
 5-1

CSE 30321
Computer Architecture I

Lecture 16 - Multi Cycle Machines

Michael Niemier

Department of Computer Science and Engineering

 5-2

Execution Sequence Summary

Step name

Action for R-type

instructions

Action for memory-reference

instructions

Action for

branches

Action for

jumps

Instruction fetch IR = Mem[PC],

PC = PC + 4

Instruction A =RF [IR[25:21]],

decode/register fetch B = RF [IR[20:16]],

ALUOut = PC + (sign-extend (IR[1:-0]) << 2)

Execution, address ALUOut = A op B ALUOut = A + sign-extend if (A =B) then PC = PC [31:28] |

computation, branch/ (IR[15:0]) PC = ALUOut (IR[25:0]<<2)

jump completion

Memory access or R-type RF [IR[15:11]] = Load: MDR = Mem[ALUOut]

completion ALUOut or

Store: Mem[ALUOut]= B

Memory read completion Load: RF[IR[20:16]] = MDR

 5-3

Control Signals

! PC: PCWrite,

PCWriteCond,

PCSource

! Memory: IorD,

MemRead,

MemWrite

! Instruction

Register:

IRWrite

! Register File:

RegWrite,

MemtoReg,

RegDst

! ALU:

ALUSrcA,

ALUSrcB,

ALUOp,

 5-4

Finite State Diagram

t

i

PCWrite
PCSource = 10

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01
PCWrteCond

PCSource = 01

ALUSrcA =1
ALUSrcB = 00
ALUOp= 10

RegDst = 1
RegWrite

MemtoReg = 0

MemWrite
IorD = 1

MemRead
IorD = 1

RegDst=0
RegWrite

MemtoReg=1

ALUSrcA= 0
ALUSrcB = 11
ALUOp = 00

MemRead
ALUSrcA = 0

IorD = 0
IRWrite

ALUSrcB = 01
ALUOp = 00

PCWrte
PCSource = 00

Instruction fetch
Instruction decode/

register fetc h

Jump
completon

Branch
completion

Executon

R-type completon

Wrte-back step

 (Op = '
LW') or

 (Op = 'SW') (Op =
R-typ

e)

(O
p

= '
BE

Q'
)

(O
p

=
J'
)

 (

4

0
1

986

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

Memory address
computation

Memory
access

O
p = 'SW

')

(O
p

=
'L

W
')

2

Memory
access

7
53

Start

 5-5

Microprogramming as an Alternative

! Control unit can easily reach thousands of states with

hundreds of different sequences.

" A large set of instructions and/or instruction classes (x86)

" Different implementations with different cycles per

instruction

! Flexibility may be needed in the early design phase

! How about borrowing the ideas from what we just

learned?

" Treat the set of control signals to be asserted in a state as

an instruction to be executed (referred to as

microinstructions)

" Treat state transitions as an instruction sequence

" Define formats (mnemonics)

" Specify control signals symbolically using microinstructions

 5-6

Microprogramming as an Alternative (cont’d)

! Each state => one

microinstruction

! State transitions =>

microinstruction sequencing

! Setting up control signals =>

executing microinstructions

! To specify control, we just

need to write microprograms

(or microcode)

MicroinstS0

MicroinstS1

Microinst

Microinst

S2

S3

N<0

N>=0

 5-7

Microinstruction Format (1)
! Group the control signals according to how they are used

! For the 5-cycle MIPS organization:

" Memory: IorD, MemRead, MemWrite

" Instruction Register: IRWrite

" PC: PCWrite, PCWriteCond, PCSource

" Register File: RegWrite, MemtoReg, RegDst

" ALU: ALUSrcA, ALUSrcB, ALUOp

! Group them as follows:

" Memory (for both Memory and Instruction Register)

" PC write control (for PC)

" Register control (for Register File)

" ALU control

" SRC1

" SRC2

" Sequencing

! (for ALU)

 5-8

Microinstruction Format (2)

Field name Value Signals active Comment

Add ALUOp = 00 Cause the ALU to add.

ALU control Sub ALUOp = 01 Cause the ALU to subtract; this implements

the compare for branches.

Func code ALUOp = 10 Use the instruction's func to determine ALU control.

SRC1 PC ALUSrcA = 0 Use the PC as the first ALU input.

A ALUSrcA = 1 Register A is the first ALU input.

B ALUSrcB= 00 Register B is the second ALU input.

SRC2 4 ALUSrc = 01 Use 4 as the second ALU input.

Extend ALUSrcB= 10 Use output of the sign ext unit as the 2nd ALU input.

Extshft ALUSrcB= 11 Use output of shift-by-two unit as the 2nd ALU input.

Read Read two registers using the rs and rt fields of the IR

and putting the data into registers A and B.

Write

ALU

RegWrite, Write a register using the rd field of the IR as the

register number and the contents of the ALUOut

as the data.
Register RegDst = 1,

control MemtoReg=0

Write

MDR

RegWrite, Write a register using the rt field of the IR as the

register number and the contents of the MDR as

the data.
RegDst = 0,

MemtoReg=1

 5-9

Microinstruction Format (3)

Field name Value Signals active Comment

Read PC MemRead, Read memory using the PC as address;

write result into IR (and the MDR).lorD = 0

Memory Read ALU MemRead, Read memory using the ALUOut as address;

write result into MDR.lorD = 1

Write ALU MemWrite, Write memory using the ALUOut as address,

contents of B as the data.lorD = 1

ALU PCSource 00 Write the output of the ALU into the PC.

PCWrite

PC write

control

ALUOut-

cond

PCSource=01, If the Zero output of the ALU is active, write the PC

with the contents of the register ALUOut.PCWriteCond

jump

address

PCSource=10, Write the PC with the jump address from

 the instruction.PCWrite

Seq AddrCtl = 11 Choose the next microinstruction sequentially.

Sequencing Fetch AddrCtl = 00 Go to the first microinstruction to a new instruction.

Dispatch 1 AddrCtl = 01 Dispatch using the ROM 1.

Dispatch 2 AddrCtl = 10 Dispatch using the ROM 2.

 5-10

Sample Microinstruction (1)

! IFetch: IR = Mem[PC], PC = PC+4

Microinstruction:

ALUctrl SRC1 SRC2 RegCtrl Memory PCWrite

Sequen

PCWrite: 1

PCWriteCond:

IorD: 0

MemRead: 1

IRWrite: 1

MemtoReg:

PCSource:

ALUOp: 00

ALUSrcB: 01

ALUSrcA: 0

RegWrite:

RegDst:

AddrCtrl: 11

 Add PC 4 -- ReadPC ALU Seq

 5-11

Sample Microinstruction (2)

! Decode: A= RF[IR[25:21]], B= RF[IR[20:16]],

 ALUOut = PC + Sign_Ext(IR[15:0]) << 2);

Add PC ExtShf Read "#$%&'

PCWrite:

PCWriteCond:

IorD:

MemRead:

IRWrite:

MemtoReg:

PCSource:

ALUOp: 00

ALUSrcB: 11

ALUSrcA: 0

RegWrite:

RegDst:

AddrCtrl: 01

Microinstruction:

ALUctrl SRC1 SRC2 RegCtrl Memory PCWrite Sequen

We’ll talk about soon.

 5-12

Sample Microinstruction (3)

! BEQ1: -> Ifetch,

if (A=B) then PC= ALUout

Microinstruction:

ALUctrl SRC1 SRC2 RegCtrl Memory PCWrite Sequen

PCWrite:

PCWriteCond: 1

IorD:

MemRead:

IRWrite:

MemtoReg:

PCSource: 01

ALUOp: 01

ALUSrcB: 00

ALUSrcA: 1

RegWrite:

RegDst:

AddrCtrl: 00

 Sub A B ALUout-cond Fetch

 5-13

Put It All Together

• What would a microassembler do?

Label

ALU

control SRC1 SRC2

Register

control Memory

PCWrite

control Sequencing

Fetch Add PC 4 Read PC ALU Seq

Add PC Extshft Read Dispatch 1

Mem1 Add A Extend Dispatch 2

LW2 Read ALU Seq

Write MDR Fetch

SW2 Write ALU Fetch

Rformat1 Func code A B Seq

Write ALU Fetch

BEQ1 Sub A B ALUOut-cond Fetch

JUMP1 Jump address Fetch

 5-14

Control Implementations

• The big picture:

• How to implement the control logic?

– Random logic, memory-baed, mux-based, ...

PCWrite

PCWriteCond
IorD

MemtoReg

PCSource

ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst

O
p5

O
p4

O
p3

O
p2

O
p1

O
p0

IRWrite

MemRead

MemWrite

NS3
NS2
NS1
NS0

S
3

S
2

S
1

S
0

State register

()*+,)-&.)/#0

12+%2+

3*%2+

3*$+,20+#)*&45/#$+5,
1%0)65&7#5-6

 5-15

Memory-Based Implementation

! Important factors to consider when using a memory:

" How many address lines?

6 bits for opcode, 4 bits for state = 10 address lines

" How many output bits?

16 datapath-control outputs, 4 state bits = 20 outputs

" So the ROM size is 210 x 20 = 20K bits

! How many entries (or addresses) contain distinct

values?

" many outputs are the same or don’t cares so can be

rather wasteful

 5-16

Alternatives for Control Implementation

! Use hardwired random logic

" Efficient especially if you have a good CAD tool (not

Xilins, ok)

" Not as flexible as memory-based

! Can we do better?

" Use an explicit sequencer so avoid storing unused

entries

 5-17

Explicit Sequencer

8+9+5

:.;&&),&41<

12+%2+

3*%2+

:(=,#+5

:(=,#+5()*6
3),"

<5>4596
<5>=,#+5
34=,#+5

<5>+)45/

:(8)2,05

;.?1%

;.?8,0@
;.?8,0;

45/#$=,#+5

45/#$"$+

3*$+,20+#)*&45/#$+5,&1:&A#5-6

'

;665,

;66,5$$&85-50+

;66,(+,-

! How many

input lines?

" 4

! How many

output lines?

" No. of

control outs

+ No. of

AddrCtrl

 5-18

Address Select Logic

Dispatch ROM 1

Op Opcode name Value

000000 R-format 0110

000010 jmp 1001

000100 beq 1000

100011 lw 0010

101011 sw 0010

Dispatch ROM 2

Op Opcode name Value

100011 lw 0011

101011 sw 0101

O
p

1

3 2 1 0

0

Instruction Reg

OP field

Adder

PLA or ROM

State

Addr Ctrl

Addr Select Logic

Dispatch ROM 1Dispatch ROM 2

MUX

 5-19

Address Control Action

State No. Address-control action Value of AddrCtl

0 Use incremented state 3

1 Use dispatch ROM 1 1

2 Use dispatch ROM 2 2

3 Use incremented state 3

4 Replace state number by 0 0

5 Replace state number by 0 0

6 Use incremented state 3

7 Replace state number by 0 0

8 Replace state number by 0 0

9 Replace state number by 0 0

 5-20

The Complete Design

• How to implement the control store? PLA, ROM?

PCWrite
PCWriteCond
IorD

MemtoReg
PCSource
ALUOp
ALUSrcB
ALUSrcA
RegWrite

AddrCtl

Outputs

IRWrite

MemRead
MemWrite

RegDst

Control unit

Input

Microprogram counter

Address select logic

O
p
[5
–

0]

Adder

1

Datapath

Instruction register
opcode field

()*+,)-&8+),5

 5-21

Microcode: Trade-offs
! Distinction between specification and implementation is

sometimes blurred

! Specification Advantages:

" Easy to design and write

" Design architecture and microcode in parallel

! Implementation (off-chip ROM) Advantages

" Easy to change since values are in memory

" Can emulate other architectures

" Can make use of internal registers

! Implementation disadvantages, SLOWER now that:

" Control is implemented on same chip as processor

" ROM is no longer faster than RAM

" No need to go back and make changes

 5-22

Exceptions

! Exceptions: unexpected events from within the processor

" arithmetic overflow

" undefined instruction

" switching from user program to OS

! Interrupts: unexpected events from outside of the processor

" I/O request

! Consequence: alter the normal flow of instruction execution

! Key issues:

" detection

" action

#save the address of the offending instruction in the EPC

transfer control to OS at some specified address

! Exception type indication:

" status register

" interrupt vector

 5-23

Exception Handling

! Types of exceptions considered:

" undefined instruction

" arithmetic overflow

! MIPS implementation:

" EPC: 32-bit register, EPCWrite

" Cause register: 32-bit register, CauseWrite

undefined instruction: Cause register = 0

arithmetic overflow: Cause register = 1

" IntCause: 1 bit control

" Exception Address: C0000000 (hex)

! Detection:

" undefined instruction: op value with no next state

" arithmetic overflow: overflow from ALU

! Action:

" set EPC and Cause register

" set PC to Exception Address

 5-24

Datapath with Exception Handling

 5-25

FSM with Exception Handling

