the wireless

scheduling principles.

2.2.1 Classifications of Wireless MAC

Wireless MAC schemes can be classified into contention-free and contention-

based, as shown in Fig. 2.3 [66]. Contention-free schemes (e.g., TDMA, FDMA and

CDMA) are more applicable to single-hop networks with centralized control like

cellular networks. When they are applied to multihop networks with spatial reuse,

they are no longer fully contention-free. In WMNs, contention-based schemes are

more practical but they suffer from collisions.

Random access schemes are distinguished by whether carrier sensing occurs

prior to data transmissions or not. Compared to ALOHA, the CSMA-based

schemes reduce the possibility of packet collisions and thus improve the through-

put. In the multihop environment, random access schemes result in hidden and

exposed terminal problems. Reservation-based schemes are proposed to solve these

problems [66]. The channel is reserved before the nodes are allowed to transmit

data. Resource reservation can be implemented by exchanging control packets

(e.g., Request-to-Send/Clear-To-Send (RTS/CTS) in MACA, MACAW, FAMA)

or by broadcasting busy tones through control channels (DBTMA).

There are several guidelines for power conservation [66]. First, collisions are a

49



Contention−Free
(Polling, Token Based, 

TDMA, FDMA, CDMA, etc.)

Medium Access Control 

Random Access Reservation/Collision Resolution

Non−carrier Sensing
(ALOHA,etc.)

Carrier−Sensing
(CSMA,etc.)

(MACA, etc.)
Use of Control Packets

Use of Control Packets
and Carrier Sensing
(FAMA, CSMA/CA,

IEEE802.11, etc)

Contention Based
Access

Figure 2.3. Classifications of Wireless MAC Schemes

major cause of expensive retransmissions. Second, the transceiver should remain

in sleep mode whenever possible. Third, the transmitter should switch to a lower

power mode that is sufficient for the destination node to receive the data. There-

fore, energy-efficient and power-aware MAC protocols can be classified into power

management and power control protocols. Power management MAC protocols

aim at alternating sleep and wake cycles (e.g., Power Aware Medium Access Con-

trol with Signaling (PAMAS) and Dynamic Power Saving Mechanism (DPSM)),

while power control MAC protocols use a variation in the transmission power

(e.g., Power Control Medium Access Control (PCM) and Power Controlled Mul-

tiple Access (PCMA)) [66].

The probability of packet collision can be reduced by using multiple channels.

For example, some reservation-based MAC protocols use a dedicated channel for

control packets or signaling and another channel for data transmissions (e.g., Dual

Busy Tone Multiple Access (DBTMA)). It is also possible to use multiple channels
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for data transmissions like Multi-Channel CSMA MAC, Hop-Reservation Multiple

Access (HRMA), Multi-Channel Medium Access Control (MMAC). One advan-

tage of the multi-channel MAC approaches is their capability to support QoS.

It is difficult to provide effective QoS in multihop networks because of the lack

of centralized control, limited bandwidth, error-prone wireless channels, node mo-

bility, and power and computational constraints. Most QoS aware MAC protocols

in the literature are designed to distinguish between real-time and non-real-time

traffic flows. In general, real-time flows are given high priorities, which leads

to short waiting time and/or backoff contention window (e.g., Enhanced DCF,

Black Burst contention). However, such prioritization cannot fully guarantee

packet delays. Some deadline-based MAC protocols are proposed, like Real-Time

MAC, Elimination by Serving DCF, Deadline Bursting DCF, and Distributed Fair

Scheduling [66]. They use the packet deadlines to determine the transmitter’s

waiting time and backoff value. The disadvantage of these MAC schemes is that

they may not provide fair sharing between real-time and non-real-time flows. The

lower priority flows often suffer from starvation in the presence of heavy real-time

flows.

2.2.2 Modeling and Analysis of MAC Schemes

Most of the proposed MAC schemes, if not all, were analyzed based on an

overly-simplified circular step-function model, often referred to as “disk model”

[124]. The transmission range of each node is assumed to be an identical con-

stant, and the transmission success purely depends on the distance between the

transmitter and receiver. If there is more than one transmission within the range

to the same receiver at the same time, the transmission is regarded to be failed.
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Although this model simplifies protocol design and theoretical analyses, it may

provide vastly inaccurate information. In practice, i) the transmission range is

time- and location-varying; ii) with a high signal-to-noise-and-interference (SNIR),

the node can recover the data even if there are overlapped transmissions. These

properties are characterized by the more practical “physical” or “capture model”

[88, 155]. In the capture model, the transmission success is determined by SNIR,

a function of multiple access interference (MAI), which accounts for not only the

distance and MAC, but also traffic statistics. Therefore, MAI should be considered

in the design and analysis of wireless MAC.

2.3 Wireless Multihop Scheduling

A simple way to design multihop scheduling is to apply current wireless schedul-

ing principles to the multihop environment [60, 61, 83–86, 107]. For example, in

CSMA/CA, the backoff timer is controlled by the service tag of the HOL packet.

Opportunistic scheduling can be implemented in slotted ALOHA in a way that

each node determines its transmission probability according to the information

on both its own channel and other nodes [107]. The difference from single-hop

scheduling is that as soon as the topology changes, the updated information should

be quickly broadcast through the network. However, most of the current wireless

scheduling approaches neither result in optimum transmission pattern nor provide

maximum network utilization in WMNs [66, 147, 148]. The main difficulties are

[148]:

• The hidden terminal problem still exists and its impact on WMNs is more

severe than in single-hop networks.

• The exposed terminal problem is not solved in WMNs and will cause resource
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waste, which is more harmful in multihop networks.

• The rapidly varying network topology incurs heavy overhead. Moreover,

the exchanged information on network topology cannot be ensured to be

timely and accurate. Then the information of the entire network is usually

unknown and/or erroneous, which results in performance degradation.

The challenge for scheduling in WMNs is to use limited local information to allo-

cate the nodes to transmit in an orderly and effective manner.

In order to simplify the problem, current multi-hop scheduling often assumes

that the channels are noise-free and unsuccessful receptions are due to collisions

[35]. For fair scheduling, the objective is to ensure fair channel allocation among

spatially contending packet flows, as well as to maximize channel reuse [83–86].

Conflicts in multi-hop networks may occur in two ways [35]. A primary conflict

occurs when two or more nodes simultaneously transmit to a common destination

node. A secondary conflict occurs when a node receiving a transmission intended

for it is interfered with by another transmission not intended for it. In the disk

model, two nodes can transmit simultaneously without mutual interference if they

do not have a common node as either transmitter or receiver. Scheduling should

be able to avoid conflicts while maximizing spatial reuse at the same time.

With little infrastructure support, a multihop scheduler is desired to possess

topology transparency and low connectivity information requirement, because both

topology and connectivity information incur substantial overhead with frequently

changing topology. Since this information belongs to the infrastructure data and

is determined by the routing protocol, scheduling and routing should be designed

jointly for optimization.
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There are numerous open issues to be investigated in multihop scheduling. We

are interested in the following:

• Spatial reuse. In the multihop environment, if two node pairs are far away

from each other, their simultaneous transmissions will not interfere or collide

with each other. To improve network throughput, some nodes should be

allocated to transmit at the same time. Previous work usually uses the

“disk model” with fixed transmission range and assume that nodes interfere

if they lie within the ranges of each other. Therefore, it is very popular in the

study of spatial reuse to assume that in a chain network, single nodes three

hops away can transmit simultaneously with no possibility of interference

[23, 124]. However, this assumption does not hold if the “capture model”

is used to measure interference. For fading channels, the “capture model”

is more accurate, and it is essential to investigate spatial reuse using this

model.

• Correlations. The performance of WMNs is measured not only individually

at a node but also e2e. Each node along the path contributes to the e2e

performance. Note that their contributions will be correlated. For exam-

ple, if a packet flow experiences longer delay than expected at the upstream

nodes and its delay bound may be violated soon, then the downstream nodes

can make up for it by increasing the priority of this flow to give it more

transmission opportunities [59, 70]. Moreover, there exist so close correla-

tions between neighboring nodes that the upstream nodes can predict the

transmission patterns of downstream nodes. Specifically, after the upstream

nodes successfully deliver packets to its neighboring downstream nodes, it

is certain that the downstream nodes will immediately join to contend for
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the medium even if their buffer status is unknown. To avoid conflict, either

the upstream nodes or the downstream nodes should withhold their trans-

mission. Taking advantage of such correlations is helpful to design more

efficient and cooperative scheduling algorithms in WMNs.

2.4 Design Objectives of Scheduling in WMNs

In terms of fairness, if treating all flow identically, the MAC-layer fairness (or

node fairness) implicitly indicates network-layer unfairness (or flow unfairness).

Node-level scheduling is required to achieve both node-level and flow-level fairness.

That is why we study the scheduling problem of WMNs in two levels, the system

level and the node level.

Packet scheduling can be location-dependent and is not necessarily distributed

in the entire network. For example, in sensor networks, because the observer is

more powerful in terms of signal processing capabilities, memory, and energy sup-

ply, a complex scheduling scheme is feasible in the proximity to the observer.

Therefore, in contrast to general WMNs, the critical area of sensor networks can

employ centralized scheduling algorithms, which are more energy-efficient [58]

since most decisions can be made by the observer. Besides, with central control,

collisions can be avoided and retransmission energy will be saved. On the other

hand, in the non-critical area that is composed of multihop paths, simple dis-

tributed MAC schemes are required. In summary, a hybrid scheduling principle

is more desirable for heterogeneous WMNs.

Besides, in the non-critical area, node competition is not severe and the impact

of interference is light. Then the noise power is dominant in terms of SNIR

(Signal-to-Noise and Interference Ratio) and the SNIR is reduced to SNR. Hence
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the non-critical area can also be called noise-limited area. Correspondingly, in the

critical area, the interference power is dominant and the SNIR is reduced to SIR.

The critical area can thus be called interference-limited area. Efficient scheduling

can allocate transmissions in an intelligent way to mitigate interference.

Routing and scheduling are interdependent. So the node-level scheduler needs

to take into account the overhead generated by routing, i.e., infrastructure data.

It may be necessary for the scheduler to assign different priorities to infrastructure

data and application data to support real-time updates of the routing information.

Furthermore, giving higher weight to application data packets with a shorter path

length reduces the average delay significantly and improves the average through-

put. However, in multihop networks, simply favoring short path packets, i.e.,

giving high priority to locally generated packets over relayed packets at the crit-

ical nodes, will make the relayed packets expire soon because they have already

experienced a longer delay before arriving at this critical node.

In general, the scheduler first distinguishes infrastructure data from applica-

tion data. Then, application data are dealt with based on both their QoS re-

quirements and “distances” to the destination. In this sense, the scheduler needs

to know certain routing information, e.g., the remaining distance of a packet to

its destination. A simple scheduler is a weighted scheduler as described in [27],

in which the weight is determined by the remaining distance. The fewer hops a

packet needs to traverse, the more potential it has to reach its destination quickly,

and the smaller queueing delay it incurs in the network. The principle behind this

shortest remaining processing time (SRPT) scheduling algorithm is to minimize

the mean response time. For WMNs, as mentioned before, this approach may

increase the packet loss rate. If applications require both accuracy and small la-
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tency, then, more balanced schemes are needed to guarantee both delay and packet

loss rate. Therefore, the design of MAC and scheduling should be tightly coupled

with physical layer, routing and other protocols to achieve optimal performance.
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CHAPTER 3

A DELAY-BALANCING PRIORITY SCHEDULING ALGORITHM IN

WIRELESS SENSOR NETWORKS (WSN)s

In sensor networks, packet scheduling is most desired in the critical area, which

has to carry all the traffic generated in the network and becomes a bottleneck.

When the traffic load at a critical node exceeds the transmission capability of the

link (at least temporarily), queueing is unavoidable. In order to provide delay

guarantees for delay-sensitive applications in multihop communications, we first

consider a delay-balancing packet scheduling algorithm.

As mentioned in Section 2.4, scheduling in the critical area can be centralized.

Assume there is a powerful BS (e.g., the observer in Fig. 1.4). To better design

scheduling algorithms, first of all, we need to know the request of the observer.

Two scenarios are investigated. First, all data sensed at the same time are of the

same importance, in which case the algorithms are expected to uniformly balance

the delay such that all these data can reach the destination with approximately the

same delay. Since the packets with a long path usually experience a longer delay

than packets with a short path and all packets have the same destination, delay-

balancing is achieved by giving high priority to relayed packets. Second, new data

are preferred. Then, the scheduling algorithms need to cooperate with the routing

protocols such that both the transmission path (routing) and transmission order

(scheduling) are adapted to favor the newer data. Since the locally generated
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packets are usually newer than the relayed packets, high priority will be given

to local packets. In both scenarios, stale data should be discarded to empty

buffer space and reduce queueing. Then, delay and packet loss probability are the

primary concerns. Both scenarios can be implemented through priority scheduling.

In the first scenario, i.e., to uniformly balance the delay among all packets, the

scheduling algorithm is in essence delay balancing. Without priority scheduling,

the more distant the node from the destination, the longer the delay its packets

experience. To balance delays, the scheduler cleverly favors the relayed packets

over the local packets. In contrast, in the second scenario, the locally generated

packets have a short path and experience short delay. Then the scheduler favors

them over the relayed packets for better average delay and throughput.

The performance of wireline priority scheduling algorithms has been well ana-

lyzed [28, 37]. However, in the wireless environment, due to unavoidable channel

errors, the resulting priority queueing system should be analyzed with a service

model that captures the fragility of the wireless channel. In [141], we proposed

and analyzed a wireless priority queueing system for Rayleigh fading channels.

3.1 System Model

We consider a wireless link subject to bursty errors with time divided into

equal-sized slots. A two-state Markov chain, given in (1.10), is used to model such

a wireless channel. Channel state transitions and packet arrivals occur at the end

and the beginning of each slot, respectively. The arrival process is independent of

the transmission errors.

In a slot, at most one packet can be transmitted, and each transmission may fail

because of channel errors. The feedback is assumed to be error-free such that the
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transmitter knows whether the transmission is successful before the next time slot

and then determines to transmit the new packet or retransmit the failed packet.

The failed packets will be discarded based on the specified dropping strategy.

For simplicity, we first study a two-queue priority system to deal with two

priorities, a high priority (HP) queue and a low priority (LP) queue. Each priority

queue contains one or several flows of the same priority. In sensor networks, this

system is adequate to distinguish relayed traffic from local traffic. In a multimedia

system, it can distinguish guaranteed traffic from best-effort served traffic and

provide differentiated service. For delay-balancing scheduling, HP is assigned to

relayed traffic, which is aggregated from all upstream nodes. Without loss of

generality, we assume that the HP arrival process has a much higher average rate

than the LP arrival process.

Considering a Bernoulli arrival process of rate λi, i.e., at each time slot, flow

i has a packet arriving with probability λi (i = 1, 2 for HP and LP, respectively).

We assume λ1 À λ2. The HP packets are transmitted immediately if the HP

queue is not empty, whereas the LP packets have to wait until the HP queue

becomes empty. The single queue complies with FIFO.

3.2 Decomposition Approach

The non-preemptive priority scheduling exhibits a property that the HP queue

is exclusively served and independent of the LP queue, while the LP queue is served

only when the HP queue does not need to occupy the channel. The wired and

continuous counterpart of our wireless priority queueing system is given in [32]

using fluid flow models. Following a similar principle, we decouple the two-queue

system into two single-queue systems to simplify the analysis.
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Figure 3.1. Decomposition of a two-queue system into two single-queue
systems

In Fig. 3.1, the arrival process of each queue is denoted by Ai(t). The channel

error process C(t) is modulated by a two-state Markov chain, i.e., C(t) ∈ {0, 1}

and the transitions between 0 and 1 follow the transition matrix in (1.10). Two

queues share this channel according to priority scheduling. After decomposition,

each queue is served by an individual server with the channel error process C1(t)

and C2(t), respectively. The output process D(t) is an addition of two individual

output processes D1(t) and D2(t).

Since the HP queue is exclusively served by the channel, as if no LP queue

existed, its service rate process C1(t) is exactly the channel error process C(t).

The LP queue is in fact served by the remaining service, expressed as C2(t) =

C(t) − D1(t). The state space of the output processes D(t) and Di(t) is {0, 1},

in which 1 represents a packet departure event, and 0 otherwise. To guarantee a

state space {0, 1} for C2(t), we have

C2(t) = (C(t) − D1(t)) mod 2 = C(t) + D1(t). (3.1)

Note that C(t)D1(t) ≡ 0, because it is impossible that a packet departs the system

as the channel is bad. Fig. 3.2 shows a sample path of each process. C2(t) = 0

if C(t) = 0 and D1(t) = 0, i.e., the channel is good and no HP packet is waiting
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Figure 3.2. Sample path of the two-priority system

for service. Then the LP packets will be transmitted successfully. Similarly, as

C2(t) = 1, either the channel is bad, or the HP queue is not empty, then the

LP packet transmission is either failed or blocked. In any case, no successful LP

packet transmission occurs. Therefore, the LP is served as if there is a virtual

channel with service process C2(t). As long as C2(t) is determined, the HP and

LP queue can be analyzed as two independent queues.

3.3 A Single Wireless Queue with a Bounded Delay Strategy

Reliable data communication can be provided either by increasing the transmit

power or reducing the transmission rate. There are two error control models

in wireless networks, Forward Error Correction (FEC) and Automatic Repeat

request (ARQ). FEC requires greater decoding complexity and reduced effective

transmission rate to build in error correction capabilities, while ARQ introduces

additional retransmission energy cost. Combining ARQ and FEC is a way to

achieve energy efficiency. There are hybrid ARQ schemes too. But they are
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beyond the scope of this thesis. For a tractable analysis, we consider ARQ in this

section.

100% reliability is provided by retransmitting the failed packets until they are

successfully received, which, however, may cause long delay, especially in multihop

networks. A simple approach to improve packet delays is to drop packets with long

delay or when the buffer is full. In [156], three dropping strategies are presented:

• Finite Buffer (FB) that drops the newly arriving packet if the buffer is full.

This strategy is applied to the system with a finite buffer of size B.

• Limited Attempts (LA) that drops the packets, which has experienced L

unsuccessful attempts. The system can have an infinite queue.

• Bounded Delay (BD) that drops the packets of delay more than DB. The

system can an infinite buffer.

Considering the delay-sensitive property of sensor network applications, we use the

BD model to drop packets. A two-dimensional Markov chain has been proposed

in [68] to describe the BD dropping system. The state space {(i, j)| − ∞ < i ≤

D, j = 0, 1} contains two components. The first entry i keeps track of the delay

of the packet at the head of the line, and the second models the channel error

process. When i < 0 (negative delay), the queue is empty and |i| represents the

remaining time before a new packet arrives at the empty queue.

In the HP system, let X(n) denote the system state at time t and DB,1 the
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HP delay bound. Define P(i,j),(k,l) as the one-step system transition probability

P(i,j),(k,l) = Pr{X(t + 1) = (k, l) | X(t) = (i, j)}

=


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

cjl i < 0, k = i + 1

ai−k+1
1 c0l 0 ≤ i ≤ DB,1, k ≤ i, j = 0

c1l 0 ≤ i < DB,1, k = i + 1, j = 1

a
DB,1−k+1
1 c1l i = DB,1, k ≤ DB,1, j = 1

0 otherwise,

(3.2)

where cij is the transition probability of the channel error process given by (1.10)

and

at
1 := λ1(1 − λ1)

t−1 ; ( note that
∞
∑

t=1

at
1 = 1 ). (3.3)

The resulting Markov chain is of infinite length. The steady-state probabilities

π(i, j), solved by using the balance equations of the Markov chain, are

π(i, j) =
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ω xDB,1−iπ(DB,1, 1) i > 0, j = 0

(1 − λ1)
DB,1−i

[

1 +
c10(1 − ω)DB,1−i

(1 − ω)ωDB,1−i

]

π(DB,1, 1) i ≥ 0, j = 1

c10
c01

xDB,1π(DB,1, 1) i = 0, j = 0

(1 − λ1)
−i c10

c01
xDB,1π(DB,1, 1) i < 0, j = 0

(1 − λ1)
DB,1−i(1 + c10ωDB,1

)π(DB,1, 1) i < 0, j = 1,

(3.4)
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where






















ω = 1 − λ1(1 − c01) − c10(1 − λ1)

x = 1 − λ1
ω

ωDB,1
= 1 − ωDB,1

ωDB,1(1 − ω)
.

Note that the first three expressions in (3.4) have been derived in [68], and the

last two equations are obtained after we apply the condition of infinite interarrival

time (A1 = ∞) to {π(i, j) | i < 0}.

The dropping probability π(DB,1, 1) is calculated by using

DB,1
∑

i=−∞

1
∑

j=0

π(i, j) = 1 ; therefore π(DB,1, 1) =
1

ksum

, (3.5)

where

ksum =
c10x

DB,1

c01λ1

+ (1 + c10ωDB,1
)
(1 − λ1)

DB,1+1

λ1

+

[

1 − (1 − λ1)
DB,1+1

]

(1 − ω − c10)

λ1(1 − ω)

+
c10(1 − xDB,1)

ω(1 − x)
+

c10(1 − xDB,1+1)

(1 − ω)(1 − x)
. (3.6)

3.4 Characterization of the Virtual Channel Error Process C2(t)

We find that as i < 0 (⇔ D1(t) = 0) and j = 0 (⇔ C(t) = 0), there is no

packet in the HP queue (thus no packet departure) and the channel is good, which

corresponds to C2(t) = 0; the remaining states correspond to C2(t) = 1. Since

the virtual channel cares only about the transition between 0 and 1, not how the

HP system evolves, it is sensible to divide the HP state space into two subsets

I and B, defined as I = {(i, j) | i < 0 and j = 0}, B = IC . The subset I and

B correspond to 0 and 1 of C2(t), respectively. Now, we compute the transition

probabilities between these two subsets. (Note that we use ∼, as in c̃10 and ε̃, to
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denote the parameters associated with the virtual channel error process C2(t)).

c̃01 = Pr{X(t + 1) ∈ B|X(t) ∈ I} =
Pr{X(n + 1) ∈ B, X(n) ∈ I}

Pr{X(n) ∈ I}

=

∑

i<0

π(i, 0)
(

DB,1
∑

k=−∞
P(i,0),(k,1) +

DB,1
∑

k=0

P(i,0),(k,0)

)

∑

i<0

π(i, 0)

= c01 +
π(−1, 0)
∑

i<0

π(i, 0)
(1 − c01) = c01 + λ1(1 − c01); (3.7)

c̃10 = Pr{X(t + 1) ∈ I|X(t) ∈ B} =
Pr{X(n + 1) ∈ I, X(n) ∈ B}

Pr{X(n) ∈ B}

=

DB,1
∑

i=−∞

∑

k<0

π(i, 1)P(i,1),(k,0) +

DB,1
∑

i=0

∑

k<0

π(i, 0)P(i,0),(k,0)

DB,1
∑

i=−∞
π(i, 1) +

DB,1
∑

i=0

π(i, 0)

=
k10

k1

, (3.8)

where

k10 = c10(1 − λ1)
DB,1+1

[

(1 − c01 − c10)ωDB,1
+

1 + c10ωDB,1

λ1

+
1 − c01

c01ω
DB,1

]

π(DB,1, 1)

k1 = 1 − c10

c01

1 − λ1

λ1

xDB,1π(DB,1, 1).

c̃01 in (3.7) is consistent with our intuition. There is a transition from C2 = 0 to

C2 = 1 if either the channel becomes bad (i.e., j : 0 → 1 with probability c01)

or a packet arrives but the channel remains good (i.e., i : −1 → 0, j = 0 with

probability λ1c00).
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Furthermore, the average error rate ε̃ is obtained in a straightforward way:

ε̃ =
c̃01

c̃01 + c̃10

= 1 − c10

p01

1 − λ1

λ1

xDB,1π(DB,1, 1)

=

DB,1
∑

i=0

π(i, 0) +

DB,1
∑

i=−∞
π(i, 1) = Pr{X ∈ B}. (3.9)

The computed error rate ε̃ is identical to the sum probability of all bad states in

B, which proves that our approach of state aggregation is reasonable. In summary,

we aggregate all the good states of the HP queueing system into one state 0 of the

virtual channel error process C2(t) and all the bad states into 1. Thus we have

another two-state Markov model {c̃ij|i, j = 0, 1} for C2(t).

3.5 The Two-Queue Priority System

In Section 3.2, the two-priority queueing system is decomposed into two single-

queue systems whose channel processes are C(t) and C2(t), which can be modu-

lated by two-state Markov chains with transition probabilities {cij | i, j = 0, 1}

and {c̃ij | i, j = 0, 1}, respectively. Each class has its own delay bound DB,k

(k = 1, 2). A reasonable assumption is that DB,2 > DB,1 because the locally gen-

erated packets can tolerate a longer delay than the relayed packets if they have

the same e2e delay constraint.

Naturally, the packet delay d
(k)
j and packet loss probability p

(k)
L for queue k are

calculated as in the single-queue system (given in [68]):

d
(k)
j =

π(k)(j, 0)
Dk
∑

i=0

π(k)(i, 0)

and p
(k)
L =

π(k)(Dk, 1)

λk

, (3.10)
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where π(1)(i, j) = π(i, j) in (3.4), and π(2)(i, j) is calculated in the same way as

in (3.4), but with different parameters λ2 and {c̃ij|i, j = 0, 1} given by (3.7) and

(3.8).

With this decomposed system, it is not difficult to approximate the output

process D(t). The arrival processes are Bernoulli. However, due to the correlations

in the channel errors and the two queues, the output process does not preserve the

memoryless property. For the e2e analysis, it is desired that the output process

has the same probabilistic properties as the input process. A natural idea is to

introduce some approximations and make the output process memoryless. The

key in the Bernoulli process is the probability λ of an event occurring. In terms of

the output process, the desired probability is the average departure probability.

As pointed out before, the output process D(t) is the sum of two individual

processes D1(t) and D2(t). Denote the departure probability of queue k by p
(k)
d .

By means of the decomposition principle, the overall departure probability is:

pd = p
(1)
d + p

(2)
d (1 − ε̃). (3.11)

Similar to the calculation of ε̃, p
(k)
d can be calculated by dividing the system space

into two subsets. For instance, in the HP system, a packet departs when i ≥ 0

and j = 0. Consequently, we denote the subset D = {(i, j) | i ≥ 0 and j = 0} as

the set of all states in which a packet departure occurs, and N = DC is the set of

remaining states. Therefore, the departure probability for the HP queue is given

by the equation

p
(1)
d = Pr{X ∈ D} =

DB,1
∑

i=0

π(i, 0) =
c10

c01

xDB,1
(

1 +
c01

ω

1 − xDB,1

1 − x

)

π(DB,1, 1).

(3.12)
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Figure 3.3. Packet loss rate pL in a two-queue priority system

p
(2)
d can be computed the same way as p

(1)
d .

3.6 Numerical Results

In this section, we present some example results obtained based on the analysis

described above. Since the focus is on the critical nodes, the exported traffic

load λ1 is assumed to be heavy, and λ2 ¿ λ1. As mentioned in Section 3.5,

DB,2 > DB,1. Specifically, we set DB,2 = 10DB,1.

We first display the impact of the delay bound on the packet loss probability.

The arrival rates are λ1 = 0.8 and λ2 = 0.08, respectively; the mean burst error

length is 1
c10

= 10, and the average error rate ε = 10−2. This setting implies a

heavy traffic load and highly correlated errors, which is the worst case system.

Fig. 3.3(a) exhibits the dropping probabilities pL of the two queues. Besides the

part where the delay bound is very small (DB,1 ≤ 4 which is not practical — in

fact, we usually have DB,1 ≥ 10), the packet loss probability of the local traffic is
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(b) Error rate of the virtual channel
vs. channel transition probability c10

Figure 3.4. The impact of the channel transition probability c10

much smaller than that of the relayed traffic (can be ignored when DB,1 ≥ 20).

This is consistent with our expectation. Even though the relayed traffic exclusively

occupies the channel, most local packets are still sent out successfully, with a fairly

small loss. Therefore, the delay-balancing scheme improves the delay of the long-

path packets at a small price on the short-path packets. Moreover, as proved by

[68], the packet loss probability (log scale) is linear in the delay bound.

Next, we investigate the impact of the channel. First consider the channel

error rate ε. The delay bounds are fixed at DB,1 = 10 and DB,2 = 100, and

other parameters remain unchanged. Fig. 3.3(b) displays the two queues’ packet

loss probability versus the channel error rate ε. The HP queue is like a single

queue with a server C(t), and its p
(1)
L (log scale) is near-linear to log(ε) (which

is identical to the result of [68]). On the other hand, for LP packets, when ε is

small (< 10−3), the packet loss probability is almost independent of ε. Even as ε

increases (to 10−2), the change of p
(2)
L is still very small.
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(b) Error rate of the virtual channel ε̃

vs. arrival rate λ

Figure 3.5. The impact of the HP flow’s arrival rate λ1

c10 is another channel parameter considered. Fig. 3.4(a) shows that, like ε, c10

does not play a significant role in p
(2)
L . Fig. 3.4(b) shows how the error rate ε̃ of

the virtual channel changes with c10. No apparent change in ε̃ happens when the

channel error correlation decreases (c10 increases). That explains why p
(2)
L does

not greatly change with c10.

Fig. 3.5(a) and Fig. 3.5(b) show the influence of the arrival rates λi given that

λ1 + λ2 = 0.9. The virtual channel error rate ε̃ linearly increases with λ1, which

results in the increase of the LP queue’s packet loss probability p
(2)
L (Fig. 3.5(a)).

In summary, the LP queue’s performance is determined by the virtual channel,

which, in turn, is a combination of the HP queue and the real channel. Our

numerical results show that the HP flow is more important for the LP queue than

the channel C(t). This is reasonable, since the channel is good on average (given

the assumption of small error rate ε), and the bad period of the virtual channel is

highly possibly caused by the arrival of HP packets. Therefore, small changes in
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the arrival rate of the HP flow will lead to a bigger improvement of the LP packet

loss probability, compared to the channel statistics.

3.7 Conclusions

A priority algorithm with BD dropping can provide balanced delay guarantees

for sensor networks. We use a decomposition approach to solve the queueing

problems in such a priority queueing system, in which the channel errors are

correlated. The numerical results show that when the wireless channel is not

bad on average (small error rate), which is reasonable in practice, the queueing

performance of flows with low priorities is mainly determined by that of the high

priorities, rather than the channel itself. Moreover, if the delay bounds are chosen

appropriately (e.g. DB,2 = 10DB,1) and the LP traffic load is light, the loss rate in

the LP packets is small. This decomposition approach can be easily generalized to

a k-priority system (k > 2) in an iterative way by constructing a virtual channel

for each lower priority class i (i > 1).
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CHAPTER 4

QUEUEING ANALYSIS OF TDMA AT A SINGLE NODE

One challenge for the design of MAC schemes in WMNs is spatial reuse. A

simple but effective scheme is spatial TDMA [23] in which a node is served only

once in m time slots but nodes m hops away can transmit simultaneously in line

networks. Such TDMA systems look very simple but their delay performance is

difficult to statistically analyze even at a single node because of the involvement of

both MAC and packet queueing. From the perspective of discrete-time queueing

theory, the TDMA system at a single node can be modeled a G/G/1 systems

with non-integer interarrival time. Specifically, denote m time slots as one frame.

Service is available at the frame boundaries but packet arrivals may happen at

every time slot. So interarrival times are non-integers. Consider deterministic

packet arrivals, i.e., CBR traffic. For tractable analysis, the wireless channel

errors are assumed to be independent and the system is reduced to D/Geom/1

[145]. Conventional G/Geom/1 systems with integer interarrival times have been

studied extensively [24, 55]. However, the system with non-integer interarrival

times, to the best of our knowledge, has not been investigated.

4.1 System Model

Assume the outage rate of the wireless channel is ε = 1 − µ ≤ 1, where ε

can be obtained from (1.11) even if the channel is modeled as a two-state Markov
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chain. Then the served packet will depart the node with probability µ and stay

with probability ε. The overall service time is geometric with µ. The unit time is

denoted as a frame of m slots. The arrival process is deterministic with a constant

interarrival time of r slots. In terms of frames, the interarrival time is r/m > 1.

Both m and r are integers, and m/r < µ for stability. The system is modeled as a

D/Geom/1 with an irreducible fractional rational interarrival time of r/m. Define

∆ , r − m as the arrival silence time and δ = ∆/m as the relative arrival silence

time. If δ < 1, the server cannot be idle for more than one frame, the average

arrival rate is m/r = 1/(1 + δ) > 0.5 and traffic is said to be heavy.

Fig. 4.1(a) illustrates such a TDMA system with m = 3, r = 4. Obviously, the

packet arrival pattern is repeated in every r frames, which is denoted as “cycle”

in the figure. The number of arrivals in one frame depends on the arrival pattern

of all previous r − 1 frames and is shown in Fig. 4.1(b), where i(j) (i ≤ 1, |j| < r)

indicates that i packets arrive during the current frame, and the next packet will

arrive in the |j|th slot of the next frame. Since r > m, i ≤ 1. The transition of j

is: (i) if |j| ≥ m, then |j| 1−→ |j| − m; (ii) if |j| < m, then |j| 1−→ |j| + ∆. This

arrival pattern cannot be characterized by a random process, but its repetitive

property can be used to keep track of the system evolution.

The system states at the beginning of frame t are represented by a two-

dimensional Markov chain {Q(t), Y (t)}, where Q(t) ≥ 0 is the queue length and

Y (t) = 1, 2, . . . , r is the number of slots to the next packet arrival. The arrival

process is characterized by A(t), the number of arrivals during frame t. Naturally,

if 1 ≤ Y (t) ≤ m, a packet will arrive during frame t and A(t) = 1. Otherwise, no

packet arrives and A(t) = 0. Then, we can divide {1, 2, . . . , r} into two subsets

Y1 = {1, 2, . . . ,m} and Y0 = {m + 1, . . . , r}. Assume that the service starts at
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(a) Packet arrivals and departures represented by the downward arrows. The
frames are delimited by the bold line and indexed by numbers. The slots are
delimited by the thin lines. Packet departures occur at the frame boundaries
while packet arrivals can occur during the frames. System states transit at the
frame boundaries. The arrival pattern is repeated after one cycle of r frames.

1

1

1 11(−2)1(−1)1(0) 0(−3)

(b) Arrival pattern in one cycle. Denote the number of arrivals
in one frame by i(j), where i ≥ 0 indicates the number of packet
arrivals in one frame while j < 0 and |j| is the number of slots
till the next packet arrival.

Figure 4.1. D/Geom/1 queueing systems with non-integer interarrivals
(m = 3, r = 4)
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the beginning of a frame. So, system states transit at the frame boundaries,

Q(t + 1) = (Q(t) + A(t) − S(t))+, Y (t + 1) =











Y (t) + ∆, A(t) = 1

Y (t) − m, A(t) = 0,
(4.1)

where the service process S(t) = 1 with probability µ and S(t) = 0 with probabil-

ity 1− µ. Note that if A(t) = 1, Y (t + 1) ∈ {∆ + 1, . . . , r} , Y
′

1, and if A(t) = 0,

Y (t+1) ∈ {1, . . . , ∆} , Y
′

0. Both Y1 and Y
′

1 indicates the occurrence of an arrival

event. The difference is in the former, this event occurs during a frame while in

the latter, the event has occurred prior to the beginning of a frame.

Denote the steady-state system probability by Q(n, y) := lim
t→∞

Pr{Q(t) =

n, Y (t) = y}. The equilibrium state transitions are as follows

y ∈ Y
′

0 : Q(n, y) =











(1 − µ)Q(n, y + m) + µQ(n + 1, y + m) n > 0

Q(0, y + m) + µQ(1, y + m) n = 0

y ∈ Y
′

1 : Q(n, y) =











(1 − µ)Q(n − 1, y − ∆) + µQ(n, y − ∆) n > 1

Q(0, y − ∆) + µQ(1, y − ∆) n = 1

(4.2)

Note that if Y (t+1) ∈ Y
′

1 (or A(t) = 1), a new packet has arrived but is not served

yet at the beginning of frame t + 1. Then Q(t + 1) > 0. Therefore, Q(0, y) =

0 for y ∈ Y
′

1. Once the probabilities Q(n, y) are known, various performance

measures of interest can be obtained straightforwardly. We first use the probability

generating function (pgf) of Q(n, y) to obtain the system idle and busy probability,

then solve Q(n, y) with an eigenvalue approach.
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4.2 Probability Generating Functions (pgf)

The queue length probability distribution is

πn =
r
∑

y=1

Q(n, y). (4.3)

Define the pgf of Q(n, y) and πn as follows

Qn(z) ,
r
∑

y=1

Q(n, y)zy , Qn,0(z) + Qn,1(z),

G(s, z) ,
∞
∑

n=0

r
∑

y=1

π(n, y)zysn =
∞
∑

n=0

Qn(z)sn , G0(s, z) + G1(s, z)

G(s) =
∞
∑

n=0

πns
n = G(s, 1) , G0(s) + G1(s),

where

Qn,i(z) ,
∑

y∈Yi

Q(n, y)zy, Gi(s, z) ,
∞
∑

n=0

∑

y∈Yi

Q(n, y)zy, i = 0, 1

Then, πn = Qn(1) = Qn,0(1)+Qn,1(1). Here Qn,i(z) and Gi(s, z) are distinguished

by Y1 and Y0 to indicate the impact of the potential arrivals. Multiplying (4.2)

with zy, we obtain

Q0(z) = µz−mQ1,0(z) + z−mQ0,0(z)

Q1(z) = µz−mQ2,0(z) + (1 − µ)z−mQ1,0(z) + µz∆Q1,1(z) + z∆Q0,1(z)

Qn(z) = µz−mQn+1,0(z) + (1 − µ)z−mQn,0(z) + µz∆Qn,1(z) + (1 − µ)z∆Qn−1,1(z).

(4.4)
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Then, multiplying both sides of (4.4) by sn yields

G(s, z)zm = (1−µ+µs−1)
[

G0(s, z)+szrG1(s, z)
]

+µ(1−s−1)
[

Q0,0(z)+szrQ0,1(z)
]

,

(4.5)

which is followed by the pgf of πn,

G(s) = (1 − µ + µs−1)µ−1sG1(s) + Q0,1s + Q0,0

= G1(s) +
1 − µ

µ
G1(s)s + Q0,1s + Q0,0 =⇒

G0(s) =
1 − µ

µ
G1(s)s + Q0,1s + Q0,0, (4.6)

where Qn,i = Qn,i(1). Summing (4.4) up yields

∞
∑

n=0

Qn(z) = z−m

∞
∑

n=0

Qn,0(z) + z∆

∞
∑

n=0

Qn,1(z)

=⇒
∞
∑

n=0

Qn,1(z) =
1 − z−m

z∆ − z−m

∞
∑

n=0

Qn(z)

=⇒
∞
∑

n=0

Qn,1 =
1 − z−m

z∆ − z−m

∣

∣

∣

z=1
=

m

r
,

(4.7)

which confirms that the arrival rate is m/r. In terms of Y
′

1 and Y
′

0,

∑

y∈Y
′

1

Q(n, y)

∑

y∈Y
′

0

Q(n, y)
,

Q
′

n,1

Q
′

n,0

=
µ

1 − µ
, n ≥ 1. (4.8)

Although Qn,1 6= Q
′

n,1, the average arrival rate m/r can be obtained in a similar

way
∞
∑

n=0

Q
′

n,1 =
m

r
, (4.9)
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where Q
′

0,1 = 0. Setting z = 1 in (4.4), we obtain

π0 = µQ1,0 + Q0,0

(1 − µ)πn = (1 − µ)Qn,0 + µQn+1,0, n ≥ 1.
(4.10)

Summing up (4.10) gives the system idle probability π0 = 1 − m/(rµ) = 1 − ρ,

where ρ , m/(rµ) is the normalized traffic intensity at the frame level. Recall

that Q(0, y) = 0 for y > m. Therefore, Q0,0 = Q
′

0,0 = 0 and π0 = Q0,1 for ∆ < m.

From (4.10), Qn,1 and Qn+1,0 are related by

Q0,1 = µQ1,0

(1 − µ)Qn,1 = µQn+1,0, n ≥ 1,
(4.11)

which leads to

Qn,1

Qn+1,0

=
µ

1 − µ
, n ≥ 1. (4.12)

Note the difference between (4.12) and (4.8). Qn(z) and G(s) are mainly used to

confirm π0 = 1−ρ, which is consistent with the results of conventional D/Geom/1

systems. The probabilities Q(n, y) are solved by an eigenvalue approach.

4.3 Eigenvalue Approach

Define the row vector vn := {Q(n, 1), Q(n, 2), . . . , Q(n, r)} (n ≥ 0). For n ≥ 1,

the transition equations (4.2) are of a special structure that can be rewritten as a

set of balance equations in a matrix form,

vnM0 + vn+1M1 + vn+2M2 = 0, (4.13)
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where

M0 =







0m×∆ (1 − µ)Im

0∆×∆ 0∆×m






,

M1 =







0m×∆ µIm

(1 − µ)I∆ 0∆×m






− I,

M2 =







0m×∆ 0m×m

µI∆ 0∆×m






.

This is a homogeneous vector difference equation of order 2 with constant coeffi-

cients. Associated with it is the characteristic matrix polynomial, Q(λ), defined

as

Q(λ) = M0 + M1λ + M2λ
2. (4.14)

According to [95], using the method of spectral analysis, or eigenvalue method

[44, 90], vn can be expressed in an eigenvalue/eigenvector form

vn = CΛnΦ, (4.15)

where the diagonal matrix Λ = diag(λi) and the matrix Φ = [φi]
T are composed

of the eigenvalues {λi} and eigenvectors {φi} of Q(λ) in the form of φQ(λ) = 0,

where φ = {φ(1), φ(2), . . . , φ(r)}. The eigenvalues are solutions to

det|Q(λ)| = −λr + λ∆(1 − µ + µλ)r = 0, (4.16)

which leads to the characteristic polynomial

λm = (1 − µ + µλ)r, or λ = (1 − µ + µλ)r/m. (4.17)
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The eigenvalues λ can be found by setting x = λ1/r and rewriting the polyno-

mial (4.17) as

f(x) = µxr − xm + 1 − µ. (4.18)

This polynomial has M distinct roots [90], where M = degree{det[Q(λ)]} and m

of which are inside the unit circle. The corresponding m eigenvalues are defined

as effective eigenvalues. Based on Descartes’ Sign Rule, among the m effective

eigenvalues, there is one positive real, denoted by λ0 < 1 and all others are either

negative real or complex, denoted by |λi| < 1 (i = 1, . . . ,m − 1). In order for

vn to form a vector of probabilities, (4.15) should include only eigenvalues inside

the unit circle, i.e., the effective eigenvalues. Therefore, vn is a sum of m linearly

independent vectors

vn =
m−1
∑

i=0

Ciφiλ
n
i , |λi| < 1, (4.19)

where Ci is any constant such that the sum of all Q(n, y) equals to 1. Since (4.18)

is a polynomial with real coefficients, the complex eigenvalues appear in conjugate

pairs. To guarantee that (4.19) is real, the corresponding Ci must be paired as

well.

Recall that in the conventional D/Geom/1 system with integer interarrival

times [24, 31, 55], i.e., m = 1, the queue length distribution is

πn =











1 − ρ n = 0

ρ(1 − λ)λn−1 n ≥ 1,
(4.20)

where λ is a unique root of λ = (1 − µ + µλ)r. Based on (4.17), for m = 1,

there is only one effective eigenvalue λ0, which is positive real. Then, Q(n, y) and

the resulting πn (n ≥ 1) are composed of a single exponential term λn
0 , which is
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consistent with (4.20). In other words, our analysis generalizes the conventional

D/Geom/1 queueing analysis to the cases m > 1.

The eigenvectors can be derived from the eigenvalues. Given M0, M1, and

M2, φQ(λ) = 0 expands to give

φ(y) =











(1 − µ + µλ)φ(y + m) y ≤ ∆

1 − µ + µλ

λ
φ(y − ∆) y > ∆.

(4.21)

Let β = 1 − µ + µλ. From (4.17), it is trivial to obtain λm = βr. Given the

definition xr = λ, the relationships between x, λ and β are as follows

xr = λ, xm = β, x∆ =
λ

β
. (4.22)

Then, (4.21) leads to

φ(y) = xφ(y + 1) =⇒ φ(y) = x−(y−1)φ(1), y ≥ 1, (4.23)

i.e., the eigenvectors can be expressed exponentially with the r-th root of the

associated eigenvalues. By normalizing the eigenvectors, we obtain

φi(1) =
1 − x−1

i

1 − x−r
i

=
λi

1 − λi

· 1 − xi

xi

. (4.24)

Then, the system steady-state probabilities Q(n, y) are

Q(n, y) =
m−1
∑

i=0

Ciλ
n−1
i φi(y) =

m−1
∑

i=0

Ci(1 − xi)x
−y
i λn

i

1 − λi

, n ≥ 1. (4.25)

Q(0, y) are calculated from Q(1, y) based on (4.2).
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4.4 Queue Length Distributions

Based on (4.3) and (4.25), the queue length probabilities πn (n ≥ 1) are

πn =
r
∑

y=1

Q(n, y) =
r
∑

y=1

m−1
∑

i=0

Ci(1 − xi)x
−y
i λn

i

1 − λi

=
m−1
∑

i=0

Ciλ
n−1
i . (4.26)

π0 = 1−ρ has been shown in (4.10). Unlike conventional D/Geom/1 systems with

integer interarrival times, here πn is a sum of m exponential terms. Specially,

Qn,1 =
m
∑

y=1

Q(n, y) = µ
m−1
∑

i=0

Ciλ
n
i

βi

Qn,0 =
r
∑

y=m+1

Q(n, y) = (1 − µ)
m−1
∑

i=0

Ciλ
n−1
i

βi

,

(4.27)

which verifies Qn,1/Qn+1,0 = µ/(1 − µ) (4.12). Let νn = Qn,1/πn. Since Qn,1 is

the sum of all Q(n, y) for y ∈ Y1, which indicates a packet arrival, νn can be

regarded as the arrival rate when there are n packets in the system. From (4.27)

and |λi| < 1,

νn

1 − νn

==
µ

1 − µ
·

m−1
∑

i=0

Ciλ
n
i

βi

m−1
∑

i=0

Ciλ
n−1
i

βi

<
µ

1 − µ
=⇒ νn < µ, (4.28)

i.e., stability is guaranteed that the arrival rate νn is smaller than the service rate

µ. Apparently, νn is state-dependent while the average arrival rate is
∑

n≥0 νnπn =

m/r. Then, (4.11) can be rewritten as a set of balance equations

ν0π0 = µ(1 − ν1)π1

(1 − µ)νnπn = µ(1 − νn+1)πn+1, (4.29)
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and the transition diagram of the queue length n can be modeled by a birth-death

process with state-dependent arrival rates as shown in (Fig. 4.2). The queue length

probabilities are

πn =
π0

1 − µ

(1 − µ

µ

)n
n−1
∏

i=0

νi

1 − νi+1

, n ≥ 1. (4.30)

Specially, if m = 1, νn = µλ/(1−µ+µλ) ≡ ν becomes state-independent and the

system evolution follows the birth-death process with an arrival rate ν and service

rate µ (just like Geom/Geom/1).

PSfrag replacements

ν0 (1 − µ)ν1 (1 − µ)νn(1 − µ)νn−1

µ(1 − ν1) µ(1 − ν2) µ(1 − νn) µ(1 − νn+1)

0 1 2 n − 1 n n + 1

Figure 4.2. State transition diagram of the queue length in the
D/Geom/1 system

4.5 Delay Distributions

4.5.1 General Analysis

If ∆ is any positive integer greater than 1, the delay distribution are directly

derived from the steady-state system probabilities Q(n, y). In terms of slots, the

packet delay D is composed of three parts, the access delay DA ∈ {0, . . . ,m− 1},

the queueing delay DQ, and the service time DS. If a packet arrives during frame
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t, its access delay is dA = m−Y (t), where Y (t) < m. Then Y (t+1) = Y (t)+∆ =

m − dA + ∆ = r − dA ∈ Y
′

1. Note that this new arriving packet is accounted for

by Q(t + 1) = n, i.e., n − 1 packets have been buffered upon the arrival of the

new packet. Given the access delay dA, the conditional probability Q(n|dA) that

the new packet sees n − 1 packets in the system is

Q(n|dA) ,
Q(n, r − dA)
∞
∑

n=1

∑

y∈Y
′

1

π(n, y)

=
r

m
Q(n, r−dA) =

r

m

m−1
∑

i=0

Ci(1 − xi)λ
n−1
i xdA

i

1 − λi

. (4.31)

The packet queueing delay DQ is the sum of service times DS0
of the n−1 buffered

packets. DS0
is geometric with µ at the frame level. At the slot level, it is

Pr{DS0
= n} =











µ(1 − µ)k−1, n = km, k ≥ 1

0, otherwise.
(4.32)

Its pgf is thus

GDS0
(z) =

∞
∑

k=1

µ(1 − µ)k−1zkm =
µzm

1 − (1 − µ)zm
. (4.33)

Since the service times are independent, the pgf of DQ is GDQ
(z) = (GDS0

(z))n−1.

The service time of the packet under consideration is studied in two cases: (1)

if the packet departs at the end of the frame. Then, its service time DS has the

same distribution as DS0
; (2) if the packet departs at the end of the first slot of

the frame (which happens in communications networks using TDMA), its service
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time distribution is

Pr{DS = n} =











µ(1 − µ)k, n = km + 1, k ≥ 0

0, otherwise.
(4.34)

Correspondingly, the pgf of DS is

GDS
(z) =

∞
∑

k=0

µ(1 − µ)kzkm+1 =
µz

1 − (1 − µ)zm
, (4.35)

which is different from GDS0
(z) by a factor zm−1. The subsequent analysis is

focused on the second case, whose results can be extended to the first case by

scaling zm−1.

Since DA, DQ, and DS are all independent, the pgf of the total delay D =

DA + DQ + DS is calculated as follows,

GD(z) =
∞
∑

n=1

m−1
∑

dA=0

GDQ
(z)GDS

(z)π(n|dA)zdA

=
∞
∑

n=1

m−1
∑

ya=0

( µzm

1 − (1 − µ)zm

)n−1 µz

1 − (1 − µ)zm
π(n|dA)zdA

=
1

ρ

m−1
∑

i=0

Ci(1 − xi)z

xi(1 − λi)(1 − xiz)
. (4.36)

Apparently, GD(z) is the sum of m geometric series with parameters xi. The zeros

of GD(z) are z = x−1. Plugging x = z−1 into (4.18), the zeros of GD(z) are the

roots of the following polynomial

g(z) = (1 − µ)zr − z∆ + µ. (4.37)
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The delay distribution follows immediately

Pr{D = n} =
1

ρ

m−1
∑

i=0

Ci

1 − λi

· (1 − xi)x
n−1
i , n ≥ 1, (4.38)

which leads to the delay mean and variance as follows

D =
1

ρ

m−1
∑

i=0

Cixi

(1 − λi)(1 − xi)
, (4.39)

σ2 =
1

ρ

m−1
∑

i=0

Cixi(1 + xi)

(1 − λi)(1 − xi)2
−
(

D
)2

. (4.40)

The delay distributions depend on xi and λi, which are solved from the charac-

teristic polynomial λm = (1 − µ + µλ)r. If either m or r are large, xi and λi are

obtained only numerically.

4.5.2 Special Case ∆ = 1

For a special case ∆ = 1 or r = m + 1, the calculation of xi and λi can be

avoided in the derivation of the delay distribution by using a delay model [69].

Unlike traditional queueing analysis that usually sets the queue length as the

system state, in the delay model, the system state is represented by the delay of

the HOL (Head of Line) packet. To be consistent with previous sections, the delay

is measured in terms of slots, but state transitions occur at the frame boundaries.

The transition probabilities Pij are

Pij =























µ i ≥ 0, j = i − 1,

1 − µ i ≥ 0, j = i + m,

1 i = −1, j = m − 1,

(4.41)
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The negative state −1 implies that the buffer is empty and thus the server is idle.

Besides, the remaining time prior to the next arrival is one slot. For example, in

Fig. 4.1(a), at the beginning of frame 2, the last packet has departed but the next

packet has not arrived yet. Hence, the system is at state −1 and will jump to

state m− 1 at frame 3 since the newly arriving packet, also the HOL packet, has

already been buffered for m− 1 slots before it is served at the beginning of frame

3. Since r = m + 1, this arrival event occurs with probability 1.

At frame t, let the HOL packet be indexed by k and its delay be wk(t). With

probability µ, packet k will depart the system (either at the end of frame t or

at the end of the first slot of frame t), and packet k + 1 (if it has arrived) will

become the HOL packet at frame t + 1. The delay of packet k + 1 at frame t is

wk+1(t) = wk(t) − r and increases by m up to wk+1(t + 1) = wk(t) − r + m =

wk(t) − 1 at frame t + 1. In other words, the system state transits from wk(t) to

wk(t) − ∆. On the other hand, with probability 1 − µ, packet k remains in the

buffer and will be retransmitted after one frame. Its delay thus increases by m to

wk(t + 1) = wk(t) + m.

Let the steady-state probabilities be {πi| − 1 ≤ i < ∞} and the probability

mass function (pmf) of the delay be {Dn|i ≥ 1}. Then,

Dn =
µπn−1
∑

i≥0

µπi

=
πn−1
∑

i≥0

πi

, (4.42)

where
∑

i≥0

µπi is the normalization constant, and µ accounts for the fact that the

packet departs the system with probability µ. The pgf and mean and variance of

the local delay are given in Theorem 4.5.1.

Theorem 4.5.1 Consider a discrete-time queueing system with a geometric server
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Gµ and a constant interarrival time r/m, where r = m + 1. Then, the pgf, mean

and variance of the delay are

GD(z) =
1 − ρ

ρ
· (1 − zm)z

(1 − µ)zr − z + µ
(4.43)

D =
1

2(1 − ρ)
, (4.44)

σ2 =
1

4(1 − ρ)2
− m + 2

6(1 − ρ)
. (4.45)

where ρ = m/(rµ) is the traffic intensity.

Proof Based on (7.1) and (4.42), we obtain the following balance equations:

Dn =























µDn+1 1 ≤ n < m

µDn+1 + D0 = µDn+1 + µD1 n = m

µDn+1 + (1 − µ)Dn−m n > m

(4.46)

Manipulating (4.46), we have the pgf GD(z),

GD(z) = µ(GD(z)z−1 − D1) + µD1z
m + (1 − µ)zmGD(z)

=⇒ =
(1 − zm)zµ

(1 − µ)zm+1 − z + µ
D1. (4.47)

The only unknown parameter D1 can be deduced from GD(1) = 1,

D1 =
1 − (m + 1)(1 − µ)

mµ
=

rµ − m

mµ
. (4.48)

The delay mean (5.9) and variance (5.10) can be calculated through the first two

derivatives of GD(z) at z = 1.

(4.46) is applied to any ∆ ≥ 1. However, since GD(z) contains ∆ unknown
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parameters Dn (n = 1, . . . , ∆), GD(z) is solvable only for ∆ = 1, in which D1 can

be obtained from GD(1) = 1.

Remarks :

• For general ∆ ≥ 1, the delay distributions (4.38) are composed of m effec-

tive eigenvalues and the other r − m = ∆ eigenvalues are ignored because

they are outside the unit circle. Since the characteristic polynomial (4.18)

determines that one eigenvalue must be 1, ∆ = r − m = 1 implies that

the only eigenvalue to be ignored is 1. Then, if rewriting (4.36) in a single

fraction form and multiplying both denominator and numerator by (1− z),

the denominator becomes g(z) (4.37) and (4.36) is consistent with (5.8).

• Unlike (4.36) for general ∆ ≥ 1, the delay pgf (5.8) is a function of (m,

r, µ) and does not require the eigenvalues obtained from the characteristic

polynomial (4.18). Then, the impact of the arrival rate m/r and service rate

µ on the system performance can be directly investigated.

In practice, we are usually most concerned how the network or system performs

under heavy traffic. The closer m to r, the heavier the traffic load. For stability,

r > m. Then, r = m + 1 (or ∆ = 1) represents the extreme case and its study is

highly relevant from the perspective of practical applications.

4.6 Output Process Characterization

The output process characterization is based on the departure event. So in

this section, we consider only the steady-state system probability at the moment
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when a packet departs. QD(n, y) can be derived from Q(n, y) as follows

y ∈ Y
′

0 : QD(n, y) = µQ(n + 1, y + m), n ≥ 0

y ∈ Y
′

1 : QD(n, y) = µQ(n, y − ∆), n ≥ 1.

Then, the queue length probability πD
n is

πD
n =

∑r
y=1 QD(n, y)

∑∞
n=0

∑r
y=1 QD(n, y)

=























1

ρ

r
∑

y=m+1

Q(1, y) =
Q1,0

ρ
n = 0

1

ρ

m
∑

y=1

Q(n, y) + µ

r
∑

y=m+1

Q(n + 1, y) =
Qn,1 + Qn+1,0

ρ
n > 0

(4.49)

Combining with (4.11), we obtain πD
n = Qn,1/(µρ). For a special case ∆ < m, it

is proved in Section 4.2 that Q0,0 = 0 and Q0,1 = π0 = 1 − ρ. Then the system

idle and busy probabilities at the packet departure instant are

πI = πD
0 =

Q0,1

µρ
=

1 − ρ

µρ
, πB =

∑

n≥1

πD
n = 1 − πI . (4.50)

If ∆ > m, then Q0,0 6= 0 has to be calculated iteratively from Q0,1, Q1,0 and Q1,1.

There is no closed-form solution for πD
0 . Besides, ∆ < m implies m/r > 0.5 and

represents medium-to-heavy traffic cases, which are more interesting than light-

traffic case with ∆ > m. So, we focus on ∆ < m, in which the system idle time

does not exceed one frame and the interdeparture time T is

T =











1 + DS, with probability πI

DS with probability πB,
(4.51)
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where DS is the service time in terms of frames and is geometric with parameter

µ. The pgf of DS is GDS
(z) = µz/(1 − (1 − µ)z). Then, the pgf of T is

GT (z) = (πB + πIz)GDS
(z) = µπBz +

∞
∑

i=2

µ(1 − µ)i−2(1 − µπB)zi, (4.52)

which leads to the closed-form pmf {ti|i ≥ 1},

tn =











µπB n = 1

µ(1 − µ)i−2(1 − µπB) n > 1.
(4.53)

The pmf (4.53) corresponds to a correlated on-off process [69, Eqns.(1),(2)] with

transition probabilities a10 = 1 − µπB = ∆µ
m

and a01 = µ, respectively. The

conclusion is summarized in Theorem 5.3.5.

Theorem 4.6.1 Consider a D/Geom/1 queueing system with a geometric server

of rate µ and constant interarrival time r/m (m < r < 2m). Then the output

process is a correlated on-off process with transition matrix

A =













1 − µ µ

∆µ

m
1 − ∆µ

m













, where ∆ = r − m. (4.54)

The conditions r < 2m and µ > m/r guarantee πB < 1. Therefore, the smooth

arrival process with constant interarrival times is transformed to bursty on-off

traffic in the D/Geom/1 system.
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4.7 Approximations

As stated before, Q(n, y) (4.25) involves m effective eigenvalues, m−1 of which

are complex and/or negative. For large m and r, the eigenvalue calculation is

only numerically feasible. In communication networks, we are interested in heavy

traffic, i.e., m/r > 0.5, which implies ρ > 0.5. For ρ > 0.5, some approximations

can be made to avoid the eigenvalue calculation and thus simplify the expression

of Q(n, y).

Based on Descartes’ Sign Rule, the polynomial (4.18) has two real positive

zeros, one of which is 1 and the other one is between 0 and 1 (Fig. 4.3). In other

words, there is only one real positive root inside the unit circle, denoted as x0 with

corresponding eigenvalue λ0. Numerical results show that λ0 is the largest effective

eigenvalue and is the dominant one if 0.5 < ρ ≤ 1. Since Q(n, y) is composed of

exponential series, it is reasonable to approximate Q(n, y) by a single exponential

with the dominant eigenvalue λ0 as follows

Q(n, y) ≈ C0φ0(1)λ
n−1
0 x

−(y−1)
0

= ρ(1 − x0)x
−y
0 λn

0 , n ≥ 1. (4.55)

where C0 = ρ(1 − λ0) comes from
∑

n≥1 πn = ρ. The queue length distribution

(4.26) is thus reduced to a single geometric distribution,

πn ≈











ρ(1 − λ0)λ
n−1
0 n > 0

1 − ρ n = 0.
(4.56)

Note that for m = 1 (integer interarrivals), there is only one effective eigenvalue λ0,

and (4.56) is an accurate expression for the queue length distribution [24, 31, 55].
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Figure 4.3. Approximation of the dominant root x0 for
m = 3, r = 5, µ = 0.8: xmin is the local minimum between 0 and 1 and is
approximated by xlow. ξ0 is the approximation of x0. In this case, the
approximation error is within 2.5% although the traffic intensity ρ is

only 3/4.

λ0 can be derived from x0, whose approximation is presented in Proposition 5.3.3.

Proposition 4.7.1 Consider a polynomial f(x) = µxr−xm+1−µ. The dominant

root x0 inside the unit circle can be well approximated by

x0 ≈ 1 − 2(1 − ρ)

∆ρ
, ξ0, (4.57)

where ρ = m/(rµ) and ∆ = r − m.

Proof Since i) f(x) is continuous, ii) f(0) = 1−µ > 0, and iii) f(x0) = f(1) = 0,

a local minimum xmin exists between x0 and 1. By equating the derivative of f(x)
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to zero, we obtain xmin,

xmin = ρ
1

∆ < 1. (4.58)

The first approximation is that the distances from xmin to the two real roots

are equal, i.e., 1 − xmin ≈ xmin − x0 such that x0 ≈ 2xmin − 1. The second

approximation is in xmin. Using two inequalities [2]

ln x < x − 1, x < 1, (4.59)

ln ρ > −1 − ρ

ρ
, ρ < 1, (4.60)

xmin is lower bounded by

xmin ' 1 − 1 − ρ

∆ρ
, xlow. (4.61)

Then, x0 ≈ 2xlow − 1 is expressed by (5.5).

Remarks:

• The local minimum xmin of f(x) is larger than (1 + x0)/2. So, the approx-

imation x0 ≈ 2xmin − 1 would yield an estimate larger than x0. However,

lower bounding xmin by xlow compensates for this so that (5.5) is quite tight,

especially when r is large and ρ is close to 1.

• To guarantee that x0 is a root inside the unit circle, (5.5) requires that

2(1 − ρ)/(∆ρ) < 1, which is satisfied if ∆ ≥ 2 and ρ ≥ 0.5.

To simplify the delay distribution, plugging (5.5) into (4.39) and (4.40), the
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delay mean and variance are approximated as

D ≈ ∆ρ

2(1 − ρ)
(4.62)

σ2 ≈
( ∆ρ

2(1 − ρ)

)2

− ∆ρ

1 − ρ
(4.63)

Plugging ∆ = 1 into (5.6) and variance (5.7), and comparing them with the

accurate results (5.9) and (5.10), we conclude that the approximate analysis gets

tight as ρ → 1.

4.8 Comparison with Conventional D/Geom/1 Queueing Analysis

With conventional discrete-time queueing theory, the queue length and de-

lay of the D/Geom/1 system with non-integer interarrival times are analyzed by

converting the non-integer number to an integer. For example, ∆ < m, the inter-

arrival time is rounded up to 2 and λ is solved as a root to a quadratic function

λ = (1 − µ + µλ)2. Table 4.1 compares the positive real (effective) eigenvalue λ0.

Apparently, there exists a huge gap in λ0 if rounding the non-integer interar-

rival time up to an integer when m and r are closer, e.g., m = 3, r = 4. Since

both delay and queue length are geometric with λ0 and x0, the performance gap

would be enlarged as the queue length and delay increase. Therefore, the study

of non-integer interarrival times is necessary, especially for extremely heavy traffic

m/r → 1.

To confirm the tightness of the approximations (4.56) and (5.5), Fig. 4.4 com-

pares the queue length distributions of (i) the exact one given by simulation; (ii)

approximation I with πn given by (4.56) and λ0 calculated numerically; (iii) ap-

proximation II with πn given by (4.56) and λ0 approximated by (5.5); and (iv)
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TABLE 4.1

COMPARISON OF EIGENVALUES FOR INTEGER AND

NON-INTEGER INTERARRIVAL CASE WITH m = 3, µ = 0.8

r = 4 r = 5 r = 6

Our analysis x0 0.8689 0.6836 0.6300

Our analysis λ0 0.5699 0.1492 0.0625

Conventional analysis λ0 0.0625 0.0625 0.0625

approximation obtained by using the conventional D/Geom/1 analytical results

with r/m rounding to 2. Apparently, our analysis provides more accurate statis-

tical performance analysis even with two approximations (4.56) and (5.5). Note

that for ∆ = 1, we obtain the accurate delay distributions.

4.9 Conclusions

In order to statistically analyze the delay performance of TDMA, we establish

a discrete-time G/Geom/1 system with non-integer interarrival times. An eigen-

value approach is used to solve steady-state system probabilities and the corre-

sponding queue length and delay distributions. Due to the sparse structure of the

characteristic matrix polynomial, the eigenvalue problem is reduced to a problem

of polynomial roots, which substantially simplifies the computation. For special

systems with heavy traffic intensity, numerical results show that it is sufficient

to consider only the dominant real positive root and ignoring all other complex

or negative roots. Moreover, by showing the performance gap with conventional

D/Geom/1 queueing analysis, the necessity and usefulness of our analysis are
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CHAPTER 5

DELAY ANALYSIS OF TDMA AND ALOHA IN WIRELESS MULTIHOP

NETWORKS (WMNs)

The delay analysis of TDMA at a single node in Chapter 4 can be extended

to the multihop scenario although in WMNs, the analysis is significantly more

challenging than in single-hop networks due to the delay accumulation at each

hop. Many factors interact with each other, including the MAC scheme, the

routing algorithm, the scheduling algorithm, the wireless channel and the resulting

interference. In WMNs, there are two types of interference as shown in Fig. 5.1(a),

inter-flow interference caused by cross-traffic flows and intra-flow interference

caused by multiple nodes of a single flow [152]). The analysis is unlikely to be

tractable if all these factors are considered together.

Since the focus of this dissertation is on MAC and scheduling, we assume

a single flow so that the routing algorithm and the inter-flow interference can

be neglected. This is a common scenario, e.g., in sensor networks with a single

phenomenon to be detected (Fig. 5.1(a)). A set of nodes around the phenomenon

periodically detect, collect, and then forward the sensed data to a cluster head

(node 0). A path is established from the cluster head to the base station (BS).

Then, the two-dimensional (2-D) topology is reduced to one-dimensional (1-D),

which can be further simplified to a chain network (Fig. 5.1(b)). Due to the zero
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inter-flow interference assumption, the analysis of the chain network provides an

upper performance bound for general 2-D networks.

PH

Cluster 

BS

3

2
10

(a) General network (PH: phenomenon)

NN−1 N+11 2 3

(b) Line network

Figure 5.1. Wireless multihop networks

For the single flow case, FIFO is sufficient for local scheduling, but the MAC

scheme needs to be carefully designed since it needs to achieve two conflicting

goals, eliminating interference and increasing spatial reuse. Moreover, efficient
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MAC schemes may incur extra access delays, which trades off against throughput.

Designing optimal MAC schemes in WMNs should be based on the performance

metrics, e.g., delay and throughput. As pointed out in Chapter 4, even for simple

TDMA, the delay analysis could be very complicated because of the involvement

of both the queueing delay and the access delay. For a tractable analysis, we

consider two simple but typical wireless multihop MAC schemes, m-phase spatial

TDMA [94] and slotted ALOHA. In TDMA, a node is scheduled to transmit once

in m time slots, and nodes m hops apart can transmit simultaneously. In slotted

ALOHA, every node independently transmits with probability pm whenever it

has packets. TDMA (with nodes fully cooperative) and ALOHA (with nodes

completely independent) represent two extremes in terms of the level of the node

coordination and thus provide an upper and lower performance bound for other

meaningful MAC schemes.

5.1 Previous Work and Our Contributions

Previously, the analysis of MAC schemes was focused on the single-hop sce-

nario [12, 94] and little work has been done on their multihop delay. From the

perspective of delay analysis, the queueing delay is ignored for simplification. For

example, in an “infinite population model”, a new node is generated to represent

the newly generated packet; or new packets are generated only when the buffer

is empty [12, 16, 101, 149, 157] so that there is no queueing delay. However, in

practice, the number of nodes is finite, and new packets may be generated when

the buffer is non-empty, which results in queueing delays.

The impact of the wireless channel is another important MAC-related issue [12,

16, 101, 157]. With the “capture” property of the radio receiver, the throughput
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of slotted ALOHA is improved [12, 101, 125]. In some MAC schemes, using the

channel characteristics to control the backoff timer or the transmit power, the

delay and throughput can be changed [149, 157]. Therefore, the channel model

is critical for the analysis. The “disk model” [47], assuming a fixed transmission

range, has been very popular because of its simplicity. In m-phase TDMA with

m chosen appropriately (e.g., m = 3 in [124]), the disk model results in error-free

channels since the simultaneous transmissions of nodes m hops apart cause no

interference or collisions [118, 124]. In reality, the transmission success depends

on the received SNIR. So TDMA does not completely eliminate the interference

unless spatial reuse is completely foregone. The “capture model” [112] is more

appropriate, in which packet transmissions fail if the received SNIR is too low.

The failed packets have to wait for the next transmission opportunity. The packets

behind them need a local scheduler to solve the competition for the transmission

opportunities.

With practical traffic and channel models, combining scheduling protocols with

MAC schemes is meaningful. However, from the perspective of queueing theory,

the joint queueing analysis might be difficult. For instance, the queueing analysis

of multihop networks usually neglects the MAC-dependent access delay [54, 91, 93,

124]. Closed-form solutions for the delay of the chain network with a single source

(like Fig. 5.1(b)) are provided when the traffic is geometric [54] or the channel is

error-free [93]. For other traffic models and error-prone wireless channels, some

approximations are needed, e.g., the “independence” assumption: In [45], the

delay variance of a two-node tandem network is derived by assuming that the two

nodes are independent. Similarly, in [56], an IEEE 802.11 wireless ad hoc network

is modeled as a series of independent M/G/1 systems to obtain a product-form
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delay distribution. However, in most cases the “independence” assumption does

not hold and would lead to a very loose performance expression.

In this chapter, we derive the e2e delay distribution of a chain line net-

work (Fig. 5.1(b)), considering a two-level scheduling problem [146]. Local packet

scheduling causes a queueing delay, while the global MAC scheme results in an

access delay. Our analysis accounts for both the queueing delay and the access

delay. The “capture” model for wireless channels and CBR traffic are practical

(e.g., voice data [33] and periodic traffic in sensor networks).

For CBR traffic, correlations exist between the delays experienced at different

nodes, indicating that the “independence” assumption does not hold. Based on

the simulation results, an empirical model for the correlation coefficient is estab-

lished. Then, the line network is treated like a series of independent GI/Geom/1

systems, but the delay variances are scaled by this correlation coefficient. With

the complete e2e delay distribution, we calculate the delay outage probability

(the probability that the e2e delay exceeds a predetermined threshold) for delay-

sensitive applications. As a complement to previous work focusing on the through-

put, this paper compares TDMA and ALOHA in terms of the e2e delay and the

outage probability.

5.2 System Model

The chain network under consideration (Fig. 5.1(b)) is composed of N + 1

transmitting nodes. Denote node i by ni and the delay experienced at ni by Di.

More precisely, Di is the interval between the instant that the packet is successfully

received by ni and the instant that the packet is successfully transmitted and thus

received by ni+1. Thus the e2e delay is the sum of the Di’s. A FIFO discipline is

103



used at the nodes. A CBR flow of fixed-length packets is generated at the source

n0, and all remaining nodes except the BS are pure relays. The time is slotted to

one packet transmission duration, and the network is modeled as a discrete-time

tandem queueing network. The traffic interarrival time is r slots (r ∈ N). The

channels are assumed to be subject to independent errors with capture probability

µ = 1 − ε (e.g., AWGN or block fading channels), where ε can be obtained from

(1.11). The network is 100% reliable, i.e., the failed packets will be retransmitted

at each link until received successfully.

In queueing theory, the delay Di is composed of two parts, the waiting time

(from the arriving instant to the instant that the packet is about to be served) and

the service time, as shown in Fig. 5.2. In TDMA, the node is given a transmission

opportunity once in m time slots. When dividing the time into frames of m

slots and setting the beginning of a frame as the slot allocated to the node, the

service time is geometric with µ, denoted by Gµ. The access delay is hidden in

the frame so that each node can be modeled as a GI/Geom/1 system at the frame

level. In ALOHA, busy nodes make a transmission decision at every time slot. A

packet is correctly received if and only if the node attempts to transmit and the

transmission is successful, with probability s , µpm (given that the arrival and

the channel state are independent1). Overall, the service time is Gs. This way,

it is not necessary to distinguish the access delay from the failed transmission

attempts. Then each node can be modeled as a GI/Geom/1 at the slot level.

Based on the characterization of the output process of the upstream node, the

individual nodes can be analyzed as a GI/Geom/1 system, deriving the complete

distribution of Wi, with the mean denoted by W i and the variance by σ2
i . Note

1To account for the half-duplex restriction, here µ is the conditional capture probability given
that the receiver is listening.
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Figure 5.2. Packet transmission procedure in TDMA and ALOHA
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that Wi is difference from Di since Wi is obtained as if each node is independent of

each other, which is not true in practice. It is known that except for memoryless

Poisson and geometric traffic, the output of node ni, or the input to the following

node ni+1, depends on the input and service process of ni [54]. Therefore, the

delay Di+1 is correlated with the delay Di.

It is hardly feasible to explicitly derive the e2e delay distribution if all correla-

tions are considered. Instead, we propose an approximative approach that includes

the long-distance correlations in the correlation between neighboring nodes. Then

the line network can be modeled as a series of queueing systems which are cor-

related only with their neighbors. Since all nodes have an identical channel and

all nodes except for the source node are pure relays, we further assume that the

correlation coefficient η , cor(Di, Di+1) is independent of i. Since correlations

do not affect the delay means, from the analysis of Wi, the e2e delay mean and

variance are:

D =
N
∑

i=0

W i, σ2 =
N
∑

i=0

σ2
i +

N−1
∑

i=0

ησiσi+1. (5.1)

For the variance, if the Di’s were independent like Wi’s (η = 0), then σ2 would be

the sum of σ2
i , as assumed in previous work [45, 56]. However, the Di’s are not

independent (η 6= 0), and a gap appears between the real e2e delay variance (the

“simulation” line in Fig. 5.3(b)) and the sum of σ2
i (the “independence” line). The

variance σ2 is either greater or smaller than the sum of σ2
i , depending on whether

the correlation is positive or negative.

Intuitively, for bursty traffic, if a packet experiences a long delay at ni because

of a bad channel or the long accumulated queue, node ni+1 probably has cleared

its buffer during this period so that when the packet arrives at ni+1, it is likely to

experience a short delay, and vice versa. In other words, the correlation is expected
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to be negative (η < 0), hence the e2e delay variance σ2 is smaller than the sum of

σ2
i . This effect becomes more prominent as the traffic intensity increases. So, it

is reasonable to conclude that the correlation is a function of the intensity. The

detailed derivation of the correlation coefficient η will be given in the following

sections for TDMA and ALOHA separately.
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Figure 5.3: Comparison of the e2e delay performance in the TDMA network with
m = 3, µ = 0.8, N = 14, r = 4, 5

5.3 Analysis of the m-Phase TDMA Network

In m-phase TDMA networks, each node can be modeled as a D/Geom/1 sys-

tem with service rate µ at the frame level. The average arrival rate is m/r, where

m/r is a reduced fraction. We further assume r < 2m for heavy traffic. Define

the traffic intensity as ρ , m/(rµ) and constrain it to ρ < 1 for stability. Note
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that previous MAC-related work implicitly assumed ρ = 1. As the source node,

D0 = W0.

5.3.1 Delay Analysis of the Source Node n0

The source n0 is fed with a CBR flow of interarrival time r. At the frame

level, n0 is modeled as a D/Geom/1 but the interarrivel time r/m is an integer

for m < r < 2m. Such D/Geom/1 system has been studied in Chapter 4. We

summarize the results in the following theorems.

Theorem 5.3.1 Consider a D/Geom/1 system with interarrival time r/m (r,m ∈

N and r/m is a reduce fraction) and service rate µ. The equilibrium probability

Ql(u) for l ≥ 1 is

Ql(u) ≈ ρλl
0a

u−1(a − 1), where a = λ
−1/r
0 , (5.2)

and λ0 is a real positive eigenvalue of the matrix M(λ)

M(λ) = M0 + M1λ + M2λ
2, (5.3)

with Mi (i = 0, 1, 2) given in (4.13).

Theorem 5.3.2 Consider a general D/Geom/1 queueing system with interarrival

time r/m and service rate µ. Then, the probability generating function (pgf) of

the delay distribution is

GD0
(z) ≈ (a − 1)(am − zm)βzm

(a − z)(1 − βzm)
, (5.4)

where ar = λ0 and β = a−m.

108



An closed-form approximation for x0 is presented in Proposition 5.3.3.

Proposition 5.3.3 Consider the polynomial µxr − xm + 1 − µ = 0. The real

positive root x0 inside the unit circle can be well approximated by

x0 ≈ 1 − 2(1 − ρ)

∆ρ
, ρ = m/(rµ), ∆ = r − m < m. (5.5)

The approximation (5.5) is tight when ∆ is large and/or ρ is close to 1, both

of which also guarantee x0 / 1. The delay mean and variance can be directly

calculated from GD0
(z) (4.36),

D0 ≈ a

a − 1
≈ ∆ρ

2(1 − ρ)
, (5.6)

σ2
0 ≈ a(2 − a)

(a − 1)2
≈
( ∆ρ

2(1 − ρ)

)2

− ∆ρ

1 − ρ

= D0(D0 − 2). (5.7)

For a special case r = m + 1,

Theorem 5.3.4 Consider a D/Geom/1 queueing system with interarrival time

(m + 1)/m and service rate µ. Then, the pgf and the mean and variance of the

delay D0 are

GD0
(z) =

(zm − 1)z

z(1 − zm) − µ(1 − zm+1)
· 1 − ρ

ρ
(5.8)

D0 =
1

2(1 − ρ)
, ρ =

m

rµ
(5.9)

σ2
0 =

1

4(1 − ρ)2
− m + 2

6(1 − ρ)
. (5.10)

Comparing the approximate delay analysis (5.6), (5.7) (setting ∆ = 1) and the

accurate analysis (5.9), (5.10), we find that even for small ∆, the approximation
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is tight if ρ → 1.

5.3.2 Delay Analysis of the Relay Nodes

The relay nodes are fed with the output of the source node n0. In Chapter 4,

it has been proved that the output process of D/Geom/1 systems with r < 2m is

a correlated on-off process, as repeated in Theorem 5.3.5.

Theorem 5.3.5 Consider a D/Geom/1 queueing system with service rate µ and

interarrival time r/m (m < r < 2m). Then the output process is a correlated

on-off with transition probabilities a01 = µ and a10 = ∆µ/m, where ∆ = r − m.

Therefore, the first relay node n1 is GI/Geom/1 system with on-off input. The

queue length distribution is derived in [31], and the packet delay is shown to be

geometric in [104] without calculating the parameter of the geometric distribution,

which is derived in Lemma 5.3.6.

Lemma 5.3.6 Consider a discrete-time GI/Geom/1 queueing system with service

rate µ and on-off arrival, whose transition probabilities are a01 and a10. Then, the

delay is geometrically distributed with parameter

ξ =
1 − µ

µa10 + (1 − µ)(1 − a01)
. (5.11)

Proof Using the delay model [69], denote the system state by the delay of the

HOL packet. Negative states indicates an idle server. All probabilities of going
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beyond a delay −1 are included in the state −1. The transition probability Zjk is

Zjk =























µbl(j), j ≥ 0, k ≤ j

1 − µ, j ≥ 0, k = j + 1 or j = −1, k = j

a01, j = −1, k = 0,

(5.12)

where l = j − k + 1, bl = tl and bl(j) = bl for j > −1, and bl(j) =
∞
∑

h=l

bh =

a10(1 − a01)
l−2 for j = −1. Manipulating the balance equations, the steady-state

probability is zj = z0ξ
j (j ≥ 0). Since the delay probabilities involve only non-

negative states (as in (4.42)), the delay distribution is geometric with ξ.

For the relay node n1, with a10 = ∆µ/m and a01 = µ, the delay probabilities are

πjm+1 = (1 − ξ)ξj at the time slot level. Therefore, the mean and variance are

W 1 = 1 +
mξ

1 − ξ
= 1 + mτ, τ ,

ρ

1 − ρ

1 − µ

µ
(5.13)

σ2
1 =

m2ξ

(1 − ξ)2
= m2τ(1 + τ). (5.14)

The output of n1 is also bursty and correlated, but too complicated to be

characterized by a simple traffic model. It is stated in [104] that the output process

of tandem GI/Geom/1 queues converges to a Bernoulli (geometric) process as the

number of nodes goes to infinity. However, in practical wireless networks, the route

is often too short for the output to converge to a geometric process. Considering

that on-off is a simple yet accurate model for bursty and correlated traffic, we use

the derived on-off process with {a01, a10} to characterize the inputs to all relay

nodes. As a matter of fact, simulation results confirm that the delays Wi (i ≥ 1)

of the relay nodes are close to the geometric process described in Lemma 5.3.6.
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5.3.3 Estimation of the Correlation Factor

The inputs to relay nodes are correlated and bursty and result in correlations

between the delays Di’s. As mentioned in Section 7.1, the correlation is generally

a function of the traffic intensity ρ = m/(rµ). However, in a TDMA tandem

network, the operations of the servers are successive, i.e., the neighboring nodes

cannot be served simultaneously. This behavior affects the correlation. It also

implies that the correlation might not be solely determined by ρ. If ρ = 0, there is

no traffic, and Di ≡ 0. So, there is no correlation and η = 0. On the other hand,

if µ = 1, the channel is perfect, and every packet can be successfully transmitted

with only one attempt regardless of ρ, i.e., Di ≡ 1 (i ≥ 1). Then, the correlation

is expected to be η = 0 as well even if ρ 6= 0. In this sense, the correlation depends

at least on two parameters ρ and µ although ρ itself is a function of µ since µ = 1

does not necessarily lead to ρ = 0. From (5.13) and (5.14), it is verified that the

delay Di (i ≥ 1) is a function of τ . Accordingly, we assume that the correlation

coefficient η is a function of τ .

It is unclear how τ impacts the correlation coefficient η. A set of simulation

results (obtained by MATLAB) are provided to establish an empirical model of

η. As shown in Fig. 5.4, i) the correlation is indeed negative; ii) the magnitude of

the correlation can be regarded as exponentially increasing with τ . Based on the

least-square principle, the curve is fitted as follows

η(τ) = x1 + x2e
−x3τx4 , τ =

ρ

1 − ρ
· 1 − µ

µ
, (5.15)

where x1 = −0.0023, x2 = −0.7350, x3 = 0.2315, x4 = −0.5598. With the

empirical η and assuming that all relay nodes behave identically, the e2e delay
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mean and variance are further simplified from (5.1) to the following

D = D0 + NW 1 (5.16)

σ2 = σ2
0 + σ2

1 + ησ0σ1 + (N − 1)ησ2
1

≈ σ2
0 + N(1 + η)σ2

1. (5.17)

Then, the tandem network can be treated as a series of independent discrete-time
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Figure 5.4. The estimation of the correlation coefficient η in TDMA: η
vs. τ (see (5.15))

servers. The first one is the source with mean D0 and variance σ2
0. The others are

identical relays with mean W 1 and scaled variance (1 + η)σ2
1. According to the

Law of Large Numbers, the e2e delay will converge to a Gaussian distribution, and
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the mean and variance are linear with the number of nodes N . Simulation results

in Fig. 5.5 and Fig. 5.3 confirm the quick convergence to a “sampled” Gaussian

and the linearity even for relatively short networks.

In Fig. 5.3 (m = 3, µ = 0.8, N = 14 for r = 4 and r = 5, respectively), we

compare the mean and variances in three cases: 1) the simulated e2e delay; 2) the

sum of the simulated delays of the individual nodes, i.e., the e2e delay when all

servers are independent; and 3) the analytical delay with mean (5.16) and scaled

variance (5.17). It is obvious that, with respect to the variance, the correlation

causes a huge gap between the real case 1) and the “independence” case 2). In

other words, the “independence” assumption is not accurate for the calculation

of the variance. Our analytical results (case 3)) use the empirical correlation

coefficient η and are much closer to the simulated variance.
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The other observation revealed in Fig. 5.3 is the impact of the traffic rate 1/r.

As r increases, the delay mean and variance unsurprisingly decrease. However, the

delay decreases at a much faster speed than the increase of r. Comparing r = 4

and r = 5, with r increasing by 20%, the mean decreases by 70% and the variance

by 87%. The reason is that the traffic intensity is determined by three parameters

m, r, µ (ρ = m/(rµ)). With m and µ fixed, a small change in r probably causes a

huge change in ρ, and in µ (5.13) and σ2 (5.14). Previous work usually assumed

ρ = 1 thereby preventing a study of the impact of the traffic rate.

5.4 Analysis of the Slotted ALOHA Network

m-phase TDMA achieves the optimal performance but also incurs a substan-

tial amount of overhead to establish the frame structure and requires a complete

cooperation between all nodes involved. In wireless networks, slotted ALOHA

may be more practical since every node operates in a completely independent

way. However, unless the traffic is light, its random and independent transmission

pattern generally results in poor performance. This section analyzes the delay

of ALOHA networks using a similar technique as in TDMA since the individual

node is also modeled as a GI/Geom/1 system. The difference is that the ALOHA

network is analyzed at the time slot level. Note that the source node n0 is mod-

eled as a D/Geom/1 queueing system with an integer interarrival time r. The

delay distribution is derived in the following Corollary 5.4.1 to Theorems 5.3.1

and 5.3.2.

Corollary 5.4.1 Consider a D/Geom/1 queueing system with interarrival time

r ∈ N and service rate s. Then the delay is G1−α, where α is a positive real root
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of the polynomial

syr − y + 1 − s = 0. (5.18)

The delay mean and variance are approximately expressed in an explicit form

D0 =
1

1 − α
≈ (r − 1)ρ

2(1 − ρ)
, ρ =

1

sr
(5.19)

σ2
0 =

α

(1 − α)2
≈
((r − 1)ρ

2(1 − ρ)

)2(

1 − 2(1 − ρ)

(r − 1)ρ

)

. (5.20)

Proof As a special case m = 1 of Theorem 5.3.1, the polynomial (4.18) is modified

to (5.18) by replacing µ with s and setting m = 1. There is only one root inside

unit circle, denoted by α. Plugging a = 1/α and β0 = α into (4.36) (Theorem

5.3.2), the pgf of the delay distribution is

GD0
(z) =

(1 − α)z

1 − αz
, (5.21)

which is corresponding to a geometric distribution with parameter 1 − α. Using

the same technique as in Proposition 5.3.3 but replacing ∆ by r − 1, if r ' 4 and

ρ ' 0.5, α is well approximated by

α ≈ 1 − 2(1 − ρ)

(r − 1)ρ
. (5.22)

Then, the delay mean D0 and variance σ2
0 are approximated as in (5.19) and

(5.20).

The output process of n0 is more complex in ALOHA than in TDMA since the

system idle time ranges from 0 to r − 1 time slots. But it can be approximated
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as an on-off process, as stated in Lemma 5.4.2 by using a similar technique in

Theorem 5.3.5.

Lemma 5.4.2 Consider a D/Geom/1 queueing system with interarrival time r ∈

N and service rate s. Then, the output process is approximately an on-off with

transition probabilities a01 = (1 − s)/((r − 1)α) and a10 = (1 − s)/α.

Then the relay nodes are modeled as GI/Geom/1 with on-off input {a01, a10}.

According to Lemma 5.3.6, the delay Wi (i ≥ 1) is geometric with ξ

ξ =
1 − s

sa10 + (1 − s)a00

=
(r − 1)αρ

1 − (1 − (r − 1)α)ρ
≈ 1 − 1 − ρ

rρ − 1
. (5.23)

The mean and variance are

W 1 =
1

1 − ξ
= 1 +

(r − 1)ρα

1 − ρ
≈ rρ − 1

1 − ρ
.

σ2
1 =

ξ

(1 − ξ)2
=

(r − 1)ρα

1 − ρ

(

1 +
(r − 1)ρα

1 − ρ

)

≈
(rρ − 1

1 − ρ

)2

− rρ − 1

1 − ρ
. (5.24)

The correlations in ALOHA are different from those in TDMA because i) the

nodes are not served successively; ii) the service rate is s = µpm, which cannot

reach to 1 for pm < 1 even if the channel is perfect. In other words, it might not be

necessary to include µ explicitly in the calculation of the correlation. Therefore,

as stated in Section 7.1, we assume that the correlation in ALOHA is a function

of the traffic intensity ρ. Through simulation results (Fig. 5.6), η is found to be
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composed of two parts and characterized as follows

η = x1 + x2ρ +
x3

x4 − ρ
, (5.25)

where x1 = −0.2483, x2 = −0.5415, x3 = 0.0096, x4 = 1.0088. The intuition

behind this shape of η(ρ) is: as the traffic intensity increases, the queueing delay

will increase and so does the resulting correlation magnitude |η|. However, if ρ

increases to 1, all delays increase to infinity. Then, |η| might decrease rather

than continue to increase. So, interestingly, a transition point ρ ≈ 0.93 exists.

Therefore, it is not suggested in ALOHA to set the traffic intensity ρ higher than

this transition point because of both the increasing delay and the almost-zero

correlation.
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Figure 5.6. The estimation of the correlation coefficient η in ALOHA: η
vs. ρ (see (5.25))
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The remaining part of the ALOHA analysis is similar to TDMA. The simulated

pmf (Fig. 5.7) of the delay verifies the convergence to Gaussian. The delay mean

and variance are presented in Fig. 5.8. The 20% increase of r causes 73% decrease

of the mean and 92% of the variance.
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Figure 5.7. Pmf of the packet cumulated delay in ALOHA with
m = 3, r = 4, µ = 0.8, N = 14

5.5 Comparison

Table 5.1 lists the delay statistics of the individual node for TDMA and

ALOHA. As the number of nodes N increases, the e2e delay statistics are mainly

determined by those of the relay nodes. Therefore, the delay of TDMA and
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Figure 5.8: Comparison of the delay performance in the ALOHA network

ALOHA can be compared as follows:

µTDMA

µALOHA

≈ m

r − 1
· 1 − µ

µα
≈ m

r − 1
· 1 − µ

µ
< 1, (5.26)

σ2
TDMA

σ2
ALOHA

≈
( 1 + ηTDMA

1 + ηALOHA

)

( m

r − 1

)2 · 1 − µ

µ
·
(1 − µ

µ
+

1 − ρ

ρ

)

< 1, (5.27)

where ηTDMA and ηALOHA are given in (5.15) and (5.25), respectively. The mean for
ALOHA is (r−1)µ/m(1−µ) times than TDMA. The ratio of the variance depends
on the correlation coefficients η. The ratio of 1+ηTDMA to 1+ηALOHA lies between
0.5 and 2.5. So, σ2

TDMA/σ2
ALOHA ¿ 1 for m ≥ 3,m < r < 2m,µ > 0.5. As an

example, for r = 4, µ = 0.8 and m = 3 (corresponding to pm = 1/3 for ALOHA),
(5.26) and (5.27) shows that the mean and variance of ALOHA are 4 and 11.9 times
than those of TDMA, respectively. The simulation results in Fig. 5.3 and Fig. 5.8
confirm that the delay mean of ALOHA is about four times greater than that of
TDMA, while the variance is about 11 times larger. Theoretically, we proved that
TDMA achieves better performance than ALOHA not only in the throughput but
also in the e2e delay. This comparison is based on the assumption of equal µ
for TDMA and ALOHA. If the network were interference-limited, TDMA would
have a larger µ than ALOHA (if the other parameters are the same), which would
further increase the performance gap.

In addition, with the Gaussian approximation of the e2e delay, we are able
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TABLE 5.1

COMPARISON OF LOCAL DELAYS FOR TDMA AND ALOHA

Source node Relay node

mean D0 variance σ2
0 mean W 1 variance σ2

1

TDMA (r − m) · ρ

2(1 − ρ)
D0(D0 − 2) 1 + m · ρ

1 − ρ
· 1 − µ

µ
(W 1 − 1)(W 1 − 1 + m)

ALOHA (r − 1) · ρ

2(1 − ρ)
D0(D0 − 1) 1 + (r − 1) · ρ

1 − ρ
· α W 1(W 1 − 1)

to calculate the delay outage probability pL(d) = Pr{D > d} for delay-sensitive

applications, where d is the regarded as a hard delay bound. Given the mean D

and variance σ2, pL(d) is

pL(d) = Pr{D > d} =
1

2

(

1 − erf
(d − D√

2σ

)

)

. (5.28)

Fig. 5.9 shows pL(d) for m = 3, r = 4, µ = 0.8, N = 10. Compared to previous

work that assumed independent Di’s, our analysis provides more accurate insight

on pL(d). For example, given d = 185 for TDMA, we calculate pL(d) = 0.0093

while the independence assumption would lead to pL(d) = 0.09, which is almost

10 times higher. Similarly, for ALOHA, given d = 600, our analysis yields pL(d) =

0.0087 while the independence assumption leads to pL(d) = 0.0891. Since pL(d)

is an important measure for the design of real-time networks, our more accurate

analysis is clearly preferred. Besides, Fig. 5.9 also shows how much worse ALOHA

behaves in terms of the delay outage probability. In order to achieve pL(d) ≤ 10%,

ALOHA requires a delay bound of d = 570, about 3.5 times than the delay bound

d = 160 of TDMA.
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Figure 5.9: The delay outage probability pL(d) for m = 3, r = 4, µ = 0.8, N = 10

5.6 Conclusions

Discrete-time queueing theory is useful to statistically compare TDMA and

ALOHA, in which the access delays are incorporated into the prolonged service

time in TDMA and the decreased service rate in ALOHA. Given the same traffic

load and original service rate, we proved that prolonging the service time by a

factor of m as in TDMA causes less delay than decreasing the service rate by

pm = 1/m on average as in ALOHA in terms of both the mean and variance.

The e2e delay, especially the variance, is significantly affected by the negative

correlations between the delays experienced at single nodes. Previous work ignored

the correlations and assumed an “independence” instead. Using simulation results

we estimate an empirical correlation coefficient, which leads to a more accurate

expression for the e2e delay variance which has been paid little attention in the

literature. The complete delay distribution can be used to calculate a delay outage

probability pL(d), a critical measurement for delay-sensitive applications.
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CHAPTER 6

CROSS-LAYER ANALYSIS OF PHYSICAL LAYER, MAC AND TRAFFIC

STATISTICS

In Chapter 5, the performance of MAC schemes is analyzed assuming that

the channel outage probability ε is a constant. However, in practice, the channel

states that determine the SNIR at the receiver and, in turn, the success of the

transmissions, are time- and location-dependent. Due to this interaction, MAC

schemes should be analyzed jointly with the physical layer. In interference-limited

networks, ε is a function of the interference or SIR. The interference is related

to the multiple access protocol and referred to as multiple access interference

(MAI) [123]. In the saturation state (when the nodes are always backlogged), the

MAI depends on the MAC scheme. However, the saturation state could result in

infinite buffers and an unstable network. Realistically, all stable networks are non-

saturated. In non-saturated networks, the nodes may have empty buffers upon

being scheduled and thus will not transmit and interfere. Then, the MAI is not

only MAC-dependent, but also coupled with the node buffer occupancy, which,

based on queueing theory, depends on the arrival process (traffic) and the service

process (channel). Hence, the physical channel, the MAC scheme and traffic are

correlated through the MAI-dependent ε, or the link rate ps = 1 − ε.

The most often studied traffic statistics include the rate and burstiness. In

multihop networks, an additional feature should be taken into account – the traffic
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correlation. Unlike in single-hop networks, a traffic flow is usually relayed over

several hops. So the arrival process to a node is the aggregation of the local

flow and relayed flows. Even if the source flows are generated independently,

the overall arrival processes to the nodes of the same path are correlated. The

node buffer occupancies under correlated and independent flows could be quite

different even in a simple two-node network [63]. The correlation is affected by

the channel quality and the MAC scheme and, in turn, may affect the real-time

buffer occupancy and change the channel quality. A comprehensive study of the

traffic correlation should therefore explore the interaction between the physical

layer, the MAC layer and traffic statistics.

Previous cross-layer studies between the MAC and the physical layer were

focused on power control [134] and considered only the saturated mode [50, 88,

155]. The traffic correlation is ignored by assuming that all flows in the network

are independent. [117] discussed the correlation in the channels inherited from

the multihop topology but the correlated relationship is simply expressed by a

predetermined constant without specifying how it is calculated.

This chapter investigates how the MAC scheme, the physical channel, and the

traffic statistics interact with each other, how the correlations affect the network

throughput and delay, and establishes the network capacity, i.e., the maximum

stable throughput [143]. The investigation of the correlations includes the auto-

correlation in the channels, the cross-correlation between traffic and channels, and

the traffic correlation, and their impact on the delay and throughput. Since the

node busy probability is MAC- and traffic-dependent, we consider two typical

MAC schemes, m-phase TDMA and slotted ALOHA, and three often used traffic

models, constant bit rate (CBR) for voice applications, on-off for data applica-
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Figure 6.1. Regular wireless multihop networks

tions, and memoryless Bernoulli processes. For a tractable analysis, two extreme

traffic correlation cases are explored, independent and completely correlated traf-

fic. Simulation results are provided to compare the influence of these models.

6.1 Interaction Between the Channel, MAC Schemes, and Traffic

In certain wireless networks such as vehicular networks, the topology is quite

likely to be regular, like a square grid (Fig. 6.1(a)) or a regular line (Fig. 6.1(b)).

Small changes in the distances between nodes are overshadowed by fading. Hence,

it is reasonable to assume fixed distances when the channel is modeled as slow

fading. The channel quality is measured by its probability 1 − ps of successful

reception or capture rate [26]. To guarantee 100% reliability, failed packets will

be retransmitted until being received correctly.

The multihop network (Fig. 6.1) is composed of N nodes. Denote node i by
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ni. Each node independently generates a flow of fixed-length packets with rate Ri.

The aggregated traffic rate is λi =
∑

k∈Ri
Rk, where Ri is the set of nodes whose

flows traverse ni, accounting for both the local traffic ri and the relayed traffic Rk

(k ∈ Ri\{ni}).

Assume equal distance between neighboring nodes. The transmit power Pi

is assumed to be identical for all nodes, Pi ≡ P . Specially, given the path loss

exponent α, in Rayleigh fading channels, the received power is exponentially dis-

tributed with mean Pd−α
i , where di is the distance from ni to the receiver under

consideration. The variations in the received power stems from both fading and

varying distances due to motion. In certain networks, such as vehicular networks,

since the transmit energy consumption is not critical, so the noise power can

be ignored. The transmission is successful if the received SIR is greater than a

threshold Θ [50, 77, 88], i.e.,

ps,i = P{SIRi > Θ}

=
∏

k∈Ii

(

1 − pt(k, i)

1 +
(dk

di

)α
/Θ

)

. (6.1)

where Ii is the interference set of ni, consisting of all potential interferers of ni.

Θ is determined by the communication hardware and the modulation and coding

scheme. pt(k, i) is the effective transmit probability of the potential interferer

nk when ni is transmitting. Note that (6.1) holds if the transmissions of the

nodes are independent of each other. Therefore it is not applicable to the MAC

schemes with cooperation like hand-shaking and carrier sensing (CSMA, IEEE

802.11). Moreover, even if the scheduling process is independent like ALOHA,

the “independence” condition is not satisfied for non-saturated networks since the
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transmissions take place only at non-idle nodes. Note that pt(k, i) can be used to

model some level of dependence if it can be solved explicitly.

The relationship between the node buffer occupancy and the transmission oc-

currence can be reflected quantitatively through (6.1), where the effective transmit

probability is pt(k, i) , pm,kpb(k, i) ≤ 1. pm,k is the MAC-dependent access prob-

ability of nk and pb(k, i) ≤ 1 is the conditional busy probability of nk given that

ni is transmitting. For simplicity, we assume pm,k = pm, i.e., spatial stationar-

ity. The main difference from previous work lies in pb(k, i), which was neglected

because pb(k, i) ≡ 1 for saturated networks. The neglect leads to pt(k, i) = pm

and decouples nk and ni. It also results in an overestimation of the cumulated

interference and a very conservative ps,i when pb(k, i) ¿ 1.

To explain how ni and nk are correlated, consider the simple two-node tandem

network in Fig. 6.2 (set i = 1, k = 2). The channel can be regarded as a demul-

tiplexer which forwards a fraction ps,i(t) of the flow to the following node while

returning a fraction 1−ps,i(t) to the buffer of ni for retransmission. In general, the

buffer occupancy Bi is determined by the arrival process and the service process

ps,i(t). Since the latter is connected to ps,k(t) through feedback, Bi and Bk are

correlated, so are the transmissions of ni and nk.

The calculation of pb(k, i) is analytically complicated due to the involvement

of the correlated queueing systems of nk and ni. The correlation is mainly caused

by the arrival processes Ai(t). As shown in Fig. 6.2, A2(t) is composed of three

parts,

Ai(t) = ps,i−1(t − 1)Ai−1(t − 1) + (1 − ps,i(t − 1))Ai(t − 1) + Si(t), (6.2)

which is obviously correlated with A1(t) even if the local flows S1(t) and S2(t) are
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Figure 6.2. The correlations in a two-node tandem network

generated independently.

However, if approximating pb(k, i) ≈ Pr{Bk > 0|Bi > 0}, it is clear that

pb(k, i) is monotonically increasing with its arrival rate λk and decreasing with its

service rate ps,k
1. Plugging pt(k, i) = pmpb(k, i) into (6.1), we can see the following

correlations,

• Auto-correlation in channels : the increase of ps,k leads to a decrease of

pb(k, i) and pt(k, i) such that ps,i is enhanced, and vice versa. This positive

feedback (correlation) [117] is consistent with the observation in Fig. 6.2.

For instance, if ps,2 increases, B2 will be emptied quickly. Then, when n1

is transmitting, it is highly likely that B2 = 0, implying that n2 will not

interfere with the transmission of n1 so that the transmission succeeds with

high probability and ps,1 increases.

• Cross-correlation between channels and traffic rates : The increase of λk leads

to an increase of pb(k, i) and pt(k, i) such that ps,i is reduced, and vice

1In [114], it is stated that the correlation is positive in terms of the queue lengths if nk and
ni are immediate neighbors. Moreover, the correlation increases with the traffic rate and the
burst size.
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versa. In Fig. 6.2, if λ increases, the buffer size B1 increases and n1 has to

transmit more frequently to deliver these extra packets. Then, when n2 is

transmitting, B1 > 0 with a high probability and n1 interferes with n2’s

transmission, which makes ps,2 decrease.

Note that due to the above correlations, the correlation in the arrival processes

Ai(t) becomes more complicated, which, in turn, further complicates the corre-

lations in channels and traffic. For tractable analysis, we consider two extreme

cases,























Ai(t) = Si(t) + (1 − ps,i(t − 1))Ai(t − 1)

Ai(t) = ps,i−1(t − 1)Ai−1(t − 1) + (1 − ps,i(t − 1))Ai(t − 1), with

A1(t) = S1(t) + (1 − ps,1(t − 1))A1(t − 1).

(6.3)

In the first case, there are only local traffic flows, i.e., the flows are terminated

after one-hop transmission. Then Ai(t) is merely correlated with each other due

to the correlated channel qualities ps,i. In the second case, Si(t) ≡ 0 for all i > 1,

corresponding to a single-flow in the network. Then, Ai(t) is explicitly correlated

with each other. If ps,i ≡ 1 (perfect channel), in the first case, Ai(t) = Si(t) is

independent of each other and referred to as “independent” flows; in the second

case, Ai(t) = S1(t) is completely correlated with each other and referred to as

“completely correlated” flows. Therefore, the two cases provide upper and lower

bounds for other correlation levels. For fair comparison, we set the rate Ri = λ.

If ps,i < 1, the failed packets will be retransmitted and then make Ai(t) different

from Ai−1(t). The difference between Ai(t) and Ai−1(t) is the measurement of how

closely A1(t) and A2(t) is correlated.

The correlations are evaluated via the conditional probability pb(k, i), which
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can be interpreted as the probability that the busy periods of nk and ni overlap.

The unconditional busy probability is ρk, the traffic intensity, defined as the ratio

of the arrival rate to the service rate. We are interested in how pb(k, i) is close to

ρk in the presence of the correlations.

• The line network behaves like a Markov chain. The correlation between two

nodes diminishes as their distance increases. Therefore, if nk and ni are

far away from each other, there is no correlation and pb(k, i) → ρk. The

impact of the correlations is overshadowed by the long distance between ni

and nk. The distance between ni and its interferers is determined by the

MAC scheme. Here we study two typical MAC schemes, m-phase TDMA

and slotted ALOHA.

• If ρk → 1, the busy periods of nk will cover the whole time slot and cer-

tainly overlap with that of ni regardless of the buffer occupancy of ni, i.e.,

pb(k, i) → ρk ≈ 1. In other words, the impact of the correlations is over-

shadowed by the heavy traffic load.

• Traffic burstiness has an impact on pb(k, i) even for memoryless Bernoulli

traffic [114]. In Fig. 6.2, if packets arrive in batches at n1, then n1 has

packets buffered after it delivers one packet to n2. At the following instant,

both n1 and n2 are busy, i.e., pb(k, i) → 1. On the other hand, for smooth

traffic, the two arrivals are usually separated by a non-zero interval. n1 is

probably idle after delivering a packet to n2 and their busy periods are not

overlapped. Naturally, bursty traffic results in higher pb(k, i) than smooth

traffic.

To distinguish the impact of traffic burstiness, we consider three typical models,
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CBR, on-off and Bernoulli. In CBR, the packet interarrival time is a constant

r = 1/λ. In on-off, the arrival process is modulated by a two-state Markov chain

that alternates between ON (1) and OFF (0) states. A packet is generated only

when the Markov chain is in state ON. The transition probabilities between ON

and OFF are a01 and a10, respectively. This model generates a stream of correlated

bursts and silent periods both of which are geometrically distributed in length.

The mean burst length is B = 1/a10. The average rate λ = a01/(a10 + a01).

Bernoulli is a special on-off model with a01 + a10 = 1. The generated burst and

silent periods are independent so that Bernoulli traffic is memoryless.

6.2 m-phase TDMA

In m-phase TDMA [94], every node is allocated to transmit once in m time

slots, and nodes m hops apart can transmit simultaneously. Then, the interferers

of ni are lm (l = 1, 2, . . .) hops away from ni with pm = 1. Using the shortest path

first routing protocols, the receiver is ni+1. Then, the distance from the interferer

nk to the receiver is dk/di = lm + 1 if nk is on the left side of ni+1, referred to

as left interferer, and dk/di = lm − 1 if nk is on the right side of ni+1, referred

to as right interferer. Based on the statement in Section 6.1, the impact of the

correlations is overshadowed by the long distance between ni and nk. With m

chosen appropriately, pb(k, i) ≈ ρk. In TDMA, ρk = mλ/ps,k at the frame (m

slots) level [142], in which the traffic rate λ is multiplied by a factor m to account

for the packet accumulation in the frame. Plugging pt(k, i) ≈ ρk into (6.1), we

have

ps,i =
∏

k∈Ii

(

1 − mλ

ps,k(1 + (lm ± 1)α/Θ)

)

, (6.4)
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where Ii = {k|(k mod m) = (i mod m)} and dk/di = lm ± 1. Positive feedback

in ps,i and ps,k and negative feedback in ps,i and λ are explicitly revealed in (6.4).

Given the parameter m, define the network throughput λmax as the maximum

rate accommodated by the network. The network capacity λC is obtained by

maximizing λmax over m.

6.2.1 Network Throughput and Capacity

The network throughput is determined at the bottleneck area where the nodes

experience the worst channel quality psL ≤ ps,i. The network traffic distribution

can be classified into heterogeneous and homogeneous, distinguished by whether

the arrival rates at each node are identical or not. For the homogeneous traffic

distribution, λi = λk = λ and the network throughput and capacity are calculated

when λ = max
i

{λi}. Thus, psL occurs at the center nodes that have approximately

the same number of right and left interferers, which is denoted by K

K = db
N
m
c

2
e − 1. (6.5)
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Replacing ps,k ≥ psL into (6.4), we approximate psL as follows

psL ≤
K
∏

l=1

(

(

1 − mλ

psL

(

1 + (lm + 1)α/Θ
)

)

(

1 − mλ

psL

(

1 + (lm − 1)α/Θ
)

)

)

(6.6)

≈ 1 − mλ

psL

K
∑

l=1

( 1

1 + (lm + 1)α/Θ
+

1

1 + (lm − 1)α/Θ

)

(6.7)

/ 1 − 2mλ

psL

K
∑

l=1

1

1 + (lm)α/Θ
(6.8)

≈ 1 − 2mλ

psL

∫ K+0.5

0.5

Θ

Θ + (mx)α
dx, (6.9)

, 1 − 2mλ

psL

g(m, Θ, α), (6.10)

The approximation in (6.7) comes from the fact that for 0 ≤ mλ/psL ≤ 1 and

1/(1+ (lm± 1)α/Θ) ¿ 1, the product can be approximated by the sum [21]. The

approximation in (6.8) uses the convexity of the function 1/(1 + xα/Θ). Since

m−α is very small, the sum in (6.8) is approximated by an integral in (6.9), where

the integral is denoted by g(m, Θ, α) ≥ 0. Note that g(m, Θ, α) monotonically

decreases with m and α, and increases with Θ.

For heterogeneous traffic distribution, λi 6= λj. A simple example is that every

node generates a traffic flow of identical rate ri ≡ r. In the line network, λi = ir

and λ = Nr. Let L denote the index of the node where psL occurs. Then,

L = Km + Rem
(N

m

)

, N = L + (K − 1)m.

A similar calculation as in (6.9) yields the upper bound (replacing λ by (L− lm)r
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and (L + lm)r for the distance lm + 1 and lm − 1, respectively)

psL / 1 − mλ

psL

K
∑

l=1

1

1 + (lm)α/Θ

≈ 1 − mλ

psL

g(m, Θ, α). (6.11)

Apparently, the obtained psL is greater than that obtained for the homogeneous

traffic distribution. Since the network throughput and capacity are determined

by the worst-case scenario, they are studied based on the homogeneous traffic

distribution (6.9), from which psL can be solved as a root to a quadratic equation,

psL ≈ 1

2

(

1 +
√

1 − 8mλg(m, Θ, α)

)

. (6.12)

The integral can be calculated numerically. Specially, for α = 2, (6.12) is simplified

to

psL ≈ 1

2

(

1 +

√

1 − 8λ
√

Θ
(

arctan
((K + 0.5)m√

Θ

)

− arctan
( m

2
√

Θ

)

)

)

(for K → ∞) ≈ 1

2

(

1 +

√

1 − 8
√

Θλ
(π

2
− arctan

( m

2
√

Θ

)

)

)

(6.13)

For fixed Θ and α, psL is a function of the traffic rate λ and MAC parameter m. If

λi 6= λk, the calculation will be more complex. But (6.6) shows that the obtained

psL will be better than in the case λi = λk = λ = max
i

{λi}. The inclusion of

λ distinguishes (6.12) from previous work for saturated networks [50, 88, 155].

Plugging pb(k, i) ≡ 1 into (6.4), we obtain a pF
sL at the saturated state,

pF
sL ≈ 1 − 2g(m, Θ, α), (6.14)
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Figure 6.3. Comparison of the lower bound on ps,i for non-saturated and
saturated TDMA line networks with Θ = 10,m = 4

which is independent of λ. Fig. 6.3 compares psL and pF
sL for Θ = 10,m = 4 where

pF
sL is a constant. For light traffic (non-saturated state), a huge gap exists between

psL and pF
sL. The real channel psL performs much better than pF

sL. The resulting

buffer occupancy and packet delay are thus shorter than at the saturated state.

To guarantee network stability, the nodes experiencing psL should be stable

with ρ = mλ/psL < 1. Plugging psL (6.12) into the stability condition,

2mλ < 1 +
√

1 − 8mλg(m, Θ, α), (6.15)

we are able to calculate the network throughput λmax as

λmax =
1 − 2g(m, Θ, α)

m
. (6.16)

Fig. 6.4 shows λmax as a function of m for Θ = 10 with α = 3 and α = 4,
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in which λmax(m) is not monotonic. Increasing m will decrease the potential

interference and improve the channel capacity psL. However, it also implies smaller

spatial reuse, which potentially decreases the network throughput. Note that as

the maximum achievable traffic rate, the throughput λmax is obtained by ρ = 1.

Therefore, applying pF
sL (6.14) for the saturated network to the stability condition

leads to the same result of λmax. The network capacity λC = max
m

{λmax} is

obtained by maximizing over m. More specifically, differentiating λmax (6.16) by

m and equating to zero,

1 − 2g(m, Θ, α) + 2mg′
m(m, Θ, α) = 0, (6.17)

the solution m∗ is the optimum value of m achieving λC . Plugging m∗ into (6.16),

we obtain λC

λC =
1 − 2g(m∗, Θ, α)

m∗ = −2g′
m(m∗, Θ, α) ≤ 1

m∗ . (6.18)

Since g(m, Θ, α) is non-negative, the network capacity cannot exceed 1/m∗. Fig. 6.5

displays the capacity λC , which is monotonically decreasing with Θ. Generally,

the higher SIR threshold Θ restricts spatial reuse and therefore results in lower

capacity.

6.2.2 Simulation Results

In TDMA, the impact of the correlations can be neglected as m is large. The

lower bound psL on the success probability ps,i, the network throughput and ca-

pacity are all derived based on the assumption of pb(k, i) = ρk as if the nodes

were independent. To validate the accuracy of the assumption, simulation results
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Figure 6.4. Network throughput λmax as a function of TDMA parameter
m in a line network with Θ = 10
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Figure 6.6. The channel quality psL in TDMA networks with CBR
traffic and α = 4, Θ = 10

are provided. First, in Fig. 6.6(a) with independent flows, the simulated channel

quality psL is very close to the analytical result (6.12), particularly with λ increas-

ing. Second, in Fig. 6.6(b), we compare the channel performance under the two

extreme cases, independent flows and completely correlated flow. As long as the

traffic rate λ is equivalent, the channels behave similarly regardless of the traffic

flows are correlated themselves. Therefore, the analytical results on the lower

bound psL, the network throughput λmax and capacity λC are quite accurate in

TDMA networks with m large enough.

On the other hand, if m is small, the correlation at the arrivals become more

important. In our simulations, the more closely correlated the arrivals, the better

the channel quality psL (Fig. 6.6(a), light traffic with λ < 0.15). However, the

channel performance improvement is less apparent as the traffic rate λ and thus

the normalized traffic intensity ρk increases. In other words, in terms of psL, the
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Figure 6.7. The impact of traffic burstiness in TDMA networks with
α = 4, Θ = 10

impact of traffic intensity overshadows that of the traffic correlation.

In Fig. 6.7, we can see that traffic burstiness plays a role mainly in networks

with correlated traffic flows. Here the light and heavy bursty on-off processes are

defined based on the burst size. Set 1/(1−λ) (the burst size of Bernoulli traffic) as

the standard burst size. Light on-off has a burst size of (1/(1−λ)−(1−λ))/2 while

heavy on-off has a burst size of λ/2. As expected in Section 6.1, bursty traffic

results in a higher pb(k, i) and thus a lower channel quality psL than smooth traffic

(Fig. 6.7(b)). The heavier the burstiness, the worse the channel. But the impact

of burstiness is overshadowed by the traffic intensity since with λ increasing, the

channel quality psL converges regardless of traffic burstiness.

In summary, pb(k, i) is affected by the following factors in an order of 1) dis-

tance m between nk and ni; 2) traffic intensity ρk or traffic rate λ; 3) traffic

correlation; and finally 4) burstiness.
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6.3 Slotted ALOHA

6.3.1 Network Throughput and Capacity

In ALOHA [4], every node independently transmits with access probability pm

when it has packets. ALOHA can be regarded as a special case of TDMA with

m = 1 and pm 6= 1. So the interference set is Ii = {k|k 6= i}, which means that

the distance between the transmitter and interferers may be too small to neglect

the correlation between them as in TDMA. Due to the complexity of deriving the

correlations, ALOHA is mainly studied through simulation results. But as shown

in Section 6.2.1 for TDMA, the throughput and capacity are calculated when the

network is at the saturated state and can be directly derived by pF
sL, which does not

involve in the conditional probability pb(k, i). Plugging pt(k, i) = pmpb(k, i) = pm

and dk/di = 0, 1, 2, . . . (psL occurs at the center) into (6.1), we obtain

pF
sL ≤ (1 − pm)(1 − pm

1 + 1/Θ
)
(

∞
∏

k=2

(

1 − pm

1 + kα/Θ

)

)2

, (1 − pm)(1 − pm

1 + 1/Θ
)
(

g(pm, Θ, α)
)2

. (6.19)

Like in [51], for small pm, log(1− pm/(1+kα/Θ)) / −pm/(1+kα/Θ), which leads

to g(m, Θ, α) ≈ e−pm/σ, where

σ−1 =
∞
∑

k=2

1

1 + kα/Θ
. (6.20)

Specially, for α = 2 and α = 4, g(m, Θ, α) is further simplified to















g(m, Θ, α)(1 − pm

1 + 1/Θ
) ≈ e

√
2y1

√
1 − pme

√
2y2

α = 2

g(m, Θ, α)(1 − pm

1 + 1/Θ
) =

cosh2(y1) − cos2(y1)√
1 − pm(cosh2(y2) − cos2(y2))

α = 4,

(6.21)
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Figure 6.8. The network throughput and capacity in ALOHA networks

where y1 := π α
√

Θ(1 − pm)/
√

2 and y2 := π α
√

Θ/
√

2. Fig. 6.8(a) verifies that the

approximation of g(pm, Θ, α) is accurate for pF
sL when α > 2. Plugging pF

sL into

the stability condition ρk = λ/(pmpF
sL) < 1, we obtain the network throughput

λmax,

λmax / pm(1 − pm)(1 − pm

1 + 1/Θ
)e−pm/σ. (6.22)

Like in TDMA, Fig. 6.8(b) shows that λmax is not monotonic with the MAC

parameter pm. To calculate the capacity λC , maximizing log(λmax) over pm, which

is equivalent to maximizing λmax over pm, yields the optimal pm to achieve the

capacity, denoted by p∗m = arg maxpm
λmax

c0(p
∗
m)3 + c1(p

∗
m)2 + c2p

∗
m + c3 = 0, (6.23)
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Figure 6.9. The capacity of ALOHA line networks

with










c0 = 2Θσ−1, c1 = −(2σ−1 + 3Θ + 4Θσ−1)

c3 = −(1 + Θ), c2 = 2(1 + 2Θ + σ−1 + Θσ−1).
(6.24)

p∗m is the solution to the above third order polynomial. Fig. 6.9(a) displays p∗
m as

a function of the SIR threshold Θ. The network capacity λC is

λC = p∗m(1 − p∗m)(1 − p∗m
1 + 1/Θ

)e−p∗m/σ, (6.25)

which is exhibited in Fig. 6.9(b). In a saturated network, if all nodes transmits

independently, a higher access probability pm allows more nodes to transmit si-

multaneously but results in more severe interference. The network capacity λC is

achieved at a small pm, typically pm ≤ 0.4 (Fig. 6.9(a)).
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Figure 6.10. Realistic channel performance in ALOHA networks with
λ = 0.1, Θ = 10, α = 4.

6.3.2 Correlated Traffic Flows in ALOHA Networks

Practical networks are not saturated, so pb(k, i) ≡ 1 does not hold. Fig. 6.10(a)

displays the difference between the analytical lower bound pF
sL (6.19) and the

simulated minimum success probability psL for four traffic types with rate λ = 0.1.

The traffic intensity ρ = λ/(pmpsL) is close to 1 when i) pm is too small, in which

the node keeps holding the packets too long and increases the buffer occupancy;

ii) pm is too large, in which more nodes transmit simultaneously and decrease

the transmission success probability. Therefore, the analysis pF
sL is tight when

pm < 0.3 or pm > 0.6. Other than that, the real channel quality psL is much better

than at the saturated state. Simply assuming pb(k, i) ≡ 1 will underestimate the

channel quality and lead to inefficient admission control.

Moreover, traffic burstiness has a more obvious impact on psL than in TDMA.

Even if the traffic flows are independent themselves, for CBR traffic, psL remains
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approximately unchanged with pm ∈ (0.2, 0.6), while for heavy bursty on-off, psL

sharply decreases from 0.6 to 0.2. If the traffic flows are correlated, the impact of

burstiness becomes more visible Fig. 6.10(b). For CBR traffic, the channel quality

psL surprisingly does not decrease with increasing pm as expected. Instead, psL

converges to 1, like a perfect channel (Fig. 6.10(b)). On the other hand, for heavy

bursty on-off traffic, psL varies with pm in a similar way as in independent flows.

However, for Bernoulli and light bursty on-off traffic, psL turns out to be less

affected by pm since it is like a constant between 0.5 and 0.6 when pm increases

from 0.2 to 1. In short, unlike TDMA, traffic correlation plays a important role

in ALOHA with random transmission orders.

Recall that the traffic correlation mainly affects the conditional busy proba-

bility pb(k, i) of nk given that ni is transmitting. As an example, consider pb(k, 1)

given that n1 is the only source node in the network. In Fig. 6.11(a), pb(k, 1) is

compared to the unconditional busy probability ρk. A small pm, e.g., pm = 0.15,

implies heavy traffic intensity and a large ρk, in which pb(k, 1) ≈ ρk → 1. As

pm increases but does not cause serious interference, the traffic intensity ρk will

decrease, so will the node busy periods. Then, pb(k, 1) ≤ ρk < 1, as shown in

Fig. 6.11(a) for pm = 0.4, in which the immediate neighbor n2 of n1 is idle more

often with pb(2, 1) = 0.1 when n1 is transmitting than in equilibrium with ρ2 = 0.3.

That is why in ALOHA it is not appropriate to approximate pb(k, i) ≈ ρk.

Particularly, as pm is close to 1, e.g., pm = 0.85, most nodes are quite silent

with pb(k, 1) → 0 except n10 and its neighbors. It is no coincidence that the CBR

flow is of rate λ = 0.1 with a constant interarrival time of 10 slots. Therefore,

in Fig. 6.11(b), we emphasize two nodes with respect to the source node n1, the

closest neighbor n2 and the node n11 of 10 hops away. With pm increasing, the
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Figure 6.11. The impact of traffic correlations on pb(k, i) in ALOHA
with CBR traffic and Θ = 10, α = 4

smoothness of CBR traffic is better preserved, which leads the most influential

interferer n2 to be more silent and n11 to be more synchronous with n1. At

pm = 1, ALOHA behaves like m-phase TDMA with m = 1/λ if 1/λ is an integer.

Then, it is interesting to determine under which circumstance ALOHA can

emulates TDMA. First, the traffic smoothness needs to be preserved, which takes

place at pm → 1 for CBR traffic. That is why on-off and Bernoulli traffic

cannot benefit from the increasing pm (Fig. 6.11(b)) and possess better chan-

nel performance (Fig. 6.12(b)). But smoothness preservation is not sufficient.

In Fig. 6.12(a), we present the conditional busy probabilities pb(k, 1) of CBR

traffic with different rate λ = 1/m. Denote a virtual interference set of n1 by

Ĩ1 = {k|k = 1 + lm} (l = 1, 2, . . .). Note that in ALOHA, the interference set of

n1 is I1 = {k|k = 2, 3, . . .}, larger than Ĩ1. With n1 transmitting, only the nodes in

Ĩ1 transmit with high probability pb(k, 1) → 1 while all other nodes are most likely
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to keep silent with pb(k, 1) → 0. This phenomenon can be interpreted as that a

natural spacing is formed between n1 and its potential interferers, which narrows

down the interference set to be Ĩ1. However, this spacing does not always exist. As

λ increases to λ = 0.2, there is no obvious difference in pb(k, 1) between k ∈ Ĩ1 and

k /∈ Ĩ1. In other words, the spacing disappears and the channel performance will

be sharply degenerated as confirmed in Fig. 6.12(b). Therefore, ALOHA emulates

TDMA only if the traffic rate is below the network capacity λC = 0.2. It is worth

pointing out that the capacity for correlated flows is greater than for independent

flows (Fig. 6.9(b), λC = 0.1 for Θ = 10, α = 4).

More importantly, even if the traffic rate is close to λC , say λ = 1/6, the

channel quality psL is still very good and even slightly better than in TDMA.

This benefit not only the network throughput and capacity, but also the end-to-

146



end delay. Based on queueing theory, with psL unchanged, a large pm implies a

smaller access delay and thus a smaller overall waiting delay. Since the traffic

correlation exists in most multihop networks, it is important to investigate its

advantages.

6.4 ALOHA with Packet Dropping Policy

The traffic correlation plays a distinct role in ALOHA. Counter-intuitively, for

CBR and light bursty on-off traffic, increasing the access probability and having

more nodes transmit simultaneously does not necessarily degenerate the channel

performance. Instead, as long as the traffic rate is below the network capacity,

for smooth traffic, the traffic correlation induces an almost equal spacing be-

tween transmitting nodes that makes ALOHA emulate TDMA and thus leads

to enhanced channel qualities. But, there is one disadvantage that the spacing

between simultaneously transmitting nodes is mainly determined by the traffic

rate as m = 1/λ. If λ is small, the spacing factor m would be much larger than

the optimum m∗, reducing spatial reuse. To solve this problem, we use packet

dropping to control the spacing factor m. We begin with a simple strategy where

the failed packet is discarded immediately. Then, queueing is excluded and every

node has at most one packet in the buffer. The arrival process at ni+1 completely

depends on ni, including its arrival and channel ps,i. More specifically, ni+1 has a

non-empty buffer at time t only if ni successfully delivers a packet to it at time

t − 1. Therefore, all correlations are excluded except for the traffic correlation.

Prior to study the transmission of ni at time t, we first observe the transmission

of ni−1 at time t−1. ni is able to transmit at t only if ni−1 succeeded in transmission

at t − 1. Then, at t − 1, the following events occur (Fig. 6.13),

147



1. the desired receiver ni did not transmit at t−1 and thus ni+1 has no packets

to transmit at t;

2. ni−1 cannot receive at t−1 as a half-duplex transceiver and it has no packet

to transmit at t as well;

3. ni+1 did not transmit to ni+2 at t − 1 since its transmission would interfere

with that of ni−1 at ni. As the most influential interferer, the impact of ni+1

would lead to a failed transmission even if the channel is capable of capture.

Thus ni+2 has no packet at t;

4. ni−3 did not transmit because of the same reason as 3). Thus, ni−2 has no

packet at t.

In summary, when ni transmits at t, at least its four closest neighbors ni−2, ni−1,

ni+1, ni+2 do not transmit and interfere. In practice, simulation results show that

the transmissions to ni−3 and ni+3 are hardly successful at t− 1. Therefore, these

two nodes can be excluded from the interference set so that the nearest interferers

are ni−4 and ni+4. Similarly, if ni−4 or ni+4 does transmit, the other interferers are

at least four hops away from them. In other words, this simple dropping policy

leads ALOHA to emulate m-phase TDMA with m = 4. The difference lies in: i)

the spacing is naturally generated without the overhead of establishing the frame

structure; ii) there is no access delay because pm = 1.

Due to the similarity with TDMA, the performance of this network can be

derived in a similar way as in TDMA. For the case of correlated flows, n1 is the

only source generating a CBR flow of rate λ. The failed packets are discarded at
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Figure 6.13. Transmission order in ALOHA with pm = 1 and dropping
policy

probability 1 − ps,i. Then, the arrival rate at ni is

λi = λ
i−1
∏

k=1

ps,k ≥ λpi−1
sL . (6.26)

Since there is no access delay and no packets accumulation, unlike in TDMA, the

traffic intensity is ρk = λk/ps,k, m times less than in TDMA. That is why the

obtained psL is better than in TDMA, as shown in the following. Due to the

non-homogeneous traffic loads, the lower bound psL occurs at nm+1. Plugging ρk

into (6.6), we have

psL ≈
(

1 − λ

psL(1 + (m + 1)α/Θ)

)

∞
∏

k=1

(

1 − λp
(k+1)m
sL

psL(1 + (km − 1)α/Θ)

)

≈ 1 − λ

psL

( 1

1 + mα/Θ
+ pm

sL

∞
∑

k=1

pkm
sL

1 + (km)α/Θ

)

≈ 1 − λ

psL

( 1

1 + mα/Θ
+

p2m
sL

1 + mα/Θ

)

, β ,
1

1 + mα/Θ

= 1 − λβ

psL

(

1 + p2m
sL

)

, (6.27)
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where the term with the infinite sum is replaced by βp2m
sL with a small error. Then,

psL is solved as a root to the following polynomial

f(x) = bx2m + x2 − x + b. b , λβ (6.28)

In order to obtain an explicit expression, we use the second-order Taylor expansion

at x = 1 to yield a quadratic equation. For m = 4, considering f(1) = 2b,

f
′

(1) = 8b + 1, and f
′′

(1) = 56b + 2,

psL =
1 + 48b +

√
1 + 8b − 160b2

2(1 + 28b)
. (6.29)

For small λ, Fig. 6.14(a) shows that psL(λ) is linearly decreasing. The e2e drop-

ping probability is upper bounded by pd ≤ 1 − pN
sL, which is almost linear with

λ for α ≥ 4 (Fig. 6.14(b)). Note that due to the packet dropping policy, the

network throughput and capacity are not determined by the stability condition

ρk = λk/psL < 1. Instead, based on the definition, the throughput is the number

of packets that are successfully transmitted to the destination,

λmax = λ(1 − pd) ≥ λpN
sL, (6.30)

which is shown in Fig. 6.14(c). Since m = 4 is predetermined by the dropping

policy2, the network capacity λC = λmax. The optimum m∗ in TDMA to achieve

the capacity (m∗ = 4 for Θ = 10, α = 4) is obtained by using the dropping policy,

which substantially improves spatial reuse.

The cost of dropping packets en route is low reliability that can be resolved by

introducing redundancy. For instance, using erasure correcting codes [82], more

2In practice, m > 4 depending on α and Θ.
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packets will be injected into the source node such that the destination node can

recover the data even a portion of the data are lost. In Fig. 6.14(c), if a traffic

flow of higher rate λ = 0.3 with 50% redundancy is injected, a throughput of

λmax = 0.2 is guaranteed for α = 4, Θ = 10. Note that λmax = 0.2 (α = 4) is

the highest rate achievable in TDMA, while in this ALOHA with packet dropping

the throughput is enhanced to λmax > 0.3 as λ → 1. In other words, relaxing

reliability requirement can improve throughput.

Meanwhile, in Fig. 6.14(a), at rate λ = 0.3, the channel is almost perfect

with psL > 0.95, while in TDMA, at λmax = 0.2, the channel quality psL < 0.9

(Fig. 6.5(a)). As mentioned before, good channel qualities psL also imply short

delays. Many applications can tolerate a small part of packet loss but are delay-

sensitive. Moreover, from the perspective of energy efficiency, reducing reliability

within a tolerable threshold is more efficient than keep retransmitting the failed

packets. The latter consumes more energy on the packets which may be out-of-

date at the destination due to long delays. In overall, it is beneficial to drop a

small fraction of packets to save energy, reduce e2e delay and enhance throughput.

6.5 Conclusions

In this chapter we investigated the impact of the correlations in WMNs. First,

the auto-correlation in the channel quality psL and the cross-correlation between

psL and the traffic rate λ over Rayleigh fading channels are exposed through an

explicit expression of psL. Second, the impact of the traffic correlation is reflected

through the conditional node busy probability. In TDMA networks, due to the

spacing between the transmitter and interferers, the statistical traffic parameters

like burstiness and correlation are not as significant as the deterministic param-

151



0 0.2 0.4 0.6 0.8 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

λ

p sL

accurate p
sL

approximate p
sL

α=5

α=4

α=3

α=2

(a) Channel quality psL

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

λ

p d

accurate p
d

approximate p
d

α=5

α=4

α=3

α=2

(b) Packet dropping prob-
ability pd

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

λ

λ m
ax

α=2

α=4

α=5

α=3

(c) Network throughput
λmax

Figure 6.14. The network performance of ALOHA with dropping
strategy and Θ = 10

eter, traffic rate, in affecting the channel performance. We derive the network

throughput and capacity by approximating the conditional busy probability by

the unconditional probability.

In ALOHA networks, the statistical traffic parameters become dominant, par-

ticularly the traffic correlation. The throughput and capacity derived under inde-

pendent traffic flows cannot capture the channel properties under correlated flows,

especially for CBR traffic. In [146], it is found that the smoothness of CBR traf-

fic is destroyed by the error-prone wireless channel with fixed success probability

1 − ps. In interference-limited Rayleigh fading channels, the success probability

is time-varying. But, with the traffic correlation, the smoothness of CBR traffic

is preserved by the traffic correlation even without MAC. This CBR-fed ALOHA

network emulates TDMA to have a spacing naturally formed between the trans-

mitting nodes. Since there is no overhead to establish the frame structure like in

TDMA, the obtained performance is better than TDMA’s in terms of throughput,

capacity and channel quality psL. Then, it is helpful to combine the MAC scheme
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with traffic regulation that can smooth bursty traffic flows.

To further explore the traffic correlation, we apply a packet dropping strategy

to control the formation of the natural spacing for more efficient spatial reuse.

Analysis shows that a simple dropping policy can lead to optimum m∗ derived in

TDMA. Although reliability is reduced because of packet dropping, the network

throughput and channel performance are improved. If an intelligent dropping

strategy is used instead of simply dropping the outdated packets, a better tradeoff

between reliability, throughput and delay can be achieved.
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CHAPTER 7

TRADEOFF BETWEEN DELAY AND RELIABILITY IN WIRELESS

NETWORKED CONTROL SYSTEMS

The analysis in Chapter 5 shows that the e2e delay is very sensitive to the

channel quality which dynamically changes in the wireless environment. The long

delay incurred by bad channels cannot be tolerated by delay sensitive applications,

e.g., in WSNs, where data communication is required to be real-time and reliable.

It is difficult, if not impossible, to guarantee hard delay bounds with full reliability.

However, Section 6.4 reveals that dropping packets is an energy efficient approach

to guarantee packet delays. Many delay-sensitive applications can tolerate a small

amount of data loss, e.g., network sensing and control systems (NSCS) [18, 71,

73, 77]. Then, it is sufficient to provide a balanced guarantee between the delay

and reliability.

In previous work, the delay was guaranteed by allowing only one transmission

attempt [73, 77]. Then the network is rather unreliable since reliability completely

depends on the channel condition µ. If µ ¿ 1, the packet loss rate pL = 1−µ will

be too large to be tolerable. On the other hand, in the fully reliable network, the

failed packets will be retransmitted until they are received successfully. Similarly,

the resulting delay is tightly controlled by the channel condition µ. If µ ¿ 1, the

delay will be very long and cannot be tolerated by real-time applications. Besides,

more energy will be wasted to retransmit packets that are outdated and should
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be discarded. From the perspective of network stability, the traffic rate cannot be

greater than µ. In interference-limited networks, Chapter 6 shows that µ at the

hotspot nodes are very small. Then, only light traffic can be accommodated.

A balance between latency and reliability can be achieved by intentionally

dropping a small percentage of outdated packets. Three packet dropping strate-

gies discussed in [156] are Finite Buffer (FB), Bounded Delay (BD), and Limited

Attempts (LA). Among them, BD can ensure a hard delay bound and will be

used in this chapter. The dropping strategy is usually associated with the node

scheduling algorithm to determine which packets are eliminated. For instance, if

applications prefer the new packets over the old packets, priority scheduling (high

priority to new packets) or Last-Come-First-Serve (LCFS) scheduling are used to

drop outdated packets and yield the buffer space for new packets.

The network using the BD strategy is referred to as Delay Bounded (DB)-

network. Compared to the fully reliable network, the DB network has several

advantages. First, network stability is not an issue. Even if the traffic load is too

heavy to be accommodated, the network is still able to self-stabilize after discard-

ing some packets. Hence, a higher traffic rate than µ is allowed in the DB network.

Second, less energy is wasted to retransmit packets that will be dropped eventually

(refer these packets to as “marked” packets). Given the multihop topology, the

sooner the marked packets are dropped, the better. Third, in interference-limited

networks, as the overall traffic load decreases, the channel reception probability µ

will be enhanced and more traffic flows will be admitted.

Unreliability caused by the BD strategy is measured by the packet loss rate

pL. As long as pL is smaller than a predetermined threshold, the BD strategy

is a sensible solution for the tradeoff between latency and reliability. Denote

155



the e2e delay bound by DB. In this chapter, we derive the relationship between

DB and pL, in particular for Networked Control Systems (NCSs) [144]. The

tradeoff between the e2e delay, reliability, and the sampling rate is jointly studied

with the consideration of the MAC scheme, the dropping strategy and multihop

communication.

7.1 System Model

The system model for a NCS is outlined in Fig. 7.1(a), where the source (e.g.,

sensor) data are transmitted over multiple wireless hops to the controller. Nodes

1 to N are relays. The data generated at the source node is time-critical, e.g.,

periodic data used for updating controller output. A loop exists between the

source, the controller and plant. Focusing on the MAC schemes, we consider a

regular line network as shown in Fig. 7.1(b), which disposes of the routing and

inter-flow interference problem. The obtained performance provides an upper

bound for general two-dimensional networks because 1) the inter-flow interference

is zero; 2) networks with equal node distances achieve better performance than

those with unequal or random node distances [77]. Then, the set of communication

links is modeled as a chain network (Fig. 7.1(b)). If packets are of fixed length,

the objective is to analyze the discrete-time tandem queueing network controlled

by wireless MAC schemes.

Two MAC schemes are studied, m-phase TDMA with frame length m and slot-

ted ALOHA with transmit probability pm. The wireless channel is characterized

by its reception probability µ. The sampled source data (generated by the source

in Fig. 7.1(a)) is assumed to be CBR of rate 1/r. To simplify the analysis, the

local scheduling algorithm is FCFS. Other scheduling algorithms like LCFS and
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Figure 7.1. System models

priority scheduling can be chosen to better serve the NCS application demand.

The CBR arrival results in a non-Markovian queueing system, which substan-

tially complicates the analysis. Despite of the enormous queueing theory litera-

ture, it is still difficult to track the transient behavior of non-Markovian systems

[135], while the BD strategy is implemented based on the system transient be-

havior. Even if the source is deterministic and smooth, calculating the delay

distribution in a time-dependent BD strategy is still a challenge. In addition,

non-Poisson arrival causes correlations between the delays and queue lengths at

individual nodes. Closed-form solutions exist only for some special networks, like

Jackson networks, which do not include the networks considered here. In other

words, accurate analyses are almost impossible in a multihop network with a long

path. Therefore, we start the analysis with the first node, then investigate the

network performance through simulation results.

From the perspective of energy efficiency, it is not recommended to drop the

packet only when its e2e delay exceeds DB, which often happens when the packet

157



reaches the last few nodes to the destination. The longer the route the packet

traverses, the more energy is wasted. So, a local BD strategy is preferred. In

order to determine how the local BD strategy is implemented, we first review the

cumulated delay distribution in non-dropping tandem networks.

In [142], a fully reliable tandem queueing network is studied. CBR Traffic is

transformed to correlated and bursty through the error-prone wireless channels.

Even with correlation, the e2e delay is approximately linear in the number of

nodes with respect to both the delay mean and delay variance, as confirmed by

simulation results in Fig. 7.2. Then, it is reasonable to uniformly allocate DB

among nodes based on their relative distances to the source node [102], i.e., the

local delay bound Di is set to be Di = iDB/N = iD (i ∈ [1, N ], Di ∈ N). Packets

are dropped at node i if their cumulated delay exceeds Di. Intuitively, if a node

experiences a delay at node i longer than Di, then it is highly possible that it

has delay longer than DB at the final node N . Parameters of interest include the

cumulated delay di and the packet loss rate pi
L at node i (1 ≤ i ≤ N).

As proved in [142], the e2e delay mean of ALOHA is about µ/(1 − µ) times

than that of TDMA. The gap is even larger for the delay variance as shown

in Fig. 7.2(b). However, in WMNs, TDMA is not feasible for implementation,

and simple MAC schemes like ALOHA are more desirable, even though TDMA

substantially outperforms ALOHA in terms of both throughput and delay. The

BD strategy is a solution to reduce the performance gap between TDMA and

ALOHA.

Note that in the DB network, the packets are dropped according to their

delays. Conventional queueing theory keeps track of the buffer size and cannot

capture the packet dropping event [156]. So, we use a delay model [69], in which
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Figure 7.2. Comparison of delay performance in the TDMA and
ALOHA network with m = 3, r = 4, µ = 0.8, N = 8

the system state is denoted by the packet delay such that the delay-dependent

packet dropping event can be directly depicted through the system state.

7.2 Delay Bounded WMNs

7.2.1 m-phase TDMA

In TDMA networks, nodes i,m + i, 2m + i, . . . (1 ≤ i ≤ m) can transmit

simultaneously. The time is divided into frames of m slots. A transmission can

be either a transmission of a new packet or a retransmission of a failed packet.

For a node, the beginning of a frame is the beginning of the time slot allocated to

this node. The transmission rate is 1/m, and the transmission is successful with

probability µ. To guarantee system stability, r > m. For heavy traffic, we assume

m < r < 2m. At the frame level, the service time is geometric with µ. We start

with the first node since it determines the traffic pattern of all subsequent nodes.
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At the frame level, the interarrival time 1 < r/m < 2 is not an integer even

though it is a constant. Therefore, a standard Markov chain cannot be established

as usual to keep track of the buffer size. Instead, we resort to the delay model that

denotes the delay of the Head of Line (HOL) packet as the system state [69]. The

system state is the waiting time of the HOL packet in terms of time slots, but the

state transitions happen at the frame boundaries. Since the waiting time is the

difference between the present time and the packet arrival time, the state value

might be negative when the queue is empty and the next packet arrival does not

happen. The absolute value of the negative state represents the remaining time

till the next packet arrival. With a constant interarrival time r, the transition

probability matrix P = {Pij} is:

Pij =























µ 0 ≤ i ≤ D − m, j = i − ∆,

1 − µ 0 ≤ i ≤ D − m, j = i + m,

1 D − m < i ≤ D, j = i − ∆ or i < 0, j = i + m,

(7.1)

where ∆ := r − m > 0. At frame t, let the HOL packet be packet k and its

waiting time wk(t). If the transmission is successful, packet k departs at frame t,

and the subsequent packet k + 1 becomes the HOL packet at frame t + 1. The

waiting time of packet k + 1 at frame t is wk+1(t) = wk(t) − r. It increases by m

up to wk+1(t + 1) = wk(t) − r + m = wk(t) − ∆ at frame t + 1. Therefore, the

system state transit from wk(t) to wk(t) − ∆ with probability µ. If wk(t) < ∆,

packet k is the last packet in the buffer and the buffer becomes empty after its

transmission. Then, the system transits to a negative state i = −(∆−wk(t)) < 0.

For m < r < 2m, the server idle time does not exceed one frame. Then, there

must be a packet arrival during frame t + 1. This new packet may arrive in the
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middle of frame t + 1 and cannot be transmitted immediately. The waiting time

to access the channel is m+ i > 0. Then the negative state i transits to a positive

state m + i with probability 1.

If the transmission is failed and wk(t) ≤ D − m, the HOL packet remains in

the buffer and will be retransmitted after one frame. Its delay increases by m up

to wk(t + 1) = wk(t) + m ≤ D with probability ε = 1 − µ. If wk(t) > D − m,

this HOL packet k will experience a delay greater than D after one frame and be

discarded (maybe in the middle of the frame). Then, at the beginning of frame

t+1, packet k +1 becomes the HOL packet with a delay wk+1(t+1) = wk(t)−∆.

Recall that if the transmission is successful, the positive state wk(t) transits to

state wk(t)−∆, as well. In other words, if wk(t) > D−m, the system state always

transits to wk(t)−∆ with probability 1, regardless of whether the transmission is

successful or failed.

The steady-state probability distribution {πi} can be obtained either itera-

tively or by using mathematical tools to solve π = πP. For the critical case ∆ = 1,

{πi} is derived in terms of π0 as follows:

πi =























π0

µi

(

1 + ε

Ki
∑

k=1

(−εµm)kg(k)
)

i ≤ D − m

ε
D−m
∑

j=i−m

πj i > D − m

(7.2)

where

g(k) =

(

i − km + 1

k

)

−
(

i − km

k

)

µ, Ki =

⌊

i + 1

m + 1

⌋

If the HOL packet is transmitted successfully, its delay at the first node is wk(t)

plus one time slot for transmission. Therefore, the delay distribution {di} is
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completely determined by the probabilities of non-negative states,

di =
πi−1

∑

j≥0 πj

. (7.3)

In the m-phase TDMA network, the node transmits at the frame boundaries.

A packet may be dropped in the middle of a frame if it experiences a delay greater

than D−m at the beginning of this frame and fails to be transmitted. The packet

dropping probability is

p
(1)
L =

ε
∑D

i=D−m+1 πi

λ
, λ =

m

r
(7.4)

By inspecting the balance equations, we obtain

πi =











ε
∑i

j=1 πj + π0 1 ≤ i < m

ε
∑k

j=i−m πj i ≥ m,
(7.5)

where k = min{i,D − m}. (7.5) holds for the delay distribution {di} as well.

Apparently, di is jointly determined by l = min{i,m,B − i} consecutive states

below i, which results in a backward iteration. If D − m > m, the probability

mass function (pmf) of the first node delay is composed of three sections, [1,m],

[m+1, D−m+1], and [D−m+2, D+1]. If D < 2m, the pmf will be simpler. Since

a smaller D causes a higher dropping probability, a general condition for the delay

constraint is D > 2m to ensure that every packet has at least one transmission

opportunity. Because both m and D are positive integers, the smallest possible

value of D is 2m + 1.

Note that as D → ∞, [142] has shown that the output of the first node is

a correlated on-off process. This correlation exists even if D < ∞. Then, the
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following relay nodes are fed with bursty and correlated traffic, which makes it

difficult to analyze the resulting network. So, for D < ∞, the network performance

is investigated through simulation results.

The e2e delay is the sum of all local delays. The delay mean D and the

dropping probability pL can be upper bounded as follows:

D=
N
∑

i=1

di ≤ ND1 (7.6)

pL=1 −
N
∏

i=1

(1 − p
(i)
L ) ≤ 1 − (1 − p

(1)
L )N . (7.7)

The tightness of these upper bounds depends on p
(1)
L . The fewer packets are

dropped, the closer p
(i)
L to p

(1)
L , and the tighter is the bound.

7.2.2 Slotted ALOHA

In slotted ALOHA, each node independently transmits with probability pm.

Note that pm represents the node transmission opportunity. The node actually

transmits only if it is given a transmission opportunity and it has packets to

transmit, which depends on its buffer occupancy. Traffic and the channel model

are the same as in TDMA. Again, we start with the first node, which is observed

at the time slot level. Given the success probability µ, a packet departs the node

if and only if the node is scheduled to transmit and the transmission is successful,

with a probability a = µpm. Otherwise, the packet is retained in the buffer or

discarded. The service time is geometric with a. The system state is the waiting
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time of the HOL packet. The state transition probabilities are

Pij =























1 − a i ∈ [0, D), j = i + 1

a i ∈ [0, D), j = i − r + 1

1 i < 0, j = i + 1 or i = D, j = D − r + 1.

(7.8)

At slot t, assume that the HOL packet is packet k with delay wk(t). If wk(t) < D

and the packet successfully departs the node with probability a, the next packet

becomes the HOL packet at slot t + 1 with delay wk+1(t + 1) = wk+1(t) + 1 =

wk(t) − r + 1. Otherwise, if the packet fails to depart the node with probability

(1−a), it remains as the HOL packet with its delay increased by one. If wk(t) = D,

either the packet is transmitted successfully or not, it has to be deleted from the

buffer since its delay exceeds the bound D at slot t + 1. In this case, the system

state transits from D to D−r+1 with probability 1. The negative states indicate

an empty buffer and the system is waiting for the next new packet arrival.

The delay distribution {di} is calculated based on {πi} and (7.3) like in TDMA.

Since the packet dropping possibly occurs at the time slot boundaries, the packet

dropping probability is

p
(1)
L =

(1 − a)πD

λ
= r(1 − µpm)πD. (7.9)

Rewriting the balance equations, we obtain

πi =











a
∑i+r−1

j=k πj i < D − r + 1

(1 − a)πi−1 D − r + 1 ≤ i ≤ D,
(7.10)

where k = max{0, i}. (7.10) holds for {di}, as well. Different from the TDMA
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network, (7.10) exhibits that di is jointly determined by r − 1 consecutive states

above i, which results in a forward iteration. The pmf essentially consists of three

sections, [1, D− 2r + 2], [D− 2r + 3, D− r + 1], and [D− r + 2, D + 1]. A general

setting is D > 2(r − 1), so that the pmf contains all three sections.

Note that the node transmits with probability pm when its buffer is non-empty.

In other words, the effective transmit probability is pt = PBpm, where PB is the

node busy probability. In previous work, the traffic load is so heavy that PB = 1.

Then the effective transmit probability pt is identical to the transmit probability

pm so that the performance of ALOHA networks can be optimized by manipulating

pm. However, if the traffic load is light and PB ¿ 11, which is highly possible in

ALOHA networks, simply optimizing pm does not necessarily lead to optimization

of the network performance.

As a matter of fact, based on queueing theory, the busy probability of node

i is P i
B = λi/(µpm), where λi is the arrival rate to node i. As the delay bound

D goes to infinity, it is easy to show that λi = 1/r for all i and thus PB =

1/(rµpm). Naturally, the effective transmit probability pt = 1/(rµ) depends only

on the traffic rate 1/r and the channel reception probability µ, and is completely

independent of pm. Since the network performance is essentially determined by

the effective transmit probability pt, this observation implies that the ALOHA

parameter pm does not contribute to the change of the network performance. In

the DB-ALOHA network, due to packet dropping, the arrival rate λi to node i

is a function of the loss rate p
(i)
L , λi = λi−1(1 − p

(i)
L ). The packet loss rate p

(i)
L

depends on the delay bound D, the service rate a = 1/(µpm) and the arrival rate

λi−1. Intuitively, pt is not completely independent of pm. However, in most cases

the loss rate is required to be relatively small. Then P i
B ≈ 1/(rµpm), and it is

1PB is essentially a function of pm.
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reasonable to say that pt is independent of pm.

From the analysis in [142] we can see that the longer delay of ALOHA is mostly

caused by the longer access delay, which is proportional to 1/pm. When the traffic

load is light, a large pm will lead to a small access delay and significantly improve

the e2e delay. In this sense, to optimize the delay performance of ALOHA, pm

should be chosen based on the traffic load, which has been ignored in previous

work because of the heavy traffic assumption. For example, in [76], the throughput

is maximized by pm = 1/N without consideration that the node does not need

contend for transmission opportunities when its buffer is empty.

7.3 Simulation Results

A set of extensive simulation results are provided to expose the performance

of the DB-TDMA and DB-ALOHA network. First of all, the fully reliable (non-

dropping) TDMA network is compared with the DB-TDMA network in Fig. 7.3.

We set m = 3 and µ = 0.8 for both networks. For the DB network, we additionally

set the interarrival time r = 4 and D = 4, which results in an e2e dropping

probability pL ≈ 0.20. It implies that 20% packets will be discarded and the

throughput is (1 − 0.2)/r = 1/5. In the non-dropping network, all generated

packets will be successfully delivered to the sink and the throughput is exactly the

traffic rate 1/r. Accordingly, for the non-dropping network, we set the interarrival

time r = 5 such that both networks are compared under the identical throughput.

With the BD strategy, the e2e delay decreases. A substantial improvement

is particularly reflected on the delay variance that is reduced by 60%. On the

one hand, simply reducing the traffic load at the first node does not improve the

network performance significantly. On the other hand, although introducing re-
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Figure 7.3. Comparison of the non-dropping and DB-TDMA network
with m = 3, N = 9, µ = 0.8

dundant packets does increase the traffic load, it enhances the delay performance.

In addition, the lost packets can be compensated for by the redundant packets,

which ensures reliability. In this sense, the BD strategy is very helpful to achieve

a good balance between latency and reliability.

7.3.1 m-phase TDMA

Throughout this section, the m-phase TDMA network is assumed to have

m = 3, r = 4, N = 8. Compared to the pmf of the non-dropping TDMA network,

the pmf of the cumulated delays from node 0 to node i (1 ≤ i ≤ N) is truncated

based on DB/D (Fig. 7.4) . For D > 2m, the pmf of the cumulated delay is scaled.

In Fig. 7.5, the e2e delay mean and variance are shown for µ = 0.8, D = 10.

The delay mean approximately linearly increases with the number of nodes. In

comparison with the non-dropping TDMA network (D = ∞), the delay mean is
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reduced by 40% and the delay variance by 75%. The resulting e2e packet loss rate

pL = 0.0414 ( as listed in Table 7.1) is acceptable.
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Figure 7.4: pmf of the cumulated delay in the TDMA network with m = 3, r =
4, pr = 0.8, N = 8

The dropping probability is to be traded off against the delay. A smaller D

results in a smaller delay and a higher local dropping probability p
(i)
L at node

i, which is shown in Fig. 7.6(a). As D increases, p
(i)
L decreases more slowly. It

implies that the major packet loss occurs at the first few nodes of the chain. This

property is desirable since the downstream nodes do not need to spend energy to

transmit packets that will finally be discarded. For large D, the per-node dropping

probability asymptotically converges to zero.

Fig. 7.7 demonstrates the effects of D. Both the delay mean and the delay

variance are nearly linear in D, particularly when D is small. As expected, the

e2e dropping probability pL asymptotically decreases with D. For large D, say
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TABLE 7.1

E2E DROPPING PROBABILITIES FOR THE TDMA NETWORK

WITH m = 3, r = 4, N = 8

µ
D

1 5 10 15 20

0.7 0.9615 0.3742 0.2183 0.1678 0.1431

0.75 0.9331 0.2621 0.1229 0.0803 0.0589

0.8 0.8880 0.1550 0.0414 0.0142 0.0058

D > 10, the decrease of pL becomes very slow. Thus, simply increasing D does

not help to improve reliability, but does harm the delay performance. There may

exist an optimal D to achieve the best balance between the delay and the packet

loss. Unlike in fully reliable networks [142], the delay performance is not severely

deteriorated by the drop of µ (Fig. 7.8). Moreover, as long as D is sufficiently

large, even if the traditional stability condition does not hold, the resulting e2e

dropping probability is so moderate that both the data latency and reliability

are guaranteed. For instance, considering the critical case µ = m/r = 0.75, for

D ≥ 20, the packet loss pL ≤ 0.05 is negligible. For small D like D = 10 and

pL ≤ 0.13, it is not difficult to introduce redundant packets for reliability.

7.3.2 Slotted ALOHA

This section discusses the performance of the DB-ALOHA scheme. To com-

pare with TDMA, we set pm = 1/m and m = 3, r = 4, N = 8. Different from the

TDMA system, the pmf tail is both truncated and twisted by applying the BD
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Figure 7.5. Performance comparison of the system with
m = 3, r = 4, N = 8, µ = 0.8, D = 10

scheme (Fig. 7.9). But the delay central moments and the dropping probability

behave similarly as in TDMA. Specifically, the delay mean and variance linearly

increase with the number of nodes (Fig. 7.5(a) andFig. 7.5(b)), and the per-node

dropping probability p
(i)
L decreases with the node index i, and the first node expe-

riences the maximum packet loss (Fig. 7.5(c) and Fig. 7.6(b)). The e2e dropping

probability pL is listed in Table 7.2.

Like the TDMA network, both the delay mean and variance are approxi-

mately linear with D (Fig. 7.10(a) and Fig. 7.10(b)). The dropping probability pL

(Fig. 7.10(c)) sharply decreases with small D. However, for D sufficiently large,

say D ≥ 30, the decreasing speed is decelerated and pL eventually converges to

zero. Apparently, a larger D is needed for pL to reach zero. The impact of µ is

displayed in Fig. 7.11. Again, the drop of µ causes a very small difference in the

delay mean and variance, but results in an increase of the per-node packet drop-

ping rate. Moreover, the per-node dropping probability asymptotically converges

to zero.
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7.3.3 Comparison

In the fully reliable network, the TDMA network substantially outperforms

the ALOHA network in terms of the delay (Fig. 7.2). In the DB network, the

performance gap between TDMA and ALOHA becomes fairly small. As shown in

Fig. 7.5, the difference of the delay mean between the TDMA and ALOHA network

decreases from 300% (reliable) to 20% (DB); while the delay variance difference

changes from 750% (reliable) to 10% (DB). The main performance degradation

caused by the random access is the dropping probability. For ALOHA, the lo-

cal dropping probability p
(i)
L at node i is almost five times than that of TDMA.

Moreover, p
(i)
L of ALOHA converges to zero more slowly than TDMA. However,

if the packet loss rate does not exceed the predetermined threshold, ALOHA is is

a practical MAC scheme that achieves a good delay performance. As a tradeoff,

when the gap in pL is reduced, the gap in the delay moments will be increased.
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Figure 7.8: The impact of µ in the m-phase TDMA network with m = 3, r =
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The pair (DB, pL) can be used in the controller design to optimize the NCS

performance as shown in [76, 97]. With nonzero packet loss pL and the max-

imum packet delay B, the controller system can be formulated as a Markovian

Jump Linear System (MJLS). Optimizing the MJLS system can optimize the NCS

network with MAC schemes.
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7.4 Conclusions

In DB WMNs, the QoS paramaters delay and packet loss rate are derived. The

e2e delay mean and variance are approximately linear with the number of nodes.

The local dropping probabilities p
(i)
L asymptotically converge to zero. A moderate

delay bound DB is sufficient to guarantee a small packet loss and thus achieve a

good balance between reliability and latency.

Compared to fully reliable networks, the e2e delay of DB networks becomes
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TABLE 7.2

E2E DROPPING PROBABILITIES FOR THE ALOHA NETWORK

WITH m = 3, r = 4, N = 8

µ
D

1 10 20 30 40 50 100

0.70 0.9999 0.4243 0.2505 0.1911 0.1599 0.1423 0.1048

0.75 0.9999 0.3481 0.1784 0.1164 0.0863 0.0692 0.0341

0.80 0.9998 0.2731 0.1020 0.0477 0.0238 0.0127 0.0000

less sensitive to the channel reception probability µ. This improvement is desirable

since the network performance is not expected to rapid fluctuate with µ, which

basically cannot be controlled. Besides, with the BD strategy, the delay perfor-

mance gap between TDMA and ALOHA is reduced. Due to the implementation

complexity and overhead, TDMA is less favored than ALOHA. But ALOHA has

poor delay performance. With the reduced performance gap, ALOHA becomes

more practical.
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CHAPTER 8

CONCLUDING REMARKS

8.1 Conclusions from our Work

In this dissertation, we use discrete-time queueing theory to analyze packet

scheduling algorithms and MAC schemes in WMNs. It is revealed that

• a priority algorithm with Bounded Delay (BD) dropping can provide bal-

anced delay guarantees. When the wireless channel is not bad on average

(small error rate), which is reasonable in practice, the queueing performance

of flows with low priorities is mainly determined by that of the high priori-

ties, rather than the channel itself. Moreover, if the delay bounds are chosen

appropriately and the low priority traffic load is light, the loss rate in the

LP packets is small.

• TDMA and ALOHA can be statistically analyzed using queueing theory by

incorporating the access delays into the prolonged service time (TDMA) or

the decreased service rate (ALOHA). Given the same traffic load and original

service rate, prolonging the service time by m times causes less delay than

decreasing the service rate by pm = 1/m times in terms of both the mean

and variance.

• in one-dimensional WMNs, the e2e delay, especially the variance, is signifi-

cantly affected by the negative correlations between the delays experienced

176



at single nodes. Previous work based on the “independence” assumption

led to very conservative call admission control because the accurate e2e de-

lay variance is much smaller than the sum of delay variances at individual

nodes. The complete delay distribution can be used to calculate a delay

outage probability pL(d), a critical measurement for delay-sensitive applica-

tions.

• there exist correlations in traffic flows, multiple access interference, and de-

lays in WMNs. These correlations can be taken advantage of to design dis-

tributed and cooperative MAC and packet scheduling protocols in multihop

networks. In TDMA networks, due to the spacing between the transmitter

and interferers, the statistical traffic parameters like burstiness and correla-

tion are not as strongly as the deterministic parameter traffic rate. On the

other hand, in ALOHA networks, these statistical traffic parameters become

dominant, particularly the traffic correlation. With the traffic correlation,

the smoothness of CBR traffic is preserved even without MAC. Moreover,

the traffic correlation helps the CBR-fed ALOHA network to emulate TDMA

and form a natural spacing between the transmitting nodes. Since there is

no overhead to establish the frame structure like in TDMA, the performance

is better than TDMA in terms of throughput, capacity and channel quality

µL. It is helpful to combine the MAC scheme with traffic regulation that

can smooth bursty traffic flows.

• in delay-bounded WMNs, the e2e delay mean and variance are approxi-

mately linear with the number of nodes. The local dropping probabilities

p
(i)
L asymptotically converge to zero. A moderate delay bound DB is suf-

ficient to guarantee a small packet loss and thus achieve a good balance
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between reliability and latency.

Compared to fully reliable networks, the e2e delay of DB networks becomes

less sensitive to the channel reception probability µ. This improvement is

desirable since the network performance is not expected to rapid fluctuate

with µ, which basically cannot be controlled. Besides, with the BD strat-

egy, the delay performance gap between TDMA and ALOHA is reduced.

Due to the implementation complexity and overhead, TDMA is less favored

than ALOHA. But ALOHA has poor delay performance. With the reduced

performance gap, ALOHA becomes more practical.

8.2 Future Work

8.2.1 Energy-Efficient Rate-Adaptive Scheduling

Throughout this dissertation, when MAC is studied, packet scheduling is set

to be FIFO for tractable analysis. In practice other scheduling algorithms such as

LCFS and priority scheduling that favor the newly arriving packets, may be more

desirable for delay-sensitive WMN applications. It will be interesting to explore

the performance of WSNs when associating with these scheduling algorithms.

For example, as stated in Chapter 2, Longest Queue First (LQF) or Largest

Delay First (LDF) scheduling is throughput-optimal even in the wireless environ-

ment from the perspective of energy efficiency [9, 10, 14, 67, 120, 130]. One future

direction is to use the Telatar model to design and analyze LQF-based scheduling

algorithms under log-normal shadowing and Rayleigh fading channels.

Assume that a set of discrete transmission rates R = {0, 1, . . . ,M} correspond

to the time-varying channel conditions. At any time slot t, the rate Ri(t) ∈ R

(i = 1, 2, . . . , N) indicates the number of packets that can be transmitted reliably
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in this slot. The arrival process is denoted by Ai(t), the number of packets arriving

in time t. Then, if the node i is selected for transmission, its queue length evolves

according to

Qi(t + 1) = (Qi(t) + Ai(t) − Ci(t))
+, (8.1)

where Ci(t) = min{Ri(t), Qi(t)}.

Unlike previous LQF-based scheduling, the queue length of each session is

weighed by a reserved rate ri, not the real transmission rate Ri(t). Recall that in

a Generalized Processing Sharing system, given a set of weights {φi, i = 1, . . . , N},

each backlogged session is guaranteed a minimum service rate

ri =
φi

∑N
j=1 φj

C. (8.2)

If C = 1, session i should receive a fraction ri of the total bandwidth. This

parameter can be used to control the fairness. The misbehavior of nodes with small

ri will not affect other nodes significantly. Note that this parameter is unable to

guarantee a “real” fairness. Define a non-decreasing function of ri, f(ri). The

queue length is weighed by f(ri).

The scheduler chooses user i∗(t) to transmit according to

i∗(t) = arg max
i

(αRi(t) + (1 − α)f(ri)Qi(t)), (8.3)

where the parameter α is used to trade-off between energy efficiency and

throughput. Given the constant transmit power per time slot, the scheduler trans-

mits Ri(t) packets under the specific channel condition. Note that if the SNR is

too low, the scheduler decides not to serve this node. Next, we specify how the

rate Ri(t) is determined on the basis of the channel condition.
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If the fading channel is characterized by a composite log-normal shadowing-

Rayleigh fading distribution, with a pdf given by (1.12), then the distribution of

L is derived to have an approximate pdf:

f(x) =
a√

2πσx2

(

1 +
1

e
a
x − 1

) × exp
(

−

[

ln(1 + ρ) − µ + ln(e
a
x − 1)

]2

2σ2

)

, (8.4)

where

a =
ρ ln K − ln ηi

ρ
.

The cumulative density function (cdf) of this random variable, fortunately,

shows a similarity to the Poisson distribution. From Fig. 8.1, we can see that

for a composite log-normal-Rayleigh fading channel with µ = 0 and σ = 0.3454,

the cdf of L can be approximated by a Poisson distribution with λ = 10. As a

matter of fact, the smaller the variance σ of the channel, the more accurate this

approximation.

Approximating L by a Poisson distribution significantly simplifies the analysis

of this scheme. For the case λ À 1, the pdf of L can be approximated even by

a Gaussian distribution. This permits a qualitative analysis of the LQF-based

scheduling system to verify that this system indeed succeeds to balance between

energy efficiency, throughput, and fairness. The Telatar model can be used for the

queueing analysis of the packet delay and packet loss probability. In addition, the

QoS requirements on delay and loss rate will be taken into account when deciding

the transmission schedule.
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Figure 8.1. Approximating the CDF of L by a Poisson distribution

8.2.2 MAC Schemes with Network Coding for Bidirectional Flows on Line Net-

works

Network coding is a recent field in information theory that allows nodes to

recombine several input packets into one or several output packets [5]. With

linear network coding, outgoing packets are linear combinations of the original

packets [36]. Network coding is compelling because of the benefits in the increased

capacity and improved robustness and adaptability. As an application, network

coding can improve throughput of a line network when the traffic between two

end nodes are bidirectional and both nodes have a similar number of packets to

exchange.

In Fig. 8.2, nodes A and C exchange packets via an intermediate node B. A

(resp. C) sends a packet a (resp. c) to B (resp. A), which then broadcasts a ⊕ c
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Figure 8.2. A simple network coding example. Nodes A and C exchange
packets via an intermediate node B. A (resp. C) sends a packet a (resp.

c) to B (resp. A), which then broadcasts a ⊕ c instead a and c in
sequence. Both A and C can recover the packet of interest, while the

number of tranwsmissions is reduced.

instead a and c in sequence. Both A and C can decode the packet of interest, while

the number of transmissions is reduced. Besides, overhearing a packet of neighbor

that is coded over information previously forwarded to the neighbor serves as

a passive acknolwedgement. If associating network coding with multihop MAC

schemes, transmission opportunities could be better used at nodes that combine

new packets with an old packet for the opposite direction. Both throughput and

delay can be improved.
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