
University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 21 – Pipelining (Hazards, Branches, Modern) 1

Lecture 21
Pipelining Hazards, Branches, Modern

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 21 – Pipelining (Hazards, Branches, Modern) 2

The hazards of pipelining
• Pipeline hazards prevent next instruction from

executing during designated clock cycle

• There are 3 classes of hazards:

– Structural Hazards:

• Arise from resource conflicts

• HW cannot support all possible combinations of instructions

– Data Hazards:

• Occur when given instruction depends on data from an
instruction ahead of it in pipeline

– Control Hazards:

• Result from branch, other instructions that change flow of
program (i.e. change PC)

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 21 – Pipelining (Hazards, Branches, Modern) 3

How do we deal with hazards?
• Often, pipeline must be stalled

• Stalling pipeline usually lets some instruction(s) in

pipeline proceed, another/others wait for data,

resource, etc.

• A note on terminology:

– If we say an instruction was “issued later than
instruction x”, we mean that it was issued after
instruction x and is not as far along in the pipeline

– If we say an instruction was “issued earlier than
instruction x”, we mean that it was issued before
instruction x and is further along in the pipeline

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 21 – Pipelining (Hazards, Branches, Modern) 4

Stalls and performance
• Stalls impede progress of a pipeline and result in

deviation from 1 instruction executing/clock cycle

• Pipelining can be viewed to:

– Decrease CPI or clock cycle time for instruction

– Let’s see what affect stalls have on CPI…

• CPI pipelined =

– Ideal CPI + Pipeline stall cycles per instruction

– 1 + Pipeline stall cycles per instruction

• Ignoring overhead and assuming stages are balanced:

(Recall combinational
logic slide)

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 21 – Pipelining (Hazards, Branches, Modern) 5

Structural hazards
• 1 way to avoid structural hazards is to duplicate

resources

– i.e.: An ALU to perform an arithmetic operation and
an adder to increment PC

• If not all possible combinations of instructions can be

executed, structural hazards occur

• Most common instances of structural hazards:

– When a functional unit not fully pipelined

– When some resource not duplicated enough

• Pipelines stall result of hazards, CPI increased from

the usual “1”

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 21 – Pipelining (Hazards, Branches, Modern) 6

An example of a structural hazard

A
LURe

g
Mem

D
M

Re
g

A
LURe

g
Mem

D
M

Re
g

A
LURe

g
Mem

D
M

Re
g

A
LURe

g
Mem

D
M

Re
g

Time

A
LURe

g
Mem

D
M

Re
g

Load

Instruction 1

Instruction 2

Instruction 3

Instruction 4

What’s the problem here?

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 21 – Pipelining (Hazards, Branches, Modern) 7

How is it resolved?

Time

A
LURe

g
Mem

D
M

Re
g

Load

Instruction 1

Instruction 2

Stall

Instruction 3

Bubble Bubble Bubble Bubble Bubble

Pipeline generally stalled by

inserting a “bubble” or NOP

A
LURegMem DM Reg

A
LURegMem DM Reg

A
LURegMem DM Reg

1 2 3 4 5 6 7 8

In 8, nothing

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 21 – Pipelining (Hazards, Branches, Modern) 8

Or alternatively…

Inst. # 1 2 3 4 5 6 7 8 9 10

LOAD IF ID EX MEM WB

Inst. i+1 IF ID EX MEM WB

Inst. i+2 IF ID EX MEM WB

Inst. i+3 stall IF ID EX MEM WB

Inst. i+4 IF ID EX MEM WB

Inst. i+5 IF ID EX MEM

Inst. i+6 IF ID EX

Clock Number

• LOAD instruction “steals” an instruction fetch cycle

which will cause the pipeline to stall.

• Thus, no instruction completes on clock cycle 8

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 21 – Pipelining (Hazards, Branches, Modern) 9

Remember the common case!
• All things being equal, a machine without structural

hazards will always have a lower CPI.

• But, in some cases it may be better to allow them

than to eliminate them.

• These are situations a computer architect might have

to consider:

– Is pipelining functional units or duplicating them costly
in terms of HW?

– Does structural hazard occur often?

– What’s the common case???

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 21 – Pipelining (Hazards, Branches, Modern) 10

Data hazards
• These exist because of pipelining

• Why do they exist???

– Pipelining changes order or read/write accesses to
operands

– Order differs from order seen by sequentially executing
instructions on unpipelined machine

• Consider this example:
– ADD R1, R2, R3

– SUB R4, R1, R5

– AND R6, R1, R7

– OR R8, R1, R9

– XOR R10, R1, R11

All instructions after ADD

use result of ADD

ADD writes the register in

WB but SUB needs it in ID.

This is a data hazard

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 21 – Pipelining (Hazards, Branches, Modern) 11

Illustrating a data hazard

A
LURe

g
Mem

D
M

Re
g

A
LURe

g
Mem

D
M

Re
g

A
LURe

g
Mem

D
M

Re
g

Mem

Time

ADD R1, R2, R3

SUB R4, R1, R5

AND R6, R1, R7

OR R8, R1, R9

XOR R10, R1, R11

A
LURe

g
Mem

ADD instruction causes a hazard in next 3 instructions
b/c register not written until after those 3 read it.

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 21 – Pipelining (Hazards, Branches, Modern) 12

Forwarding

• Problem illustrated on previous slide can actually be solved
relatively easily – with forwarding

• In this example, result of the ADD instruction not really
needed until after ADD actually produces it

• Can we move the result from EX/MEM register to the beginning
of ALU (where SUB needs it)?

– Yes! Hence this slide!

• Generally speaking:

– Forwarding occurs when a result is passed directly to functional
unit that requires it.

– Result goes from output of one unit to input of another

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 21 – Pipelining (Hazards, Branches, Modern) 13

When can we forward?

A
LURe

g
Mem

D
M

Re
g

A
LURe

g
Mem

D
M

Re
g

A
LURe

g
Mem

D
M

Re
g

Mem

Time

ADD R1, R2, R3

SUB R4, R1, R5

AND R6, R1, R7

OR R8, R1, R9

XOR R10, R1, R11

A
LURe

g
Mem

SUB gets info.
from EX/MEM
pipe register

AND gets info.
from MEM/WB
pipe register

OR gets info. by
forwarding from
register file

Rule of thumb: If line goes “forward” you can do forwarding.
 If its drawn backward, it’s physically impossible.

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 21 – Pipelining (Hazards, Branches, Modern) 14

HW Change for Forwarding

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 21 – Pipelining (Hazards, Branches, Modern) 15

Forwarding: It doesn’t always work

A
LURe

g
IM

D
M

Re
g

A
LURe

g
IM

D
M

A
LURe

g
IM

Time

LW R1, 0(R2)

SUB R4, R1, R5

AND R6, R1, R7

OR R8, R1, R9
Re
g

IM

Can’t get data to subtract instruction unless...

Load has a latency that
forwarding can’t solve.

Pipeline must stall until
hazard cleared (starting
with instruction that
wants to use data until
source produces it).

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 21 – Pipelining (Hazards, Branches, Modern) 16

The solution pictorially

A
LURe

g
IM

D
M

Re
g

Re
g

IM

IM

Time

LW R1, 0(R2)

SUB R4, R1, R5

AND R6, R1, R7

OR R8, R1, R9

Bubble

Bubble

Bubble

A
LURe

g

Re
g

IM

A
LU D

M

Insertion of bubble causes # of cycles to complete this
sequence to grow by 1

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 21 – Pipelining (Hazards, Branches, Modern) 17

Data hazard specifics
• There are actually 3 different kinds of data hazards!

– Read After Write (RAW)

– Write After Write (WAW)

– Write After Read (WAR)

• We’ll discuss/illustrate each on forthcoming slides.
However, 1st a note on convention.
– Discussion of hazards will use generic instructions i & j.

– i is always issued before j.

– Thus, i will always be further along in pipeline than j.

• With an in-order issue/in-order completion machine,
we’re not as concerned with WAW, WAR

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 21 – Pipelining (Hazards, Branches, Modern) 18

Read after write (RAW) hazards
• With RAW hazard, instruction j tries to read a

source operand before instruction i writes it.

• Thus, j would incorrectly receive an old or incorrect

value

• Graphically/Example:

• Can use stalling or forwarding to resolve this hazard

… j i …

Instruction j is a
read instruction
issued after i

Instruction i is a
write instruction
issued before j

i: ADD R1, R2, R3

j: SUB R4, R1, R6

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 21 – Pipelining (Hazards, Branches, Modern)

Memory Data Hazards
• Seen register hazards, can also have memory hazards

– RAW:

• store R1, 0(SP)

• load R4, 0(SP)

– In simple pipeline, memory hazards are easy

• In order, one at a time, read & write in same stage

– In general though, more difficult than register hazards

19

1 2 3 4 5 6

Store R1, 0(SP) F D EX M WB

Load R1, 0(SP) F D EX M WB

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 21 – Pipelining (Hazards, Branches, Modern) 20

Data hazards and the compiler
• Compiler should be able to help eliminate some stalls

caused by data hazards

• i.e. compiler could not generate a LOAD instruction

that is immediately followed by instruction that uses

result of LOAD’s destination register.

• Technique is called “pipeline/instruction scheduling”

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 21 – Pipelining (Hazards, Branches, Modern)

Example time!

21

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 21 – Pipelining (Hazards, Branches, Modern) 22

Branch/Control Hazards
• So far, we’ve limited discussion of hazards to:

– Arithmetic/logic operations

– Data transfers

• Also need to consider hazards involving branches:
– Example:

• 40: beq $1, $3, $28 # ($28 gives address 72)

• 44: and $12, $2, $5

• 48: or $13, $6, $2

• 52: add $14, $2, $2

• 72: lw $4, 50($7)

• How long will it take before the branch decision takes
effect?
– What happens in the meantime?

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 21 – Pipelining (Hazards, Branches, Modern) 23

Branch signal determined in MEM stage

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 21 – Pipelining (Hazards, Branches, Modern) 24

Pipeline impact on branch

• If branch condition true, must skip 44, 48, 52

– But, these have already started down the pipeline

– They will complete unless we do something about it

• How do we deal with this?

– We’ll consider 2 possibilities

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 21 – Pipelining (Hazards, Branches, Modern) 25

Dealing w/branch hazards: always stall

• Branch taken

– Wait 3 cycles

– No proper instructions in the pipeline

– Same delay as without stalls (no time lost)

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 21 – Pipelining (Hazards, Branches, Modern) 26

Dealing w/branch hazards: always stall
• Branch not taken

– Still must wait 3 cycles

– Time lost

– Could have spent cycles fetching and decoding next instructions

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 21 – Pipelining (Hazards, Branches, Modern) 27

Dealing w/branch hazards: assume branch not taken

• On average, branches are taken ! the time

– If branch not taken…

• Continue normal processing

– Else, if branch is taken…

• Need to flush improper instruction from pipeline

• Cuts overall time for branch processing in !

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 21 – Pipelining (Hazards, Branches, Modern) 28

Flushing unwanted instructions from pipeline

• Useful to compare w/stalling pipeline:
– Simple stall: inject bubble into pipe at ID stage only

• Change control to 0 in the ID stage
• Let “bubbles” percolate to the right

– Flushing pipe: must change inst. In IF, ID, and EX
• IF Stage:

– Zero instruction field of IF/ID pipeline register

– Use new control signal IF.Flush

• ID Stage:
– Use existing “bubble injection” mux that zeros control for stalls

– Signal ID.Flush is ORed w/stall signal from hazard detection unit

• EX Stage:
– Add new muxes to zero EX pipeline register control lines

– Both muxes controlled by single EX.Flush signal

• Control determines when to flush:
– Depends on Opcode and value of branch condition

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 21 – Pipelining (Hazards, Branches, Modern) 29

Assume “branch not taken”…and branch is
not taken…

• Execution proceeds normally – no penalty

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 21 – Pipelining (Hazards, Branches, Modern) 30

Assume “branch not taken”…and branch is
taken…

• Bubbles injected into 3 stages during cycle 5

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 21 – Pipelining (Hazards, Branches, Modern)

Let’s quantify performance a bit more.

31

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 21 – Pipelining (Hazards, Branches, Modern)

More realistic: Branch Prediction

32

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 21 – Pipelining (Hazards, Branches, Modern) 33

Branch Prediction
• Prior solutions are “ugly”

• Better (& more common): guess in IF stage

– Technique is called “branch predicting”; needs 2 parts:
• “Predictor” to guess where/if instruction will branch (and to

where)

• “Recovery Mechanism”: i.e. a way to fix your mistake

– Prior strategy:
• Predictor: always guess branch never taken

• Recovery: flush instructions if branch taken

– Alternative: accumulate info. in IF stage as to…
• Whether or not for any particular PC value a branch was

taken next

• To where it is taken

• How to update with information from later stages

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 21 – Pipelining (Hazards, Branches, Modern) 34

A Branch Predictor

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 21 – Pipelining (Hazards, Branches, Modern) 35

Branch History Table

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 21 – Pipelining (Hazards, Branches, Modern)

Hazard, exception detection

36

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 21 – Pipelining (Hazards, Branches, Modern) 37

What about control logic?
• For MIPS integer pipeline, all data hazards can be

checked during ID phase of pipeline

• If data hazard, instruction stalled before its issued

• Whether forwarding is needed can also be determined
at this stage, controls signals set

• If hazard detected, control unit of pipeline must stall
pipeline and prevent instructions in IF, ID from
advancing

• All control information carried along in pipeline
registers so only these fields must be changed

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 21 – Pipelining (Hazards, Branches, Modern) 38

Detecting Data Hazards

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 21 – Pipelining (Hazards, Branches, Modern) 39

Hazard Detection Logic
• Insert a bubble into pipeline if any are true:

– ID/EX.RegWrite AND
• ((ID/EX.RegDst=0 AND ID/EX.WriteRegRt=IF/ID.ReadRegRs) OR

• (ID/EX.RegDst=1 AND ID/EX.WriteRegRd=IF/ID.ReadRegRs) OR

• (ID/EX.RegDst=0 AND ID/EX.WriteRegRt=IF/ID.ReadRegRt) OR

• (ID/EX.RegDst=1 AND ID/EX.WriteRegRd=IF/ID.ReadRegRt))

– OR EX/MEM AND
• ((EX/MEM.WriteReg = IF/ID.ReadRegRs) OR

• (EX/MEM.WriteReg = IF/ID.ReadRegRt))

– OR MEM/WB.RegWrite AND
• ((MEM/WB.WriteReg = IF/ID.ReadRegRs) OR

• (MEM/WB.WriteReg = IF/ID.ReadRegRt))

Notation
ID/EX.RegDst

Pipeline
Register Field

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 21 – Pipelining (Hazards, Branches, Modern)

RAW: Detect and Stall
• detect RAW & stall instruction at ID before register read

– mechanics? disable PC, F/D write

– RAW detection? compare register names

• notation: rs1(D) = src register #1 of inst. in D stage

• compare: rs1(D) & rs2(D) w/ rd(D/X), rd(X/M), rd(M/W)

• stall (disable PC + F/D, clear D/X) on any match

– RAW detection? register busy-bits

• set for rd(D/X) when instruction passes ID

• clear for rd(M/W)

• stall if rs1(D) or rs2(D) are “busy”

– (plus) low cost, simple

– (minus) low performance (many stalls)

40

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 21 – Pipelining (Hazards, Branches, Modern)

Hazards vs. Dependencies
• dependence: fixed property of instruction stream

– (i.e., program)

• hazard: property of program and processor

organization

– implies potential for executing things in wrong order

• potential only exists if instructions can be simultaneously
“in-flight”

• property of dynamic distance between instructions vs.
pipeline depth

• For example, can have RAW dependence with or

without hazard

– depends on pipeline

41

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 21 – Pipelining (Hazards, Branches, Modern) 42

Exception Hazards
• 40hex: sub $11, $2, $4

• 44hex: and $12, $2, $5

• 48hex: or $13, $6, $2

• 4bhex: add $1, $2, $1 (overflow in EX stage)

• 50hex: slt $15, $6, $7 (already in ID stage)

• 54hex: lw $16, 50($7) (already in IF stage)

• …

• 40000040hex: sw $25, 1000($0) exception handler

• 40000044hex: sw $26, 1004($0)

• Need to transfer control to exception handler ASAP

– Don’t want invalid data to contaminate registers or memory

– Need to flush instructions already in the pipeline

– Start fetching instructions from 40000040hex

– Save addr. following offending instruction (50hex) in TrapPC (EPC)

– Don’t clobber $1 – use for debugging

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 21 – Pipelining (Hazards, Branches, Modern) 43

Flushing pipeline after exception

• Cycle 6:

– Exception detected, flush signals generated, bubbles injected

• Cycle 7

– 3 bubbles appear in ID, EX, MEM stages

– PC gets 40000040hex, TrapPC gets 50hex

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 21 – Pipelining (Hazards, Branches, Modern) 44

Managing exception hazards gets much worse!

• Different exception types may occur in different

stages:

• Challenge is to associate exception with proper
instruction: difficult!
– Relax this requirement in non-critical cases: imprecise

exceptions
• Most machines use precise instructions

– Further challenge: exceptions can happen at same time

Exception Cause Where it occurs

Undefined instruction ID

Invoking OS EX

I/O device request Flexible

Hardware malfunction Anywhere/flexible

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 21 – Pipelining (Hazards, Branches, Modern)

Wrap Up

45

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 21 – Pipelining (Hazards, Branches, Modern) 46

Discussion
• How does instruction set design impact pipelining?

• Does increasing the depth of pipelining always

increase performance?

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 21 – Pipelining (Hazards, Branches, Modern) 47

Comparative Performance

• Throughput: instructions per clock cycle = 1/cpi

– Pipeline has fast throughput and fast clock rate

• Latency: inherent execution time, in cycles

– High latency for pipelining causes problems
• Increased time to resolve hazards

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 21 – Pipelining (Hazards, Branches, Modern)

A word on modern microprocessors

48

University of Notre Dame, Department of Computer Science & Engineering

CSE 60321 – Lecture 09 – Pipelining (Part 3) 49

ECE 252 / CPS 220 Lecture Notes

Dynamic Scheduling I
3© 2007 by Sorin, Roth, Hill, Wood,

Sohi, Smith, Vijaykumar, Lipasti

Dynamic Scheduling: Motivation

• cycle4: addf stalls due to RAW hazard
• OK, fundamental problem

• also cycle4: mulf stalls due to pipeline hazard (addf stalls)
• why? mulf can’t proceed into ID because addf is there

• but that’s the only reason ! not good enough!

• why can’t we decode mulf in cycle 4 and execute it in c5?
• no fundamental reason why we can’t do this!

1 2 3 4 5 6 7 8 9 10

divf f0,f2,f4 F D E/ E/ E/ E/ W

addf f6,f0,f2 F D d* d* d* E+ E+ W

mulf f8,f2,f4 F p* p* p* D E* E* W

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 21 – Pipelining (Hazards, Branches, Modern) 50

Data hazard specifics
• There are actually 3 different kinds of data hazards!

– Read After Write (RAW)

– Write After Write (WAW)

– Write After Read (WAR)

• We’ll discuss/illustrate each on forthcoming slides.
However, 1st a note on convention.
– Discussion of hazards will use generic instructions i & j.

– i is always issued before j.

– Thus, i will always be further along in pipeline than j.

• With an in-order issue/in-order completion machine,

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 21 – Pipelining (Hazards, Branches, Modern) 51

Read after write (RAW) hazards
• With RAW hazard, instruction j tries to read a

source operand before instruction i writes it.

• Thus, j would incorrectly receive an old or incorrect

value

• Graphically/Example:

… j i …

Instruction j is a
read instruction
issued after i

Instruction i is a
write instruction
issued before j

i: ADD R1, R2, R3

j: SUB R4, R1, R6

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 21 – Pipelining (Hazards, Branches, Modern) 52

Write after write (WAW) hazards
• With WAW hazard, instruction j tries to write an

operand before instruction i writes it.

• The writes are performed in wrong order leaving the

value written by earlier instruction

• Graphically/Example:

… j i …

Instruction j is a
write instruction
issued after i

Instruction i is a
write instruction
issued before j

i: DIV F1, F2, F3

j: SUB F1, F4, F6

(Note: how can this happen???)

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 21 – Pipelining (Hazards, Branches, Modern)

WAW
• write-after-write (WAW) = artificial (name) dependence

– add R1,R2,R3
– sub R2,R4,R1
– or R1,R6,R3

– problem: reordering could leave wrong value in R1

• later instruction that reads R1 would get wrong value

– can’t happen in vanilla pipeline (reg. writes are in order)

• another reason for making ALU ops go through MEM stage

• can happen: multi-cycle operations (e.g., FP, cache misses)

– artificial: using different output register for or solves

• Also a dependence on name (R1)

53

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 21 – Pipelining (Hazards, Branches, Modern) 54

Write after read (WAR) hazards
• With WAR hazard, instruction j tries to write an

operand before instruction i reads it.

• Instruction i would incorrectly receive newer value of

its operand;

– Instead of getting old value, it could receive some
newer, undesired value:

• Graphically/Example:

… j i …

Instruction j is a
write instruction
issued after i

Instruction i is a
read instruction
issued before j

i: DIV F7, F1, F3

j: SUB F1, F4, F6

University of Notre Dame, Department of Computer Science & Engineering

CSE 30321 – Lecture 21 – Pipelining (Hazards, Branches, Modern)

WAR
• write-after-read (WAR) = artificial (name) dependence

– add R1, R2, R3
– sub R2, R4, R1
– or R1, R6, R3

– problem: add could use wrong value for R2
• can’t happen in vanilla pipeline (reads in ID, writes in WB)

– can happen if: early writes (e.g., auto-increment) + late
reads (??)

– can happen if: out-of-order reads (e.g., out-of-order

execution)
– artificial: using different output register for sub solves

• The dependence is on the name R2, but not on actual
dataflow

55

