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The ability to quantitatively survey the global behavior of transcriptomes has been a key milestone in the
field of systems biology, enabled by the advent of DNA microarrays. While this approach has literally
transformed our vision and approach to cellular physiology, microarray technology has always been lim-
ited by the requirement to decide, a priori, what regions of the genome to examine. While very high den-
sity tiling arrays have reduced this limitation for simpler organisms, it remains an obstacle for larger,
more complex, eukaryotic genomes.

The recent development of ‘‘next-generation” massively parallel sequencing (MPS) technologies by
companies such as Roche (454 GS FLX), Illumina (Genome Analyzer II), and ABI (AB SOLiD) has completely
transformed the way in which quantitative transcriptomics can be done. These new technologies have
reduced both the cost-per-reaction and time required by orders of magnitude, making the use of
sequencing a cost-effective option for many experimental approaches. One such method that has recently
been developed uses MPS technology to directly survey the RNA content of cells, without requiring any of
the traditional cloning associated with EST sequencing. This approach, called ‘‘RNA-seq”, can generate
quantitative expression scores that are comparable to microarrays, with the added benefit that the entire
transcriptome is surveyed without the requirement of a priori knowledge of transcribed regions. The
important advantage of this technique is that not only can quantitative expression measures be made,
but transcript structures including alternatively spliced transcript isoforms, can also be identified. This
article discusses the experimental approach for both sample preparation and data analysis for the tech-
nique of RNA-seq.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Since their development little more than a decade ago, DNA
microarrays have provided scientists with the capacity to simulta-
neously investigate thousands of features in a single experiment.
This capability has been exploited not only to monitor the steady
state expression of genes, but also to locate regions of copy number
changes in cancers (array-based CGH) [1], to map the genome-
wide binding sites of DNA interacting proteins (ChIP-on-chip)
[2,3] and to survey long range DNA interactions (4C) [4]. The over-
whelming wealth of knowledge generated by microarrays has cre-
ated entirely new fields of research and, as the underlying
technology became broadly adopted, microarrays forever changed
the way in which high throughput science is done.

Equally revolutionary technologies are currently emerging in the
form of new methods of sequencing, termed massively parallel
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sequencing (MPS, also called next-generation/ultra high throughput
sequencing). Three brands of machines based on these new technol-
ogies currently dominate the field (454 GS FLX (Roche), Genome
Analyzer II (Illumina) and SOLiD (Applied Biosystems)), with others
on the horizon with potentially even higher outputs (Pacific
Biosciences, Helicos). While the individual approaches vary consid-
erably in their technical details, the essence of these systems is the
miniaturization of individual sequencing reactions. Each of these
miniaturized reactions is ‘‘seeded” with DNA molecules, at limiting
dilutions, such that there is a single DNA molecule in each, which
is first amplified and then sequenced. The physical design of these
instruments allows for an optimal spatial arrangement of each reac-
tion, enabling an efficient readout by laser scanning (or other meth-
ods), for millions of individual sequencing reactions to be put onto a
standard glass slide. While the immense volume of data generated is
attractive, it is arguably the elimination of the cloning step of the
DNA fragment to be sequenced that is the greatest benefit of these
new technologies. All of the current methods allow the direct use
of small fragments of DNA without a requirement for insertion into
a plasmid or other vector, thereby removing a costly and time con-
suming step required for traditional Sanger sequencing.
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Predictably, MPS technology has already been used to perform
de novo genome sequencing [5] and to complete whole genome
scans of protein–DNA interaction sites [6,7] (through sequencing
ChIP material instead of hybridizing it; ChIP-seq vs. ChIP-chip)
and a variety of other applications [8,9]. More recently, an increas-
ing number of studies (a subset of which are shown in Table 1)
have demonstrated the potential for the sequencing of total cDNA
in order to observe the complete transcriptome. These studies have
clearly demonstrated the advantages of this approach: in a single
Table 1
Selection of RNA-seq studies to date.

Organism Platform Total reads
(106)

Mapped
reads (106)

Main study focus

Fission yeast Illumina 23, 99 104 Transcriptome
characterization,
transcriptome changes
related to differentiation

Budding yeast Illumina 30 16 Transcriptome
characterization

Mouse Illumina 78, 71, 67 52, 42, 43 Transcriptome changes
related to differentiation

Mouse ABI
SOLiD

4.9, 5.0 2.9, 2.8 Transcriptome changes
related to differentiation

Human cell line Illumina 8.6, 7.7 6.4, 5.4 Alternative splicing
diversity

Human 454 0.18 0.14 Transcriptome changes
related to differentiation

Arabidopsis 454 0.54 0.48 Transcriptome
characterization

Human 454 2.4–2.9 1.6–2.4 Disease characterization
(mutation discovery,
expression differences)

Arabidopsis Illumina 83, 88, 92, 106
(mRNA) 8.7, 8.8,
12.2, 7.5
(smRNA)

56, 47, 46, 49
(mRNA) 2.8,
2.5, 2.1, 3.5
(smRNA)

Transcriptome
characterization,
integrating RNA, small
RNA, and CpG
methylation data

Locust Illumina 1.5, 1.9
(smRNA)

Not mapped Small RNA transcriptome
changes related to
differentiation

Human Illumina 23 10.8 Global promoter proximal
transcription

Human Illumina 28.6 18.9 Transcriptome
characterization

Mouse Illumina 3.0 2.3 Transcriptome
characterization

Grape vine Illumina 173 138 Transcriptome
characterization

Human Illumina 11.7, 8.5 3.4, 2.8 Transcriptome changes
related to differentiation

Human Illumina 6.1, 6.0 0.77, 0.72 Small RNA transcriptome
changes related to
differentiation

Sea anemone,
Sponge,
Placozoan,
choanoflagellate

454
Illumina

Not provided 7.8 for all
species/
conditions

Small RNAs, small RNA
transcriptome changes
during evolution

Human 454 0.55, 0.24, 0.83
(454), 67, 76,
57, 72, 14, 35, 9
(Illumina)

38, 40, 35, 45,
10, 16, 6
(Illumina)

Gene fusions in cancer

Human Illumina/
Solexa

75, 75 29, 30 Technical assessment of
ability to measure
transcriptome changes
related to differentiation
RNA-seq experiment, one can derive not only an accurate, quanti-
tative measure of individual gene expression (as with a standard
expression microarray), but also discover novel transcribed regions
in an unbiased manner (as with a whole genome tiling approach).
In addition, this methodology enables a global survey of the usage
of the alternative splice sites [10,11] (similar to a custom designed
splicing array).

Based on the demonstrated power of the RNA-seq approach it is
clear that, at least for comprehensive studies in higher eukaryotes,
Growth conditions/cell types Priming/preparation method Ref.

Rich media, five stages of meiotic
differentiation

PolyA selection, oligo dT
primed

[16]

Rich media PolyA selection, random
primed or oligo dT primed

[24]

Adult mouse brain, liver and skeletal muscle
tissues

PolyA selection, random
primed

[15]

Undifferentiated mouse embryonic stem cells
(ESCs) and embryoid bodies

rRNA depletion, PolyA
selection, random primed and
tagged for direction

[14]

Human embryonic kidney and B cell line PolyA selection, random
primed

[11]

Prostate cancer cell line treated with
androgens

Not provided [28]

Aerial tissues of 8d old seedlings PolyA selection, oligo dT
primed

[29]

Malignant pleural mesothelioma (4),
adenocarcinoma (1) and normal lung (1)

PolyA selection, oligo dT
primed

[30]

Immature floral tissue (mRNA, smRNA from
wt, and met1, ddc, rdd mutants)

rRNA depletion and
directionally ligated for strand
specificity (mRNA), RNA linker
ligation, RT-PCR (smRNA)

[18]

Gregarious locus, solitary locus RNA linker ligation, RT-PCR [31]

Lung fibroblast (global run-on) BrU incorporation, base
hydrolysis, immuno-
purification, sequential RNA
linker ligation, RT-PCR

[32]

HeLa S3 (1) rRNA depletion,+/� PolyA
selection, random primed.

[33]

(2) Oligo dT priming, dscDNA
sonication, linker ligation

ES cells PolyA selection, oligo dT
primed

[34]

Leaf, root, stem, callus PolyA selection, random
primed

[35]

LNCaP, +/� DHT PolyA selection, double
random priming with modified
(P1 biotinylated) sequencing
primers

[36]

Undifferentiated human embryonic stem
cells (ESCs) and embryoid bodies

Size selection, sequential RNA
linker ligation, RT-PCR

[37]

Mixed developmental stages (Nematostella,
Trichoplax), separate adult/embryonic stages
(Amphimedon)+/� periodate treated
(Nematpstella, Amphimedon)

Size selection, sequential RNA
linker ligation, RT-PCR

[38]

VCaP, LNCaP & RWPE (454), K562,VCaP,
LNCaP, RWPE, VCaP-Met, Met3, Met4
(Illumina)

PolyA selection, RT primers not
specified

[39]

Liver and kidney samples PolyA selection, random
primed

[40]



B.T. Wilhelm, J.-R. Landry / Methods 48 (2009) 249–257 251
where surveys of differential splicing activity, antisense transcrip-
tion, and discovery of novel regions of transcription are desired,
high throughput sequencing of RNA will quickly supersede micro-
array-based methods. A comparison of microarray and sequencing
based techniques for measuring gene expression levels is shown in
Table 2. In addition to the inclusive features of an RNA-seq exper-
iment described above, the two principle differences between
sequencing and microarray approaches are in the resolution of
the output, and in the dynamic range of changes that can be ob-
served. While very high resolution tiling arrays are available for
some simple organisms, most array designs for higher eukaryotes
have resolutions P35 bp, while the output from RNA-seq experi-
ments is already at the theoretical maximum of base-pair resolu-
tion. With regards to the dynamic range of expression values
which can be obtained, the limits of most microarray scanners
means that only several orders of magnitude of expression signals
can be measured. In RNA-seq experiments, the limits of the dy-
namic range measured are only determined by the amount of
sequencing obtained. This means that through the continued
sequencing of a given library, it should be possible to eventually
measure the expression of every transcript present and so the ‘‘dy-
namic range” only represents the actual biological diversity of the
transcriptome.

While this unprecedented level of sensitivity brings with it
the power to make many novel biological observations, it also
carries the price of vastly increased bioinformatics challenges in
dealing with the massive data files and extracting biologically
relevant data. As noted in Table 2, the raw image files from
one run of some next generation sequencers can require tera-
bytes of storage (version 3 of the ABI SOLiD ships with 12 Tb
of ‘‘on machine” storage for instance), meaning that simply mov-
Table 2
Comparison of current methods for surveying transcriptome.

Criterion Expression
arrays

Tiling arrays RNA-Seq

Resolution of data N/A Dependent on genome
size but P35 bp for
human/mouse

1 bp, at sufficient
sequencing depth

Cost per sample
(excluding
equipment)

Low Low–high, depending
on arrays needed to
cover genome

High

Linear dynamic
range of
expression
values

<4 orders
of
magnitude

<2 orders of magnitude Limited only by
sequencing depth and
biological expression
levels

Sensitivity
(Signal:Noise)

Moderate Low High

Discovery of novel
transcribed
regions

No Yes Yes

Monitor splice site
usage

No Limited Yes

Identification
alternative
promoters/
UTRs

No Yes Yes

Detection of
antisense
transcripts

Not
standard

Not standard Requires strand specific
preparation

Detection of SNPs,
mutations,
allelic
differences

Limited Limited Yes

Size of raw data
files per
experiment

0.01–
0.05 Gb

0.1–1 Gb 1–15 Tb

Downstream
Bioinformatic
requirements

Low High Very high
ing the data off the machine can represent a technical challenge
for the computer networks of many research centers. More over,
even when the data is moved off the machine for subsequent
processing, even a high-end desktop computer will be hopelessly
outmatched by the volume of data from a single run, in terms of
being able to carry out all aspects of the analysis in a reasonable
amount of time. As a result, although non-trivial to establish, the
use of a small cluster of computers is extremely beneficial, in or-
der to remove computational bottlenecks, as discussed later. One
final issue related to dealing with the data from an RNA-seq
experiments is the software required to perform downstream
analysis. Given how novel the next-generation sequencing tech-
nology is, it is not surprising that there are no ‘‘box standard”
software packages available for end-users, hence software is of-
ten developed on an ad hoc basis. While some software packages
are beginning to appear that enable some general aspects of
RNA-seq analysis to be performed, these are still generally only
useful for labs with fairly strong pre-existing bioinformatic capa-
bilities. While the computational challenges mentioned above are
not often given much space in discussions of next-generation
sequencers and their potential, they do actually present immedi-
ate (and rapidly increasing) road blocks to the use of this new
technology.
2. Sample preparation

Given the variety of current technical approaches (many of which
may be obsolete before this article is published), a precise step-by-
step protocol would not be particularly practical for a methodology
paper. Instead, this article will focus on the key elements of the
procedure which are common to all technologies, and discuss the
factors which should be considered when planning such experi-
ments. A general overview of the work flow is shown in Fig. 1.

2.1. Amount requirements

Because the RNA-seq approach is entirely based on the general
principles of DNA sequencing, the methodology should be applica-
ble to any organism, subject to the availability of a sufficient
amount of RNA. It is worth noting that while published informa-
tion on the performance of these technologies in high/low GC con-
tent genomes is scarce, anecdotally, they do not appear to show
any significant bias across a fairly wide spread of GC content
(30–70%), suggesting that RNA from most organisms would be
suitable. In the event that RNA is limiting, approaches to amplify
small quantities of RNA exist [12,13], which should enable the
use of such samples, with the caveat that, depending on the extent
of the amplification, biases could be introduced in the sample. As
discussed below, the amount of RNA required is dependent on both
the sequencing technology and the method of priming used. Most
studies to date have utilized PolyA enrichment steps to selectively
remove ribosomal RNA [14–16] (see below) such that 100–200 ng
of PolyA + enriched RNA (derived from 100 lg of total RNA) is used
for double-stranded cDNA synthesis prior to sequencing.

2.2. rRNA removal

One of the principal technical hurdles to overcome with RNA-
seq is the fact that the vast majority of RNA (>90%) present in cells
consists of ribosomal RNA (rRNA). As such, the bulk of the total
RNA is not informative as to the true diversity of the transcriptome
present in the remaining RNA. In order to avoid wasting effort in
re-sequencing the same ribosomal RNA millions of times, several
techniques exist to focus the sequencing effort on the non-ribo-
somal portion.



Fig. 1. Example of RNA-seq work flow. A typical analysis stream for three theoretical biological samples (A, B and C) is shown with the various sections color coded as wet-lab
work (grey), creation of the filtered data sets (cyan), sample (tissue/developmental stage/growth condition) specific data analysis (lilac) and cross sample analysis (pink).
Much of the later analysis (lilac/pink) will be highly dependent on the experimental aims of the study and as such, only a small fraction of the possible analyses pathways are
shown.
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One option is to selectively enrich for mRNA present in the total
RNA. This can be accomplished using various commercial kits
which either selectively remove rRNA of selectively enrich for
mRNA. The rRNA depletion kits (e.g. RiboMinus (Invitrogen)) use
antisense versions of the ribosomal transcripts to be removed
which are conjugated to either biotinylated or magnetic beads. In
the case of polyA enrichment, similar beads that have long oligo
dT stretches (e.g. OligoTex (Qiagen)), which bind the polyA tails
present on most mRNA molecules, can selectively enrich for non-
ribosomal transcripts. As a last alternative, enzymes which are
capable of selectively degrading uncapped (rRNA) are also com-
mercially available, although no studies published have yet used
this method.

2.3. Priming

Following enrichment, the resulting mRNA must be primed for
the reverse transcription reaction using either random primers or
oligo dT primers. The advantage of using oligo dT (with or without
prior mRNA enrichment) is that the majority of cDNA produced
should be polyadenylated mRNA, hence more of the sequence ob-
tained should be informative (non-ribosomal). The significant dis-
advantage of the use of oligo dT primers is that the reverse
transcriptase enzyme will fall off of the template at a characteristic
rate, resulting in a bias towards the 30 end of transcripts. For long
mRNAs, this bias can be pronounced, resulting in an underrepre-
sentation (or worse, absence) of the extreme 50 end of the tran-
script in the data. The use of random primers in general would
therefore be the preferred method to avoid this problem and to al-
low a better representation of the 50 end of long ORFs. However,
when oligo dT primers are used for priming, the slope which is
formed by the diminishing frequency of reads towards the 50 end
of the ORF can, in some cases, be useful for determining the strand
of origin for novel transcripts if strand information has not been re-
tained as described below.

2.4. Maintaining strand specific information

An additional consideration in the process of creating the dou-
ble-stranded cDNA for sequencing is to maintain strand specific
information for the RNA. The importance of this consideration will
obviously vary depending on the organism being studied, but in
more complex genomes (such as mouse and human) where there
is clear evidence for wide spread antisense transcription [17],
strand specific information should be considered a clear requisite
for comprehensive RNA-seq studies. To date, few papers have dem-
onstrated a feasible methodology for maintaining strand specific
RNA information when creating ds cDNA [14,18]. These methods
involved the fragmentation of the enriched mRNA through the
use of either metal hydrolysis or heat followed by ligation of
RNA linkers. In the case of Cloonan et al., the synthesis of the first
cDNA strand from the fragmented RNA is performed using a tagged
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random hexamer and a modified MMLV Reverse Transcriptase,
which allows additional nucleotides to be added to the termini.
After the addition of C nucleotides to the 30 ends of the first cDNA
strand product, another tagged poly G track primer is used to
prime the second strand synthesis, resulting in (PCR amplifiable)
double-stranded cDNA molecules with tags that mark the original
50 and 30 ends. A similar approach was used by Lister et al. although
the RNA linkers ligated onto the fragment RNA at either end were
the Illumina 30 & 50 RNA oligonucleotide adapter sequences, which
allowed for RT-PCR amplification (20 cycles) directly and facili-
tated later processing.

While the use of such end tagging approaches does carry the
disadvantage of increased RNA handling and the potential loss of
a small amount of ‘‘tag” sequence (i.e. non-templated C’s) from
the short cDNA sequence read (�45 bp), the scientific importance
of strand specificity and continual increases in individual read
lengths, through improved reaction chemistry, more than balance
these concerns.
3. Sequencing

The methodology presented below is based on the Illumina
platform and, as such, is not applicable to other next generation
sequencing machines. However, all such platforms share the
same basic principle: the isolation and attachment to a solid ma-
trix of a single DNA fragment through limiting dilution, followed
by amplification of this single molecule either through a special-
ized emulsion PCR (EM-PCR; SOLiD/454) or a linker based bridg-
ing reaction (Illumina). These larger, discreet populations of
identical molecules can then be sequenced in parallel, either
through the measurement of the incorporation of fluorescent
nucleotides (Illumina) or short fluorescent linkers (SOLiD), or
through the release of by-products from incorporation of normal
nucleotides (454). A detailed comparison of the technical differ-
ences (including discussion of some potentially proprietary infor-
mation) in these rapidly evolving approaches (or others nearing
release) is beyond the scope of this article. Nevertheless, a gen-
eral example of sample preparation has been provided to give
readers some idea of what is involved in this stage of the sample
processing.
4. Overview of Illumina Genome Analyzer II protocol

(1) Fragmentation of the cDNA. The Illumina recommended
method for this step is nebulization. However, in principle,
other methods such as controlled DNase digestion should
work as well.

(2) Purification of the fragmentation products using Qiagen QIA-
quick PCR kit or equivalent.

(3) End repair of cDNA fragments. The nebulization (or other
fragmentation methods) generates double-stranded cDNA
fragments with a mix of blunt-ends as well as 30/50 over-
hangs. The 30>50 exonuclease activity of Klenow polymerase
and T4 DNA polymerase is used to blunt the ends of all of the
fragments.

(4) Tailing of cDNA fragments. Klenow (exo-) is used with dATP
in order to add a 30 adenine overhang to the blunt-end dou-
ble-stranded cDNA fragments.

(5) Adaptor ligation. Tailed cDNA fragments are ligated to a mix
of two adaptors, that will permit the non-specific amplifica-
tion of cDNA fragments from step 6.

(6) Size-based purification of ligation products. Ligation prod-
ucts are separated on a 2% TAE (Tris–acetate–EDTA)–agarose
gel, and a specific region of the gel is excised according to the
desired size range for the insert (generally 120–170 nt in
size). The cDNA contained in the gel fragment is purified
using a gel extraction kit.

(7) PCR of ligation products. Purified cDNA fragments from step
6 are used for seventeen rounds of PCR amplification with
primers complementary to the previously ligated adaptors,
and compatible to oligonucleotides attached to the Illumina
FlowCell.

(8) Purification and quantification. Following PCR amplification
of ligation products, the resulting DNA is purified with a
QIAquick PCR kit (Qiagen) or equivalent, and concentration
is measured with a Nanodrop. The cDNA is subsequently
diluted to a working concentration of 10 nM in TE.

(9) Sequencing of fragments. Purified cDNA fragments are
loaded onto Illumina flow cells, keeping the 8th flow cell
reserved for a recurrent internal standard to control for
sequencing efficiency. The instrument is typically run for
35–45 cycles of chemistry (to allow for the incorporation
of 35–45 bp, although newer versions of the Genome Ana-
lyzer are capable of extending this further).
5. Data analysis

5.1. Data filtering

As part of the results from any sequencing run, there will inev-
itably be a certain percentage of reads which cannot be mapped
(which may be contaminants), or which are of dubious quality
(large numbers of Ns called in the sequence). The need to remove
these poor quality reads is somewhat arbitrary in that low quality
reads are much less likely to be matched to the reference genome,
and in general, the percentage of such poor quality reads is rela-
tively low. Nevertheless, the removal of such reads is not difficult
and will accelerate subsequent downstream analysis. Reads which
contain numerous interspersed Ns in their sequence, or short reads
(<�17 bp) lacking Ns which would in any case be too short to be
effectively matched back to a reference genome, are unlikely to
be informative for any application. A series of simple Perl scripts
can be used to remove such low quality sequence reads.

5.2. Read mapping

Once the cDNA sequence reads have been filtered to remove
aberrant reads, the next challenge is to match the sequences back
to the reference genome. While this task is trivial on an individual
basis, it is the sheer volume provided by this methodology that
presents a challenge in the context of next-generation sequencing
technologies. To illustrate the extent of the problem, it would re-
quire either 43 or 6 h, using established alignment programs such
as BLAST and BLAT respectively, to map 10 million 32 bp reads,
back to a reference genome [19]. Since some next-generation
sequencers are capable of generating well over 20 times this num-
ber of reads, the absolute requirement for new bioinformatic tools
is self-evident. Novel alignment programs, both published (SOAP,
MAQ, SSAHA2 [19–21]) and unpublished (ELAND, BOWTIE) are
available and are specifically adapted for high volumes of short se-
quence reads, allowing an enormous advantages in terms of align-
ment efficiency (1–8 min to map �10 million reads). Given the
nature of the computational task and the structure of the data pro-
grams such as BLAT can still be used effectively by breaking down
the total number of reads to be mapped into arbitrarily smaller
‘‘chunks”, if large amounts of distributed computing power is read-
ily available. These subsets of sequence reads can afterwards be
sent separately to individual nodes of a compute farm. The final
mapping results can then be recompiled from the results of the
individual BLAT output files. Despite the technical feasibility of this
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solution, the general rarity of such compute farms reduces the
applicability of this approach. As a result, the main bioinformatic
efforts have been towards the development of more efficient align-
ment programs which will be capable of running on individual
workstations, although this remains a challenging task.

Regardless of the software used, the issue of how to deal with
repetitive sequences, especially those that match perfectly to more
than one location in the genome, remains. For complex organisms
(human and mouse) where repetitive sequences represent nearly
50% of the genome [22,23], the impact of the inclusion of such
reads will be dependent on the size of the transcript, its expression
level, the distribution of the sequence reads across the transcript
and the frequency of the expressed version of the repeated se-
quence. In many cases, the effect may be well below the noise lev-
els that are present in alternative technologies such as microarrays.
However, with so many parameters affecting the data, the simplest
approach to repetitive sequences in transcripts, may simply be to
remove them from the results unless they can be matched unam-
biguously. The number of reads which cannot be matched unam-
biguously can also be substantially reduced through the use of
paired-end reads (or mate-pair reads for the ABI SOLiD).

Currently, all of the next generation sequencing technologies are
capable for generating data from ‘‘paired-end” or ‘‘mate-pair” frag-
ments. This approach involves sequencing both ends of a single mol-
ecule of an approximately known size (based on the fragment
excised in step 6 in the protocol above), thereby creating a larger
(�120 bp) pseudo-read with 35–45 bp of known sequence at either
end. As with conventional whole genome shotgun sequencing, the
sequence information of either end of an approximately known size
is extremely useful for mapping reads. When one of the paired reads
maps to a highly repetitive element in the genome but the second
does not, it allows both reads to be mapped to the reference genome
unambiguously. This is accomplished by first matching the first non-
repeat read uniquely to a genomic position and then looking within a
Fig. 2. Different methods of quantifying sequence expression scores. This figure shows
feature (cyan rectangle). Method I uses the sum of the number of reads crossing each n
feature. The position scores of the first 10 bp of the feature are shown above the seque
(vertical red lines). Method II uses a similar approach but only uses an arbitrary portion o
arbitrary length. This method can be useful if the cDNA sequenced has only been oligo d
number of reads that fall within the ORF, divided by the length of the ORF. The first fiv
size window, based on the known size range of the library fragments,
for a match for the second read. The usefulness of this approach was
demonstrated to improve read matching from 85% (single reads) to
93% (paired reads) [20], allowing a significant improvement in gen-
ome coverage, articulacy in repeat regions. RNA-seq analysis soft-
ware or read mapping programs such as SSAHA2, ERANGE3.0 and
MAQ all support the use of paired-end reads.

6. Expression scoring and representation

In order to derive expression scores for annotated elements
(such as exons) within a genome, a method must be used to con-
vert RNA-seq reads into a quantitative value for each element.
The simplest approach to this problem is to simply sum the num-
ber of reads which fall within the co-ordinates of each element
(either exon or gene), and then normalize for the length of the ele-
ment (Fig. 2). An alternative approach is to calculate a sequence
score for each nucleotide in the genome based on the number of
reads which cover each base position, and again normalizing for
element lengths. All methods generate fairly similar results,
depending on how the sample is prepared, one methodology may
be more suitable (i.e. oligo dT priming may produce poor coverage
of the 50 ends of longer expressed genes in humans, hence counting
reads/scores at the 30 region of all genes may overcome this prob-
lem). In addition to normalizing for the feature length, when com-
paring different RNA-seq data from different conditions or tissues,
it is also necessary to normalize for the total amount of sequence
obtained per condition. This can be done simply by dividing the
scores calculated above for all features by the ratio of sequence
depth of one ‘‘reference condition”, or total sequence for each con-
dition (in bp), or some other equivalent transformation. This avoids
the possibility that genes will appear to be differentially expressed
simply as a result of the presence of more sequence in one condi-
tion as compared to another.
three possible methodologies for calculating an expression score for an annotated
ucleotide position (position scores) within the feature divided by the length of the
nce reads in the feature (horizontal black lines) at the position of every nucleotide
f the 30 end of the ORF, dividing the sum of reads crossing each position by the same
T primed and so would contain a 30–50 bias. The third method simply calculates the
e reads in the feature are shown numbered below the feature.
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The quantification methods described above are limited by the
need for accurate annotation of the reference genome that is used.
This is particularly challenging for higher eukaryotes as the
increasing transcriptional complexity of their genomes become
more apparent. In the case of unannotated exons, the inclusion of
such data could create variation between the expression level of
genes surveyed using RNA-seq compared to microarrays. For in-
stance, if the microarray probe for a given gene is in the 3’ UTR,
but the RNA-seq data for the same gene includes reads from a
large, but rarely used, alternatively spliced exon, the length-nor-
malized gene expression score for RNA-seq will be lower than
the microarray value. Despite this potential complication, data
from RNA-seq experiments have an important advantage over
standard microarray data, in that it can be used to validate whether
the novel transcribed regions are in fact novel exons of an anno-
tated gene. By identifying short sequence reads which span
exon–exon junctions (‘‘trans-reads”), transcript isoforms can be re-
vealed through the connections between exons. Initial efforts in
this direction are very promising [10,11], however as short se-
quence reads cannot yet validate all the junctions in a given mRNA,
the relative amounts of different isoforms must be derived from
inferential methods.

Once expression scores have been calculated, it is often useful
to visualize the data along with genome annotation information
for specific regions. Based on RNA-seq results from model organ-
isms such as fission yeast [16] and budding yeast [24], it is gener-
ally necessary to compress the values of nucleotide scores or reads
counts by taking the log of the values (or similar transformation) in
order to display the data clearly. Such illustration of the data, as
shown in Fig. 3, has the added benefit of allowing fairly intuitive
interpretation of the results in terms of identifying potential novel
introns, novel genes or putative alternative poly adenylation sites.

7. Data storage, submission, archiving

The primary information generated from most next-generation
sequencing approaches are either images or image related data,
and as such, generally result in very large data files (see Table 2).
While these images are stored locally for processing by the
sequencing software, the enormous size of these files makes them
impractical as a general method of storing the data. Indeed, as re-
agent costs decrease for the next-generation sequencing technolo-
gies, the cost of computer storage space for the data from a single
run begins to approach the cost of re-sequencing the actual sam-
Fig. 3. An example of RNA-seq data plotted with corresponding annotation. The fission y
data [16] plotted along the x-axis while the y-axis represents the log (base 2) of the n
transcriptional orientation of the genes is shown by the small bent arrows, while the larg
reverse transcriptase falling off during RT. Note that some signals are present both insi
phenomenon, could also be caused by contaminating gDNA in the RNA preparations. Su
floor (a value representing no transcription) of the data set, however this should be don
ple. While this regeneration of the data is not an ideal solution, it
does highlight the problem caused by the sheer volume of data;
a problem which is only likely to increase as new sequencing tech-
nologies advance.

Traditional DNA sequence repositories such as NCBI and EMBL
are already being adjusted to allow for the storage of processed se-
quence data from next generation sequencing machines in the
MINSEQE schema (Minimum Information about a high-throughput
Nucleotide SEQuencing Experiment), analogous to the MIAME
guidelines for microarrays [25]. As such, it will be possible to have
access not only to final reads used for analysis, but also to the var-
ious data prior to filtering or normalization, in addition to complete
descriptions of the method in which the RNA samples were col-
lected and prepared before sequencing. Currently, the short read ar-
chive (NCBI) holds >5 trillion bases of next-generation sequencing
data (deposited between Jun 2008 and Feb 2009), the bulk of which
(96%) represents human data, mostly generated as part of the of the
1000 genomes project. Likewise, the European Read Archive (ERA),
is mirroring the data in NCBI, while allowing direct submissions, in
the same way that Genbank and EMBL have operated in the past.

8. Concluding remarks

The development of robust DNA sequencing technologies by
Fredrick Sanger during the 1970s ushered in a new era in molecu-
lar biology, creating the ability to view the exact base pair compo-
sition of a gene [26,27]. Since this time, there have been numerous
incremental technical improvements that have increased the
throughput of sequencing machines using this methodology. De-
spite these advances, the easiest method to rapidly scale-up output
was, until recently, the purchase of a larger number of sequencing
machines. This lead to the creation of a relatively small number of
large genome sequencing centers, operating like factories, and gen-
erating DNA sequence data from a selected list of organisms for the
broader scientific community.

The arrival of next generation sequencing technologies has cre-
ated the first break with this old sequencing paradigm, and can
conceivably allow each university or research institute to generate
DNA sequence on a scale that, in the past, would have only been
possible at a genome sequencing center. The effects of this shift
are wide ranging and multifaceted. In the first instance, the ability
of anyone to generate massive amounts of cheap DNA sequence
data from any organism has created a profound democratization
of the process of genome sequencing. In the second instance, tech-
east genes SPAC9.13c, SPAPJ735.02c and SPAC5D6.12 with corresponding RNA-seq
ucleotide scores (number of reads crossing every bp position in the region). The

e slanted arrow indicates the 30–50 slope created in read frequency as a result of the
de and out of the ORF regions. Low level signal, while potentially a real biological
ch background can be removed from the displays/analysis by arbitrarily raising the
e only when justified through extensive additional controls.
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nical applications, such as RNA-seq (and ChIP-seq, Meth-Seq, etc.)
have evolved such that they now have the potential to dramatically
improve, and therefore supplant, the previously used technology,
microarrays, if the economics continue to improve.

While allowing powerful new applications like RNA-seq, the
continually accelerating pace of technological change in the field
of next generation sequencing also carries with it the real hazard
of creating a glut of unused (or ‘‘under used”) information. Sub-
stantial effort is already being invested in developing new ap-
proaches to deal with the volumes of data created by the current
generation of new sequencing technologies, in order to maximize
their potential benefit. The predicted output of other novel
sequencing approaches, which could be available in the next few
years, will dwarf even the output of current next-generation ap-
proaches. This raises the possibility that unless a great deal of ef-
fort is put into developing the computational tools and expertise
to efficiently analyze the coming onslaught of data, there may
eventually be thousands of sequenced genomes (and transcripto-
mes) just sitting on computer hard drives waiting to be analyzed.
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