p Execution Sequence Summary iNp

C S E 3 O 3 2 1 Action for R-type Action for memory-reference Action for I Action for
. Step name instructions instructions branches jumps
Computer Architecture I etraton eeh R = VenipCl,
PC=PC +4
Instruction A =RF [IR[25:21]],
decode/register fetch B = RF [IR[20:16]],
- : AL =P ign- IR[1:- 2
Lecture 16 - Multi Cycle Machines e R AU
Execution, address ALUOut=AopB ALUOut = A + sign-extend if (A=B) then | PC=PC [31:28] |
computation, branch/ (IR[15:0]) PC = ALUOut (IR[25:0]<<2)
Michael Niemier jump completion
Department of Computer Science and Engineering Memory access or Rtype| RF [IR[15:11]]= | Load: MDR = Mem[ALUOu]
completion ALUOut or
Store: Mem[ALUOut]= B
Memory read completion Load: RF[IR[20:16]] = MDR
51 52

Control Signals N Finite State Diagram N

Q PC: PCWrite,
:'C\'/r‘u(?:rj:? PCSource PCWriteCond,
=] Oupuis :tj"“s ‘ PCSource
MemRead | Control f——— a Memory: lorD
MemWrie Eani ’
Moroog | (0B, | PegWite e _]‘\ MemRead,
i g - ‘ RegDst s e ?‘.! MemWrite
rcal = (@)= |5].% O Instruction
! mickon N 5 Register:
| ton IRWrite
)] U Register File:
RegWrite,
MemtoReg,
RegDst
O ALU:
ALUSTIcA,
e\ | = ALUSrcB,
e i
e F — ALUOp,

53 5-4

L

Microprogramming as an Alternative

U Control unit can easily reach thousands of states with
hundreds of different sequences.

B A large set of instructions and/or instruction classes (x86)

B Different implementations with different cycles per
instruction

U Flexibility may be needed in the early design phase
U How about borrowing the ideas from what we just
learned?

H Treat the set of control signals to be asserted in a state as
an instruction to be executed (referred to as
microinstructions)

W Treat state transitions as an instruction sequence
B Define formats (mnemonics)
B Specify control signals symbolically using microinstructions

55

Microinstruction Format (1) N

O Group the control signals according to how they are used
U For the 5-cycle MIPS organization:
® Memory: lorD, MemRead, MemWrite
B Instruction Register: IRWrite
m PC: PCWrite, PCWriteCond, PCSource
B Register File: RegWrite, MemtoReg, RegDst
W ALU: ALUSrcA, ALUSrcB, ALUOp
O Group them as follows:
B Memory (for both Memory and Instruction Register)
B PC write control (for PC)
B Register control (for Register File)

H ALU control
} (for ALU)

B SRC1
B SRC2
B Sequencing

57

Microprogramming as an Alternative (cont'd) N

U Each state => one
microinstruction

U State transitions =>
microinstruction sequencing

U Setting up control signals =>
executing microinstructions

U To specify control, we just
need to write microprograms

(or microcode)

S0 _ Microinst >
1 C, Microinst

N<0

s C Mieroinst >

N>=0

3 C_Microinst

Microinstruction Format (2)

5-6

L

Field name Value |Signals active Comment
Add ALUOp = 00 | Cause the ALU to add.
ALU control| Sub ALUOp =01 | Cause the ALU to subtract; this implements
the compare for branches.
Func code/ ALUOp = 10 | Use the instruction's func to determine ALU control.
SRC1 PC ALUSrcA = 0| Use the PC as the first ALU input.
A ALUSrcA = 1| Register A is the first ALU input.
B ALUSrcB= 00 Register B is the second ALU input.
SRC2 4 ALUSrc = 01 | Use 4 as the second ALU input.
Extend |ALUSrcB= 10 Use output of the sign ext unit as the 2nd ALU input.
Extshft |ALUSrcB= 11 Use output of shift-by-two unit as the 2nd ALU input.
Read Read two registers using the rs and rt fields of the IR
and putting the data into registers A and B.
Write RegWrite, Write a register using the rd field of the IR as the
Register ALU RegDst = 1, | register number and the contents of the ALUOut
control MemtoReg=0 as the data.
Write RegWrite, Write a register using the rt field of the IR as the
MDR RegDst = 0, register number and the contents of the MDR as
MemtoReg=1 the data.

5-8

Microinstruction Format (3)

L

Field name| Value Signals active Comment
Read PC | MemRead, Read memory using the PC as address;
lorD =0 write result into IR (and the MDR).
Memory Read ALU | MemRead, Read memory using the ALUOut as address;
lorD =1 write result into MDR.
Write ALU | MemWrite, Write memory using the ALUOut as address,
lorD =1 contents of B as the data.
ALU PCSource 00| Write the output of the ALU into the PC.
PCWrite
PC write ALUOut- | PCSource=01, If the Zero output of the ALU is active, write the PC
control cond PCWriteCond With the contents of the register ALUOut.
jump PCSource=10, Write the PC with the jump address from
address | pcwrite the instruction.
Seq AddrCtl = 11 | Choose the next microinstruction sequentially.
Sequencing Fetch AddrCtl = 00 | Go to the first microinstruction to a new instruction.
Dispatch 1| AddrCtl = 01 | Dispatch using the ROM 1.
Dispatch 2| AddrCtl = 10 | Dispatch using the ROM 2.

59

L

Sample Microinstruction (2)

0 Decode: A= RF[IR[25:21]], B= RF[IR[20:16]],
ALUOut = PC + Sign_Ext(IR[15:0]) << 2);

PCWrite:
PCWriteCond:
lorD:
MemRead:
IRWrite:
MemtoReg: Add | PC ExtShf
PCSource:
ALUOp: 00
ALUSrcB: 11
ALUSTrcA: 0
RegWrite:
RegDst:
AddrCtrl: 01

Microinstruction:

ALUctrl| SRC1| SRC2| RegCtrl Memory|PCWrite|Sequen
Read Disp 1

We’ll talk about soon.

5-11

Sample Microinstruction (1)

U IFetch: IR = Mem[PC], PC = PC+4

PCWrite: 1

PCWriteCond: o _

lorD: 0 Microinstruction:

mm:::?d' 11 ALUCHSRC[SRC2[RegCir[Mermory PCWiite
MemtoReg: “Add | Pc| 4 | - |ReadPd ALU | Seq
PCSource:

ALUOp: 00

ALUSrcB: 01
ALUSTrcA: 0
RegWrite:
RegDst:
AddrCtrl: 11

5-10

Sample Microinstruction (3)

O BEQ1: -> Ifetch,
if (A=B) then PC= ALUout

PCWrite:
PCWriteCond: 1

lorD: Microinstruction:

MemRead:

IRWrite: ALUctrl|SRC1|SRC2|RegCtrl| Memory PCWrite Sequen

MemtoReg: Sub A B ALUout-cond| Fetch

PCSource: 01
ALUOp: 01
ALUSrcB: 00
ALUSTrcA: 1
RegWrite:
RegDst:
AddrCitrl: 00

5-12

Put It All Together

L

ALU Register PCWrite
Label control | SRC1| SRC2 | control Memory control Sequencing |
Fetch Add PC 4 Read PC_|ALU Seq
Add PC Extshft|Read Dispatch 1
Mem1 Add A Extend Dispatch 2
LW2 Read ALU Seq
Write MDR Fetch
SW2 Write ALU Fetch
Rformat1 |Func code [A B Seq
Write ALU Fetch
BEQ1 Sub A B ALUOut-cond |Fetch
JUMP1 Jump address|Fetch

« What would a microassembler do?

Memory-Based Implementation

5-13

L

QO Important factors to consider when using a memory:
H How many address lines?

B How many output bits?

B So the ROM size is

U How many entries (or addresses) contain distinct
values?

B many outputs are the same or don’t cares so can be

rather wasteful

5-15

Control Implementations

L

* The big picture:

Control Logic

Output

Input

<

PCWtite
PCWiteCond
MemRead
MemWhite
IRWite

MemitoReg

PCSource

ALUSrcB
ALUSIcA
RegWite
RegDst

NS2

NS1

Opcode Field

EEEEEREEEE
Instruction Register

* How to implement the control logic?

— Random logic, memory-baed, mux-based, ...

Alternatives for Control Implementation

ALUOp

5-14

L

U Use hardwired random logic

B Efficient especially if you have a good CAD tool (not

Xilins, ok)
B Not as flexible as memory-based
4 Can we do better?

B Use an explicit sequencer so avoid storing unused

entries

5-16

Explicit Sequencer N Address Select Logic N

PLA or ROM
H How many PLA or ROM E—
input lines? D
- I—Y it State
Output J :\;’I‘W’i‘eR Adder e e .
0 How many PCSous : MUX AddriCtrl
. L ALUOp 1]
output lines? Alusks : !
ALU_SrcP_\ : :
= No. of input | — | ,
control outs 1 {| Dispatch ROM 2 | [Dispatch ROM 1 !
el ! Addr Select Lodi
| r seliec 0gJiC
AddrCtrl - AddrCtr Dispatch ROMT | i
Op Opcode name | Value Instruction Reg
OP field
000000 R-format
I .
000010 Jmp Dispatch ROM 2
Instruction Register OP field 000100 Peq Op Opcode name | Value
100011 1w 100011 1w
101011 Sw 101011 Sw
5-17 5-18
Address Control Action N The Complete Design N
Control St Detapath
State No. Address-control action Value of AddrCtl orrorstore
0 Use incremented state 3
1 Use dispatch ROM 1 1
2 Use dispatch ROM 2 2
3 Use incremented state 3
4 Replace state number by 0 0
5 Replace state number by 0 0 I:l
6 Use incremented state 3 v
7 Replace state number by 0 0 I:l
8 Replace state number by 0 0
9 Replace state number by 0 0
Instruction register
opcode field
L L

5-19 5-20

Microcode: Trade-offs N
U Distinction between specification and implementation is
sometimes blurred
U Specification Advantages:
B Easy to design and write
B Design architecture and microcode in parallel
U Implementation (off-chip ROM) Advantages
B Easy to change since values are in memory

B Can emulate other architectures
B Can make use of internal registers
U Implementation disadvantages, SLOWER now that:
B Control is implemented on same chip as processor
B ROM is no longer faster than RAM
B No need to go back and make changes

5-21

Exception Handling N

U Types of exceptions considered:
B undefined instruction
H arithmetic overflow
U MIPS implementation:
B EPC: 32-bit register, EPCWrite
B Cause register: 32-bit register, CauseWrite
» undefined instruction: Cause register =0
» arithmetic overflow: Cause register = 1
B IntCause: 1 bit control
B Exception Address: C0000000 (hex)
U Detection:
B undefined instruction: op value with no next state
H arithmetic overflow: overflow from ALU
U Action:
B set EPC and Cause register
H set PC to Exception Address

5-23

Exceptions N

U Exceptions: unexpected events from_within the processor
B arithmetic overflow
B undefined instruction
B switching from user program to OS
U Interrupts: unexpected events from outside of the processor
® /O request
U Consequence: alter the normal flow of instruction execution

U Key issues:
B detection

H action
> save the address of the offending instruction in the EPC

» transfer control to OS at some specified address
U Exception type indication:
B status register
B interrupt vector

5-22

h with i dli
Datapath with Exception Handling
- Write
J PCWriteCond ,/ e
4 powite 1 it
.—"“”‘e;” Outputs ‘, PCSource
X - T PCs
lorD | | oo
MemRead | Control
PP—— ALUSrcB
Memwrite | op ["ALUSIcA
\
MemtoReg |\ 50 |/ Regwrite
IRWrite \ /_—Re r— " 0
\. — mp M
i address [7|1
- Shift ul
[Instruction [25-0] 2 |2 2 ll=1-0 rz x
Instruction T
) [31-26] PC31-23] 80000180 3/
PC M " Read Y -
u Address [25-21] register 1 poy '3
X
U m Instruction Read data 1 ‘A 1"
Mee'::;:ta [l [20-16] D register 2
Instruction _{ M L _ Registers ALUOUt
[15-0] | [Instruction| u Write Read
| Write | os=t1) | x| register g0 E]- 0
data u 1) 4+ 1M
register Write u
data =2 x
Instruction M 3/ 0—»
[15-0] ¥ - yll
: / \ ‘
emory | 1| 16 | | 32 (VT
data | sign (Shift | \
register | extend | left 2 \ control J
\ | \7 __/
Instruction [5-0] [—

524

FSM with Exception Handling

1 Instruction fetch

Instruction decode/
register fetch

7 MemReas ™\
o/ ALUSrA=0
/ oD =0
IRWrite
ALUSrcB =01
| ALUCp=00

Start ———

_ PCWite
_PCSource =00/

=)

(©p

Memory address
computation

[aLusra=1" / 0\
ALUSrcB =10 | | ALuseB =00 | | \
00/ \ ALUOp=10 | |
N A N S ‘
H "117)
o | Memory Memory
O § access \ acosss Retype completion
BN 5 N T N\ "

[MemWrite
loD =

10/ IntCause
/" CauseWrite
ALUSrcA =
ALUSreB = 0
ALUOp =01
EPCWrite
__PCWrite
_PCSource = 11

5-25

