12A.1 Unsteady-state heat conduction in an iron sphere

a. The thermal diffusivity of the sphere is given by Eq. 9.1-8:

\[
\alpha = \frac{k}{\rho \hat{C}_p} = \frac{30}{(436)(0.12)} = 0.573 \text{ ft}^2 / \text{hr}
\]

b. The center temperature is to be 128°F; hence

\[
\frac{T_{\text{ctr}} - T_0}{T_1 - T_0} = \frac{128 - 70}{270 - 70} = 0.29
\]

Then, from Fig. 12.1-3, \(\alpha t/R^2 = 0.1\), and

\[
t = 0.1 \left(\frac{R^2}{\alpha} \right) = 0.1 \left(\frac{1/24}{0.573} \right) = 3.03 \times 10^{-4} \text{ hrs} = 1.1 \text{ s}
\]

c. By equating the dimensionless times, we get

\[
\frac{\alpha_1 t_1}{R_1^2} = \frac{\alpha_2 t_2}{R_2^2}
\]

or

\[
\alpha_2 = \alpha_1 \left(\frac{t_1}{t_2} \right) = 0.573 \left(\frac{1}{2} \right) = 0.287
\]

d. The partial differential equation from which Fig. 12.1-3 was constructed is

\[
\frac{\partial T}{\partial t} = \alpha \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial T}{\partial r} \right)
\]
12A.2 Comparison of the two slab solutions for short times

According to Figure 12.1-1, at $\alpha t/b^2 = 0.01$ and $y/b = 0.9$

$$\frac{T - T_0}{T_1 - T_0} \approx 0.46$$

where y is the distance from the mid-plane of the slab.

Next we use Fig. 4.1-1, which can be interpreted as a plot of $(T - T_0)/(T_1 - T_0)$ vs $y'/\sqrt{4\alpha t}$, where $y' = b - y$ is the distance from the wall. We then get

$$\frac{y'}{\sqrt{4\alpha t}} = \frac{1}{2} \frac{(1 - 0.9)}{\sqrt{\alpha t/b^2}} = \frac{1}{2}$$

Then from Fig. 4.1-1 we find

$$\frac{T - T_0}{T_1 - T_0} \approx 0.48$$

Hence the use of the combination of variables solution introduces an error of about 4%. Smaller errors occur at smaller values of the dimensionless time $\alpha t/b^2$.
12B.4 Heat transfer from a wall to a falling film (short contact time limit)

a. From Eq. 2.2-18, we get

\[v_z = v_{z,\text{max}} \left[1 - \left(\frac{x}{\delta} \right)^2 \right] = v_{z,\text{max}} \left[1 - \left(1 - \left(\frac{y}{\delta} \right) \right)^2 \right] \]

\[= v_{z,\text{max}} \left[1 - 1 + 2 \left(\frac{y}{\delta} \right) + \left(\frac{y}{\delta} \right)^2 \right] \rightarrow 2v_{z,\text{max}} \left(\frac{y}{\delta} \right) \]

this last expression is good in the vicinity of the wall, where the quadratic term can be neglected.

b. Equation 12B.4-2 presupposes that the heat conduction in the \(z \) direction can be neglected relative to the heat convection in the \(z \) direction. In addition, laminar, nonrippling flow is assumed.

c. The fictitious boundary condition at an infinite distance from the wall may be used instead of the boundary condition at a distance \(\delta \) from the wall, since for short contact times the fluid is heated over a very short distance \(y \). Therefore the infinite boundary condition can be expected to be adequate.

d. Equation 12B.4-3 can be written as \(y \left(\frac{\partial \Theta}{\partial z} \right) = \beta \left(\frac{\partial^2 \Theta}{\partial y^2} \right) \).

Next we have to convert the derivatives to derivatives with respect to the dimensionless variable \(\eta \):

\[\frac{\partial \Theta}{\partial z} = \frac{d\Theta}{d\eta} \frac{\partial \eta}{\partial z} = \frac{d\Theta}{d\eta} \frac{y}{\sqrt[3]{9\beta z}} \left(-\frac{1}{3z} \right) \]

\[\frac{\partial \Theta}{\partial y} = \frac{d\Theta}{d\eta} \frac{\partial \eta}{\partial y} = \frac{d\Theta}{d\eta} \frac{1}{\sqrt[3]{9\beta z}} \frac{\partial \eta}{\partial y} = \frac{d^2\Theta}{d\eta^2} \left(\frac{1}{\sqrt[3]{9\beta z}} \right)^2 \]

When these relations are substituted into the partial differential equation and use is made of the defining equation for \(\eta \) we get Eq. 12B.4-7.

e. When we set \(d\Theta/d\eta = p \), we get \(dp/d\eta + 3\eta^2 p = 0 \), which is first-order and separable, and the solution is given in the book. The next integration gives

\[\Theta = C_1 \int_0^\eta e^{-\eta^3} \, d\eta + C_2 \]