Brains, artificial neural networks, and some future hardware issues

Ralph Linsker
IBM Research
Yorktown Heights, NY
linsker@us.ibm.com
Outline

• Why does HW acceleration for artificial neural networks (NNs) matter?
 – Many NN applications, growing in importance
 – Better “deep learning” algorithms are effective for more complex problems using larger NNs; \(\rightarrow \) computationally intensive

• What makes NN acceleration feasible?
 – NN algorithms are highly parallel; NNs use a set of relatively simple core functions; communication & memory tend to dominate
 – Opportunities for analog or A/D hybrid implementations

• What are NNs, and how do they work?
 – What core functions do they require?
 – \(\rightarrow \) Opportunities for future device & circuit designs, & new chip architectures

• Lessons from biological brains
 – What additional functions will likely become important, in more advanced NN architectures?

• Conclusions
Some neural network applications

• **Pattern recognition & classification**
 – Speech, face, object, scene, handwriting, gestures, radar, geologic data
 – Loan approval, real estate valuation, credit card fraud, email spam
 – Medical: image analysis, EKG, EEG
 – Drugs & explosives detection, chemical analysis
 – Image and audio search, surveillance

• **Data processing**
 – “Blind” signal separation; compression; clustering
 – Classification & analysis of massive datasets (e.g., documents, images, voice)
 – Video game AI

• **Prediction, control, and system identification**
 – Business analytics, financial apps, data mining
 – Analysis and control of large complex networks (e.g., power, transportation)
 – Vehicle control
 – Chemical and manufacturing process control
 – Time series prediction, modeling
 – Medical diagnosis
 – Robotics

• **Complex optimization**
 – Chemical and drug design
 – Variable pricing algorithms, scheduling, marketing
Neural networks

• Network of “neurons” and weighted connections

• Conventional (“2nd generation”) “sigmoid” NNs
 – Activation: At each time step, each node’s output is a function of its weighted inputs
 – Learning: Each weight w is changed by a function of the activities at i and j
 • E.g., “Hebb rule” rewards correlations
 \[\Delta w_{ji} \sim \text{Output}_j \times \text{Input}_i \]
 – Powerful higher-level learning algorithms exist; they build on Hebb and other basic update rules

\[\sum_i w_{ji} \times \text{Input}_i + \text{Bias}_j \]
(1) “Spiking” (“3rd gen.”) NN

(2) Activation:
- “Voltage” V_j changes by w_{ji} when spike arrives from i;
- When $V_j > V_{\text{thr}}$, node j emits a spike, and V_j resets to 0;
- Otherwise, V_j decays toward 0.

(3) Learning: w_{ji} changes as function of time interval between spike arrival from i and spike emission by j

[STDP, “spike timing dependent plasticity”]

(4) Challenge: Higher-level learning rules are not yet mature; thus spiking NNs are not yet commercially significant.

But: Power and bandwidth advantages over 2nd-gen NNs – in HW and in brains!
Example demo

- Learning to recognize & generate handwritten digits [work by G Hinton et al.]
- A “2nd-gen.” four-layer NN with a new “higher-level” learning rule
 - http://tinyurl.com/mrb3qa
- Network of ~4000 neurons & 1.7M conn’s trained on a set of 50K images, shown a few hundred times.
- Movies (showing activation, not learning):
 - http://tinyurl.com/klyqcj
• For examples of correctly recognized handwritten digits that the neural network had never seen before (from G Hinton), see:
 – http://www.cs.toronto.edu/~hinton/talks/gentle.ppt#61
Spiking-NN HW chip sizing

- Use an “address event representation” (AER)
- Notation: “n” = “neuron”; “ts” = “simulation time step” (~1 msec for brain modeling)
- Parameters
 - b bits sent for each transmitted spike
 - f ~ average prob’y that a neuron fires during a given time step (large fluct’ns!)
 - K ~ typical fan-in or fan-out of each neuron
 - c bits stored / connection (for weights, time delays, addresses, other information)
 - p_1 ops/n/ts ; plus p_2 ops / received spike ; plus p_3 ops / spike-pair during learning
 - L = width (in ts) of “learning window” that defines a received & a generated spike as forming a “pair”

- Communication bandwidth (bits/n/ts) ~ b K f
 - Assume or estimate the fraction of spikes that travel off-chip; apply appropriate constraints to both on- and off-chip BW

- Computational load (ops/n/ts) ~ p_1 + p_2 K f + p_3 K f^2 L
 - Typically undemanding; favors mapping many “neurons” to each HW processing unit

- Memory (bits/n) ~ c K + {other registers as needed}

- Typically (in current or near-term designs): Memory area will constrain N, the # of neurons/chip (or N*K, the # of connections/chip)
- Then BW (on- and/or off-chip) & power will constrain the NN’s performance (in ts/sec)
- Optimize degree of parallelism (i.e., # of simulated neurons per HW processing unit), I/O handling, N, etc., to balance computation, communication, and memory demands, improve performance, etc.
Core NN operations for “sigmoid” NNs

• Multiply/adds (sum over conn’s, of weights * input activities; sum over input presentations, of input * output activities)
 – Old idea for analog NN activation: crosspoint network; weights at intersections; weight=conductance; input activity=voltage; Kirchhoff sum of currents
 – Nominally “zero” conductances must be kept extremely small, if all-to-all crosspoint connectivity!
 – More compact crosspoint geometry for nanoscale connections among microscale “neurons”: “CMOL” (Likharev et al.); see http://tinyurl.com/m2ywaw

• Nonlinear (“sigmoid”) function at each neuron

• [Random generator if want to stochastically binarize output activities]

• Send continuous-valued (or binarized) activity along each conn’n at each time step
Core NN operations for spiking NNs

• Activation:
 – Spike arrival → weighted change in neuronal “voltage” V
 – Time decay of V
 – Spike emission & V reset when V exceeds threshold

• Learning:
 – Identify spike-pairs; change weight according to ordering & inter-spike interval

• Ideas for using nanodevice connections (e.g., phase change memory elements) with controlled input signal sequences for changing conductance (e.g., Ovshinsky)

• Send spike signals or digital packets along conn’s, only when needed. Implement specified time delays.
A look at biological brains – for inspiration and challenges

• The brain’s “computational style”: How is information inputted, stored, transformed, communicated, organized, and integrated?
 – Very differently from present-day computers (serial or parallel), in almost all respects!

• Some (very rough!) numbers:
 – Cerebral cortex (human): ~2E10 neurons; ~1E14 synapses; thickness ~1.5-4.5mm; surface area ~ 0.25 m²; ~2.5E4 neurons/mm³ (~1E5 in visual cortex).
 – In a 50-micron (on a side) “minicolumn” – a type of “functional unit”: ~40 neurons; ~100-200 in visual cortex.
 – ~1E9 synapses/mm³ (across mammals)
 – Spike generation rate by a neuron: zero to hundreds/sec

• The brain’s complex and multi-scale dynamics, and its architecture, may provide important hints for designing much more powerful NNs!
Complex neuronal and network dynamics

- Intra-neuronal dynamics – affect spiking behavior on time scale of <1 to 100s of msec
- Multiple time scales for synaptic changes (slow and fast learning)
- Multiple spiking modes (e.g., bursting vs. individual spikes)
- Multiple network modes (e.g., wake & sleep)

- Many types of network oscillations (from few Hz to >100 Hz)
- Synchronization or phase-locking transiently “associates” widely-separated parts of network:
 - A way to “bind” activities evoked by different features of an object, so that we perceive an object as a coherent whole
 - Also can “bind” activity across processing areas, enabling selective focussed attention (heightened responsiveness)

- Recurrent activation of circuits in “working” (short-term) memory and in hippocampus (learning temporal sequences)
- Re-entrant loops (e.g., Edelman) that integrate proc’g across brain regions (external sensory, internal sensory, motor, decision-making). Also perhaps responsible for continuously updated sense-of-self (Damasio)?
Brain architecture – complexity with order

• “Vertical” org’n of six-layer cortex: the “local cortical circuit” (LCC)
 – A perhaps-ubiquitous functional “module”? [See fig.]
 – Conjectured core functions: prediction, fill-in of missing/noisy data, feature discovery
 • Relation to Bayesian inference? I.e., does it learn a model that best captures the statistical relationships among an ensemble of inputs?
 – Many recent papers on Bayesian inference in NNs
 – A special case of Bayesian inference: Kalman prediction & control in a NN (R Linsker, Neural Networks, 2008 – also gives many Bayesian refs.)

• “Horizontal” organization: Structure within 2-d functional “maps” (e.g., representing position, motion, & edge-orientation of parts of a visual scene)

• Interactions
 – Among maps of a given system (e.g., vision): cabling, re-entry (feed-forward and feedback), synchrony. [See fig.]
 – Among maps of different systems (vision, hearing, motor output, decision-making, etc.)
 – Between cerebral cortex and other brain regions (hippocampus, amygdala, thalamus, etc.)
Anatomy of “local cortical circuit” (LCC)

Sensory input

Layer ‘2&3’

Layer ‘4’

Layer ‘6’

Schematic of LCC
[One “minicolumn” ~ 100 neurons
~ cylinder of 50-micron diameter;
~100M similar modules?]

[Top two figures from: GM Shepherd,
The Synaptic Organization of the
Brain, 4th edn., pp. 476-477 (1998)]
Interactions among functional areas of the visual system

[From: DJ Felleman & DC Van Essen, Cerebral Cortex 1: 30 (1991)]
Conclusions: Future of hardware NNs

• Is the goal to “mimic the brain”?
 – No – we don’t know how! And the notion isn’t well-defined.

• Rather, it is to develop HW that (we hope) will efficiently run the best NN algorithms of ~5+ years from now. My bet is that these will use:
 – Multistage hierarchical networks of simple “neurons” with feedforward, feedback, & lateral connections;
 – Additional control structures to direct processing flows (as in modern robotics);
 – Communication of information via (a) neuronal state $s_i(t)$, (b) spike-time coding, and/or (c) higher-level representations (e.g., summary outputs of a multi-neuron ensemble);
 – Learning algorithms related to Bayesian inference & using local (esp. Hebb-type) rules;
 – Additional learning alg’ms that facilitate “fast” (one- or several-shot) learning; and
 – Algorithms that exploit more advanced aspects of brain-like temporal dynamics & architecture.
Conclusions [2]

• Special-purpose NN HW vs. NN SW on general-purpose (super)computers?
 – What figures of merit?
 • Cost, speed
 • Compactness and low-power: for portable app’s
 • Ease of algorithm development / modifications
 – General-purpose computer + NN HW accelerator
 – Note: GPGPUs (“general-purpose” graphics processing units) may become an important player in NN simulation!

• At device and circuit level: Opportunities for implementing core NN operations more efficiently using novel device properties and “weight” modification techniques.

• Some “NN HW” may have broader (non-NN) applications
 – E.g., to other AER applications
Conclusions [3]

• Our understanding of the brain’s “computational style” is evolving
 – Leading to new NN algorithms, and new ideas as to organizing principles for biological brains and NNs
 • An old & fruitful example – the “infomax” principle (R Linsker, IEEE Computer, March 1988). Important but unexplained experimental vision results (from 1960) → a NN model → an optimization principle → {application to other neuroscience problems; new NN learning rules; and a new method for “blind separation” of signal mixtures into their independent components}
 • Another example: STDP learning rules.

• It is overly simplistic to try to compare the brain’s “computational power” to a computer’s raw speed (as in: “human brain ~ 1E14 connections * 1E3 ops/conn/sec ~ 100 petaFLOPS”)
 – If we don’t understand the brain’s organizing principles well enough, the raw performance won’t yield a “brain-like” computer.
 – The power lies in inferring correct organizing principles, and discovering the brain’s “algorithms” – or, better, inventing new algorithms that capture the essential features of brain “computation” and are well-suited to the HW that will run them.
 – For a given set of tasks & algorithms (& their implementation), we can then assess how much computing power is needed to execute them, and what level of brain functioning they correspond to!