Introduction

- So far, have considered transistor-based logic in the face of technology scaling
- Interconnect effects are also of concern
 o Can impact speed
 o Can significantly impact energy consumption in a digital integrated circuit
 • (Can also think of in terms of clock distribution network – for example)
- Aggregate effects of interconnect can be even worse because larger die sizes exacerbate the above problems

Interconnect Parasitics

- Wiring of today’s on-chip interconnect (IC) gives rise to:
 o Capacitive parasitics
 o Resistive parasitics
 o Inductive parasitics

- All parasitics:
 o Can cause increase in propagation delay
 o Can adversely impact energy dissipation and power distribution
 o Can introduce extra noise sources which effect reliability

- This is a hard problem to model – interconnect is everywhere so places all over the chip are sources of the aforementioned problems; from modeling perspective, simplifications could be considered – for example:
 o Ignore inductive effects if resistance R of wire is high (i.e. the wire is long or has a small cross section) OR rise and fall times are low
 o If the wire is short OR the cross-section is high OR IC material has low resistivity, one might only use a capacitive model
 o If separation between neighboring wires is high, could ignore inter-wire capacitances

Capacitance:

Picture: wire-to-substrate and wire-to-wire capacitances

Wire-to-substrate: \[C = \frac{\varepsilon_{di}}{t_{di}} WL \]

Wire-to-wire: \[C = \frac{\varepsilon_{di}}{d} HL \]
Resistance:

- The resistance of a wire is proportional to its length L and inversely proportional to its cross-sectional area A

$$R = \frac{\rho L}{WH}$$

 - ρ is the resistivity of the wire in Ω meters; example values include:
 - Cu: $1.7 \times 10^{-8} \Omega$ meters
 - Al: $2.7 \times 10^{-8} \Omega$ meters

- Transitions between routing layers (through vias) can result in additional resistance
 - **Slide**: Metal layers
 - This resistance can be reduced by increasing via size
 - But, current can crowd around the perimeter of the via; this effect can eventually reduce the effectiveness of this design technique
 - Example point of reference:
 - In 250 nm technology, AL contacts $\sim 5-20 \, \Omega$ for metal to poly and $1-5 \, \Omega$ for metal-to-metal
 - **Quantitative Example**:
 - CMOS, Nanomagnetic Logic clock

Inductance:

- Effects, consequences include: noise, reflections, inductive coupling

- Changing current passing through an inductor generates a voltage drop: $\Delta V = L \frac{di}{dt}$

Interconnect in the face of device scaling

- If transistor-based logic scales, interconnect must scale too

- Let's consider a transistor-like IC scaling model:
 - Could start with an ideal scaling factor S (as before), but length does not scale well

- Generally speaking:
 - **Local IC** scales with transistors
 - **Global IC** does not scale well
 - Global IC includes connectivity between large modules, I/O, the clock distribution network, etc.
 - As transistor sizes scale, the clock goes to more transistors
 - Another complication (was) die size ... was increasing $\sim 6\%$ per year and now $2X$ per decade
 - Has slowed down. **Any thoughts as to why?**
- In scaling models, must differentiate between local and global wires; gives rise to 3 scaling models:
 1. Local wires: \(S_L = S > 1 \)
 2. Constant length wires: \(S_L = 1 \)
 3. Global wires: \(S_L = S_c < 1 \)

(of course, < 1 means that global wires do not scale well)

- A first order approximation of scaling

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Relation</th>
<th>Local</th>
<th>Constant</th>
<th>Global</th>
</tr>
</thead>
<tbody>
<tr>
<td>(W, H, t)</td>
<td>(1/S)</td>
<td>(1/S)</td>
<td>(1/S)</td>
<td></td>
</tr>
<tr>
<td>(L)</td>
<td>(1/S)</td>
<td>1</td>
<td>(1/S_c)</td>
<td></td>
</tr>
<tr>
<td>(C)</td>
<td>(LW/t)</td>
<td>(1/S)</td>
<td>1</td>
<td>(1/S_c)</td>
</tr>
<tr>
<td>(R)</td>
<td>(L/WH)</td>
<td>(S)</td>
<td>(S^2)</td>
<td>(S^2/ S_c)</td>
</tr>
<tr>
<td>(RC)</td>
<td>(L^2/Hz)</td>
<td>1</td>
<td>(S^2)</td>
<td>(S^2/ S_c^2)</td>
</tr>
</tbody>
</table>

See slides + note my board comments

- Take aways:
 o Technology scaling does not reduce wire delay (see RC time constant)
 o Constant delay predicted for local wires
 o Delay of global wires increases
 ▪ More logic, more capacitance, more layers of metal, necessary smaller geometries
 o No perfect solutions; for example:
 ▪ Try to scale wire thicknesses at different rates
 ▪ To improve delay, helps to keep R down, therefore make \(W \times H \) as large as possible –
 aim for high aspect ratio as this also improves packing density
 ▪ However, helps performance, hurts capacitance

Industry Outlook from ITRS:

- Industry very concerned with power
 o Added metric of (Watts per GHz of frequency) / cm²
- Some predict this metric will plateau as technology scales
 o Advent of new materials, low k dielectrics will help
 o History here … there was an Al → Cu transition owing to the lower \(\rho \) of copper compared to Al
 ▪ However, not many material lower than Cu – Ag (1.59 x 10⁻⁸ \(\Omega \) m)?
- Also, problems could get worse
 o The number of metal layers has increased as technology scales (see slides)
 o Therefore, volume, capacitance of IC could increase
- Alternative technologies being investigated and will be discussed:
 o RF, optical, CNTs, 3D…
Recap:

(First, quick review of EDP, PDF performance metrics – from Lecture 03)

Dynamic power:

- Energy stored on capacitor:
 \[E_C = \int_0^\infty V_{dd}(t) V_{out}(t) dt = V_{dd} \int_0^\infty C_L \frac{dV_{out}}{dt} V_{out} dt = C_L \int_0^\infty V_{out} dV_{out} = \frac{C_L V_{dd}^2}{2} \]

- Power dissipation – from charging, discharging capacitor
 \[P_{dyn} = C_L V_{dd}^2 f \]

Direct path power:

- Direct path energy a function of the time that both NMOS, PMOS devices are conducting:
 \[E_{direct \ path} = V_{dd} \frac{i_{peak} t_{sc}}{2} + V_{dd} \frac{i_{peak} t_{sc}}{2} = V_{dd} i_{peak} t_{sc} \]

- Therefore the power dissipation associated with direct path currents is given by:
 \[P_{direct \ path} = V_{dd} i_{peak} t_{sc} f \]

Leakage power:

- Sub-threshold Leakage:
 \[I_{sub} = K_1 W e^{\frac{-V_t}{V_d}} (1 - e^{\frac{-V}{V_d}}) \]

- Gate Leakage:
 \[I_{ox} = K_2 W \left(\frac{V}{t_{ox}} \right)^2 e^{\frac{-t_{ox}}{V}} \]

To summarize…

\[P_{total} = P_{dynamic} + P_{directpath} + P_{static} = (C_L V_{dd}^2 + V_{dd} i_{peak} t_{sc}) f + V_{dd} I_{leak} \]

What if we consider all of the above “simultaneously”?

1. If W, L decrease, (a) latency, (b) dynamic power, (c) density all improve.
 a. Not so easy to make W, L smaller
 i. Photolithography has some fundamental limitations (wavelength of UV light = 250 nm)
 ii. New candidates for further transistor scaling include EUV, imprint
 iii. The wavelength of light is what it is.

 This challenge has (so far) been met

b. \(t_{ox} \) must scale as well
 i. Layers less than 4 atoms thick difficult to reliably manufacture
 ii. With thin layers, electrons tunnel and get gate leakage current that results in static power dissipation

 Need new material – and one was found that enabled the 45 nm technology node

c. As device dimensions scale down, lithography is less precise – results in an increase in defects
i. Must scrap die
ii. Or find architectural alternatives such that we can live with defects

2. If V_{dd} decreases, power decreases
 a. Decreasing V_{dd} is the best way to lower P given the quadratic dependence on V_{dd}
 b. Problems:
 i. V already $\sim 0.9V - 1V$
 ii. Could realistically go to $\sim 0.5V$
 iii. Noise, other sources become issues
 c. Also, need to lower V_t
 i. If V_{dd} reduced to 0.5V, only 0.5V between logic ‘1’ and logic ‘0’ (i.e. smaller margins)
 ii. Also, V_t determined (in part) by the number of atoms / concentration of dopant atoms; as feature size decreases, dopant concentration can experience “wide” swings
 iii. If V_t varies between 0.1 and 0.3 C, could be problematic
 d. Oh, and performance decreases too

3. If V_{dd} increases, f goes up (but P_{dyn} goes up in 2 ways – V_{dd}, f)

4. Lest we forget, a decrease in W, L = an increase in the net number of devices

5. Up against practical limits
 a. Could deal with > 100 W / cm2 \rightarrow not an engineering problem
 b. Instead, it’s a practical problem \rightarrow 100 W/cm2 = practical limit of air cooling

(A big) solution to the issues outlined above is multi-core chips – let’s look at how they are affected by … interconnect

- Discussion based on “Design Tradeoffs for Tiled CMP On-Chip Networks” by Balfour and Dally
 - Supercomputing 2007
- Design issues brought up here equally relevant to other emerging technologies too…

Consider the following “sea” of processor cores:

Let’s look inside of a router first…
- Router has 2 main components:
 1. Datapath:
 o Handles storage and movement of a packet’s payload
 o Consists of input buffers, switch, & output buffers
 2. Control
 o Logic to coordinate packet resource allocation

- I’m going to talk about a “Virtual Channel Router”
 o Virtual channel router requires extra resources (HW), but can help overcome blocking issues
 - (Might see blocking issues with wormhole routing)
 - (VC allows packets to pass a blocked packet and make better use of idle bandwidth)

Example:
 1. Packet B enters node #1 from the network; B acquires channel p from node #1 \(\rightarrow\) node #2
 2. A 2nd packet A has entered node #1 from the wst and needs to be routed east to node #3
 3. Meanwhile, B wants to leave node #2 and go south, but is blocked
 4. Now channels p and q are idle .. but cannot be used
 a. Packet A is blocked in node #1
 b. It cannot acquire channel p
 c. B blocks

Figure: Packet Routing

Now, assume 2 VCs per physical channel:
 1. B arrives at node #1 and acquires the bandwidth to go to channel p
 2. A arrives from the east, B tries to leave node #2 and is blocked
 3. A can use free bandwidth p and goto another VC on node #2
 4. Can also proceed onto node #3

This is a better use of resources
 - May have 1 physical channel, but more buffers

What happens during packet routing?

1. Let’s start with a flit of a packet arriving at the input unit of a router
 o Input unit consists of a flit buffers to hold arriving flits until they can be forwarded
 o Input unit also maintains state of virtual channel
 i. I: Idle
 ii. R: Routing
 iii. V: Waiting for virtual channel
 iv. A: Active
 o Once packet in router, heed to perform route computation to see where it goes; can then go to VC for allocation

2. Each head flit must advance through 4 stages of routing computation
 o It’s pipelined! Assume…
 o RC: Routing Computation
 o VA: Virtual Channel Allocation
 o SA: Switch Allocation
 o ST: Switch Traversal
Packet might move through like this:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head Flit</td>
<td>RC</td>
<td>VA</td>
<td>SA</td>
<td>ST</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body Flit 1</td>
<td>**</td>
<td>SA</td>
<td>ST</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body Flit 2</td>
<td></td>
<td>SA</td>
<td>ST</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tail Flit</td>
<td></td>
<td></td>
<td></td>
<td>SA</td>
<td>ST</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** (second body flit arrives)

Important Points:
- t_r (time through a single router) does not equal 1!
 - (more like 5 or 6 at least)
- Routing and VC allocation are per packet functions
 - Nothing for body flits to do
 - With no stalls, need 3 input buffers (for 3 flits)
 - With stalls, need # of buffers = # of packets

Outlook:
- Ultimately, issues involved in routing process discussed above + router architecture + storage needed determine the bandwidth for the topology
 - Possibilities:
 - Even though you can devise a topology for ideal performance, it may not be feasible to implement
 - Or, 1 part may be technologically feasible (pitch) but another may not be (router or buffer)

Why can routers be hard to implement?

Figure: Possible router design in 8 metal layer chip

Consider how connections would actually be made on chip:
- *Discuss metal stack*
- *Show cross-sectional die photo*
- *Draw lines for input and output*

Now, let's go back to our picture and made some observations:
1. No lines of the same color can touch (it would be an electrical short)
2. We draw 1 line, but really many (1 line for each bit)
3. Router areas are by no means insignificant!

How can on-chip IC NWs affect performance?
Want to know – for a given IC NW topology – how long it takes to send a message:

- Note → initial #s in the absence of contention → a bit more on this later

Time:

\[(\text{# of hops}) \times (\text{time in router}) + \text{time required for packet to traverse all channels } \]

\[+ \text{serialization latency}\]

(serialization latency = ceiling(length of message / bandwidth))

Therefore, if:

- Average # of hops \(= 6.25\)
- Average time for packet to traverse all channels \(= 5.3333\)
- Serialization latency \(= 3\)
- Time in router \(= 2\)
- Total time: \(= \sim 20.8\)

Slides:

- Results from Dally, Balfour paper
- Impact in the context of Amdahl’s Law
- Information processing tokens