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MANAGING RANDOMNESS IN WIRELESS NETWORKS: RANDOM POWER

CONTROL AND SUCCESSIVE INTERFERENCE CANCELLATION

Abstract

by

Xinchen Zhang

Considering wireless networks whose channel quality and node distribution are

random, this thesis studies two types of techniques that can potentially significantly

boost the network performance: random power control and successive interference

cancellation (SIC).

Random power control generalizes conventional (deterministic) power control by

allowing the transmitters to randomly vary their transmit power. In the first part

of the thesis, we study random power control in two types of wireless networks: the

noise-limited networks and the interference-limited networks. In noise-limited net-

works, we show that random power control can significantly reduce the local delay,

and the optimal power control policies are ALOHA-type random on-off policies. In

interference-limited networks, we take a game theoretic framework and focus on two

sets of strategies: single-node optimal power control (SNOPC) strategies and Nash

equilibrium power control (NEPC) strategies. SNOPC strategies maximize the ex-

pected throughput of the power controllable link given that all the other transmitters

do not use power control. Under NEPC strategies, no individual node of the network

can achieve a higher expected throughput by unilaterally deviating from these strate-

gies. We prove that under mean and peak power constraints at each transmitter, the

SNOPC and NEPC strategies are ALOHA-type random on-off power control policies.



Xinchen Zhang

Successive interference cancellation (SIC) allows the receiver to decode and cancel

signal components from users sequentially and thus can potentially significantly boost

the network throughput. However, the feasibility of SIC depends on the received

signal power ordering which further depends on the fading distribution, network

geometry, and many other system parameters. In the second part of the thesis,

we provide a unified framework to study the performance of SIC in d-dimensional

wireless networks with arbitrary fading distribution and power-law path loss. Using

this framework, we are able to analytically characterize the performance of SIC.

The results suggest that the marginal benefit of enabling the receiver to successively

decode k users diminishes very fast with k, especially in networks of high dimensions

and small path loss exponent. On the other hand, SIC is highly beneficial when the

users are clustered around the receiver and/or very low-rate codes are used, and with

multiple packet reception, a lower per-user information rate always results in higher

aggregate throughput in interference-limited networks. In contrast, there exists a

positive optimal per-user rate that maximizes the aggregate throughput in noisy

networks.

The analytical results serve as useful tools to understand the potential gain of

SIC in heterogeneous cellular networks (HCNs). Using these tools, we quantify the

gain of SIC on the coverage probability in HCNs with non-accessible base stations.

An interesting observation is that, for contemporary narrow-band systems (e.g., LTE

and WiFi), most of the gain of SIC is achieved by canceling a single interferer.
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CHAPTER 1

INTRODUCTION AND THESIS ORGNIZATION

Wireless networks are becoming ubiquitous in modern society. The exponentially

increasing data demand and number of wireless devices requires not only novel tech-

niques to improve the efficiency of wireless networks but also network-wide analytical

tools to generate insights on the design of truly robust and scalable wireless systems.

Focusing on random power control and successive inteference cancellation and

using tools from stochastic geometry [39, 41, 63], this thesis explores the design

insights of the two promising techniques in the context of large-scale random wireless

networks.

1.1 Random Power Control

Power control benefits wireless communication in many different ways (see [48,

52, 57, 59] and the references therein).

In the context of point-to-point communication, typical power control policies

include water-filling, dynamic programming, channel inversion, etc. Water-filling is

typically used to maximize the throughput [16, 30, 31, 49, 65]. Power control policies

based on dynamic programming are useful in reducing the queueing delay under

power constraints, or, conversely, reducing energy consumption under queueing delay

constraints [13, 19, 28, 51, 59].

In wireless networks, two main approaches have been used to analyze and design

sensible power control policies: the optimization approach and the game theory ap-

proach. The optimization approach takes a global point of view and aims at finding

1



the power assignment that maximizes some global metric [17, 27, 44, 61]. Recent

efforts concentrate on finding such assignment by distributed algorithms, and al-

gorithms with different merit have been proposed in both infrastructure (cellular)

networks [43] and infrastructureless (ad hoc) networks [27, 44, 45]. Instead of mod-

eling network users as cooperative individuals, the game theory approach views the

network as a collection of selfish users with conflicting interests [53]. Many forms of

games have been introduced to facilitate the analysis and design (see [2, 56, 62] and

the references therein). Although properly designed the games (e.g., by designing

pricing structures) are often used to find solutions that maximize some global utility

(e.g., [3, 8, 25, 45]), the key merit of game theory arguments lies in revealing the ro-

bust power control strategies such that malicious users cannot benefit from deviating

from them, which can hardly be achieved by other approaches. A detailed survey of

existing power control schemes is presented in [18].

Most of the works listed above characterize power control strategy by a set of de-

terministic power levels across frequency, time, and transmitters. While it is intuitive

that the deterministic treatment of transmit power is good enough when the com-

plete channel state information (CSI) is available at the transmitters, it is unclear,

without perfect CSI, whether randomness in the transmit power can be beneficial.

This thesis answers this question by studying the case where the transmit power

at each node is allowed to be a random variable with arbitrary distribution subject

to a (unit) mean power and a peak power constraint. Our results show that this

additional randomness can be highly beneficial.

We focuses on two different types of networks: noise-limited networks and inter-

ference limited networks. Although they are different in nature, it turns out that the

resulting (optimal) power control strategies are closely related and are all ALOHA-

type random on-off policies, whose transmit power and probability is a function of

the transmitters’ knowledge of the networks.
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Chapter 2 considers noise-limited networks, and we focus on the delay till success

(DTS), defined as the time until a packet is successfully received (decoded) at the

receiver. We derive the optimal power control policies that minimize the DTS over

the network for different fading statistics. It is shown that DTS is closely related

to the local delay [9, 36, 37] in wireless networks. In fact, DTS can be viewed as

the local delay conditioned on the link distance. Therefore, a direct application of

our results is the minimization of the local delay. Our results also indicate a way of

minimizing the local anycast delay, i.e., the mean delay for a transmission to any

node1.

In Chapter 3, we consider interference-limited networks and focus on the expected

throughput of each node. Modeling power control as a non-cooperative game where

each transmitter tries to maximize its expected throughput, we characterize two

types of power control strategies: 1. Single-node optimal power control (SNOPC)

strategies when only one node in the network uses power control; 2. Nash equilibrium

power control (NEPC) strategies when all the nodes in the network use power control.

SNOPC strategies maximize the expected throughput of the power-controllable link,

whereas NEPC strategies ensure that no individual node of the network can achieve

a higher expected throughput by unilaterally deviating from these strategies. In the

discussion of each type of strategy, we consider three different levels of information

available at the transmitters, which can be interpreted as corresponding to three

levels of mobility of the network. It turns out that, in many cases, ALOHA-type

random on-off power control policies are single-node optimal and constitute Nash

equilibria.

1In the literature, the local anycast delay is sometimes also referred to as exit delay, e.g. [11].
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1.2 Successive Interference Cancellation

The analysis of interference-limited networks in Chapter 3 takes the conventional

approach of treating interference as noise. This approach complies with the imple-

mentation of most of the existing wireless devices. However, interference is fun-

damentally different from noise in that interference is generated by other trans-

mitters and thus has much more known structure than noise. Such structure can

be exploited to design better receivers and thus improve the network performance

[12, 14, 15, 20, 46, 47, 58, 71].

Amongst the many possible techniques to exploit the interference structure, suc-

cessive interference cancellation (SIC) is a promising one mainly because of its rel-

atively manageable complexity [12, 71]. First introduced in [21], the idea of SIC is

to decode different users sequentially, i.e., the interference due to the decoded users

is subtracted before decoding other users. Although not always being the optimal

multiple access scheme in wireless networks [12, 14], SIC is especially amenable to

implementation [4, 68] and does attain boundaries of the capacity regions in multiuser

systems in many cases [12, 22, 60].

In a network without centralized power control, e.g., ad hoc networks, the use of

SIC hinges on the ordering of the received power from different users (active trans-

mitters), which further depends on the spatial distribution of the users as well as

many other network parameters. Therefore, it is important to quantify the gain of

SIC with respect to different system parameters. Nonetheless, although the perfor-

mance of SIC is well-understood for fixed network topology without out-of-the-system

interference, the fundamental limits of SIC in the context of large random wireless

networks is difficult to characterize [71].

Chapter 4 provides a unified framework to study the performance of SIC in d-

dimensional wireless networks. Modeling the active transmitters in the network by

a Poisson point process (PPP) with power-law density function (which includes the
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uniform PPP as a special case), we analytically characterize the performance of SIC

as a function of many system parameters including the path loss exponent, fading,

coding rate and user distribution. The results suggest that the marginal benefit

of enabling the receiver to successively decode k users diminishes very fast with k,

especially in networks of high dimensions and small path loss exponent. On the other

hand, SIC is highly beneficial when the users are clustered around the receiver and/or

very low-rate codes are used, and with multiple packet reception, a lower per-user

information rate always results in higher aggregate throughput in interference-limited

networks. In contrast, there exists a positive optimal per-user rate that maximizes

the aggregate throughput in noisy networks.

As an application of these general technical results, we study the performance

of SIC in heterogeneous cellular networks (HCNs) in Chapter 5. Focusing on the

coverage probability, i.e., the probability of a typical user successfully connecting

to at least one of the accessible BSs, Chapter 5 studies the performance of SIC

(at the user equipment (UE) side) in the downlink of a K-tier interference-limited

HCN with accessible and non-accessible BSs2. We characterize how the coverage

probability behaves as a function of many system parameters including path loss

exponent, coding rate, fading distributions and BS accessibilities and densities. This

characterization is elegantly carried out by using a marked path loss process with

fading (PLPF)-based framework and by calculating the equivalent access probability

(EAP).

Our analysis suggests that for contemporary OFDM-based HCNs, infinite SIC

capability is often unnecessary. In fact, under typical system parameters, most of the

gain of SIC comes from the ability of canceling only a single non-accessible BS.

Parts of the results above appear in [73, 75–81].

2 The non-accessible BSs can be interpreted as overloaded/biased BSs [29], femtocells with closed-
access configuration, or simply interferers outside the cellular system.
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CHAPTER 2

RANDOM POWER CONTROL IN NOISE-LIMITED NETWORKS

2.1 Motivation and Main Contribution

Consider a fading wireless link, where the transmitter keeps sending the same

packet. The delay till success (DTS) is the mean number of transmissions needed,

averaged over the fading, until this packet is successfully received (decoded) at the

receiver. Assuming that the fading is iid and that the transmitter is allowed to vary

only the transmit power, the DTS is a function of the fading statistics and the power

control policy. The DTS can be interpreted as the service time of the head-of-line

packet, if the transmit buffer and the link are viewed as a queueing system.

This chapter shows that under a mean and a peak transmit power constraint,

memoryless random power control can significantly reduce the DTS compared to

deterministic power control. In particular, we derive the optimal (DTS-minimizing)

power control policies for different fading statistics. It turns out that for almost all

popular fading distributions (Rayleigh, Nakagami-m, Rician, lognormal) the optimal

power control policy is a random on-off policy.

Although this chapter exclusively considers noise-limited networks, we will see

in Chapter 3 that the theorems proved in this chapter are some of the key building

blocks for their counterparts in interference-limited networks.

6



2.2 Related Work

Recently, [9, 32, 36–38, 40, 82] introduced the notion of the local delay, which is a

fundamental source of delay in wireless networks and a sensitive metric for interfer-

ence correlation. It is the mean time until a node successfully transmits to its nearest

neighbor in a wireless network whose node locations are governed by a point process,

averaged over fading, channel access, and the point process. In [37], the author shows

that power control can significantly reduce the local delay, but the optimum power

control policy is not derived. The DTS can be viewed as the conditional local delay,

i.e., the local delay conditioned on the link distance (see Section 2.5.2 for details).

Besides its use in reducing the local delay, power control can benefit both point-

to-point wireless communication and wireless networks in many different ways (see

[48, 52, 57, 59] and the references therein). In the context of point-to-point commu-

nication, typical power control policies include water-filling, dynamic programming,

channel inversion, etc. Water-filling is typically used to maximize the throughput[16,

30, 31, 49, 65]. Power control policies based on dynamic programming is useful in

reducing the queueing delay under power constraints, or, conversely, reducing en-

ergy consumption under queueing delay constraints[13, 19, 28, 51, 59]. All the above

power control policies require instantaneous channel state information (CSI) at the

transmitter, while no such assumption is made in this thesis.

In wireless networks, power control is often considered as a tool of interference

management, see, e.g., [57] and the references therein. While this use of power control

will be discussed in more detail in Chapter 3, this chapter consider the noise-limited

case, with an explicit focus on delay-optimality.
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2.3 Applications to Wireless Networks

The optimal power control schemes devised in this chapter have two direct ap-

plications in the context of noise-limited wireless networks: the minimization of the

local delay [9, 36, 37]; and the minimization of the local anycast delay. The local delay

is the DTS averaged over the random distances in an ensemble of links. The local

anycast delay is the mean time until a packet is successfully received (decoded) in

any of a set of the desired receivers. Since the DTS-minimizing power control policies

(where the link distance is fixed) are also delay-optimal for random link distances if

they are known at the transmitter, this work is the first to provide and prove the

optimal power control schemes in terms of reducing the local delay.

For almost all fading distributions, the delay-optimal power control policy derived

in this chapter is a random on-off policy, which coincides with the key feature of the

ALOHA channel access (MAC) scheme [1]. While ALOHA is generally considered to

be inefficient as a MAC scheme, our results show that it may in fact be optimum as

a power control scheme.

2.4 Chapter Organization

The rest of this chapter is organized as follows: Section 2.5 introduces the system

model and defines the DTS (or conditional local delay), local delay and local anycast

delay. In Section 2.6, we provide and prove the optimal power control policy for

Rayleigh fading, while Section 2.7 extends the results to general fading distributions.

Concluding remarks are provided in Section 2.8.
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2.5 Problem Formulation

2.5.1 Reception Model

The chapter considers a noise-limited network, where the received power at each

link can be written as

Pr = PHr−α,

where P is the transmit power, H is the iid (power) fading coefficient, r is the link

distance, and α is the path loss exponent. We use an SNR condition to define whether

a transmission is successful. A transmission is regarded successful if Pr > θ, where θ

incorporates both the SNR threshold and the noise power. Then, we can write the

success probability of a single transmission as a (deterministic) function of r as

ps(r) = P(PHr−α > θ).

While the distance r is considered constant over time and can be learned by the

transmitter, the fading coefficient H is assumed iid over time and is unknown to the

transmitter. So, P can be a (stochastic) function of r.

2.5.2 Delay Definitions

DTS and Local Delay The delay till success (DTS) is defined as the mean number

of time slots that the receiver needs to successfully receive (decode) the message over

a link of distance r. With iid fading and iid transmit power P (or constant transmit

power), it is given by

Dr =
1

ps(r)
, (2.1)

which is simply the mean of a geometric random variable with parameter ps(r). If

the link distance is a random variable R, which is constant over time, the local delay
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[9, 36, 37] is the ensemble average of the DTS, i.e.,

D = ER[DR] = ER

[

1

ps(R)

]

. (2.2)

Such a situation arises when considering a noise-limited static random wireless net-

work, which can be modeled as a collection of links with random but fixed distances

(Fig. 2.1). Hence the DTS can also be interpreted as the local delay conditioned on

the link distance, and we may use the two terms DTS and conditional local delay

interchangeably.

The Local Anycast Delay Consider the case where a transmitter wants to transmit

the message to any one of the n desired receivers (Fig. 2.2). Let ri be the distance from

the transmitter to each receiver and Hi be the fading coefficient from the transmitter

to each receiver, where i ∈ [n]1, and the Hi are iid both over time and space. Then

the local anycast delay, defined as the mean time until the message is successfully

decoded at any of the desired receivers, is

Da =
1

1− P(PH1r
−α
1 ≤ θ, PH2r

−α
2 ≤ θ, · · · , PHnr−α

n ≤ θ)

=
1

P(P max{Hir
−α
i , i ∈ [n]} > θ)

. (2.3)

Comparing (2.3) with (2.1), it is obvious that Da is equivalent to the conditional local

delay D1, where the link distance r = 1 and the fading subject to the distribution of

max{Hir
−α
i , i ∈ [n]} > θ. Since Hi is iid over space, this fading distribution can be

completely characterized by P(max{Hir
−α
i , i ∈ [n]} ≤ x) =

∏n
i=1 P(Hir

−α
i ≤ x).

1We use [n] to denote the set {1, 2, 3, · · · , n}.
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2.5.3 The Optimal Stationary Power Control Policy

We define the optimal stationary (or memoryless) power control policy to be the

stationary power control policy that minimizes the conditional local delay (or, delay

till success). Without loss of generality, we consider a unit mean power constraint and

a peak power constraint Pmax, with Pmax > 1 (otherwise, the mean power constraint

will always be loose), and call a policy to be valid if and only if it satisfies both the

constraints. We concentrate on stationary power control policies, i.e., the statistics of

the transmit power P in different time slots are the same. Therefore, the unit mean

power constraint and the peak power constraint above can be expressed as EP = 1

and P ≤ Pmax, respectively, and P is iid.

Let P be the class of probability density functions (pdf’s) with support at most

[0, Pmax] and mean 1. The problem is to find the pdf f ∗
P |r of the transmit power P (r),

where

f ∗
P |r , argmin

fP |r∈P
Dr = argmax

fP |r∈P
P(P (r)Hr−α > θ).

The expression above implies the optimal power control policy that maximizes the

transmission success probability of a link of length r. Therefore, given a single-bit

ARQ, the optimal policy, if exists, is also the policy that maximizes the long term

throughput for the link. However, in this chapter, we focus on the conditional local

delay and make no assumptions about the feedback2.

Initial efforts to reduce the local (unicast) delay using power control are made in

[37]. (2.2) shows that the power control policy minimizing Dr for all r is the power

control policy that minimizes the local delay. Thus, an important application of the

results on conditional local delay is the discovery of a local delay-minimizing power

2Meanwhile, as stated earlier, we do assume that the link distance is known at the transmitter.
This is not necessarily obtained by a feedback. Even if so (as the case discussed in Section 2.6.2),
such feedback is assumed to be carried out in a different time scale from that of an ARQ, e.g., a
distance update in every thousand of transmission attempts.
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r1

r2
r3

r4

r5

Figure 2.1. A collection of links with random distances. Transmitters are
denoted by x and receivers are denoted by o. The distances rk, k ∈ [5] are

iid drawn from some distribution fR(x).

r1

r2 r3

r4

r5

Figure 2.2. Broadcast in wireless network. Transmitters are denoted by x

and receivers are denoted by o. The distances rk, k ∈ [5] are deterministic
and known to the transmitter.

control policy.

For the local anycast delay, we observe from (2.3) that with the appropriate

adjustment in the fading distribution, the optimal power control policy can also be

used to minimize the local anycast delay.
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2.6 Rayleigh Fading

2.6.1 ALOHA Is the Optimal Policy

In the iid fading case, the conditional local delay (or, delay till success) is simply

the inverse of the success probability P(HPr−α > θ). For Rayleigh fading,

P(HPr−α > θ) =

∫ ∞

0

F̄P

(

θrα

h

)

e−hdh = θrα
∫ ∞

0

F̄P (x
−1)e−θrαxdx,

where F̄P (x) is the complementary cumulative distribution function (ccdf) of the

randomly controlled power P . Thus it must be monotonically decreasing, F̄P (x) =

0 ∀x > Pmax, and, by the mean power constraint
∫∞
0

F̄P (x)dx ≤ 1.

To simplify the notation, we define the following function

F ′(x) , F̄P (x
−1), ∀x > 0, (2.4)

which is the cumulative distribution function (cdf) of P−1. The constraints on F̄P are

mapped to the constraints that F ′(x) is monotonically increasing, F ′(x) = 0 ∀x <

P−1
max, limx→∞ F ′(x) ≤ 1 and EP =

∫∞
0

x−2F ′(x)dx ≤ 1.

Therefore, the problem now becomes to find the F ∗(x), defined as the optimal

F ′(x) satisfying all the requirements above and maximizing
∫∞
0

F ′(x)e−θrαxdx. Note

that limx→∞ F ′(x) stands for P(P ≤ 0) which is non-zero whenever there is a positive

probability of the event {P = 0}. Since the distribution of P is not necessarily

continuous, in general, limx→∞ F ′(x) does not have to be 13.

Lemma 1. The desired function F ∗(x) satisfies F ∗(x) = F ∗(xM), ∀x > xM ,

max{P−1
max,

1
θrα

}.

Proof. First, consider the case that F ∗(x) is a simple function. Since, F ∗(x) is mono-

3Rigorously speaking, F ′(x) needs to be defined on the extended real line R = R ∪ {−∞,+∞}.
In this case, F ′(∞) = 1 by definition, but limx→∞ F ′(x) is not necessarily 1.
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tonically increasing, we can write it as

F ∗(x) =
N
∑

i=0

ai1[bi,bi+1)(x), (2.5)

where 0 = a0 < a1 < a2 < · · · < aN ≤ 1 and 0 = b0 < b1 < b2 < · · · < bN+1 = ∞.

Suppose there exists a x0 > xM , such that F ∗(x0) 6= F ∗(xM), i.e., F ∗(x0) > F ∗(xM),

and assume x0 ∈ [bj , bj+1), xM ∈ [bl, bl+1), for some l, j ∈ N such that 0 < l < j.

Then, let

F̃ (x) , F ∗(x)−
j
∑

n=l+1

(an − an−1)1[bn,∞)(x) + xM

j
∑

n=l+1

an − an−1

bn
1[xM ,∞)(x). (2.6)

It can be easily verified that
∫∞
0

x−2F̃ (x)dx =
∫∞
0

x−2F ∗(x)dx and F̃ (x) satisfies all

the requirements for a valid F ′(x) over [0,∞). Moreover,

∫ ∞

0

e−θrαxF̃ (x)dx−
∫ ∞

0

e−θrαxF ∗(x)dx

=

∫ ∞

0

e−θrαxxM

j
∑

n=l+1

an − an−1

bn
1[xM ,∞)(x)dx−

∫ ∞

0

e−θrαx

j
∑

n=l+1

(an − an−1)1[bn,∞)(x)dx

=

j
∑

n=l+1

an − an−1

bnθrα
(

xMe−θrαxM − bne
−θrαbn

)

,

which is strictly larger than zero because of the monotonicity of xe−θrαx at [ 1
θrα

,∞)

and the fact that bn > xM ≥ 1
θrα

∀n ≥ l + 1. This contradicts the assumption

that F ∗(x) is the function which maximizes
∫∞
0

F ′(x)e−θrαxdx and satisfies all the

constraints.

For general F ∗(x), consider a sequence of simple functions (F ∗
k )

∞
1 such that

F ∗
i < F ∗

j < F ∗, ∀i < j and limk→∞ F ∗
k = F ∗. By the monotone convergence the-

orem, limk→∞
∫∞
0

x−2F ∗
k (x)dx =

∫∞
0

x−2F ∗(x)dx and limk→∞
∫∞
0

e−θrαxF ∗
k (x)dx =

∫∞
0

e−θrαxF ∗(x)dx. Using the construction in the proof for the simple functions, we are
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able to produce another sequence of simple functions (F̃k)
∞
1 , such that

∫∞
0

e−θrαxF̃k(x)dx >
∫∞
0

e−θrαxF ∗
k (x)dx, ∀k. Meanwhile, limk→∞ F̃k 6= F ∗, since F̃k(x0) = F̃k(

1
θrα

). Thus,

the limiting function of F̃k(x) is a strictly better candidate for F ′(x) than F ∗(x).

Analogously, we have the following lemma.

Lemma 2. If 1 ≤ θrα ≤ Pmax, we have F ∗(x) = 0, ∀x < 1
θrα

.

Proof. The proof is essentially the same of that of the previous lemma. We start

with the case where F ∗(x) is simple and then generalize to the case of all valid cdf’s.

Consider the case where F ∗(x) is a simple function and write it as (2.5). Assuming

1
θrα

∈ [bl, bl+1), we can construct

F̃ (x) = F ∗(x)−
l
∑

n=1

an1[bn,∞)(x) +
l
∑

n=1

an
bnθrα

1[ 1
θrα

,∞)(x).

Suppose that F ∗(x0) > 0 for some x0 < 1
θrα

, we know F̃ (x) 6= F ∗(x), since F̃ (x) =

0, ∀x < 1
θrα

. Meanwhile, it can be verified that
∫∞
0

x−2F̃ (x)dx =
∫∞
0

x−2F ∗(x)dx. By

Lemma 1, F ∗(x) = F ∗( 1
θrα

), ∀x > 1
θrα

and thus F̃ (x) ≤ 1 (because
∫∞
1

x−2dx = 1).

All other constraints over F̃ (x) to be a valid candidate for F ′(x) are automatically

satisfied. Also,

∫ ∞

0

e−θrαxF̃ (x)dx−
∫ ∞

0

e−θrαxF ∗(x)dx =
l
∑

n=1

∫ ∞

0

(

an
bnθrα

1[ 1
θrα

,∞) − an1[bn,∞)

)

e−θrαxdx

=
l
∑

n=1

an
bnθrα

(

1

θrα
e−θrα 1

θrα − bne
−θrαbndx

)

,

which is strictly larger than zero due to the fact that bn ≤ 1
θrα

, ∀n ≤ l by assumption

and the monotonicity of xe−θrαx in [0, 1
θrα

]. Therefore, we found F̃ (x) as a strictly

better candidate than F ∗(x), contradicting the assumption that it is the desired

function. The generalization from simple function to general functions are the same

as in the proof of Lemma 1.
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Similarly, it can be shown that:

Lemma 3. If θrα < 1, we have F ∗(x) = 0, ∀x < 1.

Although special care must be taken to make sure that F̃ (x) ≤ 1, the proof of

Lemma 3 directly follows from that of Lemma 2 and is therefore omitted.

Combining Lemmas 1, 2, 3 and the requirements we have for a valid F ′(x), we

conclude that F ∗(x) is of the form:

F ∗(x) =























1[1,∞)(x), θrα ≤ 1

1
θrα

1[ 1
θrα

,∞)(x), 1 < θrα ≤ Pmax

P−1
max1[P−1

max,∞)(x), θrα > Pmax.

As stated earlier, there is a one to one mapping between F ′(x) and F̄P (x) (and thus

FP (x)). Hence, the result above directly leads to the following theorem.

Theorem 1. For Rayleigh fading, given a link distance r, the optimal distribution of

the transmit power P that minimizes the local delay is

FP (x) =























1[1,∞)(x), θrα ≤ 1

(1− 1
θrα

)1[0,θrα)(x) + 1[θrα,∞)(x), 1 < θrα ≤ Pmax

(1− P−1
max)1[0,Pmax)(x) + 1[Pmax,∞)(x), θrα > Pmax.

More concisely, we can define ξ , max{1,min{Pmax, θr
α}}. Then Theorem 1

says: the optimal random power control strategy is an ALOHA-type random on-off

policy with transmit probability ξ−1 and transmit power ξ.

Definition 1. A link is said to be in the peak-power-limited regime if the optimal

power control policy is to transmit at power Pmax with probability P−1
max.

Definition 2. A link is said to be in the mean-power-limited regime if constant power

transmission (P ≡ 1) is the optimal power control policy.
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Interestingly, the optimal strategy maximizes the variance of the transmit power

in the peak-power-limited regime, while minimizing this variance in the mean-power-

limited regime.

Theorem 1 also indicates that in order to apply the optimal power control policy,

the transmitter needs to know either r and α or rα. Since EH = 1, rα can be easily

obtained by simply taking the average of the received power.

Corollary 1. Without peak power constraint, but with the mean power limited to

EP = 1, the optimal random power control policy is

FP (x) =











1[1,∞)(x), θrα ≤ 1

(1− 1
θrα

)1[0,θrα)(x) + 1[θrα,∞)(x), θrα > 1.

The exact value of the local delay depends on the distribution of the link distance

R. An important case is the Rayleigh distribution, since it is the distribution of the

nearest-neighbor distance in a 2-dimensional network, whose nodes are distributed as

a Poisson point process (PPP)[34]. It is shown in [37] that with such a distribution of

R, the local delay is unbounded if Rayleigh fading is considered and no power control

is applied (except for the case of α ≤ 2). The natural question is whether random

power control can make the local delay finite in the same scenario. In the case where

only a mean power constraint is imposed, applying the result in Corollary 1, we have

D = E

[

1

ps|R

]

= 2πλ

∫ θ−
1
α

0

reθr
α−λπr2dr + 2πλθe

∫ ∞

θ−
1
α

rα+1e−λπr2dr

≤ e(1− e−λπθ−
2
α ) + θe(λπ)−

α
2 Γ(

α

2
+ 1, λπθ−

2
α ) < ∞,

where Γ(·, ·) is the upper incomplete gamma function. In other words, power control

can keep the local delay finite while keeping the mean transmit power at each node

limited even if the link distance is Rayleigh distributed.
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Proposition 1. With a peak power constraint, power control cannot reduce the local

delay to a finite value when the link distance is Rayleigh distributed and α > 2.

Proof. With only a peak power constraint, the minimum local delay is achieved

when the transmit power is Pmax at each link in each time slot. Then the proposition

trivially follows from the fact that any constant power in is not sufficient to keep the

local delay finite when the link distance is Rayleigh distributed and α > 2 [37].

A direct consequence of Proposition 1 is that the optimal policy in Theorem 1

cannot reduce the local delay to a finite value when the link distance is Rayleigh

distributed and α > 2.

2.6.2 Comparison of Random Power Control Schemes

In this subsection, we compare the DTS performance (in the presence of Rayleigh

fading) of several power control policies, defined as follows:

Definition 3. The optimal power control (OPC) policy is the power control policy

defined in Theorem 1.

Definition 4. The peak power control (PPC) policy transmits at power Pmax with

probability P−1
max and does not transmit with probability 1 − P−1

max, regardless of the

value of r.

Definition 5. The uniform power control (UPC) policy transmits at power P each

time with P uniformly distributed in [1−∆, 1 + ∆]. Here, ∆ , min{1, Pmax − 1}.

Definition 6. The hybrid uniform power control (HUPC) policy transmits with prob-

ability 2
Pmax+1

. If transmitting, the transmit power is uniformly distributed between 1

and Pmax.

Definition 7. The 1-bit power control (1BPC) policy transmits at constant power

(P = 1) when θrα ≤ logPmax

1−P−1
max

. When θrα > logPmax

1−P−1
max

, the policy transmits at power Pmax

with probability P−1
max and does not transmit with probability 1− P−1

max.
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While the peak power control (PPC) policy, the uniform power control (UPC)

policy, and the hybrid uniform power control (HUPC) policy are all suboptimal,

their complexity is lower than OPC’s. In particular, they do not require the link

distance information R. Meanwhile, their constructions are inspired by Theorem 1

in different ways. For example, in the peak-power-limited regime PPC is as good as

OPC. The intuition behind HUPC is that Theorem 1 implies that for all realizations

of R it is not optimal to transmit with power in (0, 1).

The 1-bit power control (1BPC) policy is proposed as a trade-off between OPC

and other kinds of power control policies that do not utilize the link distance infor-

mation. In practice, although the link distance can always be measured, its precise

value might be difficult to acquire, e.g., it may take too long to accurately measure.

In such occasions, the performance of OPC becomes difficult to realize. Meanwhile,

1BPC turns out to be more suitable, since it only requires 1 bit of information re-

garding the link distance, and its performance is identical to OPC’s in both the

peak-power-limited regime and the mean-power-limited regime.

It is not difficult to find that if the link distance r is known and OPC is applied,

the conditional local delay is

Dr =























Pmaxe
θrα

Pmax , θrα ≥ Pmax

θrαe, 1 < θrα < Pmax

eθr
α

, θrα ≤ 1.

In comparison, we can see that with constant power transmission, the conditional

local delay is always equal to exp(θrα). When Pmax ≥ 2, the transmit power of UPC

is uniformly distributed in [0, 2]. Its conditional local delay can be calculated as
(

exp(−1
2
θrα)− 1

2
θrα

∫∞
1
2
θrα

exp(−x)
x

dx
)−1

. Straightforward (but tedious) manipulation
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reveals the conditional local delay for HUPC to be

P 2
max − 1

2

(

Pmaxe
− θrα

Pmax − e−θrα − θrα
∫ θrα

θrα

Pmax

e−x

x
dx

)−1

.

The calculation of the conditional local delay for 1BPC is similar to that of OPC.
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Figure 2.3. Comparison of the conditional local delay for different power
control schemes. Here, Pmax = 4, θ = 1, α = 2.

Figs. 2.3 compares all the power control policies defined above along with constant

power transmission (P ≡ 1) in different scales. Fig. 2.3 shows that in the peak-power-

limited regime (large r) the conditional local delay grows exponentially with r for all

power control policies. This is mainly due to the peak power constraint. However, for

different power control schemes the exponent is quite different, which results in many

orders of difference in conditional local delay. As expected, in this regime, OPC, PPC

and 1BPC perform the best among all schemes, and constant power transmission is
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the worst. Both UPC and HUPC appears to be trade-offs between the best and the

worst.

In the mean-power-limited regime (small r), the difference in the conditional local

delay between the different schemes can be at most by a factor of 4 (Fig. 2.3). Still,

UPC and HUPC perform between the two extremes. Fig. 2.3 also shows that 1BPC

is not considerably inferior to OPC even in its suboptimal regime (1 < θrα < Pmax),

and thus appears to be a good substitute for OPC in many cases.

2.7 General Fading Distributions

2.7.1 The Optimality of ALOHA

Results in Section 2.6 raise a more general question: Is ALOHA (random on-

off policy) still optimal in reducing the (conditional) local delay if the fading is not

Rayleigh? To answer this question, this subsection derives more general sufficient

conditions for the optimality of ALOHA. We use g(x) to denote the pdf of the fading

random variable H.

Lemma 4. For given r, if there exists a constant ϑ < ∞ such that x
∫∞
x

g(θrαy)dy

is strictly monotonically decreasing for all x > ϑ, we have

F ∗(x) = F ∗(xM), ∀x > xM ,

where F ∗(x) is the desired function as defined before, and xM , max{P−1
max, ϑ}.

Proof. Using the definition of F̄p(x) and F ′(x) as before, we have for general fading

with pdf g(x)

P(HPr−α > θ) =

∫ ∞

0

F̄p

(

θrα

h

)

g(h)dh = θrα
∫ ∞

0

F ′(x)g(θrαx)dx.

As in the proof of Lemma 1, we prove Lemma 4 by contradiction. Starting with simple
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functions, we write F ∗(x) as in (2.5) and construct F̃ (x) as (2.6). Straightforward

manipulation shows

∫ ∞

0

F̃ (x)g(θrαx)dx−
∫ ∞

0

F ∗(x)g(θrαx)dx

=

j
∑

n=l+1

an − an−1

bn

(

xM

∫ ∞

xM

g(θrαx)dx− bn

∫ ∞

bn

g(θrαx)dx

)

, (2.7)

which is strictly larger than zero by the monotonicity of x
∫∞
x

g(θrαy)dy. Therefore,

the lemma is proved for simple functions. The generalization to non-simple functions

is just as in Lemma 1.

A simple sanity check would be to consider the Rayleigh fading case, where g(x) =

exp(−x). Then, x
∫∞
x

g(θrαy)dy = x
θrα

exp(−θrα), which is strictly monotonically

decreasing for x ≥ 1
θrα

. This retrieves Lemma 1. Similarly, Lemmas 2 and 3 can be

generalized as follows:

Lemma 5. For given r, let ς be any constant such that x
∫∞
x

g(θrαy)dy is strictly

monotonically increasing for all 0 ≤ x < ς. Then, the desired function F ∗(x) must

have

F ∗(x) = 0, ∀x < xm,

where xm , min{1, ς}.

The proof is analogous to that of Lemma 4. For Rayleigh fading, x
∫∞
x

g(θrαy)dy

is strictly increasing for all 0 ≤ x ≤ 1
θrα

.

Theorem 2. Let Ḡ(x) denote the ccdf of H. If there exists some x0 > 0, such

that xḠ(θrαx) is strictly increasing on [0, x0) and strictly decreasing on (x0,∞), the

optimal power control policy is an ALOHA-type random on-off policy with transmit

power ξ and transmit probability ξ−1, where ξ , max{1,min{Pmax, x
−1
0 }}.

Theorem 2 is simply a combination of Lemmas 4 and 5.
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LetK(x) = xΓ(m,mθrαx). The following lemma helps us to show that Nakagami-

m fading satisfies the condition in Theorem 2.

Lemma 6. There exists a unique x0 ∈ (0, m+1
mθrα

), such that d
dx
K(x) |x=x0= 0. K(x)

is strictly increasing on (0, x0) and strictly decreasing on (x0,∞).

Proof. Since K(x) is twice-differentiable, the monotonicity in the proposition can be

shown by evaluating the derivatives of K(x). To prove the first part of the propo-

sition, we first notice that there must exists at least one x0 ∈ (0, m+1
mθrα

), such that

d
dx
K(x) |x=x0= 0. This is due to the continuity of K(x) as well as the fact that

K(0) = limx→∞K(x) = 0 and d
dx
K(x) |x=0= Γ(m) > 0.

In the following, we prove the uniqueness of x0 by contradiction. Assume there

is another point x1 6= x0 and d
dx
K(x) |x=x1= 0. Without loss of generality, consider

x1 > x0 (otherwise, we can exchange the subscript). Because limt→∞
d
dx
K(x) |x=t= 0

and

d2

dx2
K(x) = (mθrαx)me−mθrαx

(

mθrα − m+ 1

x

)

, (2.8)

which is strictly positive when x > m+1
mθrα

, we must have x0 < x1 < m+1
mθrα

. However,

(2.8) also indicates d
dx
K(x) is strictly decreasing on (0, m+1

mθrα
). Then, d

dx
K(x) |x=x0=

d
dx
K(x) |x=x1= 0 implies x0 = x1, which contradicts the assumption that x1 6= x0.

Since K(x) is continuous and K(0) = limt→∞K(t) = 0, the uniqueness of x0

implies that there are at most two monotonic region of K(x) over [0,∞). Com-

bined with the fact that d
dx
K(x) |x=0= Γ(m) > 0, we conclude that K(x) is strictly

increasing on [0, x0) and strictly decreasing on [x0,∞).

Combining Theorem 2 and Lemma 6, we immediately obtain Corollary 2.

Corollary 2. The optimal power control policy for Nakagami-m fading is an ALOHA-

type random on-off policy.
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2.7.2 Peak-power-limited and Mean-power-limited Regimes

For a more general class of fading, the conditions in Theorem 2 may not be

satisfied. The simplest example may be the (discrete) fading distribution with pdf

g(x) = q1δ(x− h1) + q2δ(x− h2), (2.9)

where 0 ≤ h1 < h2 < ∞, q1h1 + q2h2 = 1, and q1 + q2 = 1. Then, xḠ(x) =

x1[0,h1/θrα)(x)+ q2x1[h1/θrα,h2/θrα), which does not satisfy the conditions in Theorem 2

for two reasons: 1) there is no strict monotonicity for x > h2

θrα
; 2) even if we relax the

strictness requirement, there is still no such x0 that xḠ(x) is monotonically increasing

on [0, x0) and decreasing on (x0,∞), as long as q2 > 0. Thus, results so far are not

applicable in this case. However, some of the results can still be obtained in particular

regimes of r even when the conditions in Theorem 2 are not met.

Theorem 3. For general fading distribution with ccdf Ḡ(x), fixed threshold θ, and link

distance r0, if xḠ(θrα0 x) is monotonically decreasing for all x > P−1
max, the ALOHA-

type random on-off peak power control policy with on power Pmax achieves the min-

imum conditional local delay. Moreover, for all r > r0, the same policy is still

delay-optimal.

Proof. When the monotonicity of xḠ(θrα0 x) is strict, the proof of the first part of

Theorem 3 trivially follows from Lemma 4, since F ′(x) = 0 ∀x < P−1
max. In the

non-strict case, Lemma 4 needs to be slightly generalized, i.e., (2.7) is no longer

strictly larger than zero. Yet, (2.7) is still no less than zero, which ensures that the

constructed F̃ (x) produces a conditional local delay no larger than the minimum

conditional local delay. Thus, the first part is of the theorem is proved.

For the second part, let P−1
max < x1 < x2 and r > r0. Noting that x

∫∞
x

g(θrα0 t)dt =
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x
θrα

∫∞
θrαx

g(t)dt and using the monotonicity of x
∫∞
x

g(θrα0 t)dt, we have

x1

θrα

∫ ∞

θrαx1

g(t)dt =
θrα0
θrα

(r0
r

)α

(

r
r0

)α

x1

θrα0

∫ ∞

θrα0

(

r
r0

)α
x1

g(t)dt

>
θrα0
θrα

(r0
r

)α

(

r
r0

)α

x2

θrα0

∫ ∞

θrα0

(

r
r0

)α
x2

g(t)dt =
x2

θrα

∫ ∞

θrαx2

g(t)dt.

Thus, the monotonicity of x
∫∞
x

g(θrαt)dt is proved for all r > r0.

Note that Theorem 3 does not imply the fact that, for general fading, there must

exist a peak-power-limited regime where the ALOHA-type on-off peak power control

(PPC) is delay-optimal. To show this, one can consider a fading distribution with

an oscillating tail in the pdf, where xḠ(θrαx) does not have a monotonic tail for all

0 < r < ∞.

Likewise, we can deduce the following theorem:

Theorem 4. Constant power transmission minimizes the conditional local delay, if

xḠ(θrα0 x) is monotonically increasing for all x < 1. Moreover, the optimality still

holds for all r < r0.

For the particular example we raised at the beginning of this subsection, where the

fading coefficient has a pdf as in (2.9), Theorems 3 and 4 indicate: 1) when Pmaxh2 <

θrα, ALOHA-type random on-off power control policy achieves minimum conditional

local delay; 2) when h1 > θrα, constant power transmission minimizes local delay.

These two facts are intuitive in this example. Because, when Pmaxh2 < θrα, even full

power transmission (P = Pmax) cannot achieve a successful transmission, and thus

the conditional local delay is always∞. When h1 > θrα, constant-power transmission

(P = 1) always succeeds. So, the minimum conditional local delay Dr = 1 is achieved

by such policy.

Despite the simplicity of the example above, Theorems 3 and 4 are particularly
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useful when the fading distribution has a very complicated shape, making xḠ(θrαx)

non-unimodal.

2.7.3 Numerical Approach

Theorem 5. If there is a finite number of transmit power levels P ∈ {w0, w1, · · · , wN},

where 0 = w0 < w1 < · · · < wN = Pmax, and Ḡ(x) is the ccdf of the fading coefficient

H, then the optimal power control policy is of the form

F ∗
P (x) =

N
∑

k=0

pkwk, (2.10)

where (p0, p1, · · · , pN) ∈ [0, 1]N+1 is the solution of the following linear programing

problem:

maximize
{pk,0≤k≤N}

N
∑

k=0

pkḠ

(

θrα

wk

)

subject to pk ≥ 0, k = 0, . . . , N

N
∑

k=0

pk = 1,
N
∑

k=0

pkwk = 1.

2.7.4 Examples

Nakagami-m Fading The optimality of ALOHA in the presence of Nakagami-m

fading is shown in Corollary 2. Then, the implementation of the optimal policy

hinges on finding the corresponding x0, which is the solution of Γ(m,mθrαx) =

(mθrαx)me−mθrαx. Numerically solving this equation yields the optimal policy as well

as the minimum conditional local delay. Fig. 2.4 compares the minimum conditional

local delay for different m (m = 1 is the Rayleigh fading case). As expected, when r

is small, a larger m yields a lower conditional local delay, since there is less chance

for the channel to be in a bad condition. On the other hand, for large r, Nakagami

fading with a larger m has a larger conditional local delay, since the chance of a
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particularly good condition is considerably smaller than in the Rayleigh fading case.

In particular, for any two curves in Fig. 2.4, there is a crossover point slightly

larger than r = 2. Before this point, channel (fading) randomness increases the

conditional local delay, i.e., a larger m results in a smaller delay. After this point,

channel (fading) randomness helps reducing the conditional localy delay, i.e., a larger

m results in a larger delay.
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Figure 2.4. Minimum conditional local delay for Nakagami-m fading, where
Pmax = 4, θ = 1, α = 2.

Rician Fading and Lognormal Shadowing The conditions in Theorem 3 are not

restrictive. In fact, almost all practical continuous fading distributions satisfy them

although it can be tedious to prove. In particular, apart from the Rayleigh fading

and Nakagami-m fading, two of the most common types of fading, Rician fading and

lognormal shadowing, satisfy these conditions. In the following, we use the numerical
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approach introduced above to verify the optimality of ALOHA.

The ccdf of the (power) Rician fading is Ḡ(x) = Q
(

s
σ
,
√
x
σ

)

, where s2 is the line of

sight (LOS) power component, 2σ2 is the non-LOS power component, and Q(·, ·) is

the Marcum Q function. The mean power is the sum of these two power component.

Let K = s2/2σ2, and fix the mean of H to be one. The ccdf is written as

Ḡ(x) = Q(
√
2K,

√

2(K + 1)x). (2.11)

If H represents the effect of lognormal shadowing and EH = 1, the ccdf of H is

Ḡ(x) =
1

2
− 1

2
erf

(

ln x+ σ2/2

σ
√
2

)

, (2.12)

where σ2 is proportional to the variance of the received power in dB, and erf(·) is the

error function.

Fig. 2.5 and Fig. 2.6 show the cdf of the optimal power control policy for different

link distances. For small link distances, e.g., r = 0.5, constant power transmission

is optimal. For large distances, e.g., r = 2, peak power control (PPC) policy is

optimal. Between these two regimes, e.g., r = 1.5, the optimal policy is a random

on-off power control policy with certain a transmit probability in [P−1
max, 1]. In any

case, the optimal policy is ALOHA-type.

Local Anycast Delay As mentioned in Section 2.5.2, the optimal policy in this chap-

ter can be directly applied as the optimal policy that minimizes the local anycast

delay. In particular, we provide the following corollary.

Corollary 3. When the desired receivers are located at the same distance to the

transmitter and Rayleigh fading is considered, the optimal policy that minimizes the

local anycast delay is an ALOHA random on-off policy.

In the Rayleigh fading case, the distribution of fading coefficientsHi is exponential
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Figure 2.5. Numerically obtained F ∗
P (x) for Rician fading. Pmax = 4, θ = 1,

α = 2, K = 1.
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Figure 2.6. Numerically obtained F ∗
P (x) for lognormal fading. Pmax = 4,

θ = 1, α = 2, σ = 1.
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with unit mean. When the link distances to each of the n desired receivers are the

same, the cdf of max{Hir
−α
i } is G(x) = (1 − e−rαx)n, where r is the link distance.

Therefore, Let L(x) , x(1 − G(θx)). Corollary 3 follows directly from Theorem 2

and Lemma 7 proved below.

Lemma 7. There exists a unique x0, such that L(x) is monotonically increasing on

[0, x0] and monotonically decreasing on [x0,∞).

Proof. Since L(x) is differentiable on [0,∞) and its derivative is continuous, it suffices

to show: there exists a unique x0, such that d
dx
L(x) |x=x0= 0, and d

dx
L(x) is positive

on [0, x0] and negative on [x0,∞). Observing that limx→0+
d
dx
L(x) > 0 and that

d
dx
L(x) approaches zero from below when x → ∞, we can deduce the latter directly

from the former. Thus, the key is to show d
dx
L(x) = 0 has a unique solution on

[0,∞).

This is proved in three steps: first, we show that there can be at most one solution

of d
dx
L(x) = 0 on [0, 1

θrα
]; second, we show there can be at most one solution of

d
dx
L(x) = 0 on [ 1

θrα
,∞); third, we observe that cannot be two solutions of d

dx
L(x) = 0

on [0,∞).

First, the derivative of L(x) can be expanded as

d

dx
L(x) = 1− (1− e−θrαx)n − nθrαxe−θrαx(1− eθr

αx)n−1, (2.13)

which is strictly decreasing on [0, 1
θrα

] due to the monotonicity of e−θrαx, the mono-

tonicity of xe−θrαx on [0, 1
θrα

]. Thus there cannot be more than one solution of

d
dx
L(x) = 0 on [0, 1

θrα
].

Second, d
dx
L(x) = 0 can be rearranged as 1− (1−nθrαx)e−θrαx = (1− e−θrαx)1−n,

where the left side is a strictly increasing function of x for x > n−1
nθrα

and the right side

is a decreasing function of x. Thus, there can be at most one solution of d
dx
L(x) = 0

on [ 1
θrα

,∞) ∈ ( n−1
nθrα

,∞).

30



Third, there can be only an odd number of zero crossings of d
dx
L(x) on [0,∞)

since d
dx
L(x) is continuous, limx→0+

d
dx
L(x) > 0, and d

dx
L(x) approaches zero from

below as x → ∞. Combining with results above, we conclude there is a unique zero

crossing of d
dx
L(x) on [0,∞).

Similar to the Nakagami-m fading case, in general, there is no closed form ex-

pression for the (optimal) transmit probability. However, this optimal configuration

is implied by the solution of d
dx
L(x) = 0.

Let r be the common distance from the transmitter to the desired receivers, Ta-

ble 2.1 compares the transmit power ξ of the optimal (ALOHA) policy for different

number of receivers. It shows that with a larger number of desired receivers, the op-

timal policy tends to reduce the transmit power of each transmission attempt while

increasing the transmit probability ξ−1. Fig. 2.7 shows that under an optimal policy,

the local anycast delay decreases as more desired receivers are available. Both obser-

vations above are intuitive as anycast with more desired receiver can be interpreted

as point-to-point communication with a more benign fading distribution. In both

Table 2.1 and Fig. 2.7, the case n = 1 corresponds to the single link Rayleigh fading

case.

2.8 Conclusions

This chapter provides a set of power control policies that minimize the conditional

local delay (or, delay till success) for channels with different fading statistics. We

show that an ALOHA-type random on-off power control is the delay-optimal policy

for Rayleigh fading channels. We give a sufficient condition under which ALOHA-

type policy is optimal and show that almost all common fading models satisfy these

conditions, including Nakagami-m fading, Rician fading and lognormal shadowing.

The result of this chapter directly leads to a solution for minimizing the local
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TABLE 2.1

OPTIMAL TRANSMIT POWER ξ FOR ANYCAST WITH RAYLEIGH

FADING, WHERE Pmax = 4, α = 2, θ = 1.

n = 14 n = 2 n = 3 n = 4 n = 5 n = 6

r = 0.5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

r = 1.5 2.2500 1.8566 1.6352 1.4893 1.3841 1.3038

r = 2.5 4.0000 4.0000 4.0000 4.0000 3.8448 3.6218

r = 3.5 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000
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Figure 2.7. Minimum local anycast delay in the Rayleigh fading case.
Pmax = 4, θ = 1, α = 2.
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delay in random but fixed wireless networks, and also implies solutions for mini-

mizing the local anycast delay. In the iid fading case, since the conditional local

delay minimized by our policies is the inverse of the success probability of each trans-

mission conditioned on the link distance, the delay-optimal policies are essentially

throughput-maximizing policies in the random but fixed noise-limited wireless net-

work if a single-bit ARQ is given to the transmitter. As in many cases the optimal

policy concluded in this chapter is a ‘peaky’ scheme (ALOHA), our results bear in-

teresting relations to some of the results also suggesting ‘peaky’ transmissions, e.g.,

[55, 64, 66].

In a wireless network where interference is not negligible, our optimal scheme can

be used as a lower-layer power control policy. When a specific link is activated by

an upper layer interference-managing MAC scheme (e.g., CSMA, LMAC [74], etc.),

individual links can apply the policy in this chapter to minimize the conditional local

delay, and thus the local delay.
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CHAPTER 3

RANDOM POWER CONTROL IN INTERFERENCE-LIMITED NETWORKS

3.1 The SNOPC and NEPC Strategies

Chapter 2 considered a noise-limited network, which is essentially a collection of

independent links. In this case, the individual optimum is the global optimum since

there is no conflict of interests between links. However, in the interference-limited

case, a higher throughput at a few links may result in a performance degradation of

other links. Therefore, the best choice of the power control strategy of a link is a

function of the power control strategy applied in other links.

In order to study this interaction among different users, we model power control

as a non-cooperative game between transmitters and characterize two types of power

control strategies: 1. Single-node optimal power control (SNOPC) strategies when

only one node in the network uses power control; 2. Nash equilibrium power control

(NEPC) strategies when all the nodes in the network use power control. SNOPC

strategies maximize the expected throughput of the power-controllable link, whereas

NEPC strategies ensure that no individual node of the network can achieve a higher

expected throughput by unilaterally deviating from these strategies. In the discussion

of each type of strategies, we consider three different levels of information available at

the transmitters, which can be interpreted as corresponding to three levels of mobility

of the network. It turns out that, in many cases, ALOHA-type random on-off power

control policies are single-node optimal and constitute Nash equilibria.

34



3.2 Relation to Other Work

In the study of power control in wireless networks, two main approaches have

been used to analyze and design sensible policies: the optimization approach [17, 27,

43, 44, 61] and the game theory approach [2, 3, 8, 25, 45, 53, 56, 62]. The former

assumes inter-node cooperation and aims at finding the assignment of power that

maximizes some global, while the latter provides a means to study the robust power

control strategies such that malicious users cannot benefit from deviating from them.

Focusing on the case where any inter-node coordination is not allowed and the

transmitters decide on their own power control strategies to maximize their own

expected throughput, this chapter adopts a game theory framework.

Similar to Chapter 2, we allow the transmit power at each node to be a random

variable with arbitrary distribution subject to a (unit) mean power and a peak power

constraint. While most of the exiting power control literature considers determinis-

tic power control strategies, this chapter shows that the additional randomness can

potentially be highly beneficial.

Although this thesis is not the first one to demonstrate the benefits of randomly

varying the transmit power in wireless networks with interference, only a very limited

number of papers focus on it[26, 50]. While [26, 50] demonstrate the benefits of

random power control in the presence of interference, both papers fail to justify

their choice of random power control distribution (uniform distribution). Here, we

show that there is a specific type of simple transmit power distribution (ALOHA-

type random on-off) that not only maximizes a single user’s throughput but also

constitutes the network-wide Nash equilibrium.

Random power control schemes also naturally appear as mixed strategies in game-

theoretic frameworks, e.g., [6]. However, in this context, the combination of mean

and peak power constraints is usually not considered. We show that these constraints

have a significant impact on the strategies of interest. In particular, it turns out both
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the SNOPC and the NEPC strategies are ALOHA-type random on-off policies.

Another important feature that contrasts the content of this chapter to other

papers in the power control literature is the use of a stochastic point process to

model the network and the explicit separation of channel uncertainty due to node

location and fading. Although powerful tools from stochastic geometry have been

introduced in the analysis of large wireless networks over the last decade [42], only

a very small part of the power control literature considers the spatial distribution

of wireless networks. Instead, most of the papers do not differentiate the path loss

due to fading and path loss due to random location of the nodes. Such simplification

does not matter when the (combined) channel state is known at the transmitters,

e.g., [27, 45], or stays fixed over time and thus can be learned gradually through

channel feedback, e.g., [6, 8, 25]. Yet, it prohibits the discovery of efficient power

control schemes when the network has limited capability to acquire perfect channel

state information. In this chapter, we explicitly account for these two sources of

randomness.

3.3 Chapter Organization

The rest of the chapter is organized as follows: Section 3.4 introduces the sys-

tem model and specifies three cases of interest (with different levels of information

available at the transmitters). Sections 3.5, 3.6 and 3.7 analyze the SNOPC and

NEPC strategies in three cases. The performance of these strategies is evaluated in

Section 3.8. Section 3.9 concludes the chapter.
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3.4 System Model

3.4.1 Network Model

The network topology is represented as a marked Poisson point process (PPP)

Φ̂ = {(xi, yxi
)} ⊂ R

2 × R
2, where Φ = {xi} is a homogeneous PPP with intensity λ

and denotes the location of the transmitters and the mark yx denotes the location of

a dedicated receiver of transmitter x. The link distances Rx , ‖x− yx‖ are iid with

distribution fR.

We consider the following SIR model, where a transmission attempt from z to yz

is considered successful iff

SIRz ,
Sz

Iz
> θ,

where Sz = Pzhz‖z−yz‖−α, Iz =
∑

x∈Φ\{z} Pxhxz‖x−yz‖−α, Px is the transmit power

at node x ∈ Φ, α > 2 is the path-loss exponent, θ is the SIR threshold, and hz and

hxz are (power) fading coefficients from the desired transmitter and the interferer x

to z respectively. We focus on the iid Rayleigh fading case, thus hz and the sequence

(hxz) are iid exponentially distributed with unit mean. In the following, we use I for

Iz for simplicity.

3.4.2 Game-Theoretic Formulation

The players in the game are all the transmitters in the network x ∈ Φ. Each

player can select a strategy sx from a common set of stationary strategies S. Here,

S is the set of distributions with (at most) unit mean and with support (at most)

[0, Pmax], where Pmax > 1 (otherwise, the mean power constraint would always be

loose).

The strategy each node chooses is based on its knowledge about the network. We

use Kx to denote this knowledge available at node x and split our discussion into

three cases: case 1: Kx = {fR}, case 2: Kx = {λ,Rx, fR}, and case 3: Kx = {Φ̂}.
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These three cases represent different levels of information in ascending order. Case

1 and case 2 are more suitable models for high-mobility networks, where only very

limited network information can be acquired at each node. Case 3 applies to static

networks, where the complete network topology information can be either provided

off-line or learned gradually by each link.

The pay-off of node x ∈ Φ is its own expected throughput (success probability)

averaged over all the randomness in the rest of the network, i.e., πx(sx) = ps|Kx
(sx) =

P(Sx

Ix
> θ | Kx, sx(Kx)). The single-node optimal power control (SNOPC) strategy of

node x maximizes πx(·) if all the other transmitters in the network transmit with unit

power (no power control). If all the transmitters in the network use power control,

we say that a strategy set {sx(Kx), x ∈ Φ} is a Nash equilibrium and sx(Kx) is the

Nash equilibrium power control (NEPC) strategy if none of the transmitters is willing

to unilaterally deviate from its current strategy as that cannot increase its pay-off

(expected throughput).

In addition to the game-theoretic framework above, we study the global impact

of SNOPC and NEPC by evaluating the spatially averaged throughput, (or, simply

spatial throughput), defined as the throughput (success probability) of a typical node

in the network, which can be expressed as

ps = E
!x[πx(sx)],

where E
!x is the expectation with respect to the reduced Palm measure. Loosely

speaking, it is the expectation conditioned on the existence of a point at x but not

counting it. More details about the Palm measure and its applications in wireless

networks can be found in [39, 42] and the references therein. In the case of a PPP,

by Slivnyak’s theorem, E!x = E, i.e., having a node at location x does not change

the distribution of the point process[39].
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3.5 Case 1: Unknown Link Distances

We first consider the case of Kx = {fR}, i.e., only the distribution of Rx is known

at the nodes with power control capability. In particular, we consider the case where

the link distances Rx are Rayleigh distributed with mean 1/2
√
λr, i.e., fR(x) =

2λrπx exp(−λrπx
2). This distribution is of interest because fR is the distribution of

the link distances when each node of Φ tries to connect to its nearest neighbor in an

independent homogeneous PPP of intensity λr[34].

Proposition 2. If only the node z ∈ Φ can use power control but all other transmit-

ters transmit with unit power and R is Rayleigh distributed, the SNOPC strategy at

z is constant power transmission (no power control).

Proof. Since Φ is motion-invariant, without loss of generality, place the desired re-

ceiver at origin, i.e., yz = o. Then, if we let hx be the iid fading coefficient from x to

o, the Laplace transform of the interference I can be expressed as

LI(s) = E

[

∏

y∈Φ\{z}
eshy‖y‖−α | z ∈ Φ

]

(a)
= E

!z
[

∏

y∈Φ\{z}
eshy‖y‖−α

]

(b)
= E

[

∏

y∈Φ
eshy ||x||−α

]

(c)
= e−λπsδ πδ

sin(πδ) ,

where (a) is due to the definition of Palm distribution (b) is due to Slivnyak’s theorem,

(c) is shown in [41] and δ = 2/α. It is assumed that α > 2 (otherwise the interference

is infinite almost surely), so δ < 1.

Thus, for an arbitrary power control policy characterized by random variable P ,

39



the success probability can be written as

P(PhR−α > θI) = EP,R[P(PhR−α > θI) | P,R] = EPER[LI(s)|s= θRα

P
]

= EP

[

∫ ∞

0

2λrπr exp

(

−λπ
πδ

sin πδ

(

θrα

P

)δ
)

exp(−λrπr
2)dr

]

= EP

[

b

a
(

θ
P

)δ
+ b

]

,

where a = λπ πδ
sinπδ

and b = λrπ. Since
b

a(θ/x)δ+b
is concave for a, b, θ > 0 and 0 < δ < 1,

by Jensen’s inequality, the throughput is maximized when choosing P ≡ EP = 1.

Proposition 2 shows that if R is Rayleigh distributed and the rest of the network

uses constant power transmission, the best strategy at node z is constant power

transmission, regardless of the values of λ and λr. Since z is arbitrarily chosen,

this immediately implies that constant power transmission at all nodes is a Nash

equilibrium. However, in order to find out whether there are other Nash equilibria,

we need to study the interference distribution when the rest of the network uses

power control.

Lemma 8. If the interferers are distributed as a homogeneous Poisson point process

Φ with intensity λ and the transmit power at each transmitter is drawn iid from the

same distribution fP , the interference observed at any receiver yz with z ∈ Φ has the

Laplace transform

LI(s) = exp(−λcdE[P
δ]E[hδ]Γ(1− δ)sδ).

Proof. First, by Slivnyak’s theorem, LI(s) = E[
∏

x∈Φ e−sPxhx‖x‖−α

], where Px is the

transmit power at x. Second, since (Px), x ∈ Φ, is iid, Pxhx can be considered as a

new fading coefficient h̃y. The proof is then completed by the Laplace transform of

the interference distribution for arbitrary iid fading with finite δ-th moment [41, Sec.

40



3.2].

Proposition 3. If all nodes are capable of power control, constant power transmission

is the unique NEPC policy in Poisson networks with Rayleigh distributed unknown

link distances.

Proof. By Proposition 2, the fact that constant power transmission is a NEPC strat-

egy is evident. To show its uniqueness, we start by noting that the information

available at each individual node Kx = {fR} is the same. Thus, given that all the

nodes are completely selfish and sufficiently and equally smart, at any Nash equilib-

rium, their choice of power control strategy must be the same. Assume the common

choice of power control strategy (of the rest of the network) is characterized by the

random variable P̃ with pdf fP̃ ∈ S, and let the interference observed at arbitrary

receiver yz under this power control policy be Ĩ. Then, Lemma 8 gives the Laplace

transform of the Ĩ. Straightforward manipulation shows

P(PhR−α > θĨ) = EP

[

b

ã
(

θ
P

)δ
+ b

]

, (3.1)

where ã = λπ πδ
sinπδ

E[P̃ δ], b = λrπ, and P is the transmit power at z. As in the proof

of Proposition 2, we can show that P ≡ 1 maximizes (3.1) under the unit mean power

constraint. Since z is arbitrarily chosen, we have P = P̃ ≡ 1.

Corollary 4. If the transmitters and receivers are distributed as two independent

homogeneous Poisson point processes Φ,Φr ⊂ R
2 and all the transmitters in Φ try

to connect to their nearest neighbor in Φr, constant power transmission is the NEPC

strategy.

This corollary is a straightforward extension of Proposition 3. However, this result

hinges critically on the special form of Nash equilibrium (constant power transmis-

sion), in Proposition 3. A similar result cannot be obtained in the two cases discussed

in the next two sections.
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3.6 Case 2: Known Link Distance

In this section, we consider the case where Kx = {λ,Rx, fR}, i.e., the nodes

with power control capability know the network density, the distances to their own

dedicated receivers and the distribution of the link distance of the whole network.

We first derive the form of the SNOPC and NEPC strategies for general fR. Then,

we take the Poisson bipolar network, i.e., fR(x) = δ(x− r), as an example to further

illustrate the NEPC strategy.

3.6.1 General fR

In this subsection, we start with the SNOPC strategy and then study the Nash

equilibrium. First, we present a lemma:

Lemma 9. Given a link of length R = r, if there exists x0 > 0 such that xLI(θr
αx)

is monotonically increasing for x < x0 and monotonically decreasing for x > x0,

the power control strategy that maximizes the throughput at node x is random on-

off power control with transmit power γ and transmit probability γ−1 where γ =

max{1,min{Pmax, x
−1
0 }}.

Proof. For interference-limited Rayleigh fading networks, the success probability of

a transmission at power P is LI(s)|s= θrα

P
. Thus, the success probability of any power

control strategy characterized by the pdf fP of the random variable P is

ps = EP

[

LI(s)|s= θrα

P

]

=

∫ ∞

0

LI

(

θrα

x

)

fP (x)dx. (3.2)

It is easy to show that LI(x) is a valid ccdf, i.e., LI(0) = 1, limx→∞ LI(x) = 0,

and LI(x) is monotonically decreasing on [0,∞). So, instead, we can consider an

interferenceless link of distance r with another fading random variable h̃ whose ccdf
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is F̄h̃(x) = LI(x). The success probability is

p̃s = P(Ph̃r−α > θ) = EP

[

F̄h̃

(

θrα

P

)]

=

∫ ∞

0

LI

(

θrα

x

)

fP (x)dx. (3.3)

Comparing (3.2) and (3.3), we find that finding the SNOPC strategy that maximizes

ps and finding the one for p̃s are two identical problems. The latter problem has

already been solved in Chapter 2. In particular, Theorem 2 shows that if there

exists a x0 as in the statement of the lemma, subject to the constraints EP ≤ 1

and P ≤ Pmax, p̃s is maximized when fP (x) = (1 − γ−1)δ(x) + γ−1δ(x − γ), where

γ = max{1,min{Pmax, x
−1
0 }}.

Corollary 5. If the Laplace transform of the interference I has the form LI(s) =

exp(−asδ), where δ = 2/α and a > 0, the throughput-maximizing power control

strategy at any transmitter z ∈ Φ with Rz = r is a random on-off power control

strategy with transmit power γ and transmit probability γ−1, where

γ = max{1,min{Pmax, (aδ)
1/δθrα}}.

Corollary 5 is proved by simply verifying that the form of the Laplace transform

of the interference satisfies the conditions in Lemma 9.

Proposition 4. If only one node z ∈ Φ with Rz = r uses power control and all other

nodes Φ\{z} transmit at unit power, the SNOPC strategy of z is an ALOHA-type

random on-off power control strategy with transmit power γ and transmit probability

γ−1, where γ = max{1,min{Pmax,
(

λ π2δ2

sinπδ

)1/δ

θrα}}.

Proof. The proposition follows directly from Lemma 8 (P ≡ 1) and Corollary 5.

Moreover, since the transmit power at each node x ∈ Φ is a (stochastic) function

of the link distances Rx = r, where the Rx are spatially iid, Lemma 8 shows that
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the interference always has a Laplace transform in the form exp(−asδ), regardless of

what kind of power control strategy is applied at each node. Then, the proposition

below follows.

Proposition 5. ALOHA-type random on-off power control is the unique NEPC strat-

egy in a wireless network where the transmitters are distributed as a homogeneous

Poisson point process Φ and Kx = {λ,Rx, fR}, for all x ∈ Φ.

Proof. The fact that ALOHA-type random on-off power control at each node is a

Nash equilibrium can be deduced directly from Lemma 8 and Corollary 5. In par-

ticular, we can write E[P δ] in terms of the throughput-maximizing random on-off

strategy at each link, which yields

E[P δ] = ER[P
δ
R] = ER[γ

−1
R γδ

R]

= ER

[

min

{

1,max

{

P δ−1
max ,

(

λπ2δ2

sin(πδ)
E[P δ]

)1−1/δ

(θRα)δ−1

}

}]

. (3.4)

Note that the RHS of (3.4) is a monotonically decreasing function of E[P δ] (since 1−

1/δ < 0), and when E[P δ] = 0, its value is P δ−1
max > 0. Thus, there is a unique E[P δ] >

0 satisfying (3.4). Once this value is found, the optimal power control strategy at

x is simply an ALOHA policy with transmit power γ and transmit probability γ−1,

where γ = max{1,min{Pmax,
(

λE[P δ] π
2δ2

sinπδ

)1/δ

θRα
x}}.

Moreover, Lemma 8 also says that no matter what kind of power control policy

is applied in the rest of the network, the interference distribution observed at an

arbitrary receiver has a Laplace transform of the form LI(s) = exp(−asδ). Thus,

Corollary 5 also indicates the uniqueness.

3.6.2 Bipolar Networks

In general, analytically solving for the Nash equilibrium in (3.4) is difficult. As a

special case, when all the link distances are known and constant, the network model
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becomes a Poisson bipolar model[10], for which we have the following result:

Corollary 6. If all the link distances are r, the NEPC strategy is an ALOHA-type

random on-off policy with transmit power γ and transmit probability γ−1 where γ =

max{1,min{Pmax, λ
π2δ2

sinπδ
θδr2}}, λ is the density of the transmitters and δ = 2/α.

Proof. For Rayleigh fading, h is exponentially distributed with mean 1, and thus

E[hδ] = Γ(1 + δ). Then, when the link distances are the same, (3.4) becomes

E[P δ] =

(

max

{

1,min
{

Pmax,
(

λE[P δ]
π2δ2

sin πδ

)1/δ

θrα
}

})δ−1

. (3.5)

Solving this equation for E[P δ] and applying to max{1,min{Pmax, (λE[P
δ] π

2δ2

sinπδ
)1/δθrα}}

yields the desired result.

Corollary 6 says that in any case, an ALOHA-type random on-off policy is the

NEPC policy in a Poisson bipolar network. For ALOHA-type random on-off strate-

gies with transmit power γ and transmit probability γ−1, we define the following

regimes to facilitate our illustration.

Definition 8. A random on-off power control strategy is said to be in its ALOHA-

peak-power-limited regime if γ = Pmax.

Definition 9. A random on-off power control strategy is said to be in its ALOHA-

bandwidth-limited regime if γ = 1.

As a MAC scheme, ALOHA in Poisson bipolar networks is well studied in the

literature. In particular, [10] derived the ALOHA scheme that maximizes the spatial

throughput in Poisson bipolar networks, which we call the globally optimal (GOPT)

ALOHA scheme. GOPT ALOHA maximizes the spatial throughput by properly

choosing transmit probability, and when only the SIR is considered, the absolute

transmit power does not affects its optimality. However, in order to make a fair
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comparison with the NEPC strategy, we interpret GOPT as a power control scheme

and always choose the maximum transmit power for GOPT under the mean and

peak power constraints. Then, it can be shown that the transmit probability of

GOPT is pGOPT = min{1,
(

λ π2δ
sinπδ

θδr2
)−1

}, and the transmit power is PGOPT =

min{p−1
GOPT, Pmax}. For the same set of parameters, we always have PGOPT ≥ γ and

pGOPT ≤ γ−1, where γ is the transmit power of the Nash equilibrium power control

strategy. In other words, GOPT achieves higher spatial throughput by forcing each

transmitter to back off on their transmit probability.

However, GOPT is unstable in the sense that any selfish link can apply another

power control strategy and thus obtain a performance far better than anyone else.

It is not difficult to see (by slight variation to Proposition 4) that the best response

of any individual link in a Poisson bipolar network applying GOPT is an ALOHA

policy with transmit power γBR and transmit probability γ−1
BR, where the subscript

BR stands for best response and

γBR = max

{

1,min
{

Pmax,

(

λpGOPTP
δ
GOPT

π2δ2

sin πδ

)1/δ

θrα
}

}

= max{1, PGOPTδ
δ}.

Here, γ−1
BR ≥ pGOPT, and the equality holds only when γ−1

BR = pGOPT = 1, i.e., both

strategies operate in the ALOHA-bandwidth-limited regime.

Fig. 3.1 compares the spatial throughput of 4 strategies: constant-power trans-

mission (no power control), NEPC strategy, the globally optimal (GOPT) ALOHA,

and the best response to GOPT in Poisson bipolar networks. We can see from the

figure that the Nash equilibrium power control policy has a better performance than

constant power transmission. As expected, outside the ALOHA-bandwidth-limited

regime of both GOPT and NEPC, NEPC has a spatial throughput strictly smaller

than GOPT. However, the performance gain of GOPT over NEPC mostly comes from

forcing each transmitter in the network to reduce its mean transmit power and thus
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Figure 3.1. Comparison of throughput using 1) constant power
transmission (no power control) 2) GOPT ALOHA 3) the best response to
the GOPT ALOHA and 4) NEPC strategy. Here, λ = 1, Pmax = 2, α = 2,
θ = 10. To the right of the two vertical lines, the transmit power of the
GOPT and NEPC strategies hits their corresponding peak power limits.

manage the interference, i.e., for large r, pGOPTPGOPT < 1. Fig. 3.1 shows that in

such cases, if any node cheats by using another power control strategy, in particular,

the best response to GOPT, its expected throughput gain is significant. Such gain

can be a strong incentive for individual links to cheat.

3.7 Case 3: Static Network

This section considers the case where Kx = {Φ̂}. This assumption is particularly

interesting in a static network, where the topology of the network can be acquired

either directly off-line or gradually by observing the interference from the rest of the

network. In fact, in this context, the assumption on the spatial distribution of the

network becomes unimportant. We are in fact considering an arbitrary realization of

the random network. Results in this section thus also apply to deterministic networks.

First, we provide a lemma to explicitly address the case where xLI(θr
αx) is mono-
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tonically increasing for all x > 0. This lemma complements Lemma 9 as it is essen-

tially considering the case where x0 = ∞.

Lemma 10. If the Laplace transform of the interference I is LI(s) and xLI(θr
αx) is

monotonically increasing for all x > 0, the optimal power control strategy is constant

power transmission, i.e., P ≡ 1.

Proof. Construct another random variable Ĩ with Laplace transform

LĨ(s) = LI(s)1[0,θrα](s) +
1

s2
LI(θr

α)1(θrα,∞)(s),

for all s > 0. Since xLI(θr
αx) is monotonically increasing, it can be verified that

xLĨ(θr
αx) is monotonically increasing on [0, 1] and strictly decreasing on (1,∞).

Applying Lemma 9, we know that

max
fP∈S

∫ ∞

0

LĨ

(

θrα

x

)

fP (x)dx = LĨ(θr
α) = LI(θr

α),

where the maximum is achieved when P ≡ 1.

Let f ∗
P be the distribution of the optimal power control policy for interference I.

With the help of Lemma 5, it is straightforward to show that f ∗
P (x) = 0, ∀x ∈ (0, 1).

Therefore,

max
fP∈S

∫ ∞

0

LI

(

θrα

x

)

fP (x)dx = max
fP∈S

∫ ∞

1

LI

(

θrα

x

)

fP (x)dx

(a)
= max

fP∈S

∫ ∞

1

LĨ

(

θrα

x

)

fP (x)dx

(b)
= max

fP∈S

∫ ∞

0

LĨ

(

θrα

x

)

fP (x)dx = LI(θr
α),

where (a) is due to the definition of Ĩ and (b) is due to the fact that SNOPC policy

for Ĩ is constant power transmission. The lemma then follows the fact that when

P ≡ 1,
∫∞
0

LI(
θrα

x
)fP (x)dx = LI(θr

α), i.e., the maximum success probability is
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achieved.

Proposition 6. If only one transmitter at z ∈ Φ uses power control and the trans-

mitter knows the positions of all interferers, the SNOPC strategy at this link is an

ALOHA-type power control policy.

Proof. Assume the desired receiver is located at o and the positions of all interferers

are φz, i.e., φz is one realization of Φ\{z}. Then, the Laplace transform of the

interference I | φz =
∑

x∈φz
hx‖x‖−α is

LI|φz
(s) =

∏

x∈φz

1

‖x‖−αs+ 1
.

In order to simplify the notation and eliminate ambiguity, in the following we use

l = ‖x‖ to be the label of each interferer. {l} forms another PPP on R
+[34]. Thanks

to the fact that {l} is a simple point process, there will be no ambiguity introduced

by this change of labeling1. With a slight abuse of notation, we let l = ‖x‖ ∈ φ iff

x ∈ φ.

Then, the variable x can be reserved for examining the condition in Lemma 9.

Since log(·) preserves the monotonicity, once the (monotonicity) conditions are proved

for log(xLI(θr
αx)), they are proved for xLI(θr

αx). Thanks to the continuity of

log(xLI(θr
αx)), we examine the monotonicity of log(xLI(θr

αx)) by calculating its

derivative

d

dx
log(xLI(θr

αx)) =
1

x
−
∑

l∈φz

1

x+ lα/θrα
. (3.6)

We rearrange the equation d
dx

log(xLI(θr
αx)) = 0 as

∑

l∈φz

1

1 + lα/θrαx
= 1, (3.7)

1Even in a deterministic network where ‖x1‖ = ‖x2‖ may exist, one can still avoid ambiguity by
simply denoting l1 = ‖x1‖ and l2 = l1 + ǫ = ‖x2‖ for ǫ sufficiently small.
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where the LHS is a (strict) monotonically increasing function of x. Thus, there is at

most one positive zero-crossing for log(xLI(θr
αx)). Moreover, it can be shown that

limx↓0
d
dx

log(xLI(θr
αx)) = +∞. Therefore, log(xLI(θr

αx)) is either monotonically

increasing on (0,∞) or has a unique x0 ∈ (0,∞), such that xLI(θr
αx) is mono-

tonically increasing for x < x0 and monotonically decreasing for x > x0. Applying

Lemma 10 in the former case and applying Lemma 9 in the latter case yields the

desired result.

In addition to finding the SNOPC policy, Proposition 6 provides the NEPC policy

for a network of two links. Interestingly, no matter what kind of topology these two

pairs of transmitter and receiver form, the NEPC strategy for this network is always

constant power transmission at both transmitters. To see this, we can first assume

one of the two transmitters is transmitting with constant power. For the other

transmitter, (3.7) becomes

1

1 + l/θrαx
= 1,

where l is the distance between the desired the receiver and the interferer. This

equation does not have a solution on the positive axis and thus by applying Lemma 10,

constant power transmission is single-node optimal. The same analysis applies to

the other node. Thus, constant power transmission is a NEPC strategy in two-link

networks. However, for networks of more than two links, the NEPC strategy is in

general not constant power control, as is shown in the following proposition.

Proposition 7. ALOHA random on-off power control is a NEPC strategy for Rayleigh

fading wireless networks, where the positions of the nodes of the whole network (both

the transmitters and the receivers) are available at each transmitter.

Proof. We first focus on the power control strategy of an arbitrary transmitter z ∈ φ

and assume the rest of the network uses certain ALOHA random on-off power control
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policies which are known at z. We show that in such scenario the best response power

control strategy for z is ALOHA.

The proof is analogous to that of Proposition 6. Again, we let yz = o without loss

of generality and denote φ\{z} by φz. We assume that the transmit probability of

node with label l = ‖x‖ ∈ R
+ is γ−1

l and its transmit power is γl. Then, the Laplace

transform of the interference is

LI|φ(s) =
∏

l∈φz

(

γ−1
l

γll−αs+ 1
+ 1− γ−1

l

)

. (3.8)

Again, we use the logarithm to change the product to a sum and examine the deriva-

tive of log(xLI(θr
αx)), which can be written as

d

dx
log(xLI(θr

αx)) =
1

x
−
∑

l∈φz

(

1

x+ lα/θrαγl
− 1

x+ lα/θrα(γl − 1)

)

,

where γl > 0, ∀l. Then, d
dx

log(xLI(θr
αx)) = 0 can be rearranged as

∑

l∈φz

(

1

1 + lα/θrαγlx
− 1

1 + lα/θrα(γl − 1)x

)

= 1,

where the LHS is a (strict) monotonically increasing function of x. Thus, there is at

most one positive zero crossing for log(xLI(θr
αx)). Moreover, it can be shown that

limx↓0
d
dx

log(xLI(θr
αx)) = +∞. The rest of the proof follows the one of Proposi-

tion 6.

Since z is an arbitrary transmitter in the network, a Nash equilibrium is estab-

lished. The assumption that each node knows the power control policy of the rest

of the network is justified by the fact that each node has the same knowledge when

deciding its own power control policy. Therefore, if a particular node can calculate

its optimal power control policy, all the other nodes can do that as well.

51



While Proposition 7 shows that a set of random on-off power control strategies is

a Nash equilibrium, the exact equilibrium point, i.e. the transmit power γl, ∀l ∈ φ,

is typically difficult to determine. In general, for a finite network of n transmitter-

receiver pairs, let lij be the distance from the transmitter i to the receiver j, and rk

be the distance of the transmitter-receiver pair k, i, j, k ∈ [n]2. We have the following

2n equations











1
xj

−∑i∈[n]\{j}

(

1
xj+lαij/θr

α
j γi

− 1
xj+lαij/θr

α
j (γi−1)

)

= 0, ∀j ∈ [n]

γj = 1/min{1,max{P−1
max, xj}}, ∀j ∈ [n],

(3.9)

where γj, xj , j ∈ [n] are 2n unknowns. Although the value of xj does not often have

any physical meaning, it helps solve for the power level γj at each node j. Also,

Proposition 7 implies that there is at least one solution of (3.9), despite the fact that

finding it analytically is almost hopeless. In the following, we use numerically found

solutions to evaluate this Nash equilibrium. Fig. 3.2 shows an example of the NEPC

policy as well as its throughput for a realization of a Poisson bipolar network.

3.8 Performance Evaluation

3.8.1 The Single-node Optimal Power Control (SNOPC) Strategies

When all the interferers are transmitting with unit power, the interference dis-

tribution does not dependent on the distribution of the link distance. Thus, if the

throughput conditioned on the link distance r is ps(r), the mean throughput is just

ER[ps(R)]. For this reason, in this subsection, we only focus on ps(r).

If no power control is applied, the throughput can be expressed in terms of the

2We use [n] to denote the set {1, 2, 3, · · · , n}.
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Figure 3.2. The NEPC in a Poisson bipolar network in case 3. Each
transmitter-receiver pair is linked by a line, where a circle is centered at the
transmitter and the receiver is labeled by x. The radius of each circle is

proportional to the Nash equilibrium transmit probability (Fig. 3.2a) or the
throughput (Fig. 3.2b) at the corresponding link. Here, λ = 1, r ≡ 0.3,

Pmax = 2, θ = 10.

Laplace transform of the interference distribution; it is given by [41]

ps(r) = exp

(

− λπ2δ

sin(πδ)
θδr2

)

.

The optimal power control policy for the case where only the link distance is

available at the transmitter is given by Proposition 4. The throughput conditioned

on the link distance r is

ps(r) =























exp
(

−λπ(θrα)δ πδ
sinπδ

)

, r < θ−1/α
√

sinπδ
λπ2δ2

exp(−1/δ)
θrα

(

sinπδ
λπ2δ2

)1/δ
, θ−1/α

√

sinπδ
λπ2δ2

< r <
(

Pmax

θ

)1/α
√

sinπδ
λπ2δ2

P−1
max exp

(

−λπ
(

θrα

Pmax

)δ
πδ

sinπδ

)

, r >
(

Pmax

θ

)1/α
√

sinπδ
λπ2δ2

.
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Figure 3.3. Comparison of throughput using three different SNOPC
strategies. Here, λ = 1, Pmax = 10, α = 4, θ = 10. The throughput of case

3 is averaged over 10,000 realizations of the PPP.

When the complete network topology Φ = φ is available at the central node

(case 3), the optimal performance can be achieved by applying the policy sug-

gested by the proof of Proposition 7. However, analytically characterizing the spa-

tial throughput of such power control strategy requires a closed form expression for

max1≤γ≤Pmax γ
−1
∏

l∈φ
1

1+θrα/lαγ
, which seems hopeless. Therefore, we first solve for

the single node optimal transmit power γ(φ) and transmit probability 1/γ(φ). The

expected throughput is given by γ−1
∏

l∈φ
1

θrα/lαγ+1
. We can then use simulation to

average over a large number of realizations of Φ and compare the result with other

two cases.

Fig. 3.3 compares the three SNOPC strategies for different levels of information.

As expected, the SNOPC strategies with more information does strictly better than

the SNOPC strategies based on less information. However, while the gain of knowing

the link distance is significant especially when the link distance is large, the gain of

knowing the complete network topology is marginal.
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3.8.2 Nash Equilibrium Power Control (NEPC) Strategies

In contrast to SNOPC, it is not clear whether more information results in a

higher throughput for NEPC. In this subsection, we evaluate the spatial throughput

for different NEPC strategies.

Bipolar Networks When the link distance is the same and constant throughout the

network, the NEPC strategy for case 2 is the one described in Corollary 6, and the

expected throughput at each link is

ps(r) = γ−1 exp

(

−λγ−1 π2δ

sin πδ
θδr2

)

,

where γ = max{1,min{Pmax, λπr
2 πδ2

sinπδ
θδ}}.

Evaluating the performance of NEPC for complete network topology information

(case 3) involves solving (3.9). Once (γl) is (numerically) found, the throughput can

be determined by making use of the Laplace transform in (3.8).

Fig. 3.4 compares the spatial throughput of NEPC strategies in the bipolar net-

work and the throughput of SNOPC. The case where all nodes in the network transmit

with power Pmax and probability P−1
max is also plotted for reference. We see for case

2 when the link distance is larger than 0.5, the NEPC strategy enters its ALOHA-

peak-power-limited regime.

A key observation of Fig. 3.4 is that by allowing all the transmitters in the net-

work selfishly to use power control, the spatial throughput of the network can be

improved (although not necessarily maximized) in comparison with the case where

all the transmitters transmit with unit power. In particular, the comparison between

the performance of SNOPC and NEPC strategy in case 2 shows that the throughput

gain of a smart user is larger when all the other users are also smart. This result

is somewhat surprising, since it is natural to conjecture that a smart user should
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be able to take more advantage of others if they are all dumb. The root of this

counter-intuitive phenomenon lies in the special form of the Nash-equilibrium, i.e.,

each node transmits with (the same) power γ ≥ 1 and probability γ−1. At this

equilibrium, the interference Iγ observed at any receiver has the Laplace transform

LIγ (s) = exp(−λπγδ−1 πδ
sin(πδ)

sδ), which is larger than the Laplace transform of the

interference without power control LI(s) = exp(−λπ πδ
sin(πδ)

sδ) for all s > 0. Due

to the relation between success probability and Laplace transform, this implies that

any power control strategy achieves a higher expected throughput when the network

operates at a certain the Nash equilibrium than when all other nodes transmit with

constant power. Moreover, the NEPC strategy, by definition, maximizes the (individ-

ual) throughput at the Nash equilibrium, and thus the spatial throughput of NEPC

is always higher than what SNOPC can achieve if the rest of the network does not

use power control.

The fact that LIγ (s) > LI(s), ∀s > 0 in case 2 suggests that by selfishly choosing

its power control strategy, each node is essentially reducing its interference to other

nodes. Therefore, the spatial throughput of NEPC is always larger than without

power control (this is also confirmed in Fig. 3.4).

However, as is shown in Section 3.6.2, NEPC does not maximize the spatial

throughput, which interestingly is also due to the special form of the NEPC strategy,

which always ensures that E[P ] = 1. In contrast, if we replace the mean power con-

straint E[P ] ≤ 1 with the constraint E[P δ] ≤ 1, it can be shown that the resulting

NEPC policy coincides with GOPT ALOHA, i.e., the spatial throughput is maxi-

mized at the Nash equilibrium. This can be interpreted as follows: A (smart) selfish

power control strategy always has E[P δ] = 1, since otherwise it is easy to construct

another random variable (as a function of P ) which statistically dominates P but still

satisfies both power constraints. This, by Lemma 8, ensures that the power control

strategy does not affect the interference distribution. Then, by adjusting the power
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Figure 3.4. Comparison of throughput in bipolar network using constant
power transmission, NEPC strategies in case 2 and case 3, the case where
all nodes transmit with power Pmax and probability P−1

max (γ = Pmax), and
SNOPC strategy in case 2. Here, λ = 1, Pmax = 2, α = 4, θ = 10.

control strategy, each node only maximizes its own throughput without inflicting

more or less interference on others.

The comparison between the two NEPC strategies in Fig. 3.4 also indicates that

the more information is available at each transmitter, the higher the throughput.

This phenomenon is also observed in the scenario of variable link distances which is

discussed in the next subsection.

Networks with Variable Link Distances Here, we focus on the case where the link

distance R is Rayleigh distributed with mean 1/2
√
λr. As discussed earlier, in case

1, the NEPC strategy is constant power transmission, and the resulting throughput

is

ER [ps(R)] =
λr

λr + λ πδ
sin(πδ)

θδ
.

For case 2, the NEPC strategy hinges on solving for E[P δ] in (3.4). A closed-form
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solution is not available in this case, but a numerical solution is easy to obtain. Given

E[P δ], the spatial throughput can be calculated by averaging over the distribution of

R, which yields

ER[ps(R)] =
λr

λr + aθδ

(

1− e−(λrπ+aπθδ)R2
1

)

+
λr/Pmax

λr +
aθδ

P δ
max

(

1− e
−(λrπ+

aπθδ

Pδ
max

)R2
m

)

+ (λraπ
2δe)−1/δ

(

Γ(1 + 1/δ, λrπR
2
1)− Γ(1 + 1/δ, λrπR

2
m)
)

,

where a = λπδ
sinπδ

E[P δ], R1 = θ−δ/2(aπδ)−1/2, Rm = (θ/Pmax)
−δ/2(aπδ)−1/2 and Γ(·, ·)

is the upper incomplete Gamma function.

Fig. 3.5 compares the Nash equilibrium power control strategies in three cases,

where the throughput of case 3 is calculated by simulation, averaged over 10,000

network topologies (realizations of the PPP). Again, we see that the more information

available at each node, the higher the spatial throughput will be, even if each node

acts selfishly.

Although this chapter focuses on Rayleigh distributed links, the results are ap-

plicable to general link distributions. More specifically, for case 3, the link distance

distribution does not matter since the complete network topology is assumed to be

available at the transmitters. For cases 1 and 2, as long as the link distance is iid,

the transmit power at each individual transmitter is iid. Therefore, the link dis-

tance distribution enters the interference distribution only by the δ-th moment of the

transmit power. In case 2, this means the interference distribution property required

by Lemma 9 always holds, and thus results for Rayleigh-distributed link distance

hold for arbitrary link distance distribution. In case 1, this means all the proofs in

Section 3.5 can stay the same as long as the concavity of ER[LI(s)|s= θRα

P
] (w.r.t. P )

holds.
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Figure 3.5. Comparison of the spatial throughput under NEPC when link
distance are Rayleigh distributed with mean 1/2

√
λr in three cases. Here,

λ = λr = 1, Pmax = 2, α = 4, θ = 10. The throughput in case 3 is averaged
over 10,000 PPP realizations.

3.9 Conclusions

This chapter considers the single-node optimal power control (SNOPC) strate-

gies and the Nash equilibrium power control (NEPC) strategies in wireless networks

whose node distribution is governed by a Poisson point process (PPP). The SNOPC

strategies maximize one link’s expected throughput given that the rest of the network

uses constant power transmission. When all the nodes in the network can use power

control, the NEPC strategies are the stable strategies in the sense that no individ-

ual link would deviate from these strategies as that cannot increase the expected

throughput at this link.

With the basic assumption that the channel fading state is unobservable at each

node, we analytically characterize SNOPC and NEPC strategies in three cases of

different levels of knowledge at each node. We show that in all cases the optimal and

Nash equilibrium power control strategies are ALOHA-type random on-off strategies
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whose transmit power level and transmit probability are functions of the knowledge

at each transmitter. While ALOHA is generally considered to be inefficient as a MAC

scheme, our results show that, as a power control scheme, it constitutes a natural

Nash equilibrium in interference-limited Poisson networks3.

In bipolar networks (fixed link distance), the performance comparison between

the NEPC strategy and the globally optimal (GOPT) power control strategy reveals

the inefficiency of the NEPC strategy. However, it is also shown that in such a sce-

nario the NEPC strategy achieves a spatial throughput larger than without power

control. Since nodes in a real network are likely to cooperate to some degree, the per-

formance of the NEPC strategy provides a worst case scenario for wireless networks

with random power control capability. In this sense, this chapter demonstrates the

potential benefits of random power control in wireless networks.

Numerical results suggest, just like SNOPC, under NEPC, the more information

is available, the higher the spatial throughput. In other words, spreading network

topology information over all nodes can increase the spatial throughput even if all the

nodes are selfish. Thus, there exists a trade-off between the gain in spatial throughput

and the overhead of acquiring topology information, which can be quantified by the

tools provided in this chapter.

3Nevertheless, there is a subtle but important distinction between the random on-off power
control strategy and the conventional ALOHA MAC scheme: the optimal random on-off strategy
allows each transmitter to use a different transmit power and probability while the conventional
ALOHA often assumes that all the users have the same access probability.
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CHAPTER 4

THE PERFORMANCE OF SUCCESSIVE INTERFERENCE CANCELLATION

4.1 Successive Interference Cancellation and Related Work

Chapter 3 assumed each receiver has only one dedicated transmitter and used the

signal-to-interference-ratio (SIR) to this transmitter as the indicator for the channel

quality. Such modeling is often referred to treating interference as background noise.

It is the most classic approach to model the relation among concurrent transmissions

in wireless networks and complies with the contemporary implementation of wireless

systems.

However, as contemporary wireless systems are becoming increasingly interference-

limited, there is an ascending interest in using advanced interference mitigation tech-

niques to improve the network performance in addition to this conventional approach

of treating interference as background noise [12, 14, 15, 20, 46, 47, 58, 71]. One im-

portant approach is successive interference cancellation (SIC). First introduced in

[21], the idea of SIC is to decode different users sequentially, i.e., the interference

due to the decoded users is subtracted before decoding other users. Although SIC

is not always the optimal multiple access scheme in wireless networks [12, 14], it

is especially amenable to implementation [4, 68] and does attain boundaries of the

capacity regions in multiuser systems in many cases[12, 22, 60].

Conventional performance analyses of SIC do not take into account the spatial

distribution of the users. The transmitters are either assumed to reside at given lo-

cations with deterministic path loss, see, e.g., [72] and references therein, or assumed
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subject to centralized power control which to a large extent compensates for the

channel randomness [5, 70]. To establish advanced models that take into account the

spatial distribution of the users, recent papers attempt to analyze the performance

of SIC using tools from stochastic geometry [39, 42]. In this context, a guard-zone

based approximation is often used to model the effect of interference cancellation

due to the well-acknowledged difficulty in tackling the problem directly [71]. Despite

many interesting results obtained by this approximation, it does not provide enough

insights on the effect of received power ordering from different transmitters, which is

essential for successive decoding[70]. Therefore, this approach provides a good ap-

proximation only for one or at most two interferers. Furthermore, most of the work in

this line of research considers Rayleigh fading and/or uniformly distributed networks.

In contrast, this chapter uses an exact approach to tackle the problem directly for a

more general type (non-uniform) of networks with arbitrary fading distribution.

Besides SIC, there are many other techniques that can potentially significantly

mitigate the interference in wireless networks including interference alignment [15]

and dirty paper coding [20]. Despite the huge promise in terms of performance gain,

these techniques typically rely heavily on accurate channel state information at the

transmitters (CSIT) and thus are less likely to impact practical wireless systems in

the near future [46, 58]. Also, many recent works study interference cancellation

based on MIMO techniques in the context of random wireless networks, e.g., [46,

69] and references therein. These interference cancellation techniques should not

be considered as successive interference cancellation (SIC), although they can be

combined with SIC to achieve (even) better performance[67].
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4.2 Contributions and Organization

This chapter considers SIC as a pure receiver end technique1, which does not

require any modifications to the conventional transmitter architecture. We focus on

a d-dimensional Poisson network where all the nodes are transmitting at the same

rate. The main contributions of this chapter can be summarized as follows:

• We show that fading does not affect the performance of successively decoding
in a large class of interference-limited networks, including uniform networks as
a special case. However, in noisy networks, fading always reduces the decoding
probability.

• We provide a set of closed-form upper and lower bounds on the probability
of successively decoding at least k users. These bounds are based on different
ideas and are reasonably tight in different regimes.

• In interference-limited networks, when the per-user information rate goes to 0,
we show that the aggregate throughput at the receiver is upper bounded by
1
β
− 1, where β is a simple function of the path loss exponent and network den-

sity. A Laplace transform-based approximation is also found for the aggregate
throughput at the receiver for general per user information rate.

• We observe that in interference-limited network the aggregate throughput at
a typical receiver is a monotonically decreasing function of the per user infor-
mation rate, while in noisy networks, there exists an optimal positive per-user
rate that maximizes the aggregate throughput.

The rest of the chapter is organized as follows: Section 4.3 describes the system

models and the metrics we are using in this chapter. Section 4.4 introduces the path

loss process with fading (PLPF)-based framework which facilitates the analysis in

the rest of the chapter. In Section 4.5, we provide a set of bounds on the probability

of decoding at least k users in system. These bounds directly lead to bounds on

the expected gain of SIC presented in Section 4.6. We discuss the effect of noise in

Section 4.7. The chapter is concluded in Section 4.8.

1In general, SIC can be combined with (centralized) power control, which can significantly boost
its usefulness. However, this places extra overhead in transmitter coordination and is beyond the
discussion of this thesis.
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Figure 4.1. Realizations of two non-uniform PPP with intensity function
λ(x) = 3‖x‖b with different b, where x denotes an active transmitter and o

denotes the receiver at the origin.

4.3 System Model and Metrics

4.3.1 The Power-law Poisson Network with Fading (PPNF)

Let the receiver be at the origin o and the active transmitters be represented by

a marked Poisson point process (PPP) Φ̂ = {(xi, hxi
)} ⊂ R

d × R
+, where x is the

location of a user, hx is the iid (power) fading coefficient associated with the link from

x to o, and d is the number of dimensions of the space. When the density function

of the ground process Φ ⊂ R
d is λ(x) = a‖x‖b, a > 0, b ∈ (−d, α − d), where ‖x‖

is the distance from x ∈ R
d to the origin and α is the path-loss exponent, we refer

this network as a power-law Poisson network with fading (PPNF). The condition

b ∈ (−d, α − d) is needed in order to maintain a finite total received power at o and

will be revisited later.

Fig. 4.1 shows realizations of two 2-d PPNFs with different b; Fig. 4.1-(a) rep-

resents a network clustered around o whereas the network in Fig. 4.1-(b) is sparse

around the receiver at o. In general, the smaller b, the more clustered the network is

at the origin, and b = 0 refers to uniform networks.
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4.3.2 SIC Model and Metrics

Consider the case where all the nodes (users) transmit with unit power. Then,

with an SIR model, a particular user at x ∈ Φ can be successfully decoded (without

SIC) iff

SIRx =
hx‖x‖−α

∑

y∈Φ\{x} hy‖y‖−α
> θ,

where hx‖x‖−α is the received signal power from x,
∑

y∈Φ\{x} hy‖y‖−α is the aggregate

interference from the other active transmitters, and θ is the SIR decoding threshold2.

Similarly, in the case of perfect interference cancellation, once a user is successfully

decoded, its signal component can be completely subtracted from the received signal.

Assuming the decoding order is always from the stronger users to the weaker users3,

we can generalize the SIR model above to the case with SIC, where a user x can

be decoded if all the users in Ic = {y ∈ Φ : hy‖y‖−α > hx‖x‖−α} are successfully

decoded and

hx‖x‖−α

∑

y∈Φ\{x}\Ic hy‖y‖−α
> θ.

Consequently, consider the ordering of all nodes in Φ such that hxi
‖xi‖−α >

hxj
‖xj‖−α, ∀i < j. The number of users that can be successively decoded is N iff

hxi
‖xi‖−α > θ

∑∞
j=i+1 hxj

‖xj‖−α, ∀j ≤ N and hxN+1
‖xN+1‖−α ≤ θ

∑∞
j=N+2 hxj

‖xj‖−α.

One of the goals of this chapter is to evaluate E[N ], i.e., the mean number of users

that can be successively decoded, with respect to different system parameters, and

the distribution of N in the form

pk , P(N ≥ k),

2This model will be generalized in Section 4.7 to include noise.

3It is straightforward to show that this stronger-to-weaker decoding order maximizes the number
of decodable users and thus the aggregate throughput (defined later) despite the fact that it is not
necessarily the only optimal decoding order.
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i.e., the probability of successively decoding at least k users at the origin. To make

the dependence on the point process explicit, we sometimes use pk(Φ̂).

Since SIC is inherently a multiple packet reception (MPR) scheme [72], we can

further define the aggregate throughput (or, sum rate) to be the total information

rate received at the receiver o. Since all the users in the system transmit at the same

rate log(1 + θ), the sum rate is

R = E[log(1 + θ)N ] = log(1 + θ)E[N ]. (4.1)

Another important goal of this chapter is to evaluate R as a function of different

system parameters.

4.4 The Path Loss Process with Fading (PLPF)

We use the unified framework introduced in [35] to jointly address the randomness

from fading and the random node locations. We define the path loss process with

fading (PLPF) as Ξ , {ξi = ‖xi‖α
hxi

}, where the index i is introduced in the way such

that ξi < ξj for all i < j. Then, we have the following lemma, which follows from the

mapping theorem [39, Theorem 2.34].

Lemma 11. The PLPF Ξ = {‖xi‖α
hxi

}, where {(xi, hxi
)} is a PPNF, is a one-dimensional

PPP on R
+ with intensity measure Λ([0, r]) = aδcdr

β
E[hβ]/β, where δ , d/α,

β , δ + b/α ∈ (0, 1) and h is a fading coefficient.

In Lemma 11, the condition β ∈ (0, 1) corresponds to the condition b ∈ (−d, α−d)

in the definition of the PPNF; it is necessary since otherwise the aggregate received

power at o is infinite almost surely. More specifically, when b > α − d the intensity

measure of the transmitter process grows faster than the path loss with respect to

the network size, which results in infinite received power at origin, (i.e., far users con-

tribute infinite power); when b < −d, the PLPF is not locally finite (with singularity
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at o), and thus the number of transmitters that contribute to the received power

more than any arbitrary value is infinite almost surely, (i.e., near users contribute

infinite power).

Since for all ξi ∈ Ξ ⊂ R
+, ξ−1

i can be considered as the ith strongest received

power component (at o) from the users in Φ, when studying the effect of SIC, it

suffices to just consider the PLPF Ξ. For a PLPF Ξ mapped from Φ̂, if we let pk(Ξ)

be the probability of successively decoding at least k users in the network Φ̂, we have

the following proposition.

Proposition 8 (Scale-invariance). If Ξ and Ξ̄ are two PLPFs with intensity measures

Λ([0, r]) = rβ and µ([0, r]) = Crβ, respectively, where C is any positive constant, then

pk(Ξ) = pk(Ξ̄), ∀k ∈ N.

Proof. Consider the mapping f(x) = C−1/βx. Then f(Ξ) is a PPP on R
+ with

intensity measure Cxβ of the set [0, x]. Let N be the sample space of Ξ, i.e., the

family of all countable subsets of R+. Then, we can define a sequence of indicator

functions χk : N → {0, 1}, k ∈ N, such that

χk(φ) =











1, if ξ−1
i > θIi, ∀i ≤ k

0, otherwise,
(4.2)

where Ii =
∑∞

j=i+1 ξ
−1
j , φ = {ξi} and ξi < ξj, ∀i < j. Note that χk(·) is scale-

invariant, i.e., χk({ξi}) = χk({C ′ξi}), ∀C ′ > 0. Then, we have

pk(Ξ) = PΞ(Yk) = E[χk(Ξ)]
(a)
= E[χk(f(Ξ))]

(b)
= E[χk(Ξ̄)] = PΞ̄(Yk) = pk(Ξ̄),

where Yk = {φ ∈ N : ξ−1
i > θIi, ∀i ≤ k}, PΞ is the probability measure on N

with respect to the distribution of Ξ, (a) is due to the scale-invariance property of

χk(·) and (b) is because both f(Ξ) and Ξ̄ are PPPs on R
+ with intensity measure

µ([0, r]) = Crβ.
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Proposition 8 shows that the absolute value of the density is not relevant as long as

we restrict our analysis to the power-law density case. Combining it with Lemma 11,

where it is shown that, in terms of the PLPF, the only difference introduced by differ-

ent fading distributions is a constant factor in the density function, we immediately

obtain the following corollary.

Corollary 7 (Fading-invariance). In an interference-limited PPNF, the probability of

successively decoding k users (at the origin) does not depend on the fading distribution

as long as E[hβ] < ∞.

Futhermore, we can define a standard PLPF as follows:

Definition 10. A standard PLPF (SPLPF) Ξβ is a one-dimensional PPP on R
+

with intensity measure Λ([0, r]) = rβ, where β ∈ (0, 1).

Based on Proposition 8 and Corollary 7, we have the following fact which signifi-

cantly simplifies the analysis in the rest of the chapter.

Fact 1. The statistics of N in a PPNF is identical to those of N in Ξβ for any fading

distribution and any values of a, b, d, α, with β = δ + b/α = (d+ b)/α.

4.5 Bounds on the Probability of Successive Decoding

Despite the unified framework introduced in Section 4.4, analytically evaluating

pk requires the joint distribution of the received powers from the k strongest users

and the aggregate interference from the rest of the network, which is daunting even

for the simplest case (one-dimensional homogeneous PPP). In this section, we derive

bounds on pk. These bounds provide us with insights on how pk depends on different

system parameters.
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4.5.1 Basic Bounds

The following lemma introduces basic upper and lower bounds on pk in terms of

the probability of decoding the kth strongest user assuming the k− 1 strongest users

do not exist. Although not being bounds in closed-form, the bounds form the basis

for the bounds introduced later.

Lemma 12. In a PPNF, the probability of successively decoding k users is bounded

as follows:

• pk ≥ (1 + θ)−
βk(k−1)

2 P(ξ−1
k > θIk)

• pk ≤ θ−
βk(k−1)

2 P(ξ−1
k > θIk)

where Ξβ = {ξi} is the corresponding SPLPF and Ik ,
∑∞

j=k+1 ξ
−1
j .

Proof. By Fact 1, pk can be evaluated by considering Ξβ. In particular, if we define

Ai = {ξ−1
i > θIi}, the probability of successively decoding at least k users can be

written as pk = P(
⋂k

i=1 Ai).

Let Bi = {ξ−1
i > (1 + θ)ξ−1

i+1} and consider an arbitrary sample (realization) ω ∈
⋂k−1

i=1 Bi ∩Ak. Assuming (again) the increasing ordering of all ξi(ω) ∈ Ξ(ω), ∀i ∈ N,

we have

ξ−1
i (ω)

(a)
> ξ−1

i+1(ω) + θξ−1
i+1(ω)

(b)
> θIi+1(ω) + θξ−1

i+1(ω) = θIi(ω), ∀i ∈ [k − 1]

where (a) is due to ω ∈ Bi, and (b) is due to ω ∈ Bi+1 (if i < k) and ω ∈ Ak (if i = k).

Therefore, ω ∈ ⋂k
i=1 Ai. Since ω is arbitrarily chosen, we have

(

⋂k−1
i=1 Bi ∩ Ak

)

⊂
⋂k

i=1 Ai, and thus

pk ≥ P

(

k−1
⋂

i=1

Bi ∩ Ak

)

= Eξk

[

P

(

k−1
⋂

i=1

Bi ∩ Ak | ξk
)]

= Eξk

[

P

(

k−1
⋂

i=1

Bi

)

P (Ak) | ξk
]

, (4.3)
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where the last equality is because of the conditional independence between Bi, ∀i ∈

[k−1] andAk given ξk. Here, by definition, P
(

⋂k−1
i=1 Bi

)

= P

(

ξi
ξi+1

< (1 + θ)−1, ∀i < k
)

.

Conditioned on ξk, k ≥ 2, we have ξi
ξk

d
= Xi:k−1, ∀1 ≤ i ≤ k − 1, where

d
= means

equality in distribution, X is a random variable with cdf F (x) = xβ
1[0,1](x), and

Xi:k−1 is the ith order statistics of k− 1 iid random variables with the distribution of

X, i.e., the ith smallest one among k − 1 iid random variables with the distribution

of X.

Since Xβ ∼ Uniform(0, 1), we can apply the results from the order statistics of

uniform random variables [7]. In particular, if U ∼ Uniform(0, 1), then
(

Ui:k−1

Ui+1:k−1

)i

∼

Uniform(0, 1) and
(

Ui:k−1

Ui+1:k−1

)i

is iid for all 1 ≤ i ≤ k − 2. Therefore,

P

(

ξi
ξi+1

< (1 + θ)−1, ∀i < k | ξk
)

=
k−1
∏

i=1

P(U < (1 + θ)−iβ) = (1 + θ)−
β
2
k(k−1),

(4.4)

where the last inequality is due to
(

Xi:k−1

Xi+1:k−1

)iβ d
= U, ∀i ∈ [k − 2]. The lower bound

is thus proved by combining (4.3) and (4.4).

Defining B̂i = {ξ−1
i > θξ−1

i+1} in the place of Bi, we can derive the upper bound

in a very similar way.

4.5.2 The Lower Bounds

4.5.2.1 High-rate lower bound

Lemma 12 provides bounds on pk as a function of P(ξ−1
k > θIk). In the following,

we give the high-rate lower bounds4 by lower bounding P(ξ−1
k > θIk).

4The high-rate lower bound also holds in the low-rate case, i.e., θ is small. The bound is named
as such since in the low-rate case we will provide another (tighter) bound.
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Lemma 13. The kth smallest element in Ξβ, ξk, has pdf

fξk(x) =
βxkβ−1

Γ(k)
exp(−xβ).

The proof of Lemma 13 is analogous to the one of [34, Theorem 1].

Lemma 14. For Ξβ = {ξi}, P(ξ−1
k > θIk) is lower bounded by

∆1(k) ,
1

Γ(k)

(

γ

(

k,
1− β

θβ

)

− θβ

1− β
γ

(

k + 1,
1− β

θβ

))

,

where γ(·, ·) is the lower incomplete gamma function.

Proof. In order to establish the lower bound, we first calculate the mean of the

interference Ik conditioned on ξk = ρ, and then derive the bound based on the

Markov inequality. Denoting Ik | {ξk = ρ} as Iρ, we can calculate the conditional

mean interference by Campbell’s Theorem [39]

E[Iρ] = E

[

∑

x∈Ξ∩[ρ,∞)

x−1

]

=

∫ ∞

ρ

x−1Λ(dx) =
aβ

1− β
ρβ−1.

Thus, by the Markov inequality,

P(ξ−1
k > θIk | ξk = ρ) = P(ρ−1 > θIρ) ≥ 1− θρE[Iρ].

The lower bound can be refined as [1− θρE[Iρ]]
+, where [·]+ = max{0, ·}. Decon-

ditioning over the distribution of ξk (given by Lemma 13) yields the stated lower

bound.

In principle, one could use methods similar to the one in the proof of Lemma 14

to find the higher-order moments of Iρ and thus obtain tighter bounds by applying

inequalities involving these moments, e.g., the Chebyshev inequality. However, these

bounds cannot be expressed in closed-form, and the improvements are marginal.
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Combining Lemmas 12 and 14, we immediately obtain the following proposition.

Proposition 9 (High-rate lower bound). In the PPNF, pk ≥ (1 + θ)−
βk(k−1)

2 ∆1(k).

Since ∆1(k) is monotonically decreasing with k, the lower bound in Proposition 9

decays super-exponentially with k2.

4.5.2.2 Low-rate lower bound

The lower bound in Proposition 9 is tight for large θ. However, it becomes loose

when θ → 0. This is because Proposition 9 estimates pk by approximating the

relation between ξi and Ii with the relation between ξi and ξi+1. This approximation

is accurate when ξ−1
i+1 ≈ θIi+1. But, when θ → 0, ξ−1

i+1 ≫ θIi+1 happens frequently,

making the bound loose. The following proposition provides an alternative lower

bound particularly tailored for the small θ regime.

Proposition 10 (Low-rate lower bound). In the PPNF, for k < 1/θ+1, pk is lower

bounded by

pLR
k

,
1

Γ(k)

(

γ

(

k,
1− β

θ̃β

)

− θ̃β

1− β
γ

(

k + 1,
1− β

θ̃β

)

)

,

where LR means low-rate and θ̃ , θ
1−(k−1)θ

.

Proof. Using Fact 1, we work with Ξβ = {ξi}. For all n ∈ [k − 1], k < 1/θ + 1, we

have

P

({

ξ−1
n >

θIn
1− (n− 1)θ

}

∩ {ξi > θIi, n < i ≤ k}
)

(a)

≥ P

({

ξ−1
n+1 >

θIn
1− (n− 1)θ

}

∩ {ξi > θIi, n < i ≤ k}
)

(b)
= P

({

ξ−1
n+1 >

θIn+1

1− nθ

}

∩ {ξi > θIi, n < i ≤ k}
)

(c)
= P

({

ξ−1
n+1 >

θIn+1

1− nθ

}

∩ {ξi > θIi, n+ 1 < i ≤ k}
)

,
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where (a) is because of the ordering of Ξ, (b) is due to In = ξ−1
n+1 + In+1, and (c) is

due to the fact that
{

ξ−1
n+1 >

θIn+1

1−nθ

}

⊂
{

ξ−1
n+1 > θIn+1

}

. Using the inequality above

sequentially for n = 1, 2, · · · , k − 1 yields

pk ≥ P

(

ξ−1
k >

θIk
1− (k − 1)θ

)

,

where a lower bound for the RHS is given by Lemma 14 (substituting θ with θ̃).

The bound in Proposition 10 is only constructed for k < 1/θ + 1. However, as

will be shown in Section 4.6, when θ → 0, this bound behaves much better than the

one in Proposition 9.

4.5.3 The Upper Bound

Similar to the high-rate lower bound, we derive an upper bound by upper bound-

ing P(ξ−1
k > θIk).

Lemma 15. For Ξβ = {ξi}, P(ξ−1
k > θIk) is upper bounded by

∆2(k) , γ̄(k, 1/c) +
e

(1 + c)k
Γ̄(k, 1 + 1/c),

where c = θβγ(1 − β, θ) − 1 + e−θ, γ̄(z, x) = γ(z,x)
Γ(z)

and Γ̄(z, x) = Γ(z,x)
Γ(z)

are the

normalized lower and upper incomplete gamma function, and Γ(·, ·) is the upper

incomplete gamma function.

Proof. For a non-fading 1-d network, the Laplace transform of the aggregate interfer-

ence from [ρ,∞) can be calculated by the probability generating functional (PGFL)

of the PPP [41]. Similarly, the Laplace transform of Iρ , Ik | {ξk = ρ} is

LIρ(s) = exp

(

−
∫ ∞

ρ

(1− e−sr−1

)Λ(dr)

)

= exp

(

−
(

sβ
∫ sρ−1

0

r−βerdr − ρβ(1− e−sρ−1

)
)

)

,

(4.5)
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where Λ(·) is the intensity measure of the SPLPF Ξβ (see Definition 10).

Let H be an exponential random variable with unit mean and independent of

PLPF Ξ. We can relate P(ξ−1
k > θIk) with LIk(s) as

P(ξ−1
k > θIk) = eP(H > 1)P(ξ−1

k > θIk)

(a)
= eP(ξ−1

k > θIk, H > 1)

≤ eP(Hξ−1
k > θIk)

(b)
= eEξk [LIk|ξk(s)|s=θξk ]

(c)
= Eξk

[

exp
(

−[cξβk − 1]+
)]

,

where (a) is due to the independence between H and Ξ, (b) is due to the well-

known relation between the Laplace transform of the interference and the success

probability over a link subject to Rayleigh fading [41], (c) makes use of the PGFL in

(4.5), taking into account the fact that P(ξ−1
k > θIk) ≤ 1. With the distribution of

ξk given by Lemma 13, the proposition is then proved by straightforward but tedious

manipulation. Combining Lemmas 15 and 12 yields the following proposition.

Proposition 11 (Combined upper bound). In the PPNF, we have pk ≤ pk ,

θ̄−
β
2
k(k−1)∆2(k), where θ̄ = max{θ, 1}.

For θ > 1, similar to the high-rate lower bound in Proposition 9, the upper bound

in Proposition 11 decays super-exponentially with k2, i.e., − log pk ∝ k2, which

suggests that, in this regime, the marginal gain of adding SIC capability (i.e., the

ability of successively cancelling more users) diminishes very fast.

4.5.4 The Sequential Multi-user Decoding (SMUD) Bounds

The bounds derived in Sections 4.5.2 and 4.5.3 applies to all θ > 0. This subsection

provides an alternative set of bounds constructed based on a different idea. These
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bounds are typically much tighter than the previous bounds in the sequential multi-

user decoding regime defined as follows.

Definition 11. A receiver with SIC capability is in the sequential multi-user decoding

(SMUD) regime if the decoding threshold θ ≥ 1.

It can be observed that in the SMUD regime multiple packet reception (MPR)

can be only carried out with the help of SIC, whereas outside this regime, i.e., θ < 1,

MPR is possible without SIC, i.e., by parallel decoding. The necessity of SIC for

MPR in the SMUD regime can be easily deduced by the following lemma.

Lemma 16. Consider an arbitrary k-element index set K ⊂ N and an increasingly

ordered PLPF Ξ = {ξi}. ξ−1
i > θ

∑

j 6∈K ξ−1
j always implies ξ−1

i > θ
∑

j>k ξ
−1
j , ∀i ≤ k.

Moreover, if θ ≥ 1 and ξ−1
i > θ

∑

j 6∈K ξ−1
j , then K = [k].

Proof. The first part of the lemma is obviously true when K = [k]. If not, for any l ∈

K\[k], we have ξ−1
i > ξl, ∀i ∈ [k] by the ordering of Ξ. For the same reason, we have

∑

j 6∈K ξ−1
j >

∑

j 6∈[k] ξ
−1
j . As ξ−1

l > θ
∑

j 6∈K ξ−1
j , we have ξ−1

i >
∑

j 6∈[k] ξ
−1
j , ∀i ∈ [k].

To show the second part, consider an arbitrary l ∈ K. Since all elements in Ξ

are positive and θ ≥ 1, ξ−1
l > θ

∑

j 6∈K ξ−1
j implies ξl < ξj, ∀j 6∈ K, and consequently

K = [k].

Consider the case of k = 1. The second part of Lemma 16 shows that if θ ≥ 1,

there is at most one user (ξ1) that can be decoded without the help of SIC. In other

words, MPR is not feasible through parallel decoding. This is exactly the reason why

θ ≥ 1 is defined as sequential multi-user decoding (SMUD) regime.

Lemma 16 also helps us to show following theorem which gives a closed-form

expression for P(ξ−1
k > θIk).

Theorem 6. For θ ≥ 1,

P(ξ−1
k > θIk) =

1

θkβΓ(1 + kβ)
(

Γ(1− β)
)k
, (4.6)
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where Γ(·) is the gamma function. Moreover, the RHS of (4.6) is an upper bound on

P(ξ−1
k > θIk) when θ < 1.

Proof. Consider a 1-d Poisson point process Φ ⊂ R
+ with intensity measure Λ([0, r]) =

rβ. For each element x ∈ Φ we introduce a iid mark hx with exponential distribution

with unit mean. In the following, we will refer this marked process as a path loss

process with induced fading (PLPIF) Φ̂ ⊂ R
+×R

+. Similar as before, based on Φ̂, we

can construct a PLPF Ξ(Φ̂) = {ξ̂i} by letting ξ̂i =
xi

hxi

, ∀x ∈ Φ, where, without loss

of generality, we assume the indices i are introduced such that Ξ(Φ̂) is increasingly

ordered.

By Corollary 7, we see that pk(Ξ(Φ̂)) = pk(Ξβ). Using the same technique in the

proof of Proposition 8, we can easily show that

P(ξk > θIk) = P(ξ̂k > θÎk), ∀k ∈ N, (4.7)

where Îk =
∑∞

i=k+1 ξ̂
−1
i . Therefore, in the following, we focus on the PLPIF Φ̂.

First, considering a k-tuple of positive numbers y = (yi)
k
i=1 ∈ (R+)k, with a slight

abuse of notation, we say (yi)
k
i=1 ⊂ Φ if and only if yi ∈ Φ, ∀i ∈ [k]. Conditioned on

y ⊂ Φ, we denote the interference from the rest of the network
∑

x∈Φ\y hxx
−1 as I !y.

Since {yi, i ∈ [k]} is a set of Lebesgue measure zero, by Slivnyak’s theorem, we have

I !y
d
= I =

∑

x∈Φ hxx
−1. Thus,

L!y
I (s) , E[exp(−sI !y)] = LI(s) = exp

(

−Eh

(
∫ ∞

0

(

1− exp(−shr−1)drβ
)

))

= exp

(

− sβ

sinc β

)

, (4.8)

where the derivation exploits the fact that hx are iid exponential random variables

with unit mean.

Second, let N̂ be the sample space of Φ̂ and consider the indicator function
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χ̄k : (R
+ × R

+)k × N̂ → {0, 1} defined as follows

χ̄k

(

(xi, hxi
)ki=1, φ̂

)

=











1, if hxi
x−1
i > θ

∑

y∈φ\{xj , j∈[k]} hyy
−1, ∀i ∈ [k]

0, otherwise,

where φ ⊂ R
+ is the ground pattern of the marked point pattern φ̂. In words,

χ̄k

(

(xi, hxi
)ki=1, φ̂

)

is one iff k of the users in the network (xi)
k
i=1 all have received

power larger than θ times the interference from the rest of the network. Then, for

any φ̂ and k ∈ N,

1{ξ̂k>θÎk}(φ̂) = 1{ξ̂i>θÎk, ∀i∈[k]}(φ̂)
(a)

≤ 1

k!

6=
∑

x1,...,xk∈φ
χ̄k

(

(xi, hxi
)ki=1, φ̂

)

, (4.9)

where 6= means xi 6= xj, ∀i 6= j and (a) is due to the first part of Lemma 16. Also,

the second part of Lemma 16 shows that when θ ≥ 1 the equality in (a) holds.

Therefore, we have

P(ξ̂k
−1

> θÎk) = E[1{ξ̂k>θÎk}(Φ̂)]

(b)

≤ 1

k!
E

[ 6=
∑

x1,...,xk∈Φ
χ̄k

(

(xi, hxi
)ki=1, Φ̂

)

]

=
1

k!
EΦ

[ 6=
∑

x1,...,xk∈Φ
E

[

χ̄k

(

(xi, hxi
)ki=1, Φ̂

)

]

]

(c)
=

1

k!
EΦ

[ 6=
∑

x: x1,...,xk∈Φ
L!x

I (θ
k
∑

i=1

xi)

]

(d)
=

1

k!

∫

(R+)k
L!x

I (θ
k
∑

i=1

xi)Λ
(k)(dx),

where (b) is due to (4.9) and the equality holds when θ ≥ 1, (c) holds since hy are

iid exponentially distributed with unit mean for all y ∈ Φ, and (d) is due to the

definition of Λ(k)(·), the kth factorial moment measure of Φ [39, Chapter 6]. Since
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Figure 4.2. Comparison of P(ξ−1
k > θIk) between simulation and the

analytical value according to Corollary 9 for k = 1, 2, 3, 4, 5.

Φ is a PPP with intensity function λ([0, r]) = rβ, we have Λ(k)(dx) =
∏

i∈[k] dx
β
i .

Applying (4.7) and (4.8), we have

P(ξ−1
k > θIk) ≤

1

k!

∫

(R+)k
exp

(

− θβ

sinc β
‖x‖ 1

β

)

dx.

where ‖ · ‖p denotes the Lp norm, and the equality holds when θ ≥ 1. The integral

on the RHS can be further simplified into closed-form by using the general formulas

in [33, eqn. 4.635], which completes the proof.

Combining Theorem 6 with Lemma 12, we obtain another set of bounds on pk.

Proposition 12 (SMUD bounds). For θ ≥ 1 and Ξβ = {ξi}, we have

pk ≥
1

(1 + θ)
β
2
k(k−1)θkβΓ(1 + kβ)

(

Γ(1− β)
)k
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and

pk ≤
1

θ
β
2
k(k+1)Γ(1 + kβ)

(

Γ(1− β)
)k
.

More generally, for all θ > 0, we have

pk ≤
1

θ̄
β
2
k(k−1)θkβΓ(1 + kβ)

(

Γ(1− β)
)k
, (4.10)

where θ̄ = max{θ, 1}.

Note that the SMUD upper bound in Proposition 12 is valid also for θ < 1. The

name of the bounds only suggests that these bounds are tightest in the SMUD regime.

4.5.5 Two General Outage Results

Taking k = 1, we obtain the following corollary of Theorem 6, which gives the

exact probability of decoding the strongest user in a PPNF for θ > 1 and a general

upper bound of the probability of decoding the strongest user.

Corollary 8. For θ ≥ 1, we have

p1 = P(ξ−1
1 > θI1) =

sinc β

θβ
, (4.11)

and the RHS is an upper bound on P(ξ−1
1 > θI1) when θ < 1.

It is worth noting that the closed-form expression in Corollary 8 has been discov-

ered in several special cases. For example, [24] derived the equality part of (4.11) in

the Rayleigh fading case, and [54] showed that the equality is true for arbitrary fading

distribution. However, none of the exiting works derives the results in Corollary 8 in

as much generality as here. More precisely, we proved that (4.11) holds for arbitrary

fading (including the no-fading case) in d-dimensional PPNF (including non-uniform

user distribution).
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When β = 1
2
, (4.6) can be further simplified and we have the following corollary.

Corollary 9. When β = 1/2,

P(ξ−1
k > θIk) =

1

(πθ)
k
2Γ(k

2
+ 1)

, (4.12)

and the RHS is an upper bound on P(ξ−1
k > θIk) when θ < 1.

Fig. 4.2 compares the (4.12) with simulation results for k = 1, 2, 3, 4, 5. We found

that the estimate in Corollary 9 is not only exact for θ ≥ 1 but also quite accurate

for θ > −4dB, which is consistent with the observation in [24], where only the case

k = 1 is studied. Moreover, we can see that with larger k, the regime where (4.12) is

accurate extends to smaller θ. This gives additional confidence in applying Theorem 6

to the analysis of SIC.

4.5.6 Numerical Results

Focusing on k = 1, 2, 3, Fig. 4.3 plots the combined upper bounds, high-rate lower

bounds, SMUD upper bounds as a function of θ. We see that pk decays very rapidly

with θ, especially when k is large, which suggests that the benefit of decoding many

users can be very small under high-rate codes.

Note that the combined upper bound behaves slightly differently for θ > 1 and

θ < 1 when k > 1. This is because the combined upper bound in Proposition 11

becomes ∆2(k) when θ < 1. More precisely, the combined upper bound ignores the

ordering among the k strongest users and only considers P(ξ−1
k > θIk) when θ < 1.

Therefore, the combined upper bound is, in most cases, tighter when θ > 1, with

only one exception: for k = 1, pk = P(ξ−1
k > θIk), which is upper bounded by ∆2(1)

irrespective to θ.

As is shown in the figure, the SMUD bounds are generally tighter than the com-

bined upper bound. However, these bounds a less informative when θ ≪ 1, where
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Figure 4.3. Combined upper bound (Proposition 11), high-rate lower
bound (Proposition 9), and SMUD upper bound (Proposition 12) for pk
(k = 1, 2, 3, from top to bottom) in a 2-d uniform network with path loss

exponent α = 3.

the upper bound blows above one at about −5dB.

The bounds derived above also provide a good method to study the impact of

clustering on the effectiveness of SIC. Fig. 4.4 compares the bounds on probability

of successively decoding 1, 2 and 3 users for different network clustering parameters

b, using the upper and high-rate lower bounds derived in Sections 4.5.2 and 4.5.3.

The corresponding SMUD bounds on the same quantities derived in Section 4.5.4 are

plotted in Fig. 4.5, where the upper and lower bounds for the case k = 1 are both

tight and overlapping.

By comparing Figs. 4.4 and 4.5, it is appearant that the SMUD bounds are much

sharper than the other bounds. This is generally true for θ ≥ 1. Nevertheless, the

SMUD lower bound is only defined for θ ≥ 1 and can be less informative than the

combined and lower-rate upper bounds when θ < 1.

Although the bounds in Figs. 4.4 and 4.5 are derived using rather different tech-
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Figure 4.4. Upper and (high-rate) lower bounds (in Proposition 11 and 9,
respectively) for pk (k = 1, 2, 3) in a 2-d network with with path loss
exponent α = 4, θ = 1 and density function λ(x) = a‖x‖b. b = 0 is the

uniform case.

niques and provide different levels of tightness for different values of θ, both figures

capture the important fact that the more clustered the network, the more useful SIC.

4.6 The Expected Gain of SIC

4.6.1 The Mean Number of Successively Decoded Users

With the bounds on pk, we are able to derive bounds on E[N ], the expected num-

ber of users that can be successively decoded in the system, since E[N ] =
∑∞

k=1 pk.

Proposition 13. In the PPNF, we have E[N ] ≥ ∑K
k=1(1 + θ)−

β
2
k(k−1)∆1(k) for all

K ∈ N.

On the one hand, Proposition 13 follows directly from Proposition 9 when K →

∞. On the other hand, since for large θ, pk decays very fast with k, a tight approx-

imation can be obtained for small integers K. In fact, the error term
∑∞

k=K+1(1 +
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Figure 4.5. SMUD bounds (in Proposition 12) for pk (k = 1, 2, 3) in a 2-d
network with path loss exponent α = 4, θ = 1 and density function

λ(x) = a‖x‖b. b = 0 is the uniform case.

θ)−
β
2
k(k−1)∆1(k) can be upper bounded as

∞
∑

k=K+1

(1 + θ)−
β
2
k(k−1)∆1(k) ≤ ∆1(K)

∞
∑

k=K+1

(1 + θ)−
β
2
k(k−1)

≤ ∆1(K)

∫ ∞

K

(1 + θ)−
β
2
x(x−1)dx

=
(1 + θ)

β
8∆1(K)

√
π

√

2β log(1 + θ)
erfc

(

(K − 1

2
)

√

β

2
log(1 + θ)

)

,

(4.13)

where erfc(·) is the complementary error function. By inverting (4.13), one can control

the numerical error introduced by choosing an finite K. Due to the tail property of

complementary error function and the monotonicity of ∆1(k), it is easy to show that

the error term decays super-exponentially with K2 when K ≫ 1 and thus a finite K

is a good approximation for the case K → ∞ .
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On the other hand,

(1 + θ)
β
8∆1(K)

√
π

√

2β log(1 + θ)
erfc

(

(K − 1

2
)

√

β

2
log(1 + θ)

)

∼
√

π

2β
θ−

1
2 , as θ → 0, (4.14)

where we use the fact that limθ→0∆1(K) = 1 and limx→0 erfc(x) = 1. (4.14) suggests

that when θ → 0, for any finite K, the error may blow up quickly, which is verified

numerically. Therefore, in the small θ regime, we need another, tighter, bound, and

this is where the low-rate lower bound in Proposition 10 helps.

Proposition 14. In the PPNF, we have E[N ] ≥∑⌊1/θ⌋
k=1 pLR

k
.

A rigorous upper bound can be derived similarly but with more caution as we

cannot simply discard a number of terms in the sum. The following lemma presents

a bound based on Proposition 11.

Proposition 15. In the PPNF, E[N ] is upper bounded by

e1+K

√
2π

(cK)1−K

cK − 1
+

e

c
(1 + c)1−K +

K−1
∑

k=1

θ̄−
β
2
k(k−1)∆2(k),

for all K ∈ N ∩ [e/c,∞), where θ̄ = max{θ, 1}.

Proof. By Proposition 11, we have E[N ] ≤∑∞
k=1∆2(k). The proposition then follows

by summing up the first K − 1 terms of the infinite series and upper bounding the

residue part. Specifically, we have

∞
∑

k=K

γ(k, 1/c)

Γ(k)
= e−1/c

∞
∑

k=K

∞
∑

j=0

(1/c)j+k

(j + k)!

(a)

≤ exp(−1/c)√
2π

∞
∑

k=K

∞
∑

j=0

(e/c)j+k

(j + k)j+k+ 1
2

≤ exp(−1/c)√
2π

∞
∑

k=K

(e/c)k

Kk

∞
∑

j=0

(e/c)j

(j +K)j+
1
2

,
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where (a) uses Stirling’s approximation for n!, i.e.,
√
2πnn+1/2e−n ≤ n! ≤ enn+1/2e−n.

Moreover,
∑∞

j=0
(e/c)j

(j+K)j+
1
2
≤ e+

∑∞
j=1

(e/c)j

jj+
1
2
since K ≥ 1. Using Stirling’s approxima-

tion again on
∑∞

j=0
(e/c)j

jj+
1
2
yields

∞
∑

k=K

γ(k, 1/c)

Γ(k)
≤ exp(K + 1)√

2π

(cK)1−K

cK − 1
.

Furthermore, we have

∞
∑

k=K

e

(1 + c)k
Γ(k, 1 + 1/c)

Γ(k)
≤

∞
∑

k=K

e

(1 + c)k
=

e

c
(1 + c)1−K ,

which completes the proof.

Likewise, another upper bound can be derived based on the SMUD bounds on pk

in Proposition 12 as follows:

Proposition 16. The mean number of decodable users is upper bounded by

EN ≤
K−1
∑

k=1

(

C(k)

Γ(1− β)

)k
1

Γ(1 + kβ)
+

1

Γ(1 +Kβ)

(

C(K)

Γ(1− β)

)K
Γ(1− β)

Γ(1− β)− C(K)
,

where C(k) , θ−β θ̄−
β
2
(k−1).

Proof. Since EN =
∑∞

k=1 pk, an upper bound on EN can be obtained by summing

the bound in (4.10). The proposition follows by summing the bound for k < K and

then upper bounding the terms for k ≥ K.

Fig. 4.6 compares the bounds provided in Propositions 13, 14, 15 and 16 with

simulation results in a uniform 2-d network with α = 4. Although the low-rate lower

bound can be calculated for all θ < 1, it is only meaningful when θ is so small that

the lower bound in Proposition 13 fails to capture the rate at which EN grows with

decreasing θ. Thus, we only plot the low-rate lower bound for θ < −5dB.

As is shown in the figure, EN increases unboundedly with the decreasing of θ,
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Figure 4.6. The mean number of users that can be successively decoded in
a 2-d uniform network with path loss exponent α = 4. Here, the upper
bound, lower bound, low-rate lower bound, SMUD upper bound refer to

the bounds in Proposition 13, 15, 14 and 16, respectively.

which further confirms that SIC is particularly beneficial for low-rate applications in

wireless networks, such as node discovery, cell search, etc.

Fig. 4.6 also shows the different merits of the different closed-form bounds pre-

sented above. The bounds of Propositions 13 and 15 behave well in most of the regime

where the practical systems operate. In the lower SIR regime, i.e., when θ → 0, the

low-rate lower bound outperforms the lower bound in Proposition 13 which does not

capture the asymptotic behavior of EN . The SMUD bound in Proposition 16 pro-

vides a tight alternative to the upper bound in Proposition 15 and is especially tight

for θ > 1.

4.6.2 The Aggregate Throughput

Although a smaller θ results in more effective successive interference cancella-

tion, it also means the information rate at each transmitter is smaller. Thus, it
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Figure 4.7. Aggregate throughput at o in a 2-d uniform network with with
path loss exponent α = 4, i.e., β = δ = 2/α = 1/2. The upper bound, lower

bound, low-rate lower bound and SMUD upper bound come from
Propositions 15, 13, 14 and 16 respectively.

is interesting to see how the aggregate throughput defined in (4.1) changes with

respect to θ. One way of estimate the aggregate throughput is by using Proposi-

tions 13, 14, 15 and 16.

Fig. 4.7 shows the total information rate as a function of θ with analytical bounds

and simulation. Again, we only show the lower bounds for θ < −5dB. In this case, we

see that the lower bound of the aggregate throughput becomes a non-zero constant

when θ → 0 just like the upper bound. Therefore, our results indicate that while

the aggregate throughput diminishes when θ → ∞, it converges to a finite non-zero

value when θ → 0. In particular, by using Proposition 15 and letting θ → 0, we can

upper bound the asymptotic aggregate throughput by 2
β
− 2, which turns out to be

a loose bound.

Nevertheless, it is possible to construct a better bound which improves (reduces)

the bound by a factor of 2 and is numerically shown to be asymptotically tight. To
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show this better bound, we need the following lemma.

Lemma 17. The Laplace transform of ξkIk is

LξkIk(s) =
1

(c(s) + 1)k
, (4.15)

where c(s) = sβγ(1− β, s)− 1 + e−s.

Proof. As in the proof of Lemma 15, we consider Iρ , Ik | {ξk = ρ} and the Laplace

transform of Iρ is given in (4.5). Then, considering another random variable ρIρ ,

ξkIk | {ξk = ρ}, we have

LρIρ(s) = E[e−sξkIk | ξk = ρ] = LIρ(sρ) = exp(−c(s)ρβ), (4.16)

where c(s) = sβγ(1−β, s)−1+e−s. Using the results in Lemma 13, we can calculate

the Laplace transform of ξkIk,

LξkIk(s) = Eξk [LρIρ(s) | ξk = ρ]

=

∫ ∞

0

βxkβ−1

Γ(k)
e−(1+c(s))xβ

dx =
1

(1 + c(s))k
.

Then, we have the following asymptotic bound on the aggregate throughput,

which is numerically verified to be tight.

Proposition 17. The aggregate throughput R = log(1 + θ)E[N ] is (asymptotically)

upper bounded by

lim
θ→0

R ≤ 1

β
− 1. (4.17)
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Proof. First, obviously we have

E[N ] =
∞
∑

k=1

pk ≤
∞
∑

k=1

P(ξkIk < 1/θ) =
∞
∑

k=1

∫ 1/θ

0

fξkIk(x)dx =

∫ 1/θ

0

∞
∑

k=1

fξkIk(x)dx.

(4.18)

In general, the RHS of (4.18) is not available in closed-form since fξkIk , the pdf

of ξkIk, is unknown. However, when θ → 0, this quantity can be evaluated in

the Laplace domain. To see this, consider a sequence of functions (fn)
∞
n=1, where

fn(x) =
1
n

∑n
k=1 fξkIk(x), ∀x > 0 and, obviously,

∫∞
0

fn(x)dx = 1 for all n. Thus,

1 = lim
θ→0

∫ 1/θ

0
fn(x)dx

∫∞
0

e−θxfn(x)dx
= lim

θ→0

∫ 1/θ

0

∑∞
k=1 fξkIk(x)dx

∫∞
0

e−θx
∑∞

k=1 fξkIk(x)dx
, ∀n ∈ N (4.19)

where

∫ ∞

0

e−θx

∞
∑

k=1

fξkIk(x)dx =
∞
∑

k=1

∫ ∞

0

e−θxfξkIk(x)dx =
∞
∑

k=1

LξkIk(s)|s=θ.

Comparing (4.18) and (4.19) yields that

lim
θ→0

E[N ]
∑∞

k=1 LξkIk(s)|s=θ

≤ 1,

where LξkIk(s) is given by Lemma 17. Therefore, we have

lim
θ→0

log(1 + θ)E[N ] ≤ lim
θ→0

θ

∞
∑

k=1

LξkIk(s)|s=θ = lim
θ→0

θ

c(s)|s=θ

.

The proof is completed by noticing that limθ→0
θ

c(θ)
= 1−β

β
.

In the example considered in Fig. 4.7, we see the bound in Proposition 17 matches

the simulation results. Along with this example, we tested β = 1/3 and β = 2/3,

and the bound is tight in both cases, which is not surprising. Because, in the proof of
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Proposition 17, the only slackness introduced is due to replacing pk with P(ξ−1
k > θIk),

and it is conceivable that, for every given k, this slackness diminishes in the limit, since

limθ→0 P(ξ
−1
k > θIk) = limθ→0 pk = 1. Thus, estimating E[N ] by

∑∞
k=1 P(ξ

−1
k > θIk)

is exact in the limit.

Many simulation results (including the one in Fig. 4.7) suggest that the aggre-

gate throughput monotonically increases with decreasing θ. Assuming this is true,

Proposition 17 provides an upper bound on the aggregate throughput in the network

for all θ. We also conjecture that this bound is asymptotically tight and thus can

be achieved by driving the code rate at every user to 0, which is also backed by

simulations (e.g., see Fig. 4.7).

Since the upper bound is a monotonically decreasing function of β we can design

system parameters to maximize the achievable aggregate throughput provided that

we can manipulate β to some extent. For example, since β = δ + b/α and δ = d/α,

one can try to reduce b to increase the upper bound. Note that b is a part of

the density function of the active transmitters in the network and can be changed by

independent thinning of the transmitter process [39], and a smaller b means the active

transmitters are more clustered around the receiver. This shows that a MAC scheme

that introduces clustering has the potential to achieve higher aggregate throughput

in the presence of SIC.

4.6.3 A Laplace Transform-based Approximation

Lemma 17 gives the Laplace transform of ξkIk, which completely characterizes

P(ξ−1
k > θIk), an important quantity in bounding pk, E[N ] and thus R. As analyti-

cally inverting (4.15) seems hopeless, a numerical inverse Laplace transform naturally

becomes an interesting alternative to provide more accurate system performance es-

timates. However, the numerical inverse Laplace transform (numerical integration in

complex domain) is generally difficult to interpret and offers limited insights into the
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system performance.

On the other hand, LξkIk(s)|s=θ = P(H > θξkIk) for an unit-mean exponential

random variable H. This suggests to use LξkIk(s)|s=θ to approximate P(ξ−1
k > θIk).

We would expect such an approximation to work for (at least) small θ. Because, first,

it is obvious that for each k, this approximation is exact as θ → 0 since in that case

both the probabilities go to 1; second and more importantly, Proposition 17 shows

that the approximated R based on this idea is asymptotically exact.

According to such an approximation, we have

R ≈ log(1 + θ)

c(θ)
=

log(1 + θ)

θβγ(1− β, θ)− 1 + e−θ
. (4.20)

This approximation is compared with simulation results in Fig. 4.8, where we consider

β = 1
3
, 1

2
and 2

3
. As shown in the figure, the approximation performs quite well

from -20dB to 20dB which covers the typical values of θ. Also, as expected, the

approximation is most accurate in the small θ regime5, which is known to be the

regime where SIC is most useful [14, 71, 75].

4.7 The Effect of Noise

In many wireless network outage analyses, the consideration of noise is neglected

mainly due to the argument that most networks are interference-limited (without

SIC). However, this is not necessarily the case for a receiver with SIC capability,

especially when a large number of transmitters are expected to be successively de-

coded. Since the users to be decoded in the later stages have significantly weaker

signal power than the users decoded earlier, even if for the first a few users interfer-

ence dominates noise, after decoding a number of users, the effect of noise can no

5The fact that the approximation seems also accurate for very large θ is more of a coincidence, as
the construction of the approximation ignores ordering requirement within the strongest (decodable)
k users and is expected to be fairly inaccurate when θ → ∞ (see Lemma 12).
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Figure 4.8. Simulated and approximated, by (4.20), aggregate throughput
at o in a 2-d uniform network.

longer be neglected.

Fortunately, most of the analytical bounds derived before can be adapted to the

case where noise is considered. If we let Ñ be the number of users that can be

successively decoded in the presence of noise of power W , we can define pWk , P(Ñ ≥

k) to be the probability of successively decoding at least k users in the presence of

noise. Considering the (ordered) PLPF Ξ = {ξi = ‖x‖α
hx

} as before, we can write pWk

as

pWk , P
(

ξ−1
i > θ(Ii +W ), ∀i ≤ k

)

,

and we have a set of analogous bounds as in the noiseless case.

Lemma 18. In a noisy PPNF, the probability of successively decoding k users is

bounded as follows:

• pWk ≥ (1 + θ)−
βk(k−1)

2 P(ξ−1
k > θ (Ik +W ))

• pWk ≤ θ−
βk(k−1)

2 P(ξ−1
k > θ(Ik +W ))
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where Ξβ = {ξi} is the corresponding SPLPF and Ik ,
∑∞

j=k+1 ξ
−1
j .

Proof. The proof is analogous to the proof of Lemma 12 with two major distinctions:

First, we need to redefine the event Ai to be {ξ−1
i > θ(Ii+W )}. Second, Fact 1 does

not hold in the noisy case, and thus the original PLPF (instead of the normalized

SPLPF) needs to be considered. However, fortunately, this does not introduce any

difference on the order statistics of the first k− 1 smallest elements in Ξ conditioned

on the ξk, and thus the proof can follow exactly the same as that of Lemma 12.

Thanks to Lemma 18, bounding pWk reduces to bounding P(ξ−1
k > θ (Ik +W )).

Ideally, we can bound P(ξ−1
k > θ (Ik +W )) by reusing the bounds we have on P(ξ−1

k >

θIk). Yet, this method does not yield a closed-form expression. Thus, we turn to a

very simple bound which can still illustrate the distinction between the noisy case

and the noiseless case.

Lemma 19. In a noisy PPNF, we have

P(ξ−1
k > θ (Ik +W )) ≤ γ̄(k,

ā

θβW β
), (4.21)

where ā = aδcdE[h
β]/β, β = δ + b/α, and δ = d/α.

Proof. First, note that P(ξ−1
k > θ (Ik +W )) ≤ P(ξk < 1

θW
) which equals the proba-

bility that there are no fewer than k elements of the PLPF smaller than 1/θW . By

Lemma 11, the number of elements of the PLPF in (0, 1/θW ) is Poisson distributed

with mean ā/θβW β, and the lemma follows.

Although being a very simple bound, Lemma 19 directly leads to the following

proposition which contrasts what we observed in the noiseless network.

Proposition 18. In a noisy PPNF, the aggregate throughput goes to 0 as θ → 0.
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Proof. Combining Lemma 18 and Lemma 19, we have

E[N ] =
∞
∑

k=1

pWk ≤
∞
∑

k=1

P(ξ−1
k > θ (Ik +W )) ≤

∞
∑

k=1

γ̄(k,
ā

θβW β
) = ā/θβW β.

In other words, E[N ] is upper bounded by the mean number of elements of the PLPF

in (0, 1/θW ). Then, it is straightforward to show that limθ→0R ≤ limθ→0 āθ
1−β/W β,

and the RHS equals zero since β ∈ (0, 1).

Since it is obvious that limθ→∞ R = 0, we immediately obtain the following corol-

lary.

Corollary 10. There exists at least one optimal θ > 0 that maximizes the aggregate

throughput in a noisy PPNF.

As is shown in the proof of Proposition 18, ā/θβW β is an upper bound on E[N ].

We can obtain an upper bound on the aggregate throughput by taking the minimum

of log(1 + θ)ā/θβW β and the upper bound shown in Fig. 4.7. Fig. 4.9 compares

the upper bounds with simulation results, considering different noise power levels.

This figure shows that the noisy bound becomes tighter and the interference bound

becomes looser as θ → 0. This is because as θ decreases the receiver is expected to

successively decode a larger number of users. The large amount of interference can-

celed makes the residual interference (and thus the aggregate throughput) dominated

by noise. In this sense, the optimal per-user rate mentioned in Corollary 10 provides

the right balance between interference and noise in noisy networks.

Thanks to Lemma 19, we see that Proposition 8 clearly does not hold for noisy

networks. Nevertheless, there is still a monotonicity property in noisy networks,

analogous to the scale-invariance property in noiseless networks, as stated by the

following proposition.

Proposition 19 (Scale-monotonicity). For two PLPF Ξ and Ξ̄ with intensity mea-

sure Λ([0, r]) = a1r
β and µ([0, r]) = a2r

β, where a1 and a2 are positive real numbers
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Figure 4.9. Aggregate throughput at o in a 2-d uniform network with noise.
Here, the path loss exponent α = 4. Three levels of noise are considered:

W = 0.1, W = 1 and W = 10.

and a1 ≤ a2, we have pWk (Ξ) ≤ pWk (Ξ̄), ∀k ∈ N.

Proof. The proof is similar to that of Proposition 8. Consider the mapping, f(x) =

(a1/a2)
1/βxβ. Then, f(Ξ) is a PPP on R

+ with intensity measure a2x
β over the set

[0, x] for all x > 0. As before, let N be the sample space of Ξ, i.e., the family of all

countable subset of R+. Consider an indicator function χW
k (φ) : N → {0, 1}, k ∈ N

such that

χW
k (φ) =











1, if ξ−1
i > θ(Ii +W ), ∀i ≤ k

0, otherwise,

where φ = {ξi} and ξi < ξj, ∀i < j.

Note that χW
k (φ) ≤ χW

k (Cφ), ∀C ∈ (0, 1), where Cφ = {Cξi}. To show that,

assume that χW
k (φ) = 1, i.e., ξ−1

i > θ(
∑∞

j=i+1 ξ
−1
j +W ), ∀i ≤ k, which is equivalent

to (Cξi)
−1 > θ(

∑∞
j=i+1(Cξj)

−1 + C−1W ), ∀i ≤ k. It follows that χW
k (Cφ) = 1 since

C−1W > W .
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Therefore, we have

pk(Ξ) = E[χW
k (Ξ)]

(a)

≤ E[χk (f(Ξ))]
(b)
= E[χk

(

Ξ̄
)

] = pk(Ξ̄),

where (a) is due to a1 < a2 and thus (a1/a2)
1/β < 1 and (b) is because both f(Ξ)

and Ξ̄ are PPPs on R
+ with intensity measure µ([0, r]) = a2r

β.

Combining Lemma 11 and Proposition 19 yields the following corollary, since

E[hβ] ≤ 1 given that E[h] = 1.

Corollary 11. In a noisy PPNF, fading reduces pWk , the mean number of users that

can be successively decoded, and the aggregate throughput.

Since random power control, i.e., randomly varying the transmit power at each

transmitter under some mean and peak power constraint [77], can be viewed as a

way of manipulating the fading distribution, Corollary 11 also indicates that random

power control cannot increase the network throughput in a noisy PPNF.

4.8 Conclusions

Using a unified PLPF-based framework, this chapter analyzes the performance of

SIC in d-dimensional fading networks with power law density functions. We show that

the probability of successively decoding at least k users decays super-exponentially

with k2 if high-rate codes are used, and it decays especially fast under small path loss

exponent in high dimensional networks, which suggests the marginal gain of adding

more SIC capability diminishes very fast. On the other hand, SIC is shown to be

especially beneficial if very low-rate codes are used or the active transmitters are

clustered around the receiver.

Since SIC can be considered not only as an interference mitigation technique but

also as a multiple packet reception (MPR) scheme, we also investigate the perfor-

mance gain of SIC in terms of aggregate throughput at the receiver. We observe
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that, in interference-limited networks, the aggregate throughput (or, sum rate) is a

monotonically decreasing function of the per-user information rate and the asymp-

totic sum rate is 1
β
− 1 as the per-user information rate goes to 0, where β = b+d

α
, α

is the pathloss exponent and b determines the network geometry (clustering). Since

b can be manipulated by distance-dependent access control or power control[39], the

result shows that properly designed MAC or power control schemes can significantly

increase the network performance when combined with low rate codes and SIC.

On the other hand, in noisy networks, there exists at least one positive optimal

per-user rate which maximizes the aggregate throughput. Moreover, different from

interference-limited networks where fading does not affect the performance of SIC, we

prove fading to be harmful in noisy networks. This suggests communication schemes

that eliminate (average out) the channel randomness are desirable in noisy networks

with SIC capability.
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CHAPTER 5

SIC IN HETEROGENEOUS CELLULAR NETWORKS

The results we derived in Chapter 4 apply to many types of wireless networks. In

this chapter, we provide a nontrivial application of the technical results in Chapter 4

to the downlink of heterogeneous cellular networks (HCNs). The results demonstrate

that SIC can boost the coverage probability in heterogeneous networks with over-

loaded or closed-configured base stations. However, SIC is not very helpful in terms

of average throughput for typical system parameters. Moreover, for typical contem-

porary OFDM-based systems, most of the gain of SIC comes from canceling a single

interferer.

5.1 Modeling Heterogeneous Cellular Networks Using PPP

We model the base stations (BSs) in a K-tier HCN as a family of marked Poisson

point processes (PPP) {Φ̂i, i ∈ [K]}, where Φ̂i = {(xj, h
(i)
xj , t

(i)
xj )} represents the BSs

of the i-th tier, Φi = {xj} ⊂ R
2 are uniform1 PPPs with intensity λi, h

(i)
x is the iid

(subject to distribution f
(i)
h (·)) fading coefficient of the link from x to o, and t

(i)
x is

the type of the BS and is an iid Bernoulli random variable with P(t
(i)
x = 1) = π(i)

and P(t
(i)
x = 0) = 1 − π(i). If t

(i)
x = 1, we call the BS x accessible and otherwise

non-accessible2. For a typical receiver (UE) at o, the received power from BS x ∈ Φi

1Although we only consider uniformly distributed BSs in this chapter, with the results in Chap-
ter 4, generalizing the results to non-uniform (power-law density) HCNs is straightforward.

2 The non-accessible BSs can be interpreted as overloaded/biased BSs [29], femtocells with closed-
access configuration, or simply interferers outside the cellular system.
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Figure 5.1. An 2-tier HCN with 10% of Tier 1 (macrocell) BSs (denoted by
+) overloaded and 30% of Tier 2 (femtocell) BSs (denoted by ×) configured
as closed. A box is put on the BS whenever it is non-accessible (i.e., either
configured as closed or overloaded). The o at origin is a typical receiver.

is P (i)h
(i)
x ‖x‖−α, where P (i) is the transmit power at BSs of tier i, and α is the path

loss exponent. Also note that since this chapter focuses on 2-dimensional uniform

networks, we have β = 2/α. An example of a two tier HCN is shown in Fig. 5.1.

5.2 The Marked Path Loss Process with Fading

An important quantity that will simplify our analysis in the K-tier HCN is the

equivalent access probability (EAP) defined as below.

Definition 12. Let

Z ,

K
∑

i=1

λiE[(h
(i))β](P (i))β.

The equivalent access probability (EAP) is the following weighted average of the
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individual access probabilities π(i):

η =
1

Z

K
∑

i=1

π(i)λiE[(h
(i))β](P (i))β.

Thanks to the obvious similarity between this HCN model and our PPNF model

introduced in Section 4.3, we can define the marked PLPF as follows.

Definition 13. The marked PLPF corresponding to the tier i network is Ξ̂i =

{( ‖x‖α
hxP (i) , tx) : x ∈ Φi}, with Ξi , { ‖x‖α

hxP (i) : x ∈ Φi} being the (ground) PLPF.

Furthermore, we denote the union of the K marked PLPFs and ground PLPFs

as Ξ̂ ,
⋃K

i=1 Ξ̂i and Ξ ,
⋃K

i=1 Ξi, respectively. Then, we have the following lemma.

Lemma 20. The PLPF corresponding to the K-tier heterogeneous cellular BSs is

a marked inhomogeneous PPP Ξ̂ = {(ξi, tξi)} ⊂ R
+ × {0, 1}, where the intensity

measure of Ξ = {ξj} is Λ([0, r]) = Zπrδ and the marks tξ are iid Bernoulli with

P(tξ = 1) = η.

Based on the mapping theorem, the independence between tix and the fact that

the superposition of PPPs is still a PPP, the proof of Lemma 20 is straightforward

and thus omitted from the thesis. Despite the simplicity of the proof, the implication

of Lemma 20 is significant: the effect of the different transmit powers, fading distri-

butions and access probabilities of the K-tiers of the HCN can all be subsumed by

the two parameters Z and η.

5.3 The Coverage Probability

An important quantity in the analysis of the downlink of heterogeneous cellular

networks is the coverage probability, which is defined as the probability of a typical

UE successfully connecting to (at least) one of the accessible BSs (after possibly

canceling some of the non-accessible BSs).
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5.3.1 Without SIC

Using the PLPF framework we established above and assuming that the UE

cannot do SIC and the system is interference-limited, we can simplify the coverage

probability in the K-tier cellular network to

Pc = P

(

ξ−1
∗

∑

ξ∈Ξ\{ξ∗} ξ
−1

> θ

)

, (5.1)

where ξ∗ , argmaxξ∈Ξ tξξ
−1, and θ is the SIR threshold.

Note that the coverage probability in (5.1) does not yield a closed-form expression

in general [23]. However, for θ ≥ 1, we have

Pc = ηp1 =
η sinc β

θβ
, (5.2)

which can be straightforwardly obtained by combining Lemma 16, Corollary 8 and

the fact that the marks {ti} are independent from Ξ.

5.3.2 With SIC

Similar to (5.1), we can define the coverage probability when the UE has SIC

capability. In particular, the coverage probability P SIC
c is the probability that after

cancellation a number of non-accessible BSs, the signal to (residual) interference ratio

from the any of the accessible BSs is above θ. Formally, with the help of the PLPF,

we can define the following event of coverage which happens with probability P SIC
c .

Definition 14 (Coverage with (infinite) SIC capability). A UE with infinite SIC

capability is covered iff there exists l ∈ N and k ∈ {i : ti = 1} such that ξ−1
i >

θIi, ∀i ≤ l and ξ−1
k > θI !kl , where I !kl ,

∑j 6=k
j≥l+1 ξ

−1
j .

With the help of PLPF and the parameters we defined in the analysis of the

PPNF, the following lemma describes this probability in a neat formula.
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Proposition 20. In the K-tier heterogeneous cellular network, the coverage proba-

bility of a typical UE with SIC is

P SIC
c =

∞
∑

k=1

(1− η)k−1ηpk,

where pk = pk(Ξ) is the probability of successively decoding at least k users in a PLPF

on R
+ with intensity measure Λ([0, r]) = Zπrβ.

Proof. Without loss of generality, we consider the marked PLPF corresponding to

the K-tier heterogeneous cellular BSs Ξ̂ = {(ξi, ti)}, where the index i is introduced

such that {ξi} are increasingly ordered. Let ϑk : N → {0, 1}, k ∈ N, be an indicator

function such that

ϑk(φ) ,











1, if ∃l ∈ N s.t. χl(φ) = 1 and ξ−1
k > θI !kl

0, otherwise,
(5.3)

where χk(·) is defined in (4.2). Furthermore, we define a random variable M =

min{i : ti = 1}, where ti is the mark of the ith element in Ξ̂. Note that since,

according to Lemma 20, ti are iid (also independent from Ξ), M is geometrically

distributed with parameter η and is independent of Ξ. Then, it is easy to check with

Definition 14 that the coverage probability can be written as

P SIC
c = P(ϑM(Ξ)) = EM [P(ϑM(Ξ) | M)] ,

where the probability inside the expectation is the probability of decoding the Mth

strongest BS (with the help of SIC) conditioned on the fact that this BS is the

strongest accessible BS.

Moreover, we have ϑk(·) = χk(·), ∀k ∈ N. To see this, we first notice that, by

the definition of the two functions, χk(φ) = 1 ⇒ ϑk(φ) = 1. Conversely, assuming
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ϑk(φ) = 1, which by definition means ∃l ∈ N s.t. χl(φ) = 1 and ξ−1
k > θI !kl , we

immediately notice that χk(φ) = 1 if l ≥ k. If l < k, we have ξ−1
l+1 ≥ ξ−1

k > θI !kl ≥

θIl+1, i.e., χl+1(φ) = 1, which, by induction, leads to the fact that χk(φ) = 1. Since

both χk(·) and ϑk(·) are indicator functions on the domain of all countable subsets

of R+, we have established the equivalence of the two functions.

Therefore, we have P SIC
c = EM [P(χM(Ξ) | M)] = EM [pM ], which completes the

proof.

Thanks to Proposition 20 we can quantify the coverage probability of the HCN

downlink using the bounds on pk we obtained in Section 4.5. In particular, based on

Proposition 9, a lower bound can be found as

P SIC
c ≥

K
∑

k=1

(1− η)k−1η(1 + θ)−
βk(k−1)

2 ∆1(k), (5.4)

where the choice of K affects the tightness of the bound. Although a rigorous upper

bound cannot be obtained by simply discarding some terms from the sum, we can

easily upper bound the tail terms of it. For example, based on Proposition 11 we

have

P SIC
c ≤

K
∑

k=1

(1− η)k−1ηθ̄−
β
2
k(k−1)∆2(k) + (1− η)K+1, (5.5)

where θ̄ = max{θ, 1} and (1− η)K+1 bounds the residual terms in the infinite sum.

Besides these bounds, we can also use the approximation established in Sec-

tion 4.6.3 to obtain an approximation on the coverage probability in closed-form.

In particular, we had

pk ≈ LξkIk(s)|s=θ =
1

(c(θ) + 1)k
,

where c(θ) = θβγ(1− β, θ)− 1 + e−θ. Combing this with Proposition 21, we have

P SIC
c ≈ η

1− η

∞
∑

k=1

(

1− η

1 + c(θ)

)k

=
η

η + c(θ)
. (5.6)
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Figure 5.2. The coverage probability (with infinite SIC capability) as a
function of SIR threshold θ in HCNs with η = 0.6 and α = 4. The

(Laplace-transform-based) approximation, lower bound and upper bounds
of P SIC

c is calculated according to (5.6), (5.4) and (5.5), respectively. The
coverage probability in the case without SIC (a problem also studied in

[23, 24]) is also plotted for comparison, where the θ ≥ 0dB part is
analytically obtained by (5.2) and the θ < 0dB part is based on simulation.

In Fig. 5.2, we compare these bounds and the approximation with simulation

results. These bounds give reasonably good estimates on the coverage probability

throughout the full range of the SIR threshold θ. In comparison with the coverage

probability when no SIC is available, we see that a significant gain can be achieved

by SIC when the SIR threshold θ is between −10dB and −5dB. This conclusion is,

of course, affected by η. The effect of η will be further explored in Section 5.6.
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5.4 The Effect of the Path Loss Exponent α

We can also use the bounds in Proposition 12 to estimate the coverage probability.

In particular,

P SIC
c ≥ η

1− η

K
∑

k=1

1

(1 + θ)
β
2
k(k−1)Γ(1 + kβ)

(

1− η

θβΓ(1− β)

)k

, ∀K ≥ 1, (5.7)

where we take a finite sum in the place of an infinite one. The error term assoicated

with this appoximation is upper bounded as

∞
∑

k=K+1

1

(1 + θ)
β
2
k(k−1)Γ(1 + kβ)

(

1− η

θβΓ(1− β)

)k

≤ 1

Γ(1 + (K + 1)β)

CK+1
2

1− C2

, (5.8)

where C2 = 1−η

(1+θ)
β
2 KθβΓ(1−β)

. Since (5.8) decays super-exponentially with K, a small

K typically ends up with a quite accurate estimate.

For the upper bound, we can reuse the calculation in Proposition 16 and obtain

P SIC
c ≤ η

1− η

K−1
∑

k=1

(

(1− η)C(k)

Γ(1− β)

)k
1

Γ(1 + kβ)

+
η

1− η

1

Γ(1 +Kβ)

(

(1− η)C(K)

Γ(1− β)

)K
Γ(1− β)

Γ(1− β)− (1− η)C(K)
, (5.9)

where C(k) , θ−β θ̄−
β
2
(k−1).

Fig. 5.3 plots the coverage probability as a function of the path loss exponent α.

Here, the coverage probability without SIC P SIC
c is given by (5.2). The figure shows

that the absolute gain of coverage probability due to SIC is larger for larger path loss

exponent α. Although our model here does not explicitly consider BS clustering, by

the construction of the PLPF in Section 4.4, we can expect a larger gain due to SIC

for clustered BSs. Further numerical results also show that the gain is larger when η

is smaller, i.e., there are more non-accessible BSs.
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Figure 5.3. Comparison between coverage probability with and without
SIC in HCNs with η = 0.8, θ = 1. Here, the upper and lower bounds are

based on (5.9) and (5.7), respectively.

5.5 Average Throughput

Reducing the SIR threshold θ puts a penalty on the throughput of the users

under coverage. Similar to our analyses to the aggregate throughput, we can define

the average throughput as

T , log(1 + θ)P SIC
c .

For the case without SIC, the definition is simplified as T , log(1+θ)Pc. The average

throughput is different from the aggregate throughput defined in Section 4.6.2 in that

we do not allow multiple packet reception in this case.

Fig. 5.4 shows how the average throughput change as a function of θ with the

same set of parameters as in Fig. 5.2. Comparing these two figures, we find that

while SIC is particularly useful in terms of coverage in combination with low-rate

codes (low θ), the usefulness of SIC in terms of average throughput can be marginal.

For this particular set of parameters, the average throughput is maximized at θ about
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Figure 5.4. The average throughput as a function of SIR threshold θ in
HCNs with η = 0.6 and α = 4. The (Laplace-transform-based)

approximation, lower bound and upper bounds of P SIC
c is calculated

according to (5.6), (5.4) and (5.5), respectively. The non-outage
throughput in the case without SIC is plotted for comparison, where the
θ ≥ 0dB part is analytically obtained by (5.2) and the θ < 0dB part is

based on simulation.

5dB, a regime where SIC is not very useful. On the positive side, as we will show in

Section 5.6, for such θ, most of the gain of SIC can be obtained by simply canceling

a very small number of non-accessible BSs.

5.6 Finite SIC Capabilty

In real cellular network settings, the assumption that the UEs have the ability to

successively decode an infinite number of interferers is impractical and conceivably

unnecessary in achieving the coverage gain. Thus, it is important to evaluate the

performance gain of SIC when the UEs have only a limited ability of interference

cancellation. Since the latency is likely to be the most critical factor in practical

systems, we consider the case where the UE can cancel at most n − 1 interferers.
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Formally, we define the event of coverage for a UE with n-layer SIC capability as

follows.

Definition 15 (Coverage with n-layer SIC capability). A UE with n-layer SIC

capability is covered iff there exists l ∈ [n − 1] and k ∈ {i : ti = 1} such that

ξ−1
i > θIi, ∀i < l and ξ−1

k > θI !kl .

We will use P SIC
c,n to denote the coverage probability for a typical UE with n-layer

SIC capability. As two special cases, we have P SIC
c,1 = Pc and P SIC

c,∞ = P SIC
c .

Following a similar procedure in the proof of Proposition 20, we find a lower

bound on P SIC
c,n which is exact when θ ≥ 1.

Proposition 21. In the K-tier heterogeneous cellular network, the coverage proba-

bility of a typical UE with n-layer SIC capability is

P SIC
c,n ≥

n
∑

k=1

(1− η)k−1ηpk, (5.10)

where the equality holds when θ ≥ 1.

Proof. Similar to the definition of ϑk(·) in (5.3). We define

ϑn,k(φ) ,











1, if ∃l < n s.t. χl(φ) = 1 and ξ−1
k > θI !kl

0, otherwise.
(5.11)
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Then, we have

P SIC
c,n

(a)
= EM [P(ϑn,M(Ξ) | M)]

(b)
=

∞
∑

k=1

η(1− η)k−1
P(ϑn,k(Ξ))

(c)

≥
n
∑

k=1

η(1− η)k−1
P(χk(Ξ))

(d)
=

n
∑

k=1

η(1− η)k−1pk.

where (a) is due to Definition 15, (b) is due to the independence between the marks

and the process Ξ and (d) is due to the definition of pk. To show (c), we note that

ϑn,k(·) = χk(·) for all k ≤ n, which can be shown in a way analogous to the way we

establish the equivalence between ϑk(·) and χk(·) in the proof of Proposition 20. In

addition, when θ ≥ 1, for all k > n > l, ξ−1
k < θ

∑j 6=k
j≥l+1 ξ

−1
j almost surely. In other

words, P(ϑn,k(·)) = 0 for all k > n and the equality in (c) is attained for θ ≥ 1.

Comparing Propositions 20 and 21, it is obvious that the inequality in Proposi-

tion 21 is asymptotically tight as n → ∞. More precisely, since P SIC
c ≥ P SIC

c,n , we

have
n
∑

k=1

(1− η)k−1ηpk ≤ P SIC
c,n ≤

∞
∑

k=1

(1− η)k−1ηpk,

and the difference between the upper and lower bound decays (at least) exponentially

with n. Thus, the lower bound in Proposition 21 converges to the true value at least

exponentially fast with n.

Combining Propositions 20 and 21 with the results given before, we can estimate

the performance gain of SIC in the HCN downlink. In the following, we focus on two

different scenarios to analyze the performance of finite SIC capability.
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5.6.1 The High SIR Case

First, we focus on the case with θ ≥ 1. Thanks to Proposition 12, this case

has extra tractability since P(ξ−1
k > θIk) can be expressed in closed-form. Thus, by

applying Proposition 21, we obtain a set of upper bounds on the coverage probability

with finite SIC capability

P SIC
c,n ≤ η

1− η

n
∑

k=1

1

Γ(1 + kβ)

(

1− η

θ
β
2
(k+1)Γ(1− β)

)k

. (5.12)

For infinite SIC capability, by the same procedule, a closed-form upper bound on the

coverage probability can also be obtained when α = 4 (or, β = 1
2
)

P SIC
c =

∞
∑

k=1

(1− η)k−1ηpk

≤
∞
∑

k=1

(1− η)k−1η
(πθ)−k/2

Γ(k/2 + 1)

=
η

1− η

(

exp
((1− η)2

πθ

)

(

1 + erf
(1− η√

πθ

)

)

− 1

)

. (5.13)

Fig. 5.5 plots the coverage probability with different levels of SIC capability as a

function of η for θ =0dB and 2dB. Here, we plot the upper bounds on P SIC
c,n according

to (5.12) for n = 1, 2, the upper bound on P SIC
c according to (5.13), and simulated

value of P SIC
c,n for n = 1, 2, 10. The problem of n = 1 is already studied in [24].

Taking n = 1 and β = 1
2
in (5.12) and comparing it with (5.2) shows that the

upper bound in (5.12) is tight for n = 1. This explains why the lowest solid lines

(upper bound on P SIC
c,1 ) and the lowest dashed lines (simulated P SIC

c,1 ) in Fig. 5.5

overlap.

Fig. 5.5 shows that P SIC
c,n −P SIC

c,1 , the absolute coverage probability gain of SIC, is

much larger when η is close to 1
2
than when η is close to 0 or 1. This phenomenon

can be observed within a much wider range of system parameters. Intuitively, this
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Figure 5.5. Comparison between the upper bound on the coverage
probabilities and the simulated coverage probability of femto-cell networks
with different levels of SIC capability when α = 4. The upper bounds on
P SIC
c,n is calculated according to (5.12) for n = 1, 2 (coverage probability is

higher for larger n). The upper bound on P SIC
c is calculated by (5.13). The

simulated value of P SIC
c,n is plotted for n = 1, 2, 10. When θ = 2dB, the

curves for n = 2 and n = 10 almost completely overlap.

observation can be explained as follows: On the one hand, when η → 1, most of

the BSs in the network are accessible. Thus, SIC will not significantly improve the

coverage probability. On the other hand, when η → 0, most of the BSs in the network

are non-accessible. In this case, UE coverage can only be significantly improved if

many BSs are expected to be successively canceled. As is shown in Section 4.6, the

number of BSs that can be successively decoded is fundamentally limited by the

choice of θ, and in this particular case (θ ≥ 1), very few, if any, non-accessible BSs

are expected to be canceled, leaving very little space for SIC to improve the coverage

probability.

Moreover, it is worth noting that with θ ≥ 1 and β = 1
2
, most of the gain of

SIC is achieved by the ability of canceling only a single non-accessible BS. This is
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consistent with observations reported in [71] where a different model for SIC is used

and the transmission capacity is used as the metric. The fundamental reason of this

observation can be explained by Proposition 21. The difference in coverage prob-

ability between infinite SIC capability and the capability of canceling n − 1 UEs

is
∑∞

k=n+1(1 − η)k−1ηpk, which, due to the super-exponential decay of pk (Proposi-

tion 12), decays super-exponentially with n. Thus, most of the additional coverage

probability comes from canceling a small number of non-accessible BSs. Since θ

affects the rate at which pk decays, we can expect that the ability of successively de-

coding more than one non-accessible BS becomes even less useful for larger θ, which

is also demonstrated in Fig. 5.5.

Of course, with the same logic and analytical bounds, e.g., the one in Proposition 9

or the one in Proposition 10, we would expect that the ability to successively decode

a large number of users does help if β → 0 and/or θ → 0. β → 0 could happen if the

path loss exponent α is very large and/or the BSs are clustered around the receiver

and/or the network dimension is low (e.g. for vehicular networks, it is reasonable to

take d = 1). θ → 0 happens when very low-rate codes are used.

5.6.2 More Realistic Cases

Since the different values of θ and β can result in different usefulness of the

finite SIC capability at the HCN downlink, it is worthwhile to discuss most realistic

parameter choices in contemporary systems.

The exact values of θ and β depends on many facts including modulation and cod-

ing schemes, receiver sensitivity, BS densities and propagation environment. How-

ever, in practical OFDM-type HCNs (e.g., LTE and 802.11 networks), the SIR thresh-

old θ is typically larger than −3dB and often more than 0dB [23]3. For the indoor

propagation, α is typically between 3 and 4. Therefore, the system parameters used

3The small θ regime is more applicable to wide-band systems, e.g., CDMA or UWB systems.
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Figure 5.6. Comparison between the upper bound on the coverage
probabilities and the simulated coverage probability of femto-cell networks
with different path loss exponent α when θ = 0dB. The upper bounds on
P SIC
c,n is calculated according to (5.14) for n = 1, 2 (coverage probability is

higher for larger n). The upper bound on P SIC
c is calculated by (5.15). The

simulated value of P SIC
c,n is plotted for n = 1, 2, 10. For α ≤ 3.5, the curves

for n = 2 and n = 10 almost completely overlap.

in the high SIR case (Fig. 5.5) are already reasonably realistic.

To have a closer look at the impact of α, we fix θ = 1. Then, (5.12) can be

simplified as

P SIC
c,n ≤ η

1− η

n
∑

k=1

1

Γ(1 + kβ)

(

1− η

Γ(1− β)

)k

. (5.14)

which in the case of n → ∞ gives an upper bound on the coverage probabilty with

infinite SIC capability,

P SIC
c ≤ η

1− η

(

Eβ,1

(

1− η

Γ(1− β)

)

− 1

)

, (5.15)

where Ea,b(z) =
∑∞

k=0
zk

Γ(ak+b)
is the Mittag-Leffler function.
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Figure 5.7. Coverage probability of femto-cell networks with SIR threshold
θ ≥ −5dB with α = 4. The solid lines are calculated for n = 1, 2 according
to (5.14) (the lines are higher for larger n), which are an upper bounds on

P SIC
c,n when θ ≥ 0dB. For θ ≤ 0, these lines should be considered as

approximations. The upper bound on P SIC
c is calculated by (5.15). The

simulated value of P SIC
c,n is plotted for n = 1, 2, 10. For η ≤ 0.9, the curves

for n = 2 and n = 10 almost completely overlap throught the simulated
SIR range.

Fig. 5.6 compares the coverage probabilities with different levels of SIC capability

for different path loss exponents α when θ = 1. As expected, as α decreases, both

the coverage probability and the gain of additional SIC capability decrease. The

former is due to the fact that with a smaller α the far users contribute more to the

interference. The latter can be explained by the fact that when α is smaller, the

received power from different users are more comparable, leaving less structure in the

received signal that can be exploited by SIC.

Similarly, we can apply the bounds in (5.14) and (5.15) to even smaller α which

may apply to outdoor environments, and conceivably the gain of SIC will becomes

even more marginal. Therefore, SIC is more useful in an indoor environment.

Generally speaking, accurately estimating P SIC
c,n is more difficult when θ < 1. One
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of the reasons is that the upper bound in Theorem 6 becomes increasingly loose as

θ decreases. However, within the realistic parameters, i.e., θ > −3dB, the values

calculated by (5.14)4 and (5.15) are still informative as is shown in Fig. 5.7. This

figure shows the coverage probability as a function of θ ≥ −5dB for η = 0.3, 0.6, 0.9.

We found that most of the the conclusions we made for θ ≥ 1 still hold when θ ≥

−5dB. For example, we can still see that most of the gain of SIC comes from canceling

a single interferer and that the gain is larger when η is close to 0.5.

Quantitatively, we found that when η is relatively small (η = 0.3, 0.6) the an-

alytical results still track the results obtained by simulation closely for θ > −3dB.

The analytical results are less precise when η is large. However, large η characterizes

a regime where most of the BSs are accessible. In this case, it is conceivable that

SIC is often unnecessary, which can be verified by either the simulation results or

the analytical results in Fig. 5.7. Therefore, overall, the analytical results generates

enough quantitative insights for the most interesting set of parameters.

5.7 Conclusions

Building upon the theoretical results derived in Chapter 4, this chapter demon-

strates how a marked PLPF framework can be used to generate insights in designing

heterogeneous cellular networks (HCNs) with SIC capability at the UE side. We show

that the code rate can significantly impact the usefulness of successively canceling

a large number of non-accessible BSs. In particular, SIC in combination with low

rate codes can boost the coverage probability of the HCN to a large extent. We also

observe that, for contemporary OFDM-based cellular systems, most of the gain of

SIC comes from canceling a single non-accessible BS.

An important contribution of this chapter is the demonstration of a general ap-

4 (5.14) can only be considered as an approximation on P SIC
c,n

when θ < 1 since Proposition 21
only gives a lower bound in this regime.
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proach to analyze HCNs based on constructing the (marked) PLPF and calculating

the equivalent access probability (EAP). We show that the complexity introduced by

the network heterogeneity can be elegantly addressed through this approach and the

coverage probability with SIC can be evaluated based on the knowledge about the

same problem in the homogeneous networks. In addition to SIC, this approach can be

used to analyze many other techniques in HCNs and has the potential to generalize

many known results from homogeneous networks to heterogeneous networks.
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CHAPTER 6

CONCLUDING REMARKS AND FUTURE WORK

6.1 Random Power Control in Networks with Both Noise and Interference

In Chapter 2, we show that random power control can significantly reduce the

local delay in noise-limited networks and in many cases the optimal memoryless

random power control strategy is an ALOHA-type random on-off policy. Under a

game theoretic formulation, Chapter 3 shows similar results in interference-limited

networks. In particular, we show that in many cases, ALOH-type random on-off

power control policies are the single node optimal power control (SNOPC) and Nash

equilibrium power control (NEPC) strategies. These results provide a new view of

ALOHA as a efficient power control scheme. The gain of random power control in

interference-limited networks are also demonstrated numerically.

A natural extension of these results is to consider the (more realistic) case with

both noise and interference. In the case of Rayleigh fading, similar results can be

obtained by a relatively straightforward extension of the results in Chapter 3. To see

this, recall that the success probability of a transmission attempt over link distance

r with power P is

P(Phr−α > θI) = LI(s)|s= θrα

P
. (6.1)

In the presence of noise of power N0, the success probability becomes

P

(

Phr−α

I +N0

> θ

)

= LI(s)e
−N0s|s= θrα

P
,
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which can be considered as a noiseless link with another interference distribution.

Therefore, although the analytical results in previous chapters will become more

cumbersome if noise is included, the method will be the same.

For other fading distributions, the approaches we used in Chapter 3 are not di-

rectly applicable. Further investigation is needed to obtain deeper understanding in

such cases. However, based on the results in Chapter 2 and 3, it is reasonable to

conjecture that the optimality of random on-off power control still hold at least in

the sense as stated in Chapter 3.

6.2 Practical Aspects of Random on-off Power Control

6.2.1 Adaptive Modulation

The optimality of random on-off power control strategies is to some extent a result

of the fixed SNR (SIR) threshold θ. If there are more than one possible rate, i.e.,

more than one threshold, the optimal power control strategies need to be redefined,

as it is reasonable to consider different pay-offs (utility) for successful transmission

at different rates.

Since real wireless systems typically have more than one modulation and coding

schemes (MCSs), it is of interest to understand how to jointly choose MCS and

random power control schemes to maximize the utility.

6.2.2 RF Constraints

The linear regime of practical RF devices is always limited. This is an important

concern in real-world wireless networks especially when the power efficiency is critical.

On the one hand, the optimality of random on-off schemes raises hope that the

benefits of random power control can be fully harnessed using existing RF hardware.

On the other hand, since the transmit power and probability of the optimal schemes
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derived in Chapter 2 and 3 are typically a function of the knowledge regarding the

channel fading and network geometry statistics, the implementation of random power

control may require more than one power amplifiers (PAs) in order to be truly power

efficient. Thus, there exists a trade-off between the cost (of the RF components) and

performance (of random power control). Such trade-off is of practical interest and

remains for future investigation.

6.3 More Detailed Modeling of SIC in Random Wireless Networks

6.3.1 Centralized Rate Assignment and Scheduling

Chapter 4 and 5 assume all the transmitters in the network are transmitting at the

same rate. In some cases, it is more likely (and potentially more desirable) to allow

transmitters to transmit at different rates. For example, in cellular uplinks, the BSs

may assign different users with different rates according to the channel quality and

thus significantly boost the expected aggregate throughput at the receiver. Similarly,

by scheduling users with significantly different received powers at the same time, the

BS can potentially improve the expected number of users that can be successively

decoded.

Although such rate assignment and scheduling is unlikely in the cellular down-

links, modeling the centralized rate assignment and scheduling properly would be an

important step toward understanding the fundamental limits of SIC in the cellular

uplinks.

6.3.2 Power Control and SIC

6.3.2.1 Deterministic Power Control

Similar to rate assignment and scheduling, power control can have a big impact

on the gain of SIC. Letting stronger users to transmit at higher power while reducing
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the power at the weaker users can increase the received power differences and thus

increase the probability of successively decoding a large number of users. In fact, this

is another way of manipulating β in Chapter 4.

However, if there are more than one receivers in the network, the favorable power

control strategy for one receiver may create unfavorable condition for another. In-

vestigation on power control schemes that benefits the global performance of multi-

receiver wireless networks remains for future work.

6.3.2.2 Random Power Control

Random power control can be considered as a way of manipulating the fading

distribution. Therefore, as a result of Corollary 7, any global random power control

scheme will not improve the performance of SIC in interference-limited network. In

noisy networks, the outlook of such random power control schemes are even more

pessimistic: as pointed out in Section 4.7, global random power control is often likely

to deteriorate the gain of SIC.

Nevertheless, the above arguments only account for the case where all the trans-

mitters in the networks apply the same random power control strategy. If the trans-

mitters in the networks can determine their own power control strategy based on the

(local) information, a non-trivial (additional) gain in the performance of SIC is still

conceivable. How to maximize and quantify such gain is still an unsolved interesting

problem, remaining for future research.
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