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Lecture 21
Pipelining Hazards, Branches, Modern
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The hazards of pipelining
• Pipeline hazards prevent next instruction from 

executing during designated clock cycle

• There are 3 classes of hazards:

– Structural Hazards:

• Arise from resource conflicts 

• HW cannot support all possible combinations of instructions

– Data Hazards:

• Occur when given instruction depends on data from an 
instruction ahead of it in pipeline

– Control Hazards:

• Result from branch, other instructions that change flow of 
program (i.e. change PC)
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How do we deal with hazards?
• Often, pipeline must be stalled

• Stalling pipeline usually lets some instruction(s) in 

pipeline proceed, another/others wait for data, 

resource, etc.

• A note on terminology:

– If we say an instruction was “issued later than 
instruction x”, we mean that it was issued after 
instruction x and is not as far along in the pipeline

– If we say an instruction was “issued earlier than 
instruction x”, we mean that it was issued before 
instruction x and is further along in the pipeline
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Stalls and performance
• Stalls impede progress of a pipeline and result in 

deviation from 1 instruction executing/clock cycle

• Pipelining can be viewed to:

– Decrease CPI or clock cycle time for instruction

– Let’s see what affect stalls have on CPI…

• CPI pipelined =

– Ideal CPI + Pipeline stall cycles per instruction

– 1 + Pipeline stall cycles per instruction

• Ignoring overhead and assuming stages are balanced:

(Recall combinational
logic slide)
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Structural hazards
• 1 way to avoid structural hazards is to duplicate 

resources

– i.e.:  An ALU to perform an arithmetic operation and 
an adder to increment PC

• If not all possible combinations of instructions can be 

executed, structural hazards occur

• Most common instances of structural hazards:

– When a functional unit not fully pipelined

– When some resource not duplicated enough

• Pipelines stall result of hazards, CPI increased from 

the usual “1”
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An example of a structural hazard
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What’s the problem here?
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How is it resolved?

Time
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Bubble Bubble Bubble Bubble Bubble

Pipeline generally stalled by 

inserting a “bubble” or NOP

A
LURegMem DM Reg

A
LURegMem DM Reg

A
LURegMem DM Reg

1 2 3 4 5 6 7 8

In 8, nothing
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Or alternatively…

Inst. # 1 2 3 4 5 6 7 8 9 10

LOAD IF ID EX MEM WB

Inst. i+1 IF ID EX MEM WB

Inst. i+2 IF ID EX MEM WB

Inst. i+3 stall IF ID EX MEM WB

Inst. i+4 IF ID EX MEM WB

Inst. i+5 IF ID EX MEM

Inst. i+6 IF ID EX

Clock Number

• LOAD instruction “steals” an instruction fetch cycle 

which will cause the pipeline to stall.

• Thus, no instruction completes on clock cycle 8
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Remember the common case!
• All things being equal, a machine without structural 

hazards will always have a lower CPI.

• But, in some cases it may be better to allow them 

than to eliminate them.

• These are situations a computer architect might have 

to consider:

– Is pipelining functional units or duplicating them costly 
in terms of HW?

– Does structural hazard occur often?

– What’s the common case???
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Data hazards
• These exist because of pipelining

• Why do they exist???

– Pipelining changes order or read/write accesses to 
operands

– Order differs from order seen by sequentially executing 
instructions on unpipelined machine

• Consider this example:
– ADD R1, R2, R3

– SUB R4, R1, R5

– AND R6, R1, R7

– OR R8, R1, R9

– XOR R10, R1, R11

All instructions after ADD 

use result of ADD 

ADD writes the register in 

WB but SUB needs it in ID.

This is a data hazard
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Illustrating a data hazard
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b/c register not written until after those 3 read it.
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Forwarding

• Problem illustrated on previous slide can actually be solved 
relatively easily – with forwarding

• In this example, result of the ADD instruction not really 
needed until after ADD actually produces it

• Can we move the result from EX/MEM register to the beginning 
of ALU (where SUB needs it)?

– Yes!  Hence this slide!

• Generally speaking:

– Forwarding occurs when a result is passed directly to functional 
unit that requires it.

– Result goes from output of one unit to input of another
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When can we forward?
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SUB gets info. 
from EX/MEM 
pipe register

AND gets info. 
from MEM/WB 
pipe register

OR gets info. by 
forwarding from
register file

Rule of thumb: If line goes “forward” you can do forwarding. 
  If its drawn backward, it’s physically impossible.
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HW Change for Forwarding
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Forwarding:  It doesn’t always work
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Can’t get data to subtract instruction unless...

Load has a latency that
forwarding can’t solve.

Pipeline must stall until 
hazard cleared (starting 
with instruction that 
wants to use data until 
source produces it).
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The solution pictorially
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Data hazard specifics
• There are actually 3 different kinds of data hazards!

– Read After Write (RAW)

– Write After Write (WAW)

– Write After Read (WAR)

• We’ll discuss/illustrate each on forthcoming slides.  
However, 1st a note on convention.
– Discussion of hazards will use generic instructions i & j.

– i is always issued before j.  

– Thus, i will always be further along in pipeline than j.

• With an in-order issue/in-order completion machine, 
we’re not as concerned with WAW, WAR
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Read after write (RAW) hazards
• With RAW hazard, instruction j tries to read a 

source operand before instruction i writes it.

• Thus, j would incorrectly receive an old or incorrect 

value

• Graphically/Example:

• Can use stalling or forwarding to resolve this hazard

… j i …

Instruction j is a
read instruction
issued after i

Instruction i is a
write instruction
issued before j

i:  ADD R1, R2, R3

j:  SUB R4, R1, R6

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 21 – Pipelining (Hazards, Branches, Modern)

Memory Data Hazards
• Seen register hazards, can also have memory hazards

– RAW:     

• store R1, 0(SP)     

• load R4, 0(SP)   

– In simple pipeline, memory hazards are easy

• In order, one at a time, read & write in same stage

– In general though, more difficult than register hazards

19

1 2 3 4 5 6

Store R1, 0(SP) F D EX M WB

Load R1, 0(SP) F D EX M WB
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Data hazards and the compiler
• Compiler should be able to help eliminate some stalls 

caused by data hazards

• i.e. compiler could not generate a LOAD instruction 

that is immediately followed by instruction that uses 

result of LOAD’s destination register.

• Technique is called “pipeline/instruction scheduling”
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Example time!

21
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Branch/Control Hazards
• So far, we’ve limited discussion of hazards to:

– Arithmetic/logic operations

– Data transfers

• Also need to consider hazards involving branches:
– Example:

• 40: beq $1, $3, $28              # ($28 gives address 72)

• 44: and $12, $2, $5

• 48: or $13, $6, $2

• 52: add $14, $2, $2

• 72: lw $4, 50($7)

• How long will it take before the branch decision takes 
effect?
– What happens in the meantime?
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Branch signal determined in MEM stage
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Pipeline impact on branch

• If branch condition true, must skip 44, 48, 52

– But, these have already started down the pipeline

– They will complete unless we do something about it

• How do we deal with this?

– We’ll consider 2 possibilities
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Dealing w/branch hazards:  always stall

• Branch taken

– Wait 3 cycles

– No proper instructions in the pipeline

– Same delay as without stalls (no time lost)
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Dealing w/branch hazards:  always stall
• Branch not taken

– Still must wait 3 cycles

– Time lost

– Could have spent cycles fetching and decoding next instructions
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Dealing w/branch hazards:  assume branch not taken

• On average, branches are taken ! the time

– If branch not taken…

• Continue normal processing

– Else, if branch is taken…

• Need to flush improper instruction from pipeline

• Cuts overall time for branch processing in ! 
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Flushing unwanted instructions from pipeline

• Useful to compare w/stalling pipeline:
– Simple stall:  inject bubble into pipe at ID stage only

• Change control to 0 in the ID stage
• Let “bubbles” percolate to the right

– Flushing pipe:  must change inst. In IF, ID, and EX
• IF Stage:

– Zero instruction field of IF/ID pipeline register

– Use new control signal IF.Flush

• ID Stage:
– Use existing “bubble injection” mux that zeros control for stalls

– Signal ID.Flush is ORed w/stall signal from hazard detection unit

• EX Stage:
– Add new muxes to zero EX pipeline register control lines

– Both muxes controlled by single EX.Flush signal

• Control determines when to flush:
– Depends on Opcode and value of branch condition
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Assume “branch not taken”…and branch is 
not taken…

• Execution proceeds normally – no penalty
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Assume “branch not taken”…and branch is 
taken…

• Bubbles injected into 3 stages during cycle 5
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Let’s quantify performance a bit more.

31
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More realistic:  Branch Prediction

32
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Branch Prediction
• Prior solutions are “ugly”

• Better (& more common):  guess in IF stage

– Technique is called “branch predicting”; needs 2 parts:
• “Predictor” to guess where/if instruction will branch (and to 

where)

• “Recovery Mechanism”:  i.e. a way to fix your mistake

– Prior strategy:
• Predictor:  always guess branch never taken

• Recovery:  flush instructions if branch taken

– Alternative:  accumulate info. in IF stage as to…
• Whether or not for any particular PC value a branch was 

taken next

• To where it is taken

• How to update with information from later stages
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A Branch Predictor
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Branch History Table
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Hazard, exception detection

36
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What about control logic?
• For MIPS integer pipeline, all data hazards can be 

checked during ID phase of pipeline

• If data hazard, instruction stalled before its issued

• Whether forwarding is needed can also be determined 
at this stage, controls signals set

• If hazard detected, control unit of pipeline must stall 
pipeline and prevent instructions in IF, ID from 
advancing

• All control information carried along in pipeline 
registers so only these fields must be changed
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Detecting Data Hazards
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Hazard Detection Logic
• Insert a bubble into pipeline if any are true:

– ID/EX.RegWrite AND
• ((ID/EX.RegDst=0 AND ID/EX.WriteRegRt=IF/ID.ReadRegRs) OR

• (ID/EX.RegDst=1 AND ID/EX.WriteRegRd=IF/ID.ReadRegRs) OR

• (ID/EX.RegDst=0 AND ID/EX.WriteRegRt=IF/ID.ReadRegRt) OR

• (ID/EX.RegDst=1 AND ID/EX.WriteRegRd=IF/ID.ReadRegRt))

– OR EX/MEM AND
• ((EX/MEM.WriteReg = IF/ID.ReadRegRs) OR

• (EX/MEM.WriteReg = IF/ID.ReadRegRt))

– OR MEM/WB.RegWrite AND
• ((MEM/WB.WriteReg = IF/ID.ReadRegRs) OR

• (MEM/WB.WriteReg = IF/ID.ReadRegRt))

Notation
ID/EX.RegDst

Pipeline
Register Field
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RAW:  Detect and Stall
• detect RAW & stall instruction at ID before register read 

– mechanics? disable PC, F/D write  

– RAW detection? compare register names 

• notation: rs1(D) = src register #1 of inst. in D stage 

• compare: rs1(D) & rs2(D) w/ rd(D/X), rd(X/M), rd(M/W) 

• stall (disable PC + F/D, clear D/X) on any match 

– RAW detection? register busy-bits 

• set for rd(D/X) when instruction passes ID 

• clear for rd(M/W) 

• stall if rs1(D) or rs2(D) are “busy” 

– (plus) low cost, simple 

– (minus) low performance (many stalls)

40
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Hazards vs. Dependencies
• dependence: fixed property of instruction stream 

– (i.e., program) 

• hazard: property of program and processor 

organization 

– implies potential for executing things in wrong order 

• potential only exists if instructions can be simultaneously 
“in-flight” 

• property of dynamic distance between instructions vs. 
pipeline depth 

• For example, can have RAW dependence with or 

without hazard 

– depends on pipeline 

41
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Exception Hazards
• 40hex:  sub $11, $2, $4

• 44hex:  and $12, $2, $5

• 48hex:  or $13, $6, $2

• 4bhex:  add $1, $2, $1  (overflow in EX stage)

• 50hex:  slt $15, $6, $7 (already in ID stage)

• 54hex:  lw $16, 50($7) (already in IF stage)

• …

• 40000040hex:  sw $25, 1000($0) exception handler

• 40000044hex:  sw $26, 1004($0)

• Need to transfer control to exception handler ASAP

– Don’t want invalid data to contaminate registers or memory

– Need to flush instructions already in the pipeline

– Start fetching instructions from 40000040hex

– Save addr. following offending instruction (50hex) in TrapPC (EPC)

– Don’t clobber $1 – use for debugging
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Flushing pipeline after exception

• Cycle 6:

– Exception detected, flush signals generated, bubbles injected

• Cycle 7

– 3 bubbles appear in ID, EX, MEM stages

– PC gets 40000040hex, TrapPC gets 50hex
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Managing exception hazards gets much worse!

• Different exception types may occur in different 

stages:

• Challenge is to associate exception with proper 
instruction:  difficult!
– Relax this requirement in non-critical cases:  imprecise 

exceptions
• Most machines use precise instructions

– Further challenge:  exceptions can happen at same time

Exception Cause Where it occurs

Undefined instruction ID

Invoking OS EX

I/O device request Flexible

Hardware malfunction Anywhere/flexible
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Wrap Up

45
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Discussion
• How does instruction set design impact pipelining?

• Does increasing the depth of pipelining always 

increase performance?
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Comparative Performance

• Throughput:  instructions per clock cycle = 1/cpi

– Pipeline has fast throughput and fast clock rate

• Latency:  inherent execution time, in cycles

– High latency for pipelining causes problems
• Increased time to resolve hazards
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A word on modern microprocessors

48
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ECE 252 / CPS 220 Lecture Notes

Dynamic Scheduling I
3© 2007 by Sorin, Roth, Hill, Wood, 

Sohi, Smith, Vijaykumar, Lipasti

Dynamic Scheduling: Motivation

• cycle4: addf stalls due to RAW hazard
• OK, fundamental problem

• also cycle4: mulf stalls due to pipeline hazard (addf stalls)
• why? mulf can’t proceed into ID because addf is there

• but that’s the only reason ! not good enough!

• why can’t we decode mulf in cycle 4 and execute it in c5?
• no fundamental reason why we can’t do this!

1 2 3 4 5 6 7 8 9 10

divf f0,f2,f4 F D E/ E/ E/ E/ W

addf f6,f0,f2 F D d* d* d* E+ E+ W

mulf f8,f2,f4 F p* p* p* D E* E* W
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Data hazard specifics
• There are actually 3 different kinds of data hazards!

– Read After Write (RAW)

– Write After Write (WAW)

– Write After Read (WAR)

• We’ll discuss/illustrate each on forthcoming slides.  
However, 1st a note on convention.
– Discussion of hazards will use generic instructions i & j.

– i is always issued before j.  

– Thus, i will always be further along in pipeline than j.

• With an in-order issue/in-order completion machine, 
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Read after write (RAW) hazards
• With RAW hazard, instruction j tries to read a 

source operand before instruction i writes it.

• Thus, j would incorrectly receive an old or incorrect 

value

• Graphically/Example:

… j i …

Instruction j is a
read instruction
issued after i

Instruction i is a
write instruction
issued before j

i:  ADD R1, R2, R3

j:  SUB R4, R1, R6
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Write after write (WAW) hazards
• With WAW hazard, instruction j tries to write an 

operand before instruction i writes it.

• The writes are performed in wrong order leaving the 

value written by earlier instruction

• Graphically/Example:

… j i …

Instruction j is a
write instruction
issued after i

Instruction i is a
write instruction
issued before j

i:  DIV F1, F2, F3

j:  SUB F1, F4, F6

(Note:  how can this happen???)
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WAW
• write-after-write (WAW) = artificial (name) dependence 

– add R1,R2,R3 
– sub R2,R4,R1 
– or R1,R6,R3 

– problem: reordering could leave wrong value in R1 

• later instruction that reads R1 would get wrong value 

– can’t happen in vanilla pipeline (reg. writes are in order) 

• another reason for making ALU ops go through MEM stage 

• can happen: multi-cycle operations (e.g., FP, cache misses) 

– artificial: using different output register for or solves

• Also a dependence on name (R1)

53
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Write after read (WAR) hazards
• With WAR hazard, instruction j tries to write an 

operand before instruction i reads it.

• Instruction i would incorrectly receive newer value of 

its operand; 

– Instead of getting old value, it could receive some 
newer, undesired value:

• Graphically/Example:

… j i …

Instruction j is a
write instruction
issued after i

Instruction i is a
read instruction
issued before j

i:  DIV F7, F1, F3

j:  SUB F1, F4, F6
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WAR
• write-after-read (WAR) = artificial (name) dependence 

– add R1, R2, R3 
– sub R2, R4, R1 
– or R1, R6, R3 

– problem: add could use wrong value for R2 
• can’t happen in vanilla pipeline (reads in ID, writes in WB) 

– can happen if: early writes (e.g., auto-increment) + late 
reads (??) 

– can happen if: out-of-order reads (e.g., out-of-order 

execution) 
– artificial: using different output register for sub solves 

• The dependence is on the name R2, but not on actual 
dataflow 
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