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Preface

These are lecture notes for AME60634: Intermediate Heat Transfer, a second course on heat transfer
for undergraduate seniors and beginning graduate students. At this stage the student can begin to
apply knowledge of mathematics and computational methods to the problems of heat transfer. Thus,
in addition to undergraduate heat transfer, students taking this course are expected to be familiar
with vector algebra, linear algebra, ordinary differential equations, particle and rigid-body dynamics,
thermodynamics, and integral and differential analysis in fluid mechanics. The use of computers is
essential both for the purpose of computation as well as for display and visualization of results.

The main purpose of these notes is to develop the ability to mathematically model physical
processes involving heat transfer. The models should have all the essential ingredients but ignore
those that are not so. What is quantitatively lost in the approximations is gained by a qualitative
understanding of the physical processes.

The student is encouraged to make extensive use of the literature listed in the bibliography.
There are many examples inserted in the text to illustrate the modeling process. The students are
also expected to attempt the problems at the end of each chapter to reinforce their learning.

At present these notes are in the process of being written, and I will be glad to receive comments
and have mistakes brought to my attention.

Mihir Sen
Department of Aerospace and Mechanical Engineering

University of Notre Dame

Copyright c© by Mihir Sen, 2017.
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Chapter 1

Introduction

It is assumed that the reader has had an introductory course in heat transfer of the level of [12, 14,
19, 20, 22, 24, 26, 34, 68, 80, 84, 93, 95, 113, 118, 119, 125, 130, 146, 164, 186, 193, 198, 218, 221, 222].
More advanced books are, for example, [216, 223]. A classic work is that of Jakob [100].

1.1 Mathematical background

1.1.1 Coordinate systems

The physical quantities discussed here will be scalars, vectors or tensors. Although other coordinate
systems can be used, we will generally restrict ourselves to Cartesian, cylindrical, and spherical
systems. A time-dependent scaler field is u(x, t). A vector field V (x, t) can be written in these
coordinates systems as

V = Vxi+ Vyj + Vzk Cartesian

= Vrer + Vθeθ + Vzez cylindrical

= Vrer + Vθeθ + Vφeφ spherical

We will also use ∇, called del or nabla, as shorthand to indicate the operations

grad u = ∇φ

div V = ∇ · V ,
Laplacian u = ∇ ·∇u = ∇2u = ∆u

where u and V are any scalar and vector fields, respectively. In general ∇ is not an operator, and
can be only written explicitly in Cartesian form as

∇ =
∂

∂x
i+

∂

∂y
j +

∂

∂z
k,

1
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so that

grad u =
∂u

∂x
i+

∂u

∂y
j +

∂u

∂z
k,

div V =
∂Vx
∂x

+
∂Vy
∂y

+
∂Vz
∂z

,

Laplacian u =
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
.

In cylindrical coordinates (r, θ, z)

grad u =
∂u

∂r
er +

1

r

∂u

∂θ
eθ +

∂u

∂z
ez,

div V =
1

r

∂

∂r
(rVr) +

1

r

∂Vθ
∂θ

+
∂Vz
∂z

,

∇2u =
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2

∂2u

∂θ2
+
∂2u

∂z2

and in spherical coordinates (r, θ, φ)

grad u =
∂u

∂r
er +

1

r

∂u

∂θ
eθ +

1

r sin θ

∂u

∂φ
eφ,

div V =
1

r2

∂

∂r
(r2Vr) +

1

r sin θ

∂

∂θ
(Vθ sin θ) +

1

r sin θ

∂Vz
∂z

,

∇2u =
1

r2

∂

∂r

(
r2 ∂u

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
+

1

r2 sin2 θ

∂2u

∂φ2

1.1.2 Polynomial approximations

If the function y(x) is known, then a Taylor series can be used to generate a polynomial at any
point. The expansion of y(x) around x = 0 is

y(x) = y(0) +
∂y

∂x

∣∣∣∣∣
x=0

x+ 1
2!

∂2y

∂x2

∣∣∣∣∣
x=0

x2 + 1
3!

∂3y

∂x3

∣∣∣∣∣
x=0

x3 + . . . (1.1)

If, on the other hand, y(x) is known only at discrete points, then approximations at other
points can be generated by an interpolation. Thus, if y(x1) and y(x2) are known, then

y(x) = y(x1) +
x− x1

x2 − x1

(
y(x2)− y(x1)

)
is a linear interpolation. Higher-order polynomials can be determined if the values of y(x) are known
at more values of x. The Lagrange interpolation formula is

y(x) =
(x− x1)(x− x2) · · · (x− xn)

(x0 − x1)(x0 − x2) · · · (x0 − xn)
y0 +

(x− x0)(x− x2) · · · (x− xn)

(x1 − x0)(x1 − x2) · · · (x1 − xn)
y1+

. . .+
(x− x0)(x− x1) · · · (x− xn−1)

(xn − x0)(xn − x1) · · · (xn − xn−1)
yn
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1.1.3 Complex numbers

A complex number z may be written as

z = x+ iy

where i =
√
−1, and x and y are real. The real and imaginary parts of z are

x = Re(z),

y = Im(z).

z can also be written as

z = A∠θ

= Aeiθ,

= A(cos θ + i sin θ),

where A =
√
x2 + y2 and tan θ = y/x. A = |z| is called the magnitude, modulus, or absolute value

of z.
Euler’s formula is

eiθ = cos θ + i sin θ,

from which

e−iθ = cos θ − i sin θ.

The trigonometric functions are obtained as

cos θ =
1

2
(eiθ + e−iθ),

sin θ =
1

2i
(eiθ − e−iθ)

The hyperbolic functions are defined in parallel as

cosh θ =
1

2
(eθ + e−θ),

= cos(iθ),

sinh θ =
1

2
(eθ − e−θ),

= −i sin(iθ).

Sometimes the real parts of complex numbers are used instead of a cosine, as in

cos θ = Re(eiθ).

At other times a complex conjugate is added, like

cos θ =
1

2
(eiθ + ∗),

where ∗ (or cc) indicates the complex conjugate of the preceding term. In any case Re, ∗ or cc may
be understood and not explicitly written.
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1.1.4 Ordinary differential equations

The following are some of the procedures of solution used.

Direct integration

To solve

d

dx

[
k(x, y)

dy

dx

]
= 0,

we find the first integral to be

k(x, y)
dy

dx
= C1.

Special cases:
(a) For k(x, y) = k, the equation can be integrated again to give

k y = C1x+ C2.

(b) If k(x, y) = k(x), we can write

dy

dx
=

C1

k(x)
,

from which

y = C1

∫
dx

k(x)
+ C2.

A closed-form function or numerical values may be obtained for the integral on the right.
(c) For k(x, y) = k(y), we integrate to get∫

k(y) dy = C1
x2

2
+ C2

Integrating factor

To solve the linear equation

dy

dt
+ P (t) y = Q(t), (1.2)

multiply first by the integrating factor e
∫ t
a
P (s) ds = eF (t)−F (a). Choose a such that F (a) = 0. This

gives

dy

dt
e
∫ t
a
P (s) ds + P (t) y e

∫ t
a
P (s) ds = Q(t) e

∫ t
a
P (s) ds,

d

dt

[
y e

∫ t
a
P (s) ds

]
= Q(t) e

∫ t
a
P (s) ds.

Integrating

y e
∫ t
a
P (s) ds =

∫ t

t0

Q(r) e
∫ r
a
P (s) ds dr + C,
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so that

y = e−
∫ t
a
P (s) ds

[∫ t

t0

Q(r) e
∫ r
a
P (s) ds dr + C

]
.

Trial solutions

For

a
d2y

dt2
+ b

dy

dt
+ cy = 0,

assume that

y = ert

so that

ar2ert + brert + cert = 0,

ar2 + br + c = 0,

r1,2 =
1

2a

[
− b±

√
b2 − 4ac

]
Since the equation is linear, the general solution is a linear combination

y = C1e
r1t + C2e

r2t.

Change variables

Change of reference: In

a
d2y

dt2
+ b

dy

dt
+ c(y − y0) = 0,

let η = y − y0 to give

a
d2η

dt2
+ b

dη

dt
+ cη = 0.

Similarity:

Periodic forcing

The forced first-order equation is

dy

dt
+ λy = A cosωt.

Let the solution be

y(t) = C1 cosωt+ C2 sinωt.
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t

0 π/4 π/2 3π/4 π 5π/4 3π/2 7π/4 2π

y(t)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

θ=0
θ=π/8
θ=-π/8

Figure 1.1: Sinusoids that lead (· · · ) and lag (− −) the reference (—). ω = 1; amplitudes of the
reference and the other two are 1, 0.8, and 0.8, respectively.

Substituting and comparing the coefficients of the sinωt and cosωt terms gives

ωC1 + λC2 = A,

λC1 − ωC2 = 0,

from which

C1 =
ωA

ω2 + λ2
,

C2 =
λA

ω2 + λ2
,

Thus

y(t) =
ω

ω2 + λ2
A cosωt+

λ

ω2 + λ2
A sinωt. (1.3)

With phasors
The solution, Eq. (1.3), can also be written as

y(t) = B cos(ωt+ φ), (1.4)

= B(cosωt cosφ− sinωt sinφ),

where φ is a phase angle (φ > 0 is for y(t) leading cosωt, and φ < 0 for lagging). Fig. 1.1 shows
sinusoids that are leading and lagging a reference sinusoid. The right side of Eq. (1.4) is sometimes
written as B∠φ that provides the magnitude and phase information (but not the frequency).
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−4 −2 0 2 4

−0.5

0

0.5

t

y
(t

)

Figure 1.2: Sinusoids of same frequency that lead (· · · ) and lag (− −) the reference (—). Tikz code
has to be corrected to replace Fig. 1.1.

Comparing coefficients

B cosφ = A
ω

ω2 + λ2
,

B sinφ = −A λ

ω2 + λ2
.

from which

tanφ = −λ
ω
,

B =
A

ω2 + λ2
.

For λ > 0, ω > 0 we note that φ < 0 meaning that the response lags the external forcing.

With complex numbers
For the equation

dy

dt
+ λy = Aeiωt,

where A is real, let us write the solution as

y(t) = Beiωt,

where B is in general complex. Substituting in the equation and canceling eiωt, we get

iωB + λB = A,

from which

B = A
1

λ+ iω
,

= A
λ− iω
λ2 + ω2

multiplying above and below by the conjugate,

= A
λ

λ2 + ω2
− iA ω

λ2 + ω2
.

Writing B = |B|ei(ωt+θ), we can find the magnitude of the solution |B| and the phase angle θ.
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Delay equations

As an example consider the first-order linear

dy

dt
= ky(t− td) with y = 1 for − td ≤ t < 0.

Notice that the initial condition is given in an interval rather than at a point.
If we take

y(t) = Aert,

we get the transcendental characteristic equation

r − ke−rtd = 0.

Of course when there is no delay, td = 0, r = k, and the initial condition is y = 1 for t = 0. The
solution reduces to y(t) = ekt.

In general, however, td 6= 0, and there may be multiple real, imaginary or complex roots of
the equation which will determine the kind of solution obtained. For example, let us search for a
sinusoidal solution

y(t) = A sinωt.

Substituting into the equation, we have

ωA cosωt = kA
[

sinωt cosωtd − cosωt sinωtd

]
.

Comparing the coefficients of cosωt and sinωt, we get

cosωtd = 0,

k sinωtd = −ω.

One possible solution for the first equation is ωtd = π/2, for which the second gives k = −ω or
ktd = −π/2. Thus values of k and td satisfying these conditions will give oscillatory solutions.
Similarly, another possibility is ωtd = 3π/2, and kτd = 3π/2.

Numerical solutions

To solve an equation of the form

dy

dt
= f(t, y)

some of the following methods may be used. Start at a point (t0, y0) to calculate (t1, y1) and then
(t2, y2), and so on, where ti+1 − ti = h > 0.

Euler:

yn+1 = yn + f(tn, yn) h
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Modified Euler:

y′n+1 = yn + f(tn, yn) h,

yn+1 = yn + f(tn, y
′
n+1) h

Fourth-order Runge-Kutta:

yn+1 = yn +
h

6
(k1 + 2k2 + 2k3 + k4)

where

k1 = f(tn, yn),

k2 = f(tn +
h

2
, yn +

h

2
k1),

k3 = f(tn +
h

2
, yn +

h

2
k2),

k4 = f(tn + h, yn + h k3).

1.1.5 Nonlinear equations

Bifurcations

Pitchfork, transcritical, saddle-node, Hopf

Linear stability

Consider a transcritical bifurcation example

dx

dt
= −x

[
x− (r − r0)

]
,

where x = x(t). This is the dynamical system and r is the bifurcation parameter.
Steps

• Find critical points (steady states, time-independent solutions, stationary solutions, equilibria).
Take d/dt = 0 so that

−x̄
[
x̄− (r − r0)

]
= 0,

where ¯ indicates a critical point. The two critical points are the solutions

x̄ = 0; x̄ = r − r0.

• Apply a small perturbation to a critical point, i.e.

x = x̄+ x′,
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x̄ = r − r0

x̄ = 0

x̄

r

Figure 1.3: Diagram for transcritical bifurcation. Thick lines are stable and dashed lines are unstable.

where x′ = x′(t) is a coordinate around the critical point. Substituting in the dynamical
system and linearizing

d

dt
(x̄+ x′) = −(x̄+ x′)

[
(x̄+ x′)− (r − r0)

]
,

dx′

dt
= −(x̄+ x′)2 + (x̄+ x′)(r − r0),

= − x̄
[
x̄− (r − r0)

]︸ ︷︷ ︸
=0

−2x̄x′ − (x′)2︸ ︷︷ ︸
≈0

+x′(r − r0),

=
[
− 2x̄+ (r − r0)

]
x′.

• Consider the stability of each critical point separately.

(a) First x̄ = 0 for which

dx′

dt
= (r − r0)x′.

This is stable for r < r0 and unstable for r > r0.

(b) Next x̄ = r − r0, so that

dx′

dt
=
[
− 2(r − r0) + (r − r0)

]
x′,

= −(r − r0)x′.

This is unstable for r < r0 and stable r > r0.

Fig. 1.3 shows the bifurcation diagram. The arrows indicate the path from different initial
conditions.

Nonlinear stability

Lyapunov functions
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Chaos

Lorenz equations

dx

dt
= σ(y − x),

dy

dt
= rx− y − xz,

dz

dt
= −bz + xy.

1.1.6 Relaxation

Here are some examples.

Exponential: A solution will be presented followed by the differential equation of which it is a
solution. For known C and real λ > 0 the solution is

y = Ce−λt

Differentiating

dy

dt
= −Cλe−λt,

= −λy.

This can be written as

dy

dt
+ λy = 0.

This is a first-order linear equation. Note that λ has units of inverse time and that any value
of C will satisfy the same differential equation.

If one wanted to work in the reverse direction and solve the differential equation, one will
obtain y = Ce−λt where C is arbitrary. To pin down the value of C, an initial condition will
have to be provided. This can be, for instance, y(t1) = y1, from which C = y1e

λt1 .

Stretched exponential function: Taking

y(t) = Ce−t
β

,

dy

dt
= Ce−t

β(
− βtβ−1

)
= y

(
− βtβ−1

)
,

dy

dt
+ βtβ−1y = 0.

Double exponential function:

Two decay constants: If λ1 and λ2 are two different real, positive numbers, then

y = C1e
−λ1t + C2e

−λ2t, (1.5)

dy

dt
= −C1λ1e

−λ1t − C2λ2e
−λ2t, (1.6)

d2y

dt2
= C1λ

2
1e
−λ1t + C2λ

2
2e
−λ2t. (1.7)
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Solving C1 and C2 from Eqs. (1.5) and (1.6) we get

C1 =
eλ1t

λ2 − λ1

(
λ2 y +

dy

dt

)
,

C2 =
eλ2t

λ1 − λ2

(
λ1 y +

dy

dt

)
.

Substituting these in Eq. (1.7) gives the second order differential equation

d2y

dt2
=
[ eλ1t

λ2 − λ1

(
λ2 y +

dy

dt

)]
λ2

1e
−λ1t +

[ eλ2t

λ1 − λ2

(
λ1 y +

dy

dt

)]
λ2

2e
−λ2t,

=
λ2

1λ2 − λ2
2λ1

λ2 − λ1
y +

λ2
1 − λ2

2

λ2 − λ1

dy

dt
,

= −λ1λ2 y − (λ1 + λ2)
dy

dt
.

Alternatively

The two exponential complementary functions in the solution Eq. (1.5) come from the quadratic
characteristic equation

(r + λ1)(r + λ2) = 0,

for which the differential equation is

(
d

dt
+ λ1)(

d

dt
+ λ2) y = 0,

d2y

dt2
+ (λ1 + λ2)

dy

dt
+ λ1λ2 y = 0.

Multiple decay constants: In a similar way, higher-order differential equations with different
multiple decay constants

(
d

dt
+ λ1)(

d

dt
+ λ2) · · · ( d

dt
+ λn) y = 0,

can appear.

Logarithmic relaxation:

Nonlinear: Sometimes a solution is implicit. The solution of

τ
dy

dt
+ α(y3 − ȳ3) = 0

is (?)

t+
1

3

τ(y − ȳ)

αȳ2
− 1

6

τ ln(y2 + yȳ + ȳ2)

αȳ2
− 1

3
τ
√

3 arctan
[1
3

(2y + ȳ)
√

3

ȳ

]
α−1ȳ−2 + C1 = 0
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Another nonlinear: The solution for

τ
dy

dt
+ α(y − ȳ)3 = 0

will be different from that given above.

Example 1.1
Find the lowest-order differential equation for y(t) corresponding to

y = Ce−y
2t.

Differentiating

dy

dt
= Ce−y

2t(−2yt
dy

dt
− y2),

= y(−2yt
dy

dt
− y2)

from which (
1 + 2y2t

)
dy

dt
+ y3 = 0.

1.1.7 Optimization

To curve-fit empirical data (yi, ti), i = 1, . . . , n, one must minimize the error E, where

E2 =
∑
i

(yi − y(ti; a, b, . . .))
2,

between the data and a chosen function y(t; a, b, . . .), where a, b, . . . are parameters in the function
that have to be determined.

Fig. 1.4 shows an example of the shape of E with respect to two parameters a and b. The
coordinate descent method is a simple way to find the values of a and b for which E is a minimum.
This works by a search for a minimum by varying a and keeping b constant, followed by varying b
and keeping a constant; the process is repeated until a local minimum is reached where any change
in a or b will lead to a climb.

1.2 Thermodynamic basis

A system is an identifiable part of the universe that is being studied, and the rest are the surround-
ings. Energy can enter or leave a system in the form of heat or work. A closed system does not
exchange mass with its surroundings, and an isolated system does not exchange energy either. There
is thermal equilibrium between two systems if there is no heat flow between them. Both heat and
work are taken to be positive if they enter the system and negative if they leave.

The laws of thermodynamics that are needed in heat transfer are the following.
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a

b

E

Figure 1.4: E(a, b)

Zeroth law: If two systems are each in thermal equilibrium with a third, they must also be in
thermal equilibrium with each other. This enables temperature to be defined.

First law: The internal energy of a system increases by as much energy enters the system. This is
the conservation of energy

dU = δQ+ δW,

where dU is the differential change in internal energy, and δQ and δW are the small heat and
work energies entering the system. This defines the internal energy.

The temperature is associated with the motion of molecules within a material, being directly
related to the kinetic energy of the molecules, including vibrational and rotational motion.
The change in internal energy of a body can be written in terms of a coefficient of specific
heat as δU = M c δT . If we wanted to distinguish between the specific heat determined in
a constant volume or constant pressure process, we would write cv or cp, respectively; for an
incompressible substance they are both the same.

Second law: There are many equivalent statements and corollaries of this law. The one that is
most relevant to heat transfer is that the change in entropy dS for a closed system receiving
heat Q is

dS ≥ δQ

T
,

where T its absolute temperature. The entropy of an isolated system can thus only increase.
The equality holds for reversible processes and the inequality for irreversible. This law thus
defines entropy.

1.2.1 Nonequilibrium thermodynamics

In general the driving potential (force or cause) ∆φ and the resulting flow Q (flux or effect) are
related in some way. Though the flow is more properly written Q̇ indicating a rate, we will leave
the dot as understood. Thus

Q = f(∆φ)

Applying Eq. (1.1) to ∆φ = 0 around ∆φ = 0 gives

Q = f(0) + f ′(0)(∆φ) + 1
2!f
′′(0)(∆φ)2 + 1

3!f
′′′(0)(∆φ)3 + . . .
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T1 T2

Q

Figure 1.5: Two systems with heat transfer between them

Consider two systems, such as those in Fig. 1.5, that can exchange heat with each other but
are isolated from their surroundings. From the zeroth law we know that the heat flow rate Q = 0 if
the ∆φ = T1− T2 = 0, so that f(0) = 0. Q may, however, be non-zero if T1 6= T2. Keeping only one
non-zero term in the expansion, we have

Q = C(T1 − T2), (1.8)

where C = f ′(0) is a constant. This is a constitutive relation that can be taken to be empirical.
Onsager’s reciprocal relations relate the different kinds of driving potentials and their resulting flows.

Considering only the system on the left, and assuming that the heat exchange is reversible, its
change in entropy is

δS1 = −δQ
T1
,

where δQ is the amount of heat transferred, and similarly that of the one in the right is

δS2 =
δQ

T2
.

We have taking into account the fact that heat is leaving one system and entering the other. The
total entropy change of the combined system is

δS = δS1 + δS2,

= −δQ
T1

+
δQ

T2
.

Together the two systems are isolated from the surroundings, so the total entropy can only increase.
Thus we must have T1 > T2, so that C ≥ 0.

Onsager reciprocity

Jα =
∑
β

Lαβ∇fβ

where Lαβ is the Onsager matrix of phenomenological coefficients.

1.2.2 Phase change

We will be dealing with solids, liquids and gases as well as the transformation of on to the other.
Again, thermodynamics dictates the rules under which these changes are possible. For the moment,
we will define the enthalpy of transformation, also called the latent heat, as the change in enthalpy
that occurs when matter is transformed from one state to another.
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n

V

dA

Figure 1.6: Advection by a flow with velocity V through an area dA n

CS

CV

dA

V

n

Figure 1.7: Control surface (CS) and control volume (CV) of arbitrary shape with an element of
area dA on the surface.

1.3 Balance equations in integral form

The advective transport of a quantity X per unit mass (where X can be a scalar, vector or tensor)
by the bodily motion of a fluid flow through an area dA = dA n is shown in Fig. 1.6. Quantities are
taken to be positive in the outward direction. The rate of transport of X through dA is X ρ V ·dA.

Consider an arbitrary control surface CS that encloses a control volume CV, as shown in
Fig. 1.7. Balance of X gives

∂

∂t

∫
CV
ρ X dV +

∫
CS
ρ X (V · dA) = S,

where S is a source of X inside the volume.

Mass: For mass conservation, X = 1 and

∂

∂t

∫
CV
ρ dV +

∫
CS
ρ (V · dA) = 0.

Momentum: For Newton’s second law, X = V , so that

∂

∂t

∫
CV

ρ V dV +

∫
CS

ρ V (V · dA) = F

Energy: The first law gives a quantitative relation between the heat and work input to a system.
We will assume that there is no work transfer, as in Fig. 1.8. The simplest approach is to
consider the entire system. In this case

∂

∂t

∫
CV

e ρ dV +

∫
CS

e ρ (V · dA) = Q+W +Qg
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T
Q

Figure 1.8: System with heat input

flowx

heat transfer

Figure 1.9: Pipe with phase change.

where

W = Ws +Wf +WF ,

and Ws = shaft work, Wf = flow work due to pressure, and WF = work done by external force.
Q and W are the rates of heat and work transfer into the system, respectively; Qg is the rate
of generation of heat. It is possible to put e = u+p/ρ+V 2/2+gz in the second integral on the
left and W = Ws on the right. This balance equation will be useful in many instances where
only an overall knowledge of the internal energy of the system is required. However, in other
instances detailed knowledge of the variation of the temperature is beneficial and differential
equations inside the system are needed.

Example 1.2
A saturated liquid enters a heated pipe, Fig. 1.9, and leaves as a liquid-vapor mixture. How much energy

has been transferred to the fluid from the pipe?

Assumptions:
Variables: Q = heat transfer rate to liquid, ṁ = mass flow rate, h2 and h1 are the specific enthalpies at

the outlet and inlet, respectively.
The heat transfer rate is

Q = ṁ(h2 − h1),

Of course, being a phase change process, the temperature difference is not proportional to the enthalpy change.
From thermodynamics, h1 = hf and h2 = (1 − x)hf + xhg where subscripts f and g refer to the saturated
liquid and vapor states, respectively, and x is the quality factor (ratio by weight of gas to liquid).

1.4 Modeling

1.4.1 Theory and empiricism

We will use relations that we take to be either absolutely true or empirically (phenomenologically)
based. Examples of the former are the laws of thermodynamics and Newton’s laws. The fact that
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these laws are ultimately verified experimentally is not of concern to engineers in most situations;
they can assumed to be tested and true. Among the empirical relations are the analysis of frictional
force using a friction coefficient and heat transfer with a convective heat transfer coefficient. Al-
though these concepts cannot be thoroughly justified theoretically, they are none the less useful in
practice. A related idea, useful in mathematical modeling, is that of constitutive relations. These
are equations that related two or more quantities of interest in the process that have been found to
work in practice. Often the constitutive is a linear relationship between two variables. Another class
of empirical information is that related to material properties which are the result of experiments.
Among these are densities, specific heats, and viscosities, which are sometimes taken to be constants.

In science, the ultimate arbiter of correctness of a theory is a comparison with experiments.
Engineering, however, does not have the luxury of waiting until complete theories are developed and
experimentally verified, so an empirical short cut is often used. These short cuts may be at different
stages of the complete analysis; the process itself may be empirically modeled or the properties used
in a detailed analysis may experimentally obtained. In any case there are always experiments behind
the theory.

1.4.2 Relation to other perspectives

There are at least three purposes to the study of models.

Mathematical modeling: To obtain a model that can be solved analytically, numerically, or by
a combination of both.

Physical understanding: To understand what is happening without the need for a solution.

Actual behavior: To predict behavior before making experimental runs.

1.5 Nondimensionalization

Making equations nondimensional is commonly practiced to compact the understanding of solutions
obtained either experimentally or numerically. Thus if there are a total of n independent and
dependent variables, it may be possible to combine them in some manner to have m variables,
where m < n. Thus it is only necessary to determine a smaller number of dependent variables, after
which the definitions of these variables may be used to get calculate the original variables.

Example 1.3
Nondimensionalize the forced vibration equation

m
d2x

dt2
+ c

dx

dt
+ kx = f cosωt with x = x0, dx/dt = 0 at t = 0,

where m, c, k, f, ω, x0 are parameters that are provided.

Let x∗ = x/xc, t∗ = t/tc, where the subscript c indicates characteristic and the asterisks dimensionless
quantities respectively, so that

mxc

t2c

d2x∗

dt∗2
+
cxc

tc

dx∗

dt∗
+ kxcx

∗ = f cos(ω tct
∗) with xcx

∗ = x0, (xc/tc) dx
∗/dt∗ = 0 at tct

∗ = 0.

Dividing by mxc/t2c

d2x

dt2
+ C

dx

dt
+Kx∗ = f∗ cosω∗t∗ with x∗ = x0/xc, dx

∗/dt∗ = 0 at t∗ = 0,
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where C = ctc/m, K = kt2c/m, f
∗ = ft2c/mxc, ω

∗ = ωtc.

We still need to choose tc and xc. For example, if we choose tc =
√
m/k and xc = x0, the equation

becomes

d2x∗

dt∗2
+ C

dx∗

dt∗
+ 1 = f∗ cosω∗t∗ with x∗(0) = 1, dx∗/dt∗ = 0 at t∗ = 0.

Alternatively, we could choose ωtc = 1, and ft2c/mxc = 1.

1.6 Problem analysis procedure

Though each problem is unique, there are some overall guiding principles that can be laid down. The
following are some of the steps that may be considered. The Example in Section 7.5.1 on page 138
uses many of these steps, though most of the other examples are compressed with the extra steps
being understood.

• Draw a schematic of layout to help clarify the problem in your own mind. See first if the
answer sought makes physical sense.

• Identify physical processes. Consult and study appropriate literature both on the generalities
of the processes as well as the specific problem at hand. Consult others but make up your own
mind.

• Write appropriate equations of balance (integral or differential). Derive, or re-derive, each one
as far as possible or practical.

• Simplify as needed to enable solution without removing essentials.

• Solve symbolically. There may be more than one way to do it. Use a symbolic algebra
program if needed. Refresh or sharpen your analytical tools if necessary. Check solutions by
substitutions.

• Solve numerically as a last resort if need be.

• Check that the solution makes physical sense; think of the consequences of varying parameters
and for limiting cases.

• Check equations and solutions for dimensional consistence.

• Graph result.

• Improve results by including other previously disregarded factors, and obtaining numerical
solutions.
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Problems

1. Choose a quadratic y(x), and then take three values of x and find their corresponding y’s. From the three
(x, y) pairs, find the quadratic.



Chapter 2

Mechanisms of heat transfer

This chapter is brief summary of an introductory course on heat transfer.

2.1 Conduction

[31, 69, 71, 81, 106, 144, 145, 157]
We will now take up conduction in a stationary continuum. Consider the conduction heat flux

q(x) through a thick plate such as the one shown in Fig. 2.1. The coordinate through the plate is
x, and the temperature field is assumed to vary only in that direction, i.e. T = T (x). Two elements
in the plate a distance dx apart are at temperatures T and T + dT , respectively. From Eq. (1.8), q
will be zero if the temperature is uniform. So, q should depend on the first and higher derivatives
of the temperature. Thus

q(x) = f(
∂T

∂x
,
∂2T

∂x2
,
∂3T

∂x3
, . . .)

Taking only the linear term of a Taylor series expansion in the different arguments, we can write

q = k1
∂T

∂x
+ k2

∂2T

∂x2
+ k3

∂3T

∂x3
, . . .

where the k’s are constants. Taking only the first term

q = −k ∂T

∂x

∣∣∣∣∣
x

.

The negative sign is introduced to make k, called the coefficient of thermal conductivity, positive
since from Eq. (1.8) heat flows down a temperature gradient. This is Fourier’s law of conduction.

For three-dimensional anisotropic conduction we can write

qi = −
∑
j

kij
∂T

∂xj

where qi is the heat flux vector in the i-direction, T is the temperature field, and ∂T/∂xj its partial
derivative in the j-direction. kij is the coefficient of thermal conductivity; from Eq. (1.8) it is
positive. Actually, being a matrix, it is positive definite. For an isotropic material

q = −k ∇T

21
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x

Figure 2.1: 1D conduction through a plate

where q is the heat flux vector, T (x) is the temperature field, and k(T ) is the coefficient of thermal
conductivity.

2.1.1 Fourier’s law

qx = −k ∂T

∂x
one-dimensional Cartesian,

qr = −k ∂T

∂r
radial cylindrical,

qr = −k ∂T

∂r
radial spherical,

q = −k ∇T vector form.

2.1.2 Heat equation

Substituting Fourier’s law, Eqs. (2.1), into the various forms of the energy balance equation in
Chapter 1, we get

ρc
∂T

∂t
=

∂

∂x

(
k
∂T

∂x

)
one-dimensional Cartesian,

ρc
∂T

∂t
=

1

r

∂

∂r

(
k r

∂T

∂r

)
radial cylindrical,

ρc
∂T

∂t
=

1

r2

∂

∂r

(
k r2 ∂T

∂r

)
radial spherical,

ρc
∂T

∂t
= ∇ ·

(
k ∇T

)
vector form.

For constant k and with heat generation, we can write

∂T

∂t
= α∇2T +Qg

where α = k/ρc is the thermal diffusivity.

2.2 Convection

[11, 21, 27, 70, 101, 104, 105, 108, 111, 141].
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advection

conduction

Figure 2.2: Process of convection.

Fig. 2.2 shows the process of convection from a wall to a flow that is at a different temperature.
First there is conduction from the wall to the fluid and then the heat is carried by the bodily motion
of the fluid. The latter is called advection.

2.2.1 Governing equations

For incompressible flow with constant properties, the energy equation is

ρc

(
∂T

∂t
+ V ·∇T

)
= k ∇2T + Φ

where Φ = τ : ∇V is the viscous dissipation. The hydrodynamic equations decouple from the
thermal equation. For natural convection, however, there is coupling since f = −ρg(T − Tref)k.
There is also coupling for compressible flow or for temperature-dependent viscosity.

For constant properties and turbulent flow, we can take V = V̄ +V ′, where the bar indicates a
time average, from which the time average of the momentum equation for a Newtonian fluid becomes

ρ

(
∂V̄

∂t
+ V̄ ·∇V̄

)
= −∇p+ µ∇2V + ∇ · τR + f ,

where τRij = −ρ V ′i V ′j is the Reynolds stress. This is generally a priori unknown, leading to the
closure problem in turbulent flow. Usually a turbulence model is assumed for this.

2.2.2 Heat transfer coefficient

Based on Eq. (1.8), Newton’s law of cooling can be proposed: The convective heat flux from a body
q is proportional the heat transfer area and the difference in temperature between the body and the
surrounding fluid. Thus, we can write

Q = hA(Ts − T∞), (2.2)

where A is the surface area of the body, Ts is its temperature, T∞ is that of the fluid, and h is the
coefficient of thermal convection between them.

Example 2.1
What is the steady state temperature of a resistor through which a current is flowing?

Assume: (a) Only convection heat transfer to air. (b) Resistor at uniform temperature. (c) No heat
conduction through electrical wires. (d) Joule heating in resistor. (e) Convection governed by Newton’s law of
cooling.
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i

Figure 2.3: Example 1.

Variables: Qg = rate of heat generation, i = electrical current, R = resistance, Qconv = rate of heat lost
by convection, h = convection heat transfer between resistor and surrounding air, A = heat transfer area of
resistor, TR = temperature of resistor, T∞ = temperature of surrounding air. (d) Joule heating in wire.

The heat generation and heat loss are

Qg = i2R,

Qconv = h A (TR − T∞),

respectively. At steady state, Qg = Qconv, so that

i2R = h A (TR − T∞),

TR = T∞ +
i2R

h A
.

Example 2.2
A 1 mm diameter, 20 mm long nichrome wire of resistivity 10−6 Ω·m carries a current of 0.5 A. What

is the surface temperature of the wire if it is placed (a) in a transverse flow of 20 ◦C air at 1 m/s, or (b)
horizontally in quiescent air at 20 ◦C?

Variables: i = electrical current; R = electrical resistance; Ts = surface temperature of wire; Q = heat
generated in wire; σ = resistivity; L = length of wire; A = cross sectional area of wire.

R =
σL

A
,

Q = i2R, Joule heating

= hAs(Ts − T∞).

Thus

Ts =
Q

hAs
+ T∞,

=
i2σL

hAsA
+ T∞,

2.2.3 Correlations

Common nondimensional groups are shown in Table 2.1. For forced convection, correlations are of
the form of Nu, St or j as a function of (Re, Pr). For natural convection the independent groups
are (Ra, Pr) or (Gr, Pr).

Fouling
Bulk temperature
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Table 2.1: Common nondimensional groups used in heat transfer

Biot number Bi =
hL

ks
Fourier number Fo =

αt

L2

Reynolds number Re =
V L

ν
Peclet number Pe =

V L

α

Grashof number Gr =
gβ∆TL3

ν2
Rayleigh number Ra = Gr Pr

Prandtl number Pr =
ν

α
Nusselt number Nu =

hL

k

Stanton number St =
Re

Pr Re
Colburn j-factor j = St Pr2/3

Friction factor f =
2τw
ρU2

Forced convection

Natural convection

2.2.4 Phase change convection

[29, 42, 208]

Pool boiling

Boiling curve. See Fig. 2.4.

• Heat flux for nucleate boiling

q = µlhfg

[
g(ρl − ρv)

σ

]1/2(
cp,l ∆Te

Cs,f hfg Prnl

)3

Rohsenow

• Critical heat flux

qmax = Chfgρv

[
σg(ρl − ρv)

ρ2
v

]1/4

Zuber

• Minimum heat flux

qmin = Chfgρv

[
gσ(ρl − ρv)
(ρl + ρv)2

]1/4

Zuber

• Film boiling

heq = h4/3 + hrh
1/3
eq

where h is the convective and hr the radiative heat transfer coefficient.
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Figure 2.4: Boiling curve

• Film boiling on a sphere

Nu = C

[
g(ρl − ρv)h′fgD3

νvkv(Ts − Tsat

]1/4

• Condensation

Nusselt’s solution for falling film

• Homogeneous nucleation

• Flow boiling

qmax
ρvhfgV

=
1

π

[
1 +

(
4

WeD

)1/3]
low velocity

=
(ρl/ρv)

3/4

169 π
+

ρl/ρv

19.2 π We
1/3
D

high velocity

where WeD = ρvV
2D/σ.

• Two-phase flow
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Figure 2.5: Planck distribution

2.3 Radiation

[25, 59, 135, 220]
Emission can be from a surface or volumetric. Monochromatic radiation is at a single wave-

length. The spectral intensity of emission is the radiant energy leaving per unit time, unit area, unit
wavelength, and unit solid angle. The emissive power E is the emission of an entire hemisphere.
Irradiation G is the radiant energy coming in, while the radiosity J is the energy leaving including
the emission plus the reflection.

2.3.1 Blackbody

Planck’s distribution [155] See Fig. 2.5.

Eλ =
C1 λ

−5

eC2/λT − 1

Wien’s law: Putting dEλ/dλ = 0, the maximum is seen to be at λ = λm, where

λmT = C3

and C3 = 2897.8 µm K.
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incidence reflection

absorption

Figure 2.6: Absorption, transmission and reflection

Stefan-Boltzmann’s law: The total radiation emitted is

Eb =

∫ ∞
0

Eλ dλ

= σT 4

where σ = 5.670× 10−8 W/m2K4.

2.3.2 Real surfaces

Reflection: The direction distribution of radiation from a surface may be either specular (i.e.
mirror-like with angles of incidence and reflection equal) or diffuse (i.e. equal in all directions).

Translucent media: See Fig. 2.6. The absorptivity αλ, the reflectivity ρλ, and transmissivity τλ
are all functions of the wavelength λ. Also

αλ + ρλ + τλ = 1

Integrating over all wavelengths

α+ ρ+ τ = 1

Emissivity: The emissivity is defined as

ελ =
Eλ(λ, T )

Ebλ(λ, T )

where the numerator is the actual energy emitted and the denominator is that that would
have been emitted by a blackbody at the same temperature. For the overall energy, we have
a similar definition

ε =
E(T )

Eb(T )

so that the emission is

E = εσT 4

For a gray body ελ is independent of λ.
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dAi

dAjni
nj

Figure 2.7: Two elemental areas dAi and dAj with unit normals ni and nj respectively.

Kirchhoff’s law: αλ = ελ and α = ε.

Gray surface: ελ and α = ε are independent of λ.

Net heat rate: For a surface i

Qi = Ai(Ji −Gi)
= Ai(Ei − αi Gi).

Surface radiative resistance: In

Qi =
Ebi − Ji

(1− εi)/εiAi
(2.3)

the driving potential is Ebi− Ji and the surface resistance is (1− εi)/εiAi due to its not being
black.

2.3.3 Radiation between surfaces

View factor: See Fig. 2.7. Assume that emission and reflection are diffuse. Fij is the fraction of
the radiation leaving surface i that falls on surface j. It can be calculated from

Fij =
1

Ai

∫
Ai

∫
Aj

1

πR2
cos θi cos θj dAi dAj

Reciprocity: Ai Fij = Aj Fji

2.3.4 Enclosures

Summation rule:

N∑
j=1

Fij = 1.

Exchange between surfaces: The radiative heat transfer from surface i to j is

Qij =
Ji − Jj

(AiFij)−1
=

Ji − Jj
(AjFji)−1

. (2.4)
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Large blackbody enclosure: For a small body 1 radiating to a large blackbody enclosure 2, the
net radiation emitted by 1 is

Q = σF12A1T
4
1 − F21A2T

4
2 ,

= σA1(T 4
1 − T 4

2 ) by reciprocity (2.5)

where F12 ≈ 1.

Radiation shield: If between two plates 1 and 2, a third plate 3 is introduced then

Q12 =
A1σ(T 4

1 − T 4
2 )

ε−1
1 + ε−1

2 + (1− ε3,a)ε−1
3,a + (1− ε3,b)ε−1

3,b

where ε3,a and ε3,b are the emissivities of the two sides of 3 facing 1 and 2 respectively. This
is less than the the value without the shield, which is

Q12 =
Aσ(T 4

1 − T 4
2 )

ε−1
1 + ε−1

2 − 1

Resistance network: Consider the example of n gray surfaces forming an enclosure. Fig. 2.8
shows an example with n = 3. The temperatures of the surfaces Ti, are known as well as
their emissivities εi, areas Ai, and the view factors between them Fij . Then the voltages and
resistances are

Ebi = σT 4
i , driving blackbody potential

Ri =
1− εi
εiAi

, surface radiative resistance

Rij = (AiFij)
−1 = (AjFji)

−1 view factor resistance

The circuit equations for the nodes and the branches can be written. For example, the sum of
the currents flowing into node i must be zero, so that

σT 4
i − Ji

(1− εi)/εiAi
+
∑
j 6=i

Jj − Ji
(AjFji)−1

= 0.

These are n equations in the unknowns Ji, i = 1, 2, 3, . . . , n which can be solved for Ji. Using
Ji, the branch currents Qi can be determined from Eq. (2.3), and Qij from Eq. (2.4). The
currents are equivalent to the heat rates.

2.4 Steady state electrical analog

In an electrical analog, ∆T ∼ voltage difference and Q ∼ current. In analogy with Ohm’s law, the
thermal resistance is defined as

R =
∆T

Q
. (2.6)

Thus Table 2.2 shows thermal resistances of different types. An example of a composite wall with
convection and conduction and its resistance circuit is in Figs. 2.9 and 2.10.
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Eb,1 Eb,2

Eb,3

R31 R23

R3

R12

R1 R2

J3

J2J1

Figure 2.8: Enclosure of three gray surfaces

Table 2.2: Thermal resistances

Mode thermal resistance

Conduction

Cartesian
L

k A

cylindrical
ln(r2/r1)

2π L k

spherical
(1/r1)− (1/r2)

2πk

Convection
1

h A

Radiation
1

hr A

T1,∞ T1 T2 T2,∞

Figure 2.9: Composite wall with convection and conduction.

Rconv,1 Rcond Rconv,2

i

Figure 2.10: Electrical analog of Fig. 2.9.
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Contact resistance: This is Rc defined as

Rc =
∆T

Q

where ∆T is the temperature difference across two surfaces in contact, and Q is the heat rate
through them.

Radiative thermal resistance approximation: For a surface at Ts and the surroundings at T∞,
the blackbody radiation heat exchange from Eq. (2.5) is

Q = A σ(T 4
s − T 4

∞).

Since

T 4
s − T 4

∞ =
(
T 2
s + T 2

∞
) (
T 2
s − T 2

∞
)
,

=
(
T 2
s + T 2

∞
) (
Ts + T∞

) (
Ts − T∞

)
we have

Q = A σ
(
T 2
s + T 2

∞
) (
Ts + T∞

) (
Ts − T∞

)
.

Comparing with Eqs. (2.2) and (2.6) we can write the radiative heat transfer coefficient and
thermal resistance as

hr = σ
(
T 2
s + T 2

∞
) (
Ts + T∞

)
, (2.7)

Rr =
1

hr A
,

(2.8)

respectively. Even though hr is a function of the temperature Ts, for small enough differences
Ts − T∞ it can be taken to be a constant. In fact, it can be shown that

hr = 4σT 3
∞
(
1 + 3

2δ + δ2 + 1
4δ

3
)
,

where δ = (Ts − T∞)/T∞. Just to be clear, the use of Eq. (2.7) with Eq. (2.2) is exact in the
steady state when Ts and T∞ are not changing with time, but is approximate otherwise.

Thermal resistances in series: For several thermal resistance in series, as in a composite wall,
for each one we have

∆Ti = Q Ri.

Also, since ∆T =
∑
i ∆Ti, we have for a composite wall

∆T = Q Req,

where the equivalent thermal resistance is

Req =
∑
i

Ri.
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Thermal resistances in parallel: For this configuration

1

Req
=
∑
i

1

Ri
.

Overall heat transfer coefficient: This is defined as U where

Q = U A ∆T.

From this

1

U A
=
∑
i

Ri series,

U A =
∑
i

1

Ri
parallel.
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Problems

1. For a perimeter corresponding to a fin slope that is not small, derive Eq. 6.1.

2. The two sides of a plane wall are at temperatures T1 and T2. The thermal conductivity varies with temperature
in the form k(T ) = k0 + α(T − T1). Find the temperature distribution within the wall.

3. Consider a cylindrical pin fin of diameter D and length L. The base is at temperature Tb and the tip at T∞;
the ambient temperature is also T∞. Find the steady-state temperature distribution in the fin, its effectiveness,
and its efficiency. Assume that there is only convection but no radiation.

4. Show that the efficiency of the triangular fin shown in Fig. E.32 is

ηf =
1

mL

I1(2mL)

I0(2mL)
,

where m = (2h/kt)1/2, and I0 and I1 are the zeroth- and first-order Bessel functions of the first kind.

5. A constant-area fin between surfaces at temperatures T1 and T2 is shown in Fig. E.33. If the external temper-
ature, T∞(x), is a function of the coordinate x, find the general steady-state solution of the fin temperature
T (x) in terms of a Green’s function.
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δ

L

w

Figure 2.11: Triangular fin.

T1 T2

T∞

Figure 2.12: Constant-area fin.

6. Using a lumped parameter approximation for a vertical flat plate undergoing laminar, natural convection, show
that the temperature of the plate, T (t), is governed by

dT

dt
+ α(T − T∞)5/4 = 0

Find T (t) if T (0) = T0.

7. Show that the governing equation in Problem 3 with radiation can be written as

d2T

dx2
−m2(T − T∞)− ε(T 4 − T 4

∞) = 0.

Find a two-term perturbation solution for T (x) if ε� 1 and L→∞.

8. The fin in Problem 3 has a non-uniform diameter of the form

D = D0 + εx.

Determine the equations to be solved for a two-term perturbation solution for T (x) if ε� 1.

9. Determine computationally the view factor between two rectangular surfaces (each of size L× 2L) at 90◦ with
a common edge of length 2L. Compare with the analytical result.

10. Calculate the view factor again but with a sphere (diameter L/2, center at a distance of L/2 from each rectangle,
and centered along the length of the rectangles) as an obstacle between the two rectangles; see Fig. 2.13.

11. (From Incropera and DeWitt) Consider a diffuse, gray, four-surface enclosure shaped in the form of a tetrahe-
dron (made of four equilateral triangles). The temperatures and emissivities of three sides are

T1 = 700K, ε1 = 0.7

T2 = 500K, ε2 = 0.5

T3 = 300K, ε3 = 0.3

The fourth side is well insulated and can be treated as a reradiating surface. Determine its temperature.

Figure 2.13: Two rectangular surfaces with sphere.



Chapter 3

Lumped systems (zero-dimensional)

Steady and unsteady states

3.1 Balance equations

We assume that all properties are uniform inside the system.

Momentum:

d2V

dt2
= F

Energy:

dU

dt
= Q

where Q is the heat rate coming in from the surroundings. Using the specific heat

Mc
dT

dt
= Q

3.2 Validity of lumped approximation

3.2.1 Conduction

According to this the temperature inside a body Ts(t) is assumed to be uniform, though it may be
unsteady. For example, consider a solid with a boundary with a fluid as shown in Fig. 3.1. Since
the mass of a surface is zero, there is no accumulation of energy possible there and the heat coming
in by conduction should equal that going out by convection. Since the fluid velocity is zero at the
surface, the heat transfer into the fluid there is by conduction also. The temperature gradients on
the two sides of the interface are in inverse ratio of the thermal conductivities of the solid and fluid.
As an example, the ratio of the thermal conductivities of steel and water is about 28 so that the
solid to liquid temperature gradients on either side of the interface are 1 : 28. The temperature is
continuous across the interface but the temperature gradient is not.

35
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conduction convection

solid fluid

x

Ts,∞

Tl,∞

T (x)

Figure 3.1: Solid fluid interface

We may, however, use a convection heat transfer coefficient approximation on the fluid side.
Then, at the x = 0 interface

−ks
∂T

∂x

∣∣∣∣∣
x=0−

= h(T − Tf,∞)

∣∣∣∣∣
x=0+

.

If Ts,∞ and Tf,∞ are the temperatures far from the interface on the solid and fluid sides, respectively,
then we can nondimensionalize and normalize the temperatures in the solid and fluid as

T ∗ =
T − Tf,∞

Ts,∞ − Tf,∞
.

In addition we need a characteristic length scale on the solid side; let that be Lc. Then x∗ = x/Lc
in the solid, and the interface condition becomes

− ks
Lc

(Ts,∞ − Tf,∞)
∂T ∗

∂x∗
= hT ∗(Ts,∞ − Tf,∞),

−∂T
∗

∂x∗
=
hLc
ks

T ∗,

= Bi T ∗,

where the Biot number is Bi = hLc/ks. Thus ∂T ∗s /∂x
∗ → 0 as Bi → 0; a small Bi implies a small

temperature gradient in the solid. In practice Bi / 0.1 is considered to be small enough. The
Biot number is the ratio of the conductive thermal resistance in the solid to the convective thermal
resistance in the fluid.

3.2.2 Convection

The temperature of the fluid in an enclosed chamber can be considered to be uniform if it is well
mixed by a fan or other medium.

3.3 Relaxation

This is the return of a system to a time-independent state after being perturbed from it. Shown in
Fig. 3.2 are two traces, one for rising and the other for falling relaxation. In either case the quantity
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0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

x

y

Figure 3.2: Two typical relaxation responses

asymptotes in a non-oscillatory manner to a final value. The time constants τ of both falling and
rising traces are defined by

τ =

∫ ∞
0

T (t)− T (∞)

T (0)− T (∞)
dt. (3.1)

The reciprocal of τ is the decay constant λ = 1/τ .

Example 3.1
A body at temperature T , such as that shown in Fig. 3.3, is placed in an environment of different

temperature, T∞, and is convectively cooled. Find the time constant.

Assume: Newton’s law of cooling. Variables: T (t) = temperature of body, t = time; T∞ = ambient
temperature; m = mass of body; c = specific heat of body; h = convective heat transfer coefficient; A =
convection surface area.

The governing equation is

mc
dT

dt
+ hA(T − T∞) = 0 with T (0) = T0. (3.2)

We nondimensionalize using

T ∗ =
T − T∞
T0 − T∞

; t∗ =
hAt

mc
. (3.3)

The nondimensional form of the governing equation (3.2) is

dT ∗

dt∗
+ T ∗ = 0 with T ∗(0) = 1,
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T (t)

T∞

Figure 3.3: Body undergoing convective cooling.

the solution to which is

T ∗ = e−t
∗
. (3.4)

This corresponds to the falling trace in Fig. 3.2. Since T ∗(t∗) goes from T ∗(0) = 1 to T ∗(∞) = 0, from Eq. (3.1)
the nondimensional time constant is

τ∗ =

∫ ∞
0

T ∗(t)− T ∗(∞)

T ∗(0)− T ∗(∞)
dt∗, (3.5)

=

∫ ∞
0

e−t
∗
dt∗, (3.6)

= 1. (3.7)

The nondimensional time constant τ∗ is unity, and so the dimensional time constant is τ = mc/hA.

3.3.1 Unsteady electrical analog

The voltage across each one of the following electrical components in Fig. 3.4 is

VR = iR resistance R,

VC =
1

C

∫
i(t) dt, capacitance C,

VL = L
d2i

dt2
, inductance L.

The total voltage V (t) applied across the circuit must be equal to the voltage drops across each
one of the components. Thus

iR+
1

C

∫
i(t) dt = V,

from which, by differentiation

R
di

dt
+

1

C
i =

dV

dt
,

di

dt
+

1

RC
i =

1

R

dV

dt
. (3.8)

Eqs. (??) and (3.8) are analogs of each other, with i, RC and 1
R

dV
dt corresponding to T , τ , and Q.
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i R

C

V

Figure 3.4: Electrical analog of Fig. 3.3.

Figure 3.5: Temperature measurement compared to exponential.
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3.3.2 Experiment

The measured temperature change in a room is shown in Fig. 3.5 along with a best-fit exponential1.
It is seen at some parts that the exponential does not completely fit the data.

3.3.3 Time scales

Consider a lumped body with external temperature oscillation as is

dT

dt
+ λT = A cosωt.

The two time scales are the cooling time scale τ1 = 1/λ and the external forcing time scale τ2 = 1/ω.
Though this linear problem can be solved to be

T = Ce−λt +B cos(ωt+ φ),

approximations can be made in the following two ways.

(a) τ1 � τ2: The body temperature changes much faster than the outside temperature, so the latter
may be approximated to be a constant. Thus

T = Ce−λt +
A

λ
cosωt.

(b) τ1 � τ2: The response of the body is much slower than the outside temperature oscillations.
Neglecting λ gives us the solution

T =
A

ω
sinωt.

3.4 Further lumped-parameter approximations

3.4.1 Two-fluid thermal problem

Consider a wall with fluid on both sides as shown in Fig. 3.6. The fluid temperatures are T∞,1 and
T∞,2 and the temperatures on either side of the wall are Tw,1 and Tw,2. The initial temperature in
the wall is T (x, 0) = f(x).

In the steady state, we have

h1(T∞,1 − Tw,1) = ks
Tw,1 − Tw,2

L
= h2(Tw,2 − T∞,2)

from which

h1L

ks

T∞,1 − Tw,1
T∞,1 − T∞,2

=
Tw,1 − Tw,2
T∞,1 − T∞,2

=
h2L

ks

Tw,2 − T∞,2
T∞,1 − T∞,2

1Chávez & Sen (2014).
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T∞,1

Tw,1 Tw,2

T∞,2

Figure 3.6: Wall with fluids on either side.

Thus we have

Tw,1 − Tw,2
T∞,1 − T∞,2

� T∞,1 − Tw,1
T∞,1 − T∞,2

if
h1L

ks
� 1

Tw,1 − Tw,2
T∞,1 − T∞,2

� Tw,2 − T∞,2
T∞,1 − T∞,2

if
h2L

ks
� 1.

For Bi � 1 at both interfaces, the temperature variation in the wall is much smaller than those in
the two fluids. Using the lumped approximation, the governing equation is

Mc
dT

dt
+ h1A1(T − T∞,1) + h2A2(T − T∞,2) = 0

where T (0) = Ti. If T∞,1 and T∞,2 are constants, we can nondimensionalize the equation using the
parameters for one of them, fluid 1 for instance. Thus we have

T ∗ =
T − T∞,1
Ti − T∞,1

; t∗ =
h1A1t

Mc

from which

dT ∗

dt∗
+ T ∗ + α(T ∗ + β) = 0

with T ∗(0) = 1, where

α =
h2A2

h1A1

β =
T∞,1 − T∞,2
Ti − T∞,1

The equation can be written as

dT ∗

dt∗
+ (1 + α)T ∗ = −αβ

with the solution

T ∗ = Ce−(1+α)t∗ − αβ

1 + α
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a b

Figure 3.7: Two bodies in thermal contact.

The condition T ∗(0) = 1 gives C = 1 + αβ/(1 + α), from which

T ∗ =

(
1 +

αβ

1 + α

)
e−(1+α)t∗ − αβ

1 + α

For α = 0, the solution reduces to the single-fluid case, Eq. (3.4). Otherwise the time constant of
the general system is

τ =
Mc

h1A1 + h2A2

3.4.2 Two-body thermal problem

Convective

Suppose now that there are two bodies at temperatures T1 and T2 in thermal contact with each
other and exchanging heat with a single fluid at temperature T∞ as shown in Fig. 3.7.

The mathematical model of the thermal process is

M1c1
dT1

dt
+
ksAc
L

(T1 − T2) + hA(T1 − T∞) = Q1

M2c2
dT2

dt
+
ksAc
L

(T2 − T1) + hA(T2 − T∞) = Q2

Radiative

Fig. 3.8 shows two bodies, 1 and 2, generating heat and interacting with each other through a solid
bar s. Taking into account conduction in the bar as well as radiation between the two bodies and
the bar, energy balance gives

M1c1
dT1

dt
+
ksAc
L

(T1 − T2) +A1σF1s(T
4
1 − T 4

s ) +A1σF12(T 4
1 − T 4

2 ) = Q1

M2c2
dT2

dt
+
ksAc
L

(T2 − T1) + +A1F2s(T
4
2 − T 4

s ) +A2σF21(T 4
2 − T 4

1 ) = Q2

3.4.3 Variable heat transfer coefficient

If the h is slightly temperature-dependent, then we have

dT ∗

dt∗
+ (1 + εT ∗)T ∗ = 0, (3.9)
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1 2

Figure 3.8: Bodies with radiation and conduction interaction.

for ε� 1, which can be solved by the method of perturbations. We assume that

T ∗(t∗) = T ∗0 (t∗) + εT ∗1 (t∗) + ε2T ∗2 (t∗) + . . . . (3.10)

To order ε0, we have

dT ∗0
dt∗

+ T ∗0 = 0,

T ∗0 (0) = 1.

which has the solution

T ∗0 = e−t
∗
.

To the next order ε1, we get

dT ∗1
dt∗

+ T ∗1 = −T ∗20 ,

= −e−2t∗ ,

T ∗1 (0) = 0,

the solution to which is

T ∗1 = −e−t
∗

+ e−2t∗ .

Taking the expansion to order ε2

dT ∗2
dt∗

+ T ∗2 = −2T ∗0 T
∗
1

= −2e−2t∗ − 2e−3t∗ ,

T ∗2 (0) = 1,

with the solution

T ∗2 = e−t
∗
− 2e−2t∗ + e−3t∗ .

And so on. Combining, we get

T ∗ = e−t
∗
− ε(e−t

∗
− e−2t∗) + ε2(e−t

∗
− 2e−2t∗ + e−3t∗) + . . .

Alternatively
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We can find an exact solution to equation (3.9). Separating variables, we get

dT ∗

(1 + εT ∗)T ∗
= dt∗.

Integrating

ln
T ∗

εT ∗ + 1
= −t∗ + C.

The condition T ∗(0) = 1 gives C = − ln(1 + ε), so that

ln
T ∗(1 + ε)

1 + εT ∗
= −t∗.

This can be rearranged to give

T ∗ =
e−t

∗

1 + ε(1− e−t∗)
.

A Taylor-series expansion of the exact solution gives

T ∗ = e−t
∗
[
1 + ε(1− e−t

∗
]−1

,

= e−t
∗
[
1− ε(1− e−t

∗
) + ε2(1− e−t

∗
)2 + . . .

]
,

= e−t
∗
− ε(e−t

∗
− e−2t∗) + ε2(e−t

∗
− 2e−2t∗ + e−3t∗) + . . .

Radiative cooling

If the heat loss is due to radiation, we can write

Mc
dT

dt
+ σA(T 4 − T 4

∞) = 0 with T (0) = T0.

Nondimensionalizing using

T ∗ =
T − T∞
T0 − T∞

; t∗ =
σA(Ti − T∞)3t

Mc

and introducing the parameter

β =
T∞

Ti − T∞
(3.11)

we get

dφ

dt∗
+ φ4 = β4

where

φ = T ∗ + β



3.4. Further lumped-parameter approximations 45

Writing the equation as

dφ

φ4 − β4
= −dt∗

the integral is

1

4β3
ln

(
φ− β
φ+ β

)
− 1

2β3
tan−1

(
φ

β

)
= −t∗ + C

Using the initial condition T ∗(0) = 1, we get (?)

t∗ =
1

2β3

[
1

2
ln

(β + T ∗)(β − 1)

(β − T ∗)(β + 1)
+ tan−1 T ∗ − 1

β + (T ∗/β)

]

Convective with weak radiation

The governing equation is

Mc
dT

dt
+ hA(T − T∞) + σA(T 4 − T 4

∞) = 0

with T (0) = Ti. Using the variables defined by Eqs. (3.3), we get

dT ∗

dt∗
+ T ∗ + ε

[
(T ∗ + β4)4 − β4

]
= 0 (3.12)

where β is defined in Eq. (3.11), and

ε =
σ(Ti − T∞)3

h

If radiative effects are small compared to the convective (e.g., for Ti − T∞ = 100 K and h = 10
W/m2K we get ε = 5.67×10−3), we can take ε� 1. Substituting the perturbation series, Eq. (3.10),
in Eq. (3.12), we get

d

dt∗
(
T ∗0 + εT ∗1 + ε2T ∗2 + . . .

)
+
(
T ∗0 + εT ∗1 + ε2T ∗2 + . . .

)
+ ε
[ (
T ∗0 + εT ∗1 + ε2T ∗2 + . . .

)4
+4β

(
T ∗0 + εT ∗1 + ε2T ∗2 + . . .

)3
+ 6β2

(
T ∗0 + εT ∗1 + ε2T ∗2 + . . .

)2
4β3

(
T ∗0 + εT ∗1 + ε2T ∗2 + . . .

) ]
= 0

In this case

dT ∗

dt∗
+ (T ∗ − T ∗0 ) + ε(T ∗4 − T ∗4s ) = 0

T ∗(0) = 1

As a special case, of we take β = 0, i.e. T∞ = 0, we get

dT ∗

dt∗
+ T ∗ + εT ∗4 = 0

which has an exact solution

t∗ =
1

3
ln

1 + εT ∗3

(1 + ε)T ∗3
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3.4.4 Power-law cooling

Assume: (a) Constant properties. (b) Power law heat transfer.
Energy balance gives

Mc
dT

dt
+ hA(T − T∞) = 0, with T (0) = T0.

Nondimensionalizing using Eq. (3.3), we get

dT ∗

dt∗
+
hA

Mc
T ∗ = 0, (3.13)

where

T ∗ = T − T∞.

From the definitions

Nu =
hL

k
,

Ra =
gβL3

να
T ∗,

and using the correlation

Nu = C1Ra
n,

we have

h =
k

L
Nu,

=
C1k

L
Ran,

=
C1k

L

(
gβL3

να

)n
T ∗n.

Thus Eq. (3.13) becomes

dT ∗

dt∗
+ C2T

∗n+1 = 0,

where

C2 =
C1kA

McL

(
gβL3

να

)n
,

so that

T ∗
−n−1

dT ∗ = −C2 dt
∗.

For n = 0, Nu and h are constant. Upon integration

lnT ∗ = −C2t+ ln a,

T ∗ = ae−C2t
∗
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With T (0) = T0,

a = T0 − T∞,

so that

T − T∞
T0 − T∞

= e−C2t.

This can be written as

T ∗ = e−t
∗
, (3.14)

where

T ∗ =
T − T∞
T0 − T∞

, (3.15a)

t∗ = C2t. (3.15b)

However, for n 6= 0, integration gives

− 1

n
T ∗−n = −C2t

∗ − a,

T ∗
−n

= n (C5t
∗ + a) ,

T ∗ = n−1/n (C2t
∗ + a)

−1/n
.

so that

T = T∞ + n−1/n (C2t+ a)
−1/n

.

From the initial condition

T0 = T∞ + (na)−1/n,

a =
1

n
(T0 − T∞)−n,

so that

T = T∞ + n−1/n

[
C2t+

1

n
(T0 − T∞)−n

]−1/n

.

This can be written as

T ∗ = n−1/n

(
t∗ +

1

n

)−1/n

,

= (nt∗ + n)
−1/n

, (3.16)

where

T ∗ =
T − T∞
T0 − T∞

, and t∗ = C2(T0 − T∞)nt. (3.17)

As n→ 0, the independent and dependent variables, Eq. (3.17), tend to Eq. (3.15) and, since

lim
n→0

(nt∗ + 1)
−1/n

= e−t
∗
,

the solution Eq. (3.16) tends to Eq. (3.14). Fig. 3.9 shows that, in spite of their different forms,
Eqs. (3.16) and (3.14) give very similar numerical results for small positive and negatives values of
n.
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Figure 3.9: Continuous line is Eq. (3.14); dashed and dotted lines are Eq. (3.16) with n = 0.1 and
−0.1, respectively.

3.4.5 Time-dependent T∞

Let

Mc
dT

dt
+ hA

(
T − T∞(t)

)
= 0 with T (0) = Ti.

This is a special case of Eq. (1.2).

Ramp

Let

T∞ = T∞,0 + at

Defining the nondimensional temperature as

T ∗ =
T − T∞,0
Ti − T∞,0

(3.18)

and time as in Eq. (3.3), we get

dT ∗

dt∗
+ T ∗ = At∗ (3.19)

where

A =
aMc

hA(Ti − T∞,0)
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Figure 3.10: Response to ramp ambient temperature.

The nondimensional ambient temperature is

T ∗∞ =
aMc

hA(Ti − T∞,0)
t∗

The solution to Eq. (3.19) is

T ∗ = Ce−t
∗

+At∗ −A

The condition T ∗(0) = 1 gives C = 1 +A, so that

T ∗ = (1 +A)e−t
∗

+A(t∗ − 1)

The time shown in Fig. 3.10 at crossover is

τc = ln
1 +A

A

and the offset is

∆T ∗ = A

as t∗ →∞.

Oscillatory

Let

T∞ = T̄∞ + ∆T sinωt

where T (0) = Ti. Defining

T ∗ =
T − T̄∞
Ti − T̄∞
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and using Eq. (3.3), the nondimensional equation is

dT ∗

dt∗
+ T ∗ = ∆T ∗ sinω∗t∗

where

∆T ∗ =
∆T

Ti − T̄∞

ω∗ =
ωMc

hA

The solution is

T ∗ = Ce−t
∗

+
∆T ∗

(1 + ω∗2) cosφ
sin(ω∗t∗ − φ)

where

φ = tan−1 ω∗

From the condition T ∗(0) = 1, we get C = 1 + ∆ω∗/(1 + ω∗2), so that

T ∗ =

(
1 + ∆T ∗

ω∗

1 + ω∗2

)
e−t

∗
+

∆T ∗

(1 + ω∗2) cosφ
sin(ω∗t∗ − φ)

Example 3.2
Using a lumped approximation, determine the long time behavior of the temperature of a body convec-

tively exposed to an oscillatory temperature.

Assume: Newton’s law of cooling.
Variables: T (t) = temperature of body, t = time; T∞ = ambient temperature; T̄∞ = external mean

temperature; ∆T = amplitude of external temperature oscillation; ω = frequency of external temperature
oscillation; m = mass of body; c = specific heat of body; h = constant convective heat transfer coefficient; A =
convection surface area.

The governing equation is

mc
dT

dt
+ hA

[
T − T∞(t)

]
= 0,

with T∞ = T̄∞ + ∆T cosωt. Thus

dT

dt
+
hA

mc
T =

hA

mc

(
T̄∞ + ∆T cosωt

)
,

which can then be solved.

3.5 Regenerative HX

A regenerator is schematically shown in Fig. 3.11.

Mc
dT

dt
+ ṁc(Tin − Tout) = 0
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Figure 3.11: Schematic of regenerator.

3.6 Heating

Mc
dT

dt︸ ︷︷ ︸
I

+hA(T − T∞)︸ ︷︷ ︸
II

= G(t)︸︷︷︸
III

, T = T0 at t = 0,

where the terms and their units are

I = rate of accumulation of internal energy, [(kg) (J/kg·K) (K/s) = W],

II = rate of heat loss to surroundings, [(W/m2) (m2) (K) = W],

III = rate of heating, [W].

Writing

T ∗ =
T − T∞
T0 − T∞

,

t∗ =
t

τ
, τ =

Mc

hA
,

we have

Mc(T0 − T∞)

Mc/hA

dT ∗

dt∗
+ hA(T0 − T∞)T ∗ = G.

Dividing by hA(T0 − T∞), we get the nondimensional equation

dT ∗

dt∗
+ T ∗ = Γ,

where

Γ(t∗) =
Mc

hA(T0 − T∞)
G.

The solution of the homogeneous equation is

T ∗h = a e−t
∗
.

3.6.1 Constant heating

If G = G0, i.e. Γ = Γ0, is constant, then the particular solution is

T ∗p = Γ0.
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The complete solution is

T ∗ = T ∗h + T ∗p ,

= a e−t
∗

+ Γ0.

From the initial condition T ∗(0) = 1, we get

a = 1− Γ0,

so that

T ∗ = (1− Γ0) e−t
∗

+ Γ0.

For t∗ or t→∞, T ∗ = Γ0 and T = T∞ + McG0

hA .

3.6.2 Periodic heating

Let

Γ(t∗) = Γ0 + Γ1 cosω∗t∗.

where the nondimensional and dimensional frequencies, ω∗ and ω respectively, are related by ω∗t∗ =
ωt.

Assume the particular solution to be

T ∗p = C1 + C2 sinω∗t∗ + C3 cosω∗t∗.

Substituting in the equation, we get

(ω∗C2 cosω∗t− ω∗C3 sinω∗t∗) + (C1 + C2 sinω∗t∗ + C3 cosω∗t∗) = Γ0 + Γ1 cosω∗t.

Comparing coefficients

C1 = Γ0,

ω∗C2 + C3 = Γ1,

−ω∗C3 + C2 = 0.

The constants are

C1 = Γ0,

C2 =
ω∗Γ1

1 + ω∗2
,

C3 =
Γ1

1 + ω∗2
,

so that the complete solution is

T ∗(t∗) = a e−t
∗

+ Γ0 +
ω∗Γ1

1 + ω∗2
sinω∗t∗ +

Γ1

1 + ω∗2
cosω∗t∗.

For long time, t∗ →∞, only the particular solution is left.
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We can write

ω∗Γ1

1 + ω∗2
sinω∗t∗ +

Γ1

1 + ω∗2
cosω∗t∗ = A cos(ω∗t∗ + φ),

= A cosω∗t∗ cosφ− sinω∗t∗ sinφ,

and compare terms to get

A sinφ = − ω∗Γ1

1 + ω∗2
,

A cosφ =
Γ1

1 + ω∗2
.

so that

tanφ = −ω∗,
A = Γ1.

Alternatively

Γ(t∗) = Γ0 + Γ1e
iω∗t∗ .

Assuming

T ∗p = C1 + C2e
iω∗t∗ .

then

C1 = Γ0,

C2 =
Γ1

1 + iω∗
,

so that

T ∗p = Γ0 +
Γ1

1 + iω∗
eiω
∗t∗ ,

= Γ0 + Γ1
1− iω∗

1 + ω∗2
eiω
∗t∗ ,

= Γ0 + Γ1e
i(ω∗t∗+φ).

The complex number a + ib can be represented in polar form as (a2 + b2)1/2∠ tan−1(b/a) so
that

Γ = Γ0 + Γ1∠(ω∗t∗),

T ∗p = Γ0 + Γ1∠(ω∗t∗ + φ).

3.6.3 Delayed effect of heating

dT ∗

dt∗
+ T ∗ = Γ(t∗ − τd).
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3.7 Nonlinear systems

We will look at the long time behavior and stability of nonlinear systems. The general form of the
equation for heat loss from a body with internal heat generation is

dT ∗

dt∗
+ f(T ∗) = a with T ∗(0) = 1. (3.20)

Let

f(T̄ ∗) = a,

where the bar indicates a steady state for which dT ∗/dt is zero. Then we would like to show that
T ∗ → T̄ ∗ as t∗ →∞. Writing

T ∗ = T̄ ∗ + T ∗
′
,

where T ∗
′

is the deviation from the steady state, we have

dT ∗
′

dt∗
+ f(T̄ ∗ + T ∗

′
) = a. (3.21)

3.7.1 Separable

For a = 0 the equation is separable. Thus

dT ∗

dt∗
+ f(T ∗) = 0,

from which

dT ∗

f(T ∗)
= −dt∗.

Integrating ∫
dT ∗

f(T ∗)
= −t∗ + C.

3.7.2 Linearized analysis

If we assume that T ∗
′

is small, then a Taylor series expansion around T̄ ∗ gives

f(T̄ ∗ + T ∗
′
) = f

∣∣∣∣
T̄∗

+ T ∗
′ df

dT ∗

∣∣∣∣
T̄∗

+ . . .

from which

dT ∗
′

dt∗
+ bT ∗

′
≈ 0,

where b = df/dT ∗ at T ∗ = T̄ ∗. This is a linearized approximation of the nonlinear equation
Eq. (3.20). The solution is

T ∗
′

= Ce−bt
∗

so that T ∗
′ → 0 as t→∞ if b > 0.
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3.7.3 Nonlinear analysis

Multiplying Eq. (3.21) by T ∗
′
, we get

1

2

d

dt∗
(T ∗

′
)2 = −T ∗

′
[
f(T̄ ∗ + T ∗

′
)− f(T̄ ∗)

]
Thus

d

dt∗
(T ∗

′
)2 ≤ 0

if T ∗
′

and [f(T̄ ∗ + T ∗
′
) − f(T̄ ∗)] are both of the same sign or zero, i.e., if f(T ∗) is monotonically

increasing2. Thus T ∗
′ → 0 as t∗ →∞.

Because this works on the square of the variable T ∗
′
, this is known as the energy method.

Example 3.3
Show, without solving, that the solution of( d

dt∗
+ λ1

)( d

dt∗
+ λ2

)
T ∗ = 0

tends to zero as t∗ →∞ if λ1 and λ2 are real and positive.

The equation is

d2T ∗

dt∗2
+ (λ1 + λ2)

dT ∗

dt∗
+ λ1λ2T

∗ = 0,

which is the same as the system

dT ∗

dt∗
= S∗,

dS∗

dt∗
= −(λ1 + λ2)S∗ − λ1λ2 T

∗.

Multiplying the first by λ1λ2 T ∗, the second by S∗, and adding we get

1

2

d

dt∗
(λ1λ2 T

∗2 + S∗2) = −(λ1 + λ2) S∗2.

Thus the non-negative quantity λ1λ2 T ∗2 + S∗2 will always decrease for increasing t∗ since the right side is
non-positive. Thus both T ∗ → 0 and S∗ → 0 as t∗ → 0.

3.7.4 Radiation in enclosures

Consider a closed enclosure with N walls radiating to each other and with a central heater H. The
walls have no other heat loss and have different masses and specific heats. The governing equations
are

Mici
dTi
dt

+ σ

N∑
j=1

AiFij(T
4
i − T 4

j ) + σAiFiH(T 4
i − T 4

H) = 0

2A real function f(x) monotonically increases if f(x)− f(y) ≥ 0 for x ≥ y
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where the view factor Fij is the fraction of radiation leaving surface i that falls on j. The steady
state is

T̄i = TH (i = 1, . . . , N)

Linear stability is determined by a small perturbation of the type

Ti = TH + T ′i

from which

Mici
dT ′i
dt

+ 4σT 3
H

N∑
j=1

AiFij(T
′
i − T ′j) + 4σT 3

HAiFiHT
′
i = 0

This can be written as

M
dT ′

dt
= −4σT 3

HAT
′

3.8 Chemical reaction

We consider the a convectively cooled chemical reactor generating heat. The energy balance for the
reactor is

mc
dT

dt︸ ︷︷ ︸
accumulation

= Ce−Ea/RT︸ ︷︷ ︸
generation

−hA(T − T∞)︸ ︷︷ ︸
convection

,

where the generation of heat is calculated by the Arrhenius reaction rate ce−Ea/RT ; C is a pre-
exponential factor that is specific to the chemical reaction, Ea is the activation energy, T is the
absolute temperature, and R is the universal gas constant.

Nondimensionalizing using

t∗ =
CR

mcEa
t; T ∗ =

RT

Ea
,

we have

dT ∗

dt∗
= e−1/T∗ − βT ∗ + α,

= f(T ∗),

where

α =
hAT∞
C

; β =
hAEa
CR

.

The heat generation and heat loss terms, e−1/T∗ and βT ∗ − α respectively, are schematically
shown in Fig. 3.12 for different values of β. The intersection between the two is the steady solution.
These are solutions of

f(T̄ ∗) = 0,
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T̄ ∗

f(T̄ ∗)

β1

β2

β3

Figure 3.12: Heat generation and convection terms for β = β1, β2 and β3.
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Figure 3.13: f(T̄ ) with α = 0.05; a, b and c correspond to β = 0.2, 0.4 and 1 respectively.

where f(T̄ ∗) is shown in Fig. 3.13 .
There are three possibilities: (a) One (an upper) solution exists for β < βc,1; (b) Three (an

upper, an intermediate, and a lower) solutions exist for βc,1 < β < βc,2; (c) One (a lower) solution
exists for β > βc,2. The critical values βc,1 and βc,2 depend on α.

Fig. 3.14 is the bifurcation diagram.
To find the linear stability of the steady solution(s), we write

T = T̄ + T ′,

so that

dT ′

dt
= ST ′, (3.22)

where S = f ′(T̄ ). The steady states with the slopes S < 0 are stable. Thus when they exist, the
lower solution is stable, the intermediate is unstable, and the upper is also stable.
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β

T̄

Figure 3.14: Bifurcation diagram for α =?.

3.9 Multibody systems

3.9.1 Higher-order constant coefficient

Consider

(
d

dt∗
+ λ1)(

d

dt∗
+ λ2) . . . (

d

dt∗
+ λn)T ∗ = 0.

This is equivalent to the system of equations

(
d

dt∗
+ λn) T ∗ = T ∗n−1,

(
d

dt∗
+ λn−1) T ∗n−1 = T ∗n−2,

(
d

dt∗
+ λn−2) T ∗n−2 = T ∗n−3,

...

(
d

dt∗
+ λ2) T ∗2 = T ∗1 ,

(
d

dt∗
+ λ1) T ∗1 = 0.

The solution is

T ∗ = C1e
−λ1t

∗
+ C2e

−λ2t
∗

+ . . .+ Cne
−λnt∗ .
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Figure 3.15: Multiple time constants; Eq. (3.23a) is continuous line, Eq. (3.23b) is dashed line.

Example 3.4
Let

y1 = e−λ1t, (3.23a)

y2 = ae−λ1t + +(1− a)e−λ2t. (3.23b)

where λ1 = 1, λ2 = 0.1, a = 0.9.

Example 3.5
Let Ci = C/2i−1, λi = λ/2i−1 for i = 1, 2, . . . , n and T ∗(0) = 1 , then

T ∗ = Ce−t
∗

+
C

2
e−t
∗/2 + . . .+

C

2n−1
e−t
∗/2n−1

.

From the initial condition

1 = C +
C

2
+ . . .+

C

2n−1
,

= 2C
(
1− 2−n

)
since

n∑
i=1

ri−1 =
(1− rn)

1− r
.

Thus

C =
1

2 (1− 2−n)
.
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Alternative formulation(
τn
dn

dtn
+ τn−1

dn−1

dtn−1
+ . . .+ τ1

d

dt
+ τ0

)
T ∗ = 0

gives 

d
dt + λ1 −1

d
dt + λ2 −1 0

. . .

0 d
dt + λn−1 −1

d
dt + λn




T ∗1
T ∗2
...

T ∗n−1

T ∗n

 =


0
0
...
0
0



Example 3.6
See Fig. 3.16 for a large number of boxes, each within another. The equations are

dT1

dt
+

1

t1
(T1 − T2) +

1

t∞
(T1 − T∞) = Q,

dT2

dt
+

1

t1
(T2 − T1) +

1

t2
(T2 − T3) = 0,

dT3

dt
+

1

t2
(T3 − T2) +

1

t3
(T3 − T4) = 0,

...

dTn−1

dt
+

1

tn−2
(Tn−1 − Tn−2) +

1

tn−1
(Tn−1 − Tn) = 0,

dTn

dt
+

1

tn−1
(Tn − Tn−1) = 0.

The characteristic equation of the homogeneous equation is

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ1 −1

r + λ2 −1 0
. . .

0 r + λn−1 −1
r + λn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

Determine the n values of r = λi and get the solution

T ∗ = C1e
−λ1t

∗
+ C2e

−λ2t
∗

+ . . .+ Cne
−λnt∗ .

Compare this to the PDE

∂T

∂t
=

1

r2

∂

∂r

(
k(r)r2 ∂T

∂r

)



3.9. Multibody systems 61

T∞

n1

2

3

Figure 3.16: Boxes.

Bibliography

Problems

1. Show that the temperature distribution in a sphere subject to convective cooling tends to become uniform as
Bi→ 0.

2. Check one of the perturbation solutions against a numerical solution.

3. Plot all real T̄ ∗(β, ε) surfaces for the convection with radiation problem, and comment on the existence of
solutions.

4. Complete the problem of radiation in an enclosure (linear stability, numerical solutions).

5. Lumped system with convective-radiative cooling and nonzero T ∗0 and T∞.

6. Find the steady-state temperatures for the two-body problem and explore the stability of the system for
constant ambient temperature.

7. Consider the change in temperature of a lumped system with convective heat transfer where the ambient
temperature, T∞(t), varies with time in the form shown in Fig. 3.17. Find (a) the long-time solution of the
system temperature, T (t), and (b) the amplitude of oscillation of the system temperature, T (t), for a small
period δt.

8. Two bodies at temperatures T1(t) and T2(t), respectively, are in thermal contact with each other and with the
environment. Show that the temperatures are governed by

M1c1
dT1

dt
+ C(T1 − T2) + C1,∞(T1 − T∞) = Q1

M2c2
dT2

dt
+ C(T2 − T1) + C2,∞(T2 − T∞) = Q2

whereMi is the mass, ci is the specific heat, the Cs are thermal conductances, andQi is internal heat generation.
Derive the equations above and explain the parameters. Find the steady-state temperatures and explore the
stability of the system for constant T∞.
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Figure 3.17: Ambient temperature variation.



Chapter 4

Thermal control

4.1 Introduction

There are many kinds of thermal systems in common industrial, transportation and domestic use
that need to be controlled in some manner, and there are many ways in which that can be done. One
can give the example of heat exchangers [89, 121], environmental control in buildings [73, 75, 86,
122, 161, 229], satellites [107, 181, 194, 232], thermal packaging of electronic components [158, 195],
manufacturing [55], rapid thermal processing of computer chips [88, 167, 210], and many others. If
precise control is not required, or if the process is very slow, control may simply be manual; otherwise
some sort of mechanical or electrical feedback system has to be put in place for it to be automatic.

Most thermal systems are generally complex involving diverse physical processes. These include
natural and forced convection, radiation, complex geometries, property variation with temperature,
nonlinearities and bifurcations, hydrodynamic instability, turbulence, multi-phase flows, or chemical
reaction. It is common to have large uncertainties in the values of heat transfer coefficients, ap-
proximations due to using lumped parameters instead of distributed temperature fields, or material
properties that may not be accurately known. In this context, a complex system can be defined as
one that is made up of sub-systems, each one of which can be analyzed and computed, but when put
together presents such a massive computational problem so as to be practically intractable. For this
reason large, commonly used engineering systems are hard to model exactly from first principles,
and even when this is possible the dynamic responses of the models are impossible to determine
computationally in real time. Most often some degree of approximation has to be made to the
mathematical model. Approximate correlations from empirical data are also heavily used in prac-
tice. The two major reasons for which control systems are needed to enable a thermal system to
function as desired are the approximations used during design and the existence of unpredictable
external and internal disturbances which were not taken into account.

There are many aspects of thermal control that will not be treated in this brief review. The most
important of these are hardware considerations; all kinds of sensors and actuators [60, 197] developed
for measurement and actuation are used in the control of thermal systems. Many controllers are
also computer based, and the use of microprocessors [91, 189] and PCs in machines, devices and
plants is commonplace. Flow control, which is closely related to and is often an integral part of
thermal control, has its own extensive literature [67]. Discrete-time (as opposed to continuous-time)
systems will not be described. The present paper will, however, concentrate only on the basic
principles relating to the theory of control as applied to thermal problems, but even then it will
be impossible to go into any depth within the space available. This is only an introduction, and
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u(t) y(t)plant
x(t)

λw(t)

Figure 4.1: Schematic of a system without controller.

the interested reader should look at the literature that is cited for further details. There are good
texts and monographs available on the basics of control theory [123, 140, 152, 166], process control
[28, 78, 98, 160], nonlinear control [96], infinite-dimensional systems [39, 94], and mathematics of
control [9, 188] that can be consulted. These are all topics that include and are included within
thermal control.

4.2 Systems

Some basic ideas of systems will be defined here even though, because of the generality involved, it
is hard to be specific at this stage.

4.2.1 Systems without control

The dynamic behavior of any thermal system (often called the open-loop system or plant to distin-
guish it from the system with controller described below), schematically shown in Fig. 4.1, may be
mathematically represented as

Ls(x, u, w, λ) = 0, (4.1)

where Ls is a system operator, t is time, x(t) is the state of the system, u(t) is its input, w(t) is some
external or internal disturbance, and λ is a parameter that defines the system. Each one of these
quantities belongs to a suitable set or vector space and there are a large number of possibilities. For
example Ls may be an algebraic, integral, ordinary or partial differential operator, while x may be
a finite-dimensional vector or a function. u(t) is usually a low-dimensional vector.

In general, the output of the system y(t) is different from its state x(t). For example, x may be
a spatial temperature distribution, while y are the readings of one or more temperature measurement
devices at a finite number of locations. The relation between the two may be written as

Lo(y, x, u, w, λ) = 0, (4.2)

where Lo is the output operator.
The system is single-input single-output (SISO) if both u and y are scalars. A system is said

to be controllable if it can be taken from one specific state to another within a prescribed time with
the help of a suitable input. It is output controllable if the same can be done to the output. It is
important to point out that output controllability does not imply system controllability. In fact, in
practice for many thermal systems the former is all that is required; it has been reported that most
industrial plants are controlled quite satisfactorily though they are not system controllable [165].
All possible values of the output constitute the reachable set. A system is said to be observable if its
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u(t)
y(t)yr(t)

e(t)
C controller plant

λw(t)

Figure 4.2: Schematic of a system with comparator C and controller.

state x can be uniquely determined from the input u and output y alone. The stability of a system
is a property that leads to a bounded output if the input is also bounded.

4.2.2 Systems with control

The objective of control is to have a given output y = yr(t), where the reference or set value yr is
prescribed. The problem is called regulation if yr is a constant, and tracking if it is function of time.

In open-loop control the input is selected to give the desired output without using any infor-
mation from the output side; that is one would have to determine u(t) such that y = yr(t) using
the mathematical model of the system alone. This is a passive method of control that is used in
many thermal systems. It will work if the behavior of the system is exactly predictable, if precise
output control is not required, or if the output of the system is not very sensitive to the input. If
the changes desired in the output are very slow then manual control can be carried out, and that
is also frequently done. A self-controlling approach that is sometimes useful is to design the system
in such a way that any disturbance will bring the output back to the desired value; the output in
effect is then insensitive to changes in input or disturbances.

Open-loop control is not usually effective for many systems. For thermal systems contributing
factors are the uncertainties in the mathematical model of the plant and the presence of unpredictable
disturbances. Internal disturbances may be noise in the measuring or actuating devices or a change
in surface heat transfer characteristics due to fouling, while external ones may be a change in the
environmental temperature. For these cases closed-loop control is an appropriate alternative. This
is done using feedback from the output, as measured by a sensor, to the input side of the system, as
shown in Fig. 4.2; the figure actually shows unit feedback. There is a comparator which determines
the error signal e(t) = e(yr, y), which is usually taken to be

e = yr − y. (4.3)

The key role is played by the controller which puts out a signal that is used to move an actuator in
the plant.

Sensors that are commonly used are temperature-measuring devices such as thermocouples,
resistance thermometers or thermistors. The actuator can be a fan or a pump if the flow rate is to
be changed, or a heater if the heating rate is the appropriate variable. The controller itself is either
entirely mechanical if the system is not very complex, or is a digital processor with appropriate
software. In any case, it receives the error in the output e(t) and puts out an appropriate control
input u(t) that leads to the desired operation of the plant.

The control process can be written as

Lc(u, e, λ) = 0, (4.4)



4.3. Linear systems theory 66

where Lc is a control operator. The controller designer has to propose a suitable Lc, and then Eqs.
(E.9)–(4.4) form a set of equations in the unknowns x(t), y(t) and u(t). Choice of a control strategy
defines Lo and many different methodologies are used in thermal systems. It is common to use on-off
(or bang-bang, relay, etc.) control. This is usually used in heating or cooling systems in which the
heat coming in or going out is reduced to zero when a predetermined temperature is reached and
set at a constant value at another temperature. Another method is Proportional-Integral-Derivative
(PID) control [225] in which

u = Kpe(t) +Ki

∫ t

0

e(s) ds+Kd
de

dt
. (4.5)

4.3 Linear systems theory

The term classical control is often used to refer to theory derived on the basis of Laplace transforms.
Since this is exclusively for linear systems, we will be using the so-called modern control or state-
space analysis which is based on dynamical systems, mainly because it can be extended to nonlinear
systems. Where they overlap, the issue is only one of preference since the results are identical.
Control theory can be developed for different linear operators, and some of these are outlined below.

4.3.1 Ordinary differential equations

Much is known about a linear differential system in which Eqs. (E.9) and (4.2) take the form

dx

dt
= Ax+Bu, (4.6)

y = Cx+Du, (4.7)

where x ∈ Rn, u ∈ Rm, y ∈ Rp, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m. x, u and y are
vectors of different lengths and A, B, C, and D are matrices of suitable sizes. Though A, B, C, and
D can be functions of time in general, here they will be treated as constants.

The solution of Eq. (4.6) is

x(t) = eA(t−t0)x(t0) +

∫ t

t0

eA(t−s)Bu(s) ds. (4.8)

where the exponential matrix is defined as

eAt = I +At+
1

2!
A2t2 +

1

3!
A3t3 + . . . ,

with I being the identity matrix. From Eq. (4.7), we get

y(t) = C

[
eAtx(t0) +

∫ t

t0

eA(t−s) Bu(s) ds

]
+Du. (4.9)

Eqs. (4.8) and (4.9) define the state x(t) and output y(t) if the input u(t) is given.
It can be shown that for the system governed by Eq. (4.6), a u(t) can be found to take x(t)

from x(t0) at t = t0 to x(tf ) = 0 at t = tf if and only if the matrix

M =

[
B

... AB
... A2B

... . . .
... An−1B

]
∈ Rn×nm (4.10)
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is of rank n. The system is then controllable. For a linear system, controllability from one state to
another implies that the system can be taken from any state to any other. It must be emphasized
that the u(t) that does this is not unique.

Similarly, it can be shown that the output y(t) is controllable if and only if

N =

[
D

... CB
... CAB

... CA2B
... . . .

... CAn−1B

]
∈ Rp×(n+1)m

is of rank p. Also, the state x(t) is observable if and only if the matrix

P =

[
C

... CA
... CA2 . . .

... CAn−1

]T
∈ Rpn×n

is of rank n.

4.3.2 Algebraic-differential equations

This is a system of equations of the form

E
dx

dt
= A x+B u, (4.11)

where the matrix E ∈ Rn×n is singular [120]. This is equivalent to a set of equations, some of which
are ordinary differential and the rest are algebraic. As a result of this, Eq. (4.11) cannot be converted
into (4.6) by substitution. The index of the system is the least number of differentiations of the
algebraic equations that is needed to get the form of Eq. (4.6). The system may not be completely
controllable since some of the components of x are algebraically related, but it may have restricted
or R-controllability [45].

4.4 Nonlinear aspects

The following are a few of the issues that arise in the treatment of nonlinear thermal control problems.

4.4.1 Models

There are no general mathematical models for thermal systems, but one that can be used is a
generalization of Eq. (4.6) such as

dx

dt
= f(x, u). (4.12)

where f : Rn × Rm 7→ Rn. If one is interested in local behavior about an equilibrium state x = x0,
u = 0, this can be linearized in that neighborhood to give

dx

dt
=
∂f

∂x

∣∣∣∣∣
0

x′ +
∂f

∂u

∣∣∣∣∣
0

u′

= Ax′ +Bu′, (4.13)

where x = x0 + x′ and u = u′. The Jacobian matrices (∂f/∂x)0 and (∂f/∂u)0, are evaluated at the
equilibrium point. Eq. (4.13) has the same form as Eq. (4.6).
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4.4.2 Controllability and reachability

General theorems for the controllability of nonlinear systems are not available at this point in time.
Results obtained from the linearized equations generally do not hold for the nonlinear equations.
The reason is that in the nonlinear case one can take a path in state space that travels far from the
equilibrium point and then returns close to it. Thus regions of state space that are unreachable with
the linearized equations may actually be reachable. In a thermal convection loop it is possible to go
from one branch of a bifurcation solution to another in this fashion [1].

4.4.3 Bounded variables

In practice, due to hardware constraints it is common to have the physical variables confined to
certain ranges, so that variables such as x and u in Eqs. (E.9) and (4.2), being temperatures, heat
rates, flow rates and the like, are bounded. If this happens, even systems locally governed by Eqs.
(4.6) and (4.7) are now nonlinear since the sum of solutions may fall outside the range in which x
exists and thus may not be a valid solution. On the other hand, for a controllable system in which
only u is bounded in a neighborhood of zero, x can reach any point in Rn if the eigenvalues of A have
zero or positive real parts, and the origin is reachable if the eigenvalues of A have zero or negative
real parts [188].

4.4.4 Relay and hysteresis

A relay is an element of a system that has an input-output relationship that is not smooth; it may be
discontinuous or not possess first or higher-order derivatives. This may be accompanied by hysteresis
where the relationship also depends on whether the input is increasing or decreasing. Valves are
typical elements in flow systems that have this kind of behavior.

4.5 System identification

To be able to design appropriate control systems, one needs to have some idea of the dynamic
behavior of the thermal system that is being controlled. Mathematical models of these systems
can be obtained in two entirely different ways: from first principles using known physical laws, and
empirically from the analysis of experimental information (though combinations of the two paths
are not only possible but common). The latter is the process of system identification, by which a
complex system is reduced to mathematical form using experimental data [78, 129, 137]. There are
many different ways in which this can be done, the most common being the fitting of parameters to
proposed models [149]. In this method, a form of Ls is assumed with unknown parameter values.
Through optimization routines the values of the unknowns are chosen to obtain the best fit of the
results of the model with experimental information. Apart from the linear Eq. (4.6), other models
that are used include the following.

• There are many forms based on Eq. (4.12), one of which is the closed-affine model

dx

dt
= F1(x) + F2(x)u

The bilinear equation for which F1(x) = Ax and F2(x) = Nx+ b is a special case of this.
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• Volterra models, like

y(t) = y0(t) +

∞∑
i=1

∫ ∞
−∞

. . .

∫ ∞
−∞

ki(t; t1, t2, t3, . . . , ti)u(t1) . . . u(ti) dt1 . . . dti

for a SISO system, are also used.

• Functional [74], difference [23] or delay [58] equations such as

dx

dt
= A x(t− s) +B u

also appear in the modeling of thermal systems.

• Fractional-order derivatives, of which there are several different possible definitions [10, 17, 142,
143, 156] can be used in differential models. As an example, the Riemann-Liouville definition
of the nth derivative of f(t) is

aDnt f(t) =
1

Γ(m− n+ 1)

dm+1

dtm+1

∫ t

a

(t− s)m−nf(s) ds,

where a and n are real numbers and m is the largest integer smaller than n.

4.6 Lumped temperature

4.6.1 Mathematical model

Consider a body that is cooled from its surface by convection to the environment with a constant
ambient temperature T∞. It also has an internal heat source Q(t) to compensate for this heat loss,
and the control objective is to maintain the temperature of the body at a given level by manipulating
the heat source. The Biot number for the body is Bi = hL/k, where h is the convective heat transfer
coefficient, L is a characteristics length dimension of the body, and k is its thermal conductivity.
If Bi < 0.1, the body can be considered to have a uniform temperature T (t). Under this lumped
approximation the energy balance is given by

Mc
dT

dt
+ hAs(T − T∞) = Q(t), (4.14)

where M is the mass of the body, c is its specific heat, and As is the surface area for convection.
UsingMc/hAs and hAs(Ti−T∞) as the characteristic time and heat rate, this equation becomes

dT ∗

dt∗
+ T ∗ = Q(t∗) (4.15)

Here T ∗ = (T − T∞)/(Ti − T∞) where T (0) = Ti so that T ∗(0) = 1. The other variables are now
non-dimensional. With x = T ∗, u = Q, n = m = 1 in Eq. (4.6), we find from Eq. (4.10) that
rank(M)=1, so the system is controllable.

Open-loop operation to maintain a given non-dimensional temperature T ∗r is easily calculated.
Choosing Q = T ∗r , it can be shown from the solution of Eq. (4.15), that is

T ∗(t∗) = (1− T ∗r )e−t
∗

+ T ∗r ,

that T ∗ → T ∗r as t∗ →∞. In practice, to do this the dimensional parameters hAs and T∞ must be
exactly known. Since this is usually not the case some form of feedback control is required.
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4.6.2 On-off control

In this simple form of control the heat rate in Eq. (4.14) has only two values; it is is either Q = Q0

or Q = 0, depending on whether the heater is on or off, respectively. With the system in its on
mode, T → Tmax = T∞ + Q0/hAs as t → ∞, and in its off mode, T → Tmin = T∞. Taking the
non-dimensional temperature to be

T ∗ =
T − Tmin

Tmax − Tmin

the governing equation is

dT ∗

dt∗
+ T ∗ =

{
1 on
0 off

, (4.16)

the solution for which is

T ∗ =

{
1 + C1e

−t∗ on

C2e
−t∗ off

. (4.17)

We will assume that the heat source comes on when temperature falls below a value TL, and goes
off when it is rises above TU . These lower and upper bounds are non-dimensionally

T ∗L =
TL − Tmin

Tmax − Tmin
,

T ∗U =
TU − Tmin

Tmax − Tmin
.

The result of applying this form of control is an oscillatory temperature that looks like that
in Fig. 4.3, the period and amplitude of which can be chosen using suitable parameters. It can be
shown that the on and off time periods are

t∗on = ln
1− T ∗L
1− T ∗U

, (4.18)

t∗off = ln
T ∗U
T ∗L

, (4.19)

respectively. The total period of the oscillation is then

t∗p = ln
T ∗U (1− T ∗L)

T ∗L(1− T ∗U )
.

If we make a small dead-band assumption, we can write

T ∗L = T ∗r − δ,
T ∗U = T ∗r + δ,

where δ � 1. A Taylor-series expansion gives

t∗p = 2 δ

(
1

T ∗r
+

1

1− T ∗r

)
+ . . .

The period is thus proportional to the width of the dead band. The frequency of the oscillation
increases as its amplitude decreases.
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Figure 4.3: Lumped approximation with on-off control.

4.6.3 PID control

The error e = T ∗r − T ∗ and control input u = Q can be used in Eq. (4.5), so that the derivative of
Eq. (4.15) gives

(Kd + 1)
d2T ∗

dt∗2
+ (Kp + 1)

dT ∗

dt∗
+KiT

∗ = KiT
∗
r ,

with the initial conditions

T ∗ = T ∗0 at t∗ = 0,

dT ∗

dt∗
= −Kp + 1

Kd + 1
T ∗0 +

KpT
∗
r

Kd + 1
at t∗ = 0.

The response of the closed-loop system can be obtained as a solution. The steady-state for Ki 6= 0
is given by T ∗ = T ∗r . It can be appreciated that different choices of the controller constants Kp, Ki

and Kd will give overdamped or underdamped oscillatory or unstable behavior of the system. Fig.
4.4 shows two examples of closed-loop behavior with different parameter values.

4.7 One-dimensional flow temperature

Consider the control of temperature at a given point in the loop by modification of the heating. Both
known heat flux and known wall temperatures may be looked at. In terms of control algorithms,
one may use PID or on-off control.

4.8 Crossflow HX

A cross-flow heat exchanger model, schematically shown in Fig. E.34, has been studied using finite
differences [4–6]. Water is the in-tube and air the over-tube fluid in the heat exchanger. This
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Figure 4.4: Lumped approximation with PID control; Ki = Kd = −0.1, T ∗r = 0.5, (a) Kp = −0.1,
(b) Kp = −0.9.

example includes all the conductive, advective and convective effects discussed before. The governing
equations on the outside of the tube, in the water, and in the wall of the tube are

ṁa

L
ca(T ain − T aout) = ho2πro(Ta − Tt), (4.20)

ρwcwπr
2
i

∂Tw
∂t

+ ṁwcw
∂Tw
∂ξ

= hi2πri(Tt − Tw), (4.21)

ρtctπ(r2
o − r2

i )
∂Tt
∂t

= ktπ(r2
o − r2

i )
∂2Tt
∂ξ2

+ 2πroho(Ta − Tt)− 2πrihi(Tt − Tw), (4.22)

respectively. L is the length of the tube; ṁa(t) and ṁw(t) are the mass flow rates of air and water;
T ain and T aout(t) are the inlet and outlet air temperatures; Ta(t) is the air temperature surrounding
the tube; Tt(ξ, t) and Tw(ξ, t) are the tube-wall and water temperatures; hi and ho the heat transfer
coefficients in the inner and outer surfaces of the tube; ri and ro are the inner and outer radii of the
tube; ca, cw and ct are the specific heats of the air, water and tube material; ρw and ρt are the water
and tube material densities; and kt is the thermal conductivity of the tube material. In addition,
the air temperature is assumed to be Ta = (T ain + T aout)/2. The boundary and initial conditions are
Tt(0, t) = Tw(0, t) = Twin, Tt(L, t) = Tw(L.t), and Tt(ξ, 0) = Tw(ξ, 0). Suitable numerical values were
assumed for the computations.

The inlet temperatures T ain and Twin, and the flow rates ṁa and ṁw can all be used as control
inputs to obtain a desired outlet temperature, T aout or Twout. The flow rates present a special difficulty;
they appear in nonlinear form in Eqs. (4.20) and (4.21), and the outlet temperature is bounded. Fig.
4.6 shows the steady-state range of values of Twout that can be achieved on varying ṁw; temperatures
outside this range cannot be obtained. It is also seen that the outlet water temperature is hard to
control for large water flow rates. As an example of control dynamics, Fig. 4.7 shows the results of
applying PI control on ṁw to obtain a given reference temperature Twout = 23◦C.
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Figure 4.5: Schematic of single-tube cross-flow heat exchanger.
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4.8.1 Control with heat transfer coefficient

4.8.2 Multiple room temperatures

Let there be n interconnected rooms. The wall temperature of room i is Twi and the air temperature
is T ai . The heat balance equation for this room is

Ma
i c
w dT

w
i

dt
= hiAi(T

a
i − Twi ) + UiA

e
i (T

e − Twi ) (4.23)

Ma
i c
a dT

a
i

dt
= hiAi(T

w
i − T ai ) +

1

2
ca
∑
j

(ma
ji + |ma

ji|)T aj −
1

2
ca
∑
j

(ma
ij + |ma

ij |)T ai + qi (4.24)

where T e is the exterior temperature, mij is the mass flow rate of air from room i to room j. By
definition mij = −mji. Since mii has no meaning and can be arbitrarily taken to be zero, mij is an
anti-symmetric matrix. Also, from mass conservation for a single room, we know that∑

j

ma
ji = 0

Analysis

The unknowns in equations (4.23) and (4.24) are the 2n temperatures Twi and T ai .
(i) Steady state with U = 0
(a) The equality ∑

i

∑
j

(ma
ji + |ma

ji|)T aj −
∑
i

∑
j

(ma
ij + |ma

ij |)T ai = 0

can be shown by interchanging i and j in the second term. Using this result, the sum of equations
(4.23) and (4.24) for all rooms gives ∑

i

qi = 0

which is a necessary condition for a steady state.
(b) Because the sum of equations (4.23) and (4.24) for all rooms gives an identity, the set of equa-
tions is not linearly independent. Thus the steady solution is not unique unless one of the room
temperatures is known.

Control

The various proportional control schemes possible are:

• Control of individual room heating

qi = −Ki(T
a
i − T seti )

• Control of mass flow rates

ma
ji = fij(T

a
j , T

a
i , T

set
i )

Similar on-off control schemes can also be proposed.
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Figure 4.8: Schematic of duct of length L.

4.8.3 Two rooms

Consider two interconnected rooms 1 and 2 with mass flow m from 1 to 2. Also there is leakage of
air into room 1 from the exterior at rate m, and leakage out of room 2 to the exterior at the same
rate. The energy balances for the two rooms give

M1c
a dT1

dt
= U1A1(T e − T1) +

1

2
(m+ |m|)(T e − T1)− 1

2
(m− |m|)(T2 − T1) + q1 (4.25)

M2c
a dT2

dt
= U2A2(T e − T2)− 1

2
(m− |m|)(T e − T2) +

1

2
(m+ |m|)(T1 − T2) + q2 (4.26)

The overall mass balance can be given by the sum of the two equations to give

M1c
a dT1

dt
+M2c

a dT2

dt
= U1A1(T e − T1) + U2A2(T e − T2) + |m|T e

+
1

2
(m− |m|)T1 −

1

2
(m+ |m|)T2 + q1 + q2

One example of a control problem would be to change m to keep the temperatures of the two rooms
equal. Delay can be introduced by writing T2 = T2(t− τ) and T1 = T1(t− τ) in the second to last
terms of equations (4.25) and (4.26), respectively, where τ is the time taken for the fluid to get from
one room to the other.

4.8.4 Long duct

The diffusion problem of the previous section does not have advection. Transport of fluids in ducts
introduces a delay between the instant the particles of fluid go into the duct and when they come
out, which creates a difficulty for outlet temperature control. The literature includes applications
to hot-water systems [43, 136] and buildings [8, 168]; transport [207] and heater [40, 41] delay and
the effect of the length of a duct on delay [47] have also been looked at.

A long duct of constant cross section, schematically shown in Fig. 7.1 where the flow is driven
by a variable-speed pump, illustrates the basic issues [4, 7]. The fluid inlet temperature Tin is kept
constant, and there is heat loss to the constant ambient temperature T∞ through the surface of the
duct.

With a one-dimensional approximation, energy conservation gives

∂T

∂t
+ v

∂T

∂ξ
+

4h

ρcD
(T − T∞) = 0, (4.27)

with the boundary condition T (0, t) = Tin, where T (ξ, t) is the fluid temperature, t is time, ξ is the
distance along the duct measured from the entrance, v(t) is the flow velocity, h is the coefficient
of heat transfer to the exterior, ρ is the fluid density, c is its specific heat, and D is the hydraulic
diameter of the duct. The flow velocity is taken to be always positive, so that the ξ = 0 end is
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always the inlet and ξ = L the outlet, where L is the length of the duct. The temperature of the
fluid coming out of the duct is Tout(t).

Using the characteristic quantities of L for length, ρcD/4h for time, and hL/ρcD for velocity,
the non-dimensional version of Eq. (4.27) is

∂θ

∂t
+ v

∂θ

∂ξ
+ θ = 0, (4.28)

where θ = (T − T∞)/(Tin − T∞), with θ(0, t) = 1. The other variables are now non-dimensional.
Knowing v(t), this can be solved to give

θ(ξ, t) = e−t f

(
ξ −

∫ t

0

v(s) ds

)
, (4.29)

where the initial startup interval in which the fluid within the duct is flushed out has been ignored;
f is an arbitrary function. Applying the boundary condition at ξ = 0 gives

1 = e−t f

(
−
∫ t

0

v(s) ds

)
. (4.30)

The temperature at the outlet of the duct, i.e. at ξ = 1, is

θout(t) = e−t f

(
1−

∫ t

0

v(s). ds

)
(4.31)

Eqs. (4.30) and (4.31) must be simultaneously solved to get the outlet temperature θout(t) in terms
of the flow velocity v.

The problem is non-linear if the outlet temperature Tout(t) is used to control the flow velocity
v(t). The delay between the velocity change and its effect on the outlet temperature can often lead
instability, as it does in other applications [16, 72, 77, 183]. Fig. 4.9 shows a typical result using
PID control in which the system is unstable. Shown are the outlet temperature, flow velocity and
residence time of the fluid in the duct, all of which ultimately achieve constant amplitude oscillations.

Bibliography

M.A. Henson and D.E. Seborg, Nonlinear Process Control, Prentice Hall, 1997.

O.L.R. Jacobs, Introduction to Control Theory, Oxford, 1993.

Problems

1. Two bodies at temperatures T1(t) and T2(t), respectively, are in thermal contact with each other and with the
environment. The temperatures are governed by

M1c1
dT1

dt
+ hcAc(T1 − T2) + hA(T1 − T∞(t)) = Q(t)

M2c2
dT2

dt
+ hcAc(T2 − T1) + hA(T2 − T∞(t)) = 0,

where Q(t) is internal heat generation that can be controlled. Take T∞ = constant. Show results for (a) PID
and (b) on-off control.
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Figure 4.9: Outlet temperature, velocity and residence time for Ki = −5 and Kp = 2.5 [4].

2. Two bodies at temperatures T1(t) and T2(t), respectively, are in thermal contact with each other and with the
environment. The temperatures are governed by

M1c1
dT1

dt
+ hcAc(T1 − T2) + hA(T1 − T∞(t)) = Q1(t)

M2c2
dT2

dt
+ hcAc(T2 − T1) + hA(T2 − T∞(t)) = Q2(t)

where Q1 and Q2 are internal heat generation sources, each one of which can be independently controlled.
Using on-off control, show analytical or numerical results for the temperature responses of the two bodies. If
you do the problem analytically, take the ambient temperature, T∞, to be constant, but if you do it numerically,
then you can take it to be (a) constant, and (b) oscillatory. For Q1 = Q2 = 0, find the steady state (T̄1, T̄2)
and determine its stability.

3. Two lumped bodies A and B in thermal contact (contact thermal resistance Rc) exchange heat between
themselves by conduction and with the surroundings by convection (see Fig. 3.7). It is desired to control their
temperatures at TA and TB using separate internal heat inputs QA and QB .

(a) Check that the system is controllable.

(b) Set up a PID controller where its constants are matrices. Determine the condition for linear stability of
the control system. Show that the case of two independent bodies is recovered as Rc →∞.

(c) Calculate and plot TA(t) and TB(t) for chosen values of the controller constants.

4. Apply an on-off controller to the previous problem. Plot TA(t) and TB(t) for selected values of the parameters.
Check for phase synchronization.

5. A number of identical rooms are arranged in a circle as shown in Fig. 4.10, with each at a uniform temperature
Ti(t). Each room exchanges heat by convection with the outside which is at T∞, and with its neighbors with
a conductive thermal resistance R. To maintain temperatures, each room has a heater that is controlled by
independent but identical proportional controllers. (a) Derive the governing equations for the system, and
nondimensionalize. (b) Find the steady state temperatures. (c) Write the dynamical system in the form



4.8. Crossflow HX 78

T∞

T∞

Figure 4.10: Rooms arranged in the form of a circle.

ẋ = Ax and determine the condition for stability1.

1Eigenvalues of an N ×N , circulant, banded matrix of the form

b c 0 . . . 0 a
a b c . . . 0 0
0 a b . . . 0 0
...

...
...

...
...

0 . . . 0 a b c
c 0 . . . 0 a b


are λj = b+ (a+ c) cos{2π(j − 1)/N} − i(a− c) sin{2π(j − 1)/N}, where j = 1, 2, . . . , N .



Chapter 5

Physics of heat transfer

sectionMicroscale heat transfer
[115] is a review of microscale heat exchangers, and [36] of photonic devices.
[90, 127, 187, 196, 212, 230]

5.1 Phonons

5.1.1 Single atom type

A lattice of atoms of a single type is shown in Fig. 5.5. The mass of each atom is m, the spring
constants are c, and a is the mean distance between the atoms. For a typical atom n, Newton’s
second law gives

m
d2xn
dt2

= c(xn+1 − xn)− c(xn − xn−1)

= c(xn+1 − 2xn + xn−1).

Let

xi = x̂ei(nka−ωt),

then the dispersion relation is

ω =

(
2c

m

)1/2

(1− cos ka)
1/2

.

The phase velocity is

vp =

(
2c

mk2

)1/2

(1− cos ka)
1/2

,

Figure 5.1: Lattice of atoms of a single type

79
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Figure 5.2: Lattice of atoms of a single type

ba

Figure 5.3: Lattice of atoms of two different type

and the group velocity is

vg =
( c

2m

)1/2 a sin ka

(1− cos ka)
1/2

.

For ka→ 0, we have

vg = a
( c
m

)1/2

.

The thermal conductivity

k = ke + kp

where ke and kp are those due to electron and phonon transports. We can also write

k =
1

3
cvgl

where c is the specific heat, and l is the mean free path.

5.1.2 Two atom types

Newton’s second law gives

m1
d2xi
dt2

= c(yi − xi)− c(xi − yi−1)

= c(yi − 2xi + yi−1),

m2
d2yi
dt2

= c(xi+1 − yi)− c(yi − xi)

= c(xi+1 − 2yi + xi).

Let

xi = x̂ei(nka−ωt),

yi = ŷei(nka−ωt),
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Table 5.1: Flow regimes

Kn→ 0 continuum, no viscous diffusion
Kn ≤ 10−3 continuum, Navier-Stokes, no-slip at boundaries
10−3 ≤ Kn ≤ 10−1 continuum-transition, Navier-Stokes, slip at boundaries
10−1 ≤ Kn ≤ 10 transition
10 ≤ Kn free molecular flow

so that

−m1x̂ω
2 = c

(
ŷ − 2x̂+ ŷe−ika

)
,

−m2ŷω
2 = c

(
x̂eika − 2ŷ + x̂

)
,

which can also be written as[
2c−m1ω

2 −c(1 + e−ika)
−c(1 + eika) 2c−m2ω

2

] [
x̂
ŷ

]
=

[
0
0

]
.

This means that

(2c−m1ω
2)(2c−m2ω

2)− c2(1 + e−ika)(1 + eika) = 0,

which simplifies to

m1m2ω
4 − 2c(m1 +m2)ω2 + 2c2(1− cos ka) = 0.

The solution is

ω2 =
1

2m1m2

[
2c(m1 +m2)± 2c

√
m2

1 +m2
2 + 2m1m2 cos ka

]
.

The positive sign corresponds to the optical and the negative to the acoustic mode.

5.2 Rarefied gases

Knudsen number is defined as

Kn =
λ

L
,

where λ is the mean free path, and L is a characteristic length. From statistical mechanics it can
be shown that it is related to the Reynolds and Mach numbers by Kn ∼ Ma/Re. The different flow
regimes are shown in Table 5.1.

5.3 Thin films

5.4 Heat carriers

[110]
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5.4.1 Free electrons and holes

Free electrons, as opposed to the valence electrons, move with an applied potential field, and con-
tribute to transport of electrical current and heat.

5.4.2 Phonons

These are vibrations of atoms that propagate in a wave-like manner. There is more on this in Section
5.8.

5.4.3 Material particles

This transport is due to the bulk motion of a material which could be a solid, liquid or gas. For a
gas, the motion of the atoms is usually what transports heat. For a continuum, it is usually referred
to as advection, and will be discussed in detail in the Chapters on convection.

5.4.4 Photons

This is a particle that corresponds to an electromagnetic wave and is thus what enables radiation.
There is more on this in Section 5.6.

5.5 Maxwell-Boltzmann distribution

Different distributions apply for different types of particles. The one that applies to classical par-
ticles is the Maxwell-Boltzmann distribution: for a single oscillator in a system of oscillators, the
probability p(E) of possessing energy between E and E + dE is proportional to e−E/kT dE.

5.6 Planck’s radiation law

1

Planck assumed that the energy of each oscillator is a multiple of ~ω, i.e. E = n~ω, so that

p(E) =
e−n~ω/kT∑∞
n=0 e

−n~ω/kT ,

= (1− e−~ω/kT ) e−n~ω/kT , since

∞∑
n=0

yn =
1

1− y
.

1Quantum Mechanics with Applications, D.B. Beard and G.B. Beard, Allyn and Bacon, Boston, 1970
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The average energy of each mode of oscillation is

〈E〉 =

∞∑
n=0

E p(E),

= (1− e−~ω/kT )

∞∑
k=0

n~ωe−n~ω/kT ,

= (1− e−~ω/kT )~ω
e−~ω/kT

(1− e−~ω/kT )2
,

=
~ω

e~ω/kT − 1

The number of vibrational modes per unit volume having frequency between ω and ω + dω is
[To be clarified.]

N(ω) dω =
ω2

π2c3
dω.

Thus

N(ω)〈E〉 dω =
ω2

π2c3
~ω

e~ω/kT − 1
dω

The energy density per unit volume per unit frequency is

S =
ω2

π2c3
~ω

e~ω/kT − 1

The density above is for thermal equilibrium, so setting inward=outward gives a factor of 1/2 for
the radiated power outward. Then one must average over all angles, which gives another factor of
1/2 for the angular dependence which is the square of the cosine. Thus the radiated power per unit
area from a surface at this temperature is Sc/4. [To be clarified.]

Spectral radiance is

Bν(ν, T ) =
2hν3

c2
1

ehν/kT − 1
per unit frequency.

This can be converted to

Bλ(λ, T ) =
2hc2

λ5

1

ehc/λkT − 1
per unit wavelength,

where c = νλ and Bν(ν, T ) dν = −Bλ(λ, T ) dλ.

5.7 Diffusion by random walk

5.7.1 Brownian motion

Langevin equation

m
d2x

dt2
= −λdx

dt
+ FR(t).
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for a particle of mass m, position x that is undergoing a viscous drag of λ(dx/dt) and a random
force FR(t). At the two extremes of time, the solutions are
(a) Short time t� m/λ: ballistic

〈x2〉 − 〈x2
0〉 =

kT

m
t2

(b) Long time t� m/λ: viscous fluid

〈x2〉 − 〈x2
0〉 = −2kT

λ
t

The Fokker-Planck equation for the evolution of a probability density function P (x, t) is

∂P

∂t
+∇ · (uP ) =

1

2
∇2DP

5.7.2 One-dimensional

Consider a walker along an infinite straight line, as shown inFig. 5.4, moving with a step size ∆X
taken forward or backward with equal probability in a time interval ∆t. Let the current position of
the walker be x = X, and the probability that the walker is in an interval [X − dX/2, X + dX/2] be
P (X, t). Since there is equal probability of the walker in the previous time step to have been in the
interval [X −∆X − dX/2, X −∆X + dX/2] or [X + ∆X − dX/2, x+ ∆X + dX/2], we have

P (X, t) =
1

2
[P (X −∆X, t−∆t) + P (X + ∆X, t−∆t] . (5.1)

Assuming that ∆X and ∆t are small, Taylor series expansions give

P (X ±∆X, t−∆t) = P ± ∂P

∂x
∆X − ∂P

∂t
∆t+

1

2

∂2P

∂x2
(∆X)2 ± ∂2P

∂x∂t
∆X∆t+

1

2

∂2P

∂t2
(∆t)2

± 1

6

∂3P

∂x3
(∆x)3 − 1

2

∂3P

∂x2∂t
(∆x)2∆t± 1

2

∂3P

∂x∂t2
∆x(∆t)2 − 1

6

∂3P

∂t3
(∆t)3

+ . . . ,

where the terms on the right side are evaluated at (X, t). Substituting in Eq. (5.1) we get

∂P

∂t
−D∂

2P

∂x2
=

1

2

∂2P

∂t2
∆t− 1

2

∂3P

∂x2∂t
(∆x)2 + . . . ,

where D = (∆x)2/2∆t. If we let ∆x→ 0 and ∆t→ 0 such that D is constant, we get the diffusion
equation

∂P

∂t
= D

∂2P

∂x2
.

5.7.3 Multi-dimensional

Let P = P (r, t), and ∆r be a step in any direction where |∆r| is a constant. Then

P (r, t) =

∫
S

P (r + ∆r, t−∆t) dS



5.8. Phonons 85

x
X − dX/2 X X + dX/2

2

Figure 5.4: Random walker with current position at 2.

Figure 5.5: Lattice of atoms of a single type

where S is a sphere of radius |∆r| centered on r. Also

P (r + ∆r, t−∆t) = P +
∂P

∂ri
∆ri −

∂P

∂t
∆t

1

2

∂2P

∂ri∂ri
+ . . .

etc.

5.8 Phonons

Phonons are lattice vibrations that can be considered to be quasi-particles. [115] is a review of
microscale heat exchangers, and [36] of photonic devices.

[90, 127, 187, 196, 212, 230]

5.8.1 Single atom type

A lattice of atoms of a single type is shown in Fig. 5.5. The mass of each atom is m, the spring
constants are c, and a is the mean distance between the atoms. For a typical atom n, Newton’s
second law gives

m
d2xn
dt2

= c(xn+1 − xn)− c(xn − xn−1)

= c(xn+1 − 2xn + xn−1).

Let

xi = x̂ei(nka−ωt),

then the dispersion relation is

ω =

(
2c

m

)1/2

(1− cos ka)
1/2

.

The phase velocity is

vp =

(
2c

mk2

)1/2

(1− cos ka)
1/2

,

and the group velocity is

vg =
( c

2m

)1/2 a sin ka

(1− cos ka)
1/2

.
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ba

Figure 5.6: Lattice of atoms of two different type

For ka→ 0, we have

vg = a
( c
m

)1/2

.

The thermal conductivity

k = ke + kp

where ke and kp are those due to electron and phonon transports. We can also write

k =
1

3
cvgl

where c is the specific heat, and l is the mean free path.

5.8.2 Two atom types

Newton’s second law gives

m1
d2xi
dt2

= c(yi − xi)− c(xi − yi−1)

= c(yi − 2xi + yi−1),

m2
d2yi
dt2

= c(xi+1 − yi)− c(yi − xi)

= c(xi+1 − 2yi + xi).

Let

xi = x̂ei(nka−ωt),

yi = ŷei(nka−ωt),

so that

−m1x̂ω
2 = c

(
ŷ − 2x̂+ ŷe−ika

)
,

−m2ŷω
2 = c

(
x̂eika − 2ŷ + x̂

)
,

which can also be written as[
2c−m1ω

2 −c(1 + e−ika)
−c(1 + eika) 2c−m2ω

2

] [
x̂
ŷ

]
=

[
0
0

]
.
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Figure 5.7: Schematic of dispersion relations; A = acoustic phonons, O = optical phonons.

This means that

(2c−m1ω
2)(2c−m2ω

2)− c2(1 + e−ika)(1 + eika) = 0,

which simplifies to

m1m2ω
4 − 2c(m1 +m2)ω2 + 2c2(1− cos ka) = 0.

The solution is

ω2 =
1

2m1m2

[
2c(m1 +m2)± 2c

√
m2

1 +m2
2 + 2m1m2 cos ka

]
.

The positive sign corresponds to the optical and the negative to the acoustic mode.

5.8.3 Types of phonons

• Frequency

– Optical: high frequency

– Acoustic: low frequency

• Direction of oscillation

– Longitudinal: in direction of velocity

– Transverse: normal to velocity
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5.8.4 Heat transport

Phonons contribute to the internal energy of a material. In the Debye model for a monotomic
crystallind solid

cv,p = 9
kT

m

(
kT

~ωD

)3

n

∫ ~ωD/kT

0

x4ex

ex − 1
dx,

where m is the mass of an atom, n is the number of atoms per unit volume, ω is the angular frequency
of the phonon, and ωD is the Debye frequency, i.e. the maximum frequency of vibration.

Phonons also participate in the transport of heat from one location to the other. The thermal
conductivity k is

k =
1

3
ncvuλ

where u is the average speed of the carrier, and λ is its mean free path.

5.9 Molecular dynamics

This is the technique of following individual molecules using Newtonian mechanics and appropriate
intermolecular forces. One such commonly used force field is provided by the Lennard-Jones potential

VLJ = 4ε

[(σ
r

)12

−
(σ
r

)6
]

5.10 Thin films

5.11 Boltzmann transport equation

The classical distribution function f(r,v, t) is defined as number of particles in the volume dr dv in
the six-dimensional space of coordinates r and velocity v. Following a volume element in this space,
we have the balance equation [116, 131, 132], usually called the BTE:

∂f

∂t
+ v · ∇f + a · ∂f

∂v
=

(
∂f

∂t

)
scat

, (5.2)

where a = dv/dt is the acceleration due to an external force. The term on the right side is due to
collisions and scattering. The heat flux is then

q(r, t) =

∫
v(r, t)f(r, ε, t)εD dε, (5.3)

where D(ε) is the density of energy states ε.

5.11.1 Relaxation-time approximation

Under this approximation (
∂f

∂t

)
scat

=
f0 − f
τ

, (5.4)
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where τ = τ(r,v). Thus

∂f

∂t
+ v · ∇f + a · ∂f

∂v
=
f0 − f
τ

. (5.5)

Several further approximations can be made.

(a) Fourier’s law
Assume ∂/∂t = 0, a = 0 and ∇f = ∇f0 in the left side of Eq. (5.5) so that

f = f0 − τv · ∇f0. (5.6)

Introducing explicitly the dependence of f on temperature, we can write

∇f0 =
df0

dT
∇T. (5.7)

Using Eqs. (5.6) and (5.7) in (5.3), we get

q = −k∇T, (5.8)

where

k =

∫
v

(
τv · df0

dT

)
εD dε, (5.9)

since ∫
vf0εD dε = 0.

(b) Cattaneo’s equation
Assume τ = constant and ∇f = (df0/dT )∇T . Multiply Eq. (5.5) by vεD dε and integrate to

get

∂

∂t

∫
vfεD dε+

∫ (
v · df0

dT
∇T
)

vεD dε = −1

τ

∫
vfεD dε.

Using Eq. (5.3), this gives

q + τ
∂q

∂t
= −k∇T,

where k is given by Eq. (5.9). This is Cattaneo’s equation that can be compared to Fourier’s law,
Eq. (5.8).

5.12 Interactions and collisions

The heat carriers can all interact or collide with each other and with themselves, leaading to a
contribution to the (∂f/∂t)scat term in the BTE. In addition solids have impurities, grain bvoundaries
and dislocations with which they can interact as well.
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5.13 Moments of the BTE

Eq. (5.2) can be multiplied by vn to get the n-th moment of the BTE. These are the conservation
equations: conservation of mass for n = 0, of momentum for n = 1, of mechanical energy for n = 2,
and so on.

5.14 Rarefied gas dynamics

Knudsen number

Kn =
λ

L

5.15 Radiation

5.15.1 Electromagnetics

[182]
Electromagnetic radiation travels at the speed of light c = 2.998× 108 m/s. Thermal radiation

is the part of the spectrum in the 0.1–100 µm range. The frequency f and wavelength λ of a wave
are related by

c = fλ

Maxwell’s equations of electromagnetic theory are

∇×H = J +
∂D

∂t

∇×E = −∂B
∂t

∇ ·D = ρ

∇ ·B = 0

where H, B, E, D, J , and ρ are the magnetic intensity, magnetic induction, electric field, electric
displacement, current density, and charge density, respectively. For linear materialsD = εE, J = gE
(Ohm’s law), and B = µH, where ε is the permittivity, g is the electrical conductivity, and µ is the
permeability. For free space ε = 8.8542× 10−12 C2N−1m−2, and µ = 1.2566× 10−6 NC−2s2,

For ρ = 0 and constant ε, g and µ, it can be shown that

∇2H − εµ∂
2H

∂t2
− gµ∂H

∂t
= 0

∇2E − εµ∂
2E

∂t2
− gµ∂E

∂t
= 0

The speed of an electromagnetic wave in free space is c = 1/
√
µε.

The radiation can also be considered a particles called phonons with energy

E = ~f

where ~ is Planck’s constant.
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5.16 Monte Carlo methods

[220]
[230] is a review of the radiative properties of semiconductors.

5.17 Participating media

Volumetric absorption: Beer’s law

Iλ,L
Iλ,0

= e−κλL

Radiative transfer equation:

1

c

∂

∂t
Iν + Ω̂ · ∇Iν + (kν,s + kν,a)Iν = jν +

1

4πc
kν,s

∫
Ω

IνdΩ
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Problems

1. Consider an unsteady n-body radiative problem. The temperature of the ith body is given by

Mjcj
dTj

dt
= −

n∑
i=1

AiFijσ(T 4
i − T 4

j ) +Qj

= Aj

n∑
i=1

Fjiσ(T 4
i − T 4

j ) +Qj

What kind of dynamic solutions are possible?

2. The steady-state temperature distribution in a one-dimensional radiative fin is given by

dT

dx
+ hT 4 = 0

Is the solution unique and always possible?

3. Show that between one small body 1 and its large surroundings 2, the dynamics of the small-body temperature
is governed by

M1c1
dT1

dt
= −A1F12σ(T 4

1 − T 4
2 ) +Q1.

4. Plot all real θ(β, ε) surfaces for the convection with radiation problem, and comment on the existence of
solutions.

5. Complete the problem of radiation in an enclosure (linear stability, numerical solutions).



Chapter 6

Conduction in rods (one-dimensional)

6.1 Fins

• Fin effectiveness εf : This is the ratio of the fin heat transfer rate to the rate that would be if
the fin were not there.

• Fin efficiency ηf : This is the ratio of the fin heat transfer rate to the rate that would be if
the entire fin were at the base temperature.

Longitudinal heat flux

q′′x = O(ks
Tb − T∞

L
)

Transverse heat flux

q′′t = O(h(Tb − T∞))

The transverse heat flux can be neglected compared to the longitudinal if

q′′x � q′′t

which gives a condition on the Biot number

Bi =
hL

k
� 1

Consider the fin shown shown in Fig. 6.1. The energy flows are indicated in Fig. 6.2. The
conductive heat flow along the fin, the convective heat loss from the side, and the radiative loss from
the side are

qk = −ksA
dT

dx
qh = hdAs(T − T∞)

qr = σdAs(T
4 − T 4

∞)

where, for a small enough slope, P (x) ≈ dAs/dx is the perimeter. Heat balance gives

ρAc
∂T

∂t
+
∂qk
∂x

dx+ qh + qr = 0 (6.1)

92
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Figure 6.1: Schematic of a fin.
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Figure 6.2: Energy balance.

from which

ρAc
∂T

∂t
− ks

∂

∂x
(A
∂T

∂x
) + Ph(T − T∞) + σP (T 4 − T 4

∞) = 0

where ks is taken to be a constant.
The initial temperature is T (x, 0) = Ti(x). Usually the base temperature Tb is known. A

surface cannot store energy, so that at a surface the heat flux coming in must be equal to that going
out. The different types of boundary conditions for the tip are:

• Convective: ∂T/∂x = a at x = L

• Adiabatic: ∂T/∂x = 0 at x = L

• Known tip temperature: T = TL at x = L

• Long fin: T = T∞ as x→∞
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i

j

Figure 6.3: Complex conductive structures.

Taking

θ =
T − T∞
Tb − T∞

, τ =
kst

L2ρc
(Fourier modulus), ξ =

x

L
,

a(ξ) =
A

Ab
, p(ξ) =

P

Pb

where the subscript indicates quantities at the base, the fin equation becomes

a
∂θ

∂τ
− ∂

∂ξ

(
a
∂θ

∂ξ

)
+m2pθ + εp

[
(θ + β)4 − β4

]
= 0

where

m2 =
PbhL

2

ksAb

ε =
σPbL

2(Tb − T∞)3

ksAb

β =
T∞

Tb − T∞

6.1.1 Structures

Fig. 6.3 shows a complex shape consisting of conductive bars. At each node∑
i

qi = 0

For each branch ∑
i

kiAi
Li

(Ti − T0) = 0

from which

T0 =

∑
i
kiAi
Li

Ti∑
i
kiAi
Li

Example 6.1
A thick plate, shown in Fig. 6.4, has a lower surface kept at constant temperature T0, and has convection

to a fluid at temperature T∞ at its upper surface. Find the temperature distribution in the plate.
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Figure 6.4: Example 1.

Assume: (a) Infinite in two dimensions. (b) Fourier conduction with constant thermal conductivity in
plate. (c) Convective heat transfer coefficient h known.

Variables: T (x) = temperature distribution, x = coordinate measured upward from the bottom of the
plate, L = thickness of plate.

Steady-state temperature distribution T (x) is governed by

k
d2T

dx2
= 0,

Integrating twice

dT

dx
= a,

T = ax+ b. (6.2)

At bottom and top

T0 = b,

T (L) = aL+ b,

so that

a =
T (L)− T0

L
, (6.3)

b = T0. (6.4)

Equating the conductive and convective heat flux at the top surface

−k
T (L)− T0

L
= h(T (L)− T∞),

T (L)

{
−
k

L
− h
}

= −
kT0

L
− hT∞,

T (L) =
kT0 + hLT∞

k + hL
. (6.5)

The temperature distribution is Eq. (6.2), with a, b and T (L) given by Eqs. (6.3), (6.4) and (6.5).

Example 6.2
The temperatures of the inner and outer surfaces of a wall composed of two concentric cylindrical layers

of different thermal conductivities are known. What is the steady-state heat flux? See Fig. 6.5.

Assume: (a) Fourier conduction with constant thermal conductivity in each material. (b) No thermal
resistance at interface between cylinders.
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Figure 6.5: Example 2

Variables: q = conductive heat rate, T1 and T2 = the temperatures of the inner and outer surfaces,
respectively; r1, ri and r2 = the radii of the inner surface, the interface, and the outer surfaces, respectively;
L = length of the cylinders; k1 and k2 = thermal conductivities of the inner and outer cylinders, respectively;
R1 and R2 are the thermal resistances of the inner and outer cylinders, respectively.

Then

q =
T1 − T2

R1 +R2
,

R1 =
ln(ri/r1)

2πLk1
,

R2 =
ln(r2/ri)

2πLk2
.

Thus

q =
T1 − T2

ln(ri/r1)

2πLk1
+

ln(r2/ri)

2πLk2

.

6.1.2 Fin theory

Long time solution

a
∂θ

∂τ
− ∂

∂ξ

(
a
∂θ

∂ξ

)
+ f(θ) = 0 (6.6)

where f(θ) includes heat transfer from the sides due to convection and radiation. The boundary
conditions are either Dirichlet or Neumannn type at ξ = 0 and ξ = 1. The steady state is determined
from

− d

dξ

(
a
dθ

dξ

)
+ f(θ) = 0 (6.7)
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with the same boundary conditions. Substituting θ = θ+ θ′ in equation (6.6) and subtracting (6.7),
we have

a
∂θ′

∂τ
− ∂

∂ξ

(
a
∂θ′

∂ξ

)
+
[
f(θ + θ′)− f(θ)

]
= 0

where θ′ is the perturbation from the steady state. The boundary conditions for θ′ are homogeneous.
Multiplying by θ′ and integrating from ξ = 0 to ξ = 1, we have

dE

dτ
= I1 + I2 (6.8)

where

E =
1

2

∫ 1

0

a(θ′)2 dξ (6.9)

I1 =

∫ 1

0

θ′
∂

∂ξ

(
a
∂θ′

∂ξ

)
dξ (6.10)

I2 = −
∫ 1

0

θ′
[
f(θ + θ′)− f(θ)

]
dξ (6.11)

Integrating by parts we can show that

I1 = θ′a
∂θ′

∂ξ

∣∣∣∣∣
1

0

−
∫ 1

0

a

(
dθ′

dξ

)2

dξ (6.12)

= −
∫ 1

0

a

(
dθ′

dξ

)2

dξ (6.13)

since the first term on the right side of equation (6.12) is zero due to boundary conditions. Thus we
know from the above that I1 is nonpositive and from equation (6.9) that E is nonnegative. If we
also assume that

I2 ≤ 0 (6.14)

then equation (6.8) tells us that E must decrease with time until reaching zero. Thus the steady
state is globally stable. Condition (6.14) holds if [θ′ and f(θ + θ′) − f(θ)] are of the same sign or
both zero; this is a consequence of the Second Law of Thermodynamics.

Example 6.3
What is the steady-state temperature distribution in a fin with a radiation boundary condition at the

tip?

Assume: (a) Base temperature is known. (b) Tip is blackbody.
Variables: T (x) = temperature distribution; x = coordinate along fin measured from the base.
The steady-state fin equation is

d2T

dx2
−m2(T − T∞) = 0,

where m2 = hA/(kA) with the solution

T = C1 e
mx + C2 e

−mx.
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Boundary conditions are

T (0) = Tb,

−k
dT

dx

∣∣
x=L

= σ[T (L)4 − T 4
∞].

so that

Tb = C1 + C2,

−k
(
C1me

mL − C2e
−mL

)
= σ

[
(C1 e

mL + C2 e
−mL)4 − T 4

∞

]
,

which can be numerically solved for C1 and C2 if values of m, L and T∞ are given.

Example 6.4
Show that there is a critical insulation radius which minimizes heat transfer from an insulation-covered

pipe.

[cf. Example 3.5, 7th Ed.]
Variables: ri = inner radius of insulation, r = outer radius of insulation, k = thermal conductivity of

insulation material, h = external convective heat transfer coefficient.
The thermal resistance per unit length of the pipe is

R′tot =
ln(r/r1)

2πk
+

1

2πrh
,

and the heat rate per unit length is

q′ =
T∞ − Ti
R′tot

The maximum heat rate is obtained by minimizing q′ or maximizing R′tot. With the latter

0 =
dR′tot
drcr

,

=
1

2πrcrk
−

1

2πr2
crh

,

from which rcr = k/h. This is the critical radius of the insulation above and below which the heat rate is
higher.

Example 6.5
If the temperature distribution inside a wall (0 ≤ x ≤ L) is T (x) = a + bx + cx2, find the rate of heat

generation in the wall.

Assume: (a) One-dimensional Fourier conduction. (b) Steady state. (c) Uniform thermal conductivity.
Variables: T (x) = temperature distribution; x = coordinate through the wall; Qg = heat generation per

unit volume; k = thermal conductivity of wall.
The temperature distribution is given by

d2T

dx2
+
Qg

k
= 0

from which

g = −k
d2T

dx2
,

= −2ck.
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Example 6.6
The steady-state temperatures at different distances along a fin (6061 aluminum, 0.5 in diameter, 12 in

long, ambient air temperature 20.8 ◦C) are measured to be the following.

x [m] T [◦C]
0.2794 42.3
0.2540 43.8
0.2286 47.2
0.2032 52.7
0.1778 59.1
0.1524 65.1
0.1270 72.2
0.1016 86.0
0.0762 104.5
0.0508 128.3
0.0254 154.7

Find the convective heat transfer coefficient.

Assume: Convective heat transfer along side and at tip.
Variables: x = distance from base, x0 = x-coordinate of origin, L = distance between origin and tip of

fin, θ = normalized temperature, T∞ = ambient temperature, ξ = normalized distance.
At a distance of 0.0254 m from the base the temperature is 154.7 ◦C. We will take this point to be x = x0

and the temperature there to be T = T0. We define

ξ =
x− x0

L
,

θ =
T − T0

T0 − T∞
.

The experimental data are plotted in Fig. 6.6. The theoretical temperature distribution

θ

θ0
=

coshmL(1− ξ) + (h/mk) sinhmL(1− ξ)
coshmL+ (h/mk) sinhmL

is also plotted in the figure. We can see that h ≈ 450 W/m2K fits the data well.

Example 6.7
1.5 kg/s of water enters a 10 cm diameter, 10 m long pipe at 40 ◦C. What is the exit temperature of the

water if the inner wall of the pipe is uniformly at 20 ◦C?

Assume: (a) Heat rate depends on local temperature difference between the bulk temperature of the
water and the temperature of the wall.

Variables: ṁ = mass flow rate; c = specific heat; T (x) = bulk temperature of water as a function of x;
x = distance along the pipe; Tin = bulk temperature of water at inlet x = 0; Tw = inner wall temperature;
D = diameter of pipe; h = convective heat transfer coefficient for heat transfer from water to pipe wall.

The governing equation is

ṁc dT = hπD(Tw − T ) dx,

dT

dx
+
hπD

ṁ
T =

hπD

ṁ
Tw.
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Figure 6.6: Points: measured temperature distribution; continuous line: theoretical temperature
distribution for h = 450 W/m2K.

The solution is

T (x) = Tw +Ae−hπDx/ṁ

The boundary condition is T (x) = Tin at x = 0. This gives

Tin = Tw +A,

A = Tin − Tw,

so that

T (x) = Tw + (Tin − Tw)e−hπDx/ṁ.

At x = L, the exit temperature Tout is

Tout = Tw + (Tin − Tw)e−hπDL/ṁ.

Shape optimization of convective fin

Consider a rectangular fin of length L and thickness δ as shown in Fig. 6.7. The dimensional equation
is

d2T

dx2
−m2(T − T∞) = 0

where

m =

(
2h

ksδ

)1/2
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Figure 6.7: Rectangular fin.

We will take the boundary conditions

T (0) = Tb

dT

dx
(L) = 0

The solution is

T = T∞ − (T − T∞) [tanhmL sinhmx− coshmx]

The heat rate through the base per unit width is

q = −ksδ
dT

dx

∣∣∣∣∣
x=0

= ksδ(Tb − T∞)m tanhmL

Writing L = Ap/δ, we get

q = ksδ

(
2h

ksδ

)1/2

(Tb − T∞) tanh

[
Ap
δ

(
2h

ksδ

)1/2
]

Keeping Ap constant, i.e. constant fin volume, the heat rate can be maximized if

δ
1/2
opt sech2

[
Ap
δ

(
2h

ksδopt

)]
Ap

2h

ks

1/2

(−3

2
)δ
−5/2
opt +

1

2
δ
−1/2
opt tanh

[
Ap
δ

(
2h

ksδopt

)1/2
]

= 0

This is equivalent to

3βoptsech2βopt = tanhβopt

where

βopt =
Ap
δopt

(
2h

ksδopt

)
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Numerically, we find that βopt = 1.4192. Thus

δopt =

[
Ap
βopt

(
ksAp
2h

)1/2
]2/3

Lopt =

[
βopt

(
ksAp
2h

)1/2
]2/3

6.1.3 Fin structure

Consider now Fig. 6.3 with convection.

6.1.4 Fin with convection and radiation

Steady state solutions
Equation (6.6) reduces to

− d

dξ

(
a
dθ

dξ

)
+m2pθ + εp

[
(θ + β)4 − β4

]
= 0

Uniform cross section

For this case a = p = 1, so that

−d
2θ

dξ2
+m2θ + ε

[
(θ + β)4 − β4

]
= 0

Convective

With only convective heat transfer, we have

−d
2θ

dξ2
+m2θ = 0

the solution to whiich is

θ = C1 sinhmξ + C2 coshmξ

the constants are determined from the boundary conditions. For example, if

θ(0) = 1

dθ

dξ
(1) = 0

we get

θ = − tanhm sinhmξ + coshmξ

Example 6.8
If

T (0) = T0

T (L) = T1
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then show that

T (x) =

[
T1 − T0 cosh

(
L

√
hP

kA

)] sinh

(
x
√
hP
kA

)
sinh

(
L
√
hP
kA

) + T0 cosh

(
x

√
hP

kA

)

Radiative

The fin equation is

−d
2θ

dξ2
+ ε
[
(θ + β)4 − β4

]
= 0

Let

φ = θ + β

so that

−d
2φ

dξ2
+ εφ4 = −εβ4

As an example, we will find a perturbation solution with the boundary conditions

φ(0) = 1 + β

dφ

dξ
(1) = 0

We write

φ = φ0 + εφ1 + ε2φ2 + . . .

The lowest order equation is

dφ0
dξ2

= 0, φ0(0) = 1 + β,
dφ0

dξ
(1) = 0

which gives

φ0 = 1 + β

To the next order

dφ1
dξ2

= φ4
0 − β4, φ1(0) = 0,

dφ1

dξ
(1) = 0

with the solution

φ1 = [(1 + β)4 − β4]
ξ2

2
− [(1 + β)4 − β4]ξ

The complete solution is

φ = (1 + β) + ε

{
[(1 + β)4 − β4]

ξ2

2
− [(1 + β)4 − β4]ξ

}
+ . . .

so that

θ = 1 + ε

{
[(1 + β)4 − β4]

ξ2

2
− [(1 + β)4 − β4]ξ

}
+ . . .
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Convective and radiative

?

Annular fin

Example 6.9
Show that under suitable conditions, the temperature distribution in a two-dimensional rectangle tends

to that given by a one-dimensional approximation.

Extended surfaces

η0 = 1− Af
A

(1− ηf )

where η0 is the total surface temperature effectiveness, ηf is the fin temperature effectiveness, Af is
the HX total fin area, and A is the HX total heat transfer area.

6.1.5 Fin analysis

Analysis of Kraus (1990) for variable heat transfer coefficients.

6.2 Perturbations of one-dimensional conduction

6.2.1 Temperature-dependent conductivity

[13]
The governing equation is

d

dx

(
k(T )

dT

dx

)
− Ph

A
(T − T∞) = 0

with the boundary conditions

T (0) = Tb

dT

dx
(L) = 0

we use the dimensionless variables

θ =
T − T∞
Tb − T∞

ξ =
x

L
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Consider the special case of a linear variation of conductivity

k(T ) = k0

(
1 + ε

T − T∞
Tb − T∞

)
so that

(1 + εθ)
d2θ

dξ2
+ ε

(
dθ

dξ

)2

−m2θ = 0

θ(0) = 1

dθ

dξ
(L) = 0

where

m2 =
PhL2

Ak0(Tb − T∞)

Introduce

θ(ξ) = θ0(ξ) + εθ1(ξ) + εθ2(ξ) + . . .

Collect terms of O(ε0)

d2θ0

dξ2
−m2θ = 0

θ0(0) = 1

dθ0

dξ
(1) = 0

The solution is

θ(ξ) = coshmξ − tanhm sinhmξ

To O(ε1)

d2θ1

dξ2
−m2θ1 = −θ0

d2θ0

dξ2
−
(
dθ0

dξ

)2

= −m2(1− tanh2m) cosh 2mξ −m2 tanhm sinh 2mξ

θ1(0) = 0

dθ1

dξ
(1) = 0

The solution is

6.2.2 Eccentric annulus

Steady-state conduction in a slightly eccentric annular space, as shown in Fig. 6.8 can be solved by
regular perturbation [13]. The radii of the two circles are r1 and r2.
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r

T=T

T=T

1

22
r

r̂

ψ

2Ο
Ο1

a

Figure 6.8: Eccentric annulus.

We will use polar coordinates (r, ψ) with the center of the small circle as origin. The two circles
are at r = r1 and r = r̂, where

r2
2 = a2 + r̂2 + 2ar̂ cosψ.

Solving for r̂, we have

r̂ =
√
r2
2 − a2(1− cos2 ψ)− a cosψ.

In the quadratic solution, the positive sign corresponding to the geometry shown in the figure has
been kept.

The governing equation for the temperature is(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂ψ2

)
T (r, ψ) = 0.

The boundary conditions are

T (r1, ψ) = T1,

T (r̂, ψ) = T2.

With the variables

θ =
T − T2

T1 − T2
.

R =
r − r1

r2 − r1
.

d =
r1

r2 − r1
.

ε =
a

r2 − r1
,

we get (
∂2

∂R2
+

1

R+ d

∂

∂R
+

1

(R+ d)2

∂2

∂ψ2

)
θ(R,ψ) = 0,
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and

θ(0, ψ) = 1,

θ(R̂, ψ) = 0,

where

R̂(ψ) =
r̂ − r1

r2 − r1

=
√

(1 + d)2 − ε2(1− cos2 ψ)− ε cosψ − d,

The perturbation expansion is

θ(R,ψ) = θ0(R,ψ) + εθ1(R,ψ) + ε2θ2(R,ψ) + . . . .

Substituting in the equations, we get(
∂2

∂R2
+

1

R+ d

∂

∂R
+

1

(R+ d)2

∂2

∂ψ2

)(
θ0 + εθ1 + ε2θ2 + . . .

)
= 0, (6.15)

R̂(ψ) = 1− ε cosψ − ε2

2
(1− cos2 ψ) + . . . , (6.16)

θ0(0, ψ) + εθ1(0, ψ) + ε2θ2(0, ψ) + . . . = 1, (6.17)

θ0(R̂, ψ) + εθ1(R̂, ψ) + ε2θ2(R̂, ψ) + . . . = 0. (6.18)

Using Eq. (6.16), (6.18) can be further expanded in a Taylor series around R̂ = 1 to give

θ0(1, ψ) + ε

(
θ1(1, ψ)− cosψ

dθ0

dR
(1, ψ)

)
+ . . . = 0.

Collecting terms to order O(ε0), we get(
∂2

∂R2
+

1

R+ d

∂

∂R
+

1

(R+ d)2

∂2

∂ψ2

)
θ0 = 0,

θ0(0, ψ) = 1,

θ0(1, ψ) = 0,

which has the solution

θ0(R,ψ) = 1− ln(1 +R/h)

ln(1 + 1/h)
.

To order O(ε1)(
∂2

∂R2
+

1

R+ d

∂

∂R
+

1

(R+ d)2

∂2

∂ψ2

)
θ1 = 0,

θ1(0, ψ) = 0,

θ1(1, ψ) = cosψ
dθ0

dR
(1, ψ),

=
cosψ

(1 + h) ln(1 + 1/h)
.

The solution is

θ1(R,ψ) = ± R cosψ

(1 + 2h) ln(1 + 1/h)

R− 2h

R+ h
.
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6.3 Transient

The one-dimensional heat equation is

ρc
∂T

∂t
= ks

∂2T

∂x2
,

where T = T (x, t). The spatial average of the temperature can be defined as

T̄ (t) =
1

L

∫ L

0

T (x, t) dx.

Integrating the heat equation with respect to x and dividing by L gives

ρc
dT̄

dt
= ks

∂T

∂x

∣∣∣∣∣
L

0

,

= −q(L) + q(0).

Derivatives and integrals commute on the left side since the integrals are basically limits of summa-
tions.

There are two time scales: the short (conductive) τk0 = L2ρc/ks and the long (convective)
τh0 = Lρc/h. In the short time scale conduction within the slab is important, and convection from
the sides is not. In the long scale, the temperature within the slab is uniform, and changes due to
convection. The ratio of the two τk0 /τ

h
0 = Bi. In the long time scale it is possible to show that

Lρsc
dT

dt
+ h1(T − T∞,1) + h2(T − T∞,2) = 0

where T = Tw,1 = Tw,2.
Let us propose a similarity solution of the transient conduction equation

∂2T

∂x2
− 1

κ

∂T

∂t
= 0 (6.19)

(6.20)

as

T = erf

(
x

2
√
κt

)
(6.21)
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Taking derivatives we find1 [Clarify]

∂T

∂x
=

1√
πκt

exp

(
− x2

4κt

)
∂2T

∂x2
= − x

2
√
πκ3t3

exp

(
− x2

4κt

)
∂T

∂t
= − x

2
√
πκt3

exp

(
− x2

4κt

)
so that substitution verifies that equation (6.21) is a solution to equation (6.19).

Alternatively

T (x, t) =
1√

4πκt
exp

(
− x2

4κt

)
In fact all multiples, derivatives and integrals of a solution of Eq. (6.19) are also solutions. They
differ in the boundary conditions that they satisfy.

6.4 Green’s functions

For bounded domains
http://people.math.gatech.edu/~xchen/teach/pde/heat/Heat-Green.pdf

6.5 Duhamel’s principle

For inhomogeneous equations in infinite domains
The solution of the ODE

dy

dt
− ay = g(t), y(0) = x

is

y(t) = S(x, t) +

∫ t

0

S(g(s), t− s)ds,

where S(x, t) is the solution of

dS

dt
− aS = 0, S(0) = x

1The error function is defined to be

erf (x) =
2

π

∫ x

0
e−t

2
dt.

so that

d

dx
erf (x) =

2

π
e−x

2
.



6.6. Linear diffusion 110

Similarly, the solution of [Clarify]

∂T

∂t
− κ∂

2T

∂x2
= g(x, t), T (x, 0) = f(x) (6.22)

is obtained from the solution S(x, t) of

∂S

∂t
− κ∂

2S

∂x2
= 0, S(x, 0) = f(x), (6.23)

which is

S(f, t) =

∫ ∞
−∞

f(y)G(x− y, 2κt) dy.

where

G(x, t) =
1√

4πκt
exp

(
− x2

4κt

)
is the Gaussian kernel. The solution of the inhomogeneous equation is then

T (x, t) = S(f, t)(x) +

∫ t

0

S(g(·, s), t− s) ds,

=

∫ ∞
−∞

f(y)G(x− y, 2κt) dy +

∫ t

0

g(y, s)G(x− y, t− s) dy ds.

6.6 Linear diffusion

Let T = T (x, t) and

∂T

∂t
= α

∂2T

∂x2

in 0 ≤ x ≤ L, with the boundary and initial conditions T (0, t) = T1, T (L, t) = T2, and T (x, 0) =
f(x). The steady state solution is

T (x) = T1 +
T2 − T1

L
x.

With

T ′(x, t) = T − T

we have the same equation

∂T ′

∂t
= α

∂2T ′

∂x2
(6.24)

but with the conditions: T ′(0, t) = 0, T ′(L, t) = 0, and T ′(x, 0) = f(x)− T .
Following the methodology outlined in Section ??, we consider the eigenvalue problem

d2φ

dx2
= λφ
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with φ(0) = φ(L) = 0. The operator is self-adjoint. Its eigenvalues are

λi = − i
2π2

L2
,

and its orthonormal eigenfunctions are

φi(x) =

√
2

L
sin

iπx

L
.

Thus we let

θ(x, t) =

∞∑
i=1

ai(t)φi(x),

so that

daj
dt

= −α
(
jπ

L

)2

aj ,

with the solution

aj = Cj exp

{
−α

(
jπ

L

)2

t

}
.

Thus

T ′(x, t) =

∞∑
i=1

Cj exp

{
−α

(
jπ

L

)2

t

}√
2

L
sin

iπx

L
. (6.25)

The solution shows that T ′ → 0, as t→∞. Thus θ = 0 is a stable solution of the problem. It
must be noted that there has been no need to linearize, since Eq. (6.24) was already linear.

6.7 Nonlinear diffusion

The following diffusion problem with heat generation is considered in [85]

∂T

∂t
= ε

∂2T

∂x2
+ f(T ),

with −∞ < x <∞, t ≥ 0, and ε� 1. The initial condition is taken to be

T (x, 0) = g(x) (6.26)

=
1

1 + eλx
. (6.27)

Consider two time scales, a fast, short one t1 = t, and a slow, long scale t2 = εt. Thus

∂

∂t
=

∂

∂t1
+ ε

∂

∂t2
.
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Assuming an asymptotic expansion of the type

T = T0(x, t1, t2) + εT1(x, t1, t2) + . . .

we have a Taylor series expansion

f(T ) = f(T0) + εf ′(T0) + . . .

Substituting and collecting terms of O(ε0), we get

∂T0

∂t1
= f(T0), (6.28)

with the solution ∫ T0

1/2

dr

f(r)
= t1 + θ(x, t2). (6.29)

The lower limit of the integral is simply a convenient value at which g(x) = 0.5. Applying the initial
condition gives

θ =

∫ g(x)

1/2

dr

f(r)
.

The terms of O(ε) are

∂T1

∂t1
= f ′(T0)T1 +

∂2T0

∂x2
− ∂T0

∂t2
(6.30)

Differentiating Eq. 6.29 with respect to x gives

∂T0

∂x
= f(T0)

∂θ

∂x
,

so that

∂2T0

∂x2
= f ′(T0)

∂T0

∂x

∂θ

∂x
+ f(T0)

∂2θ

∂x2

= f ′(T0)f(T0)

(
∂θ

∂x

)2

+ f(T0)
∂@2θ

∂x2

Also, differentiating with respect to t2 gives

∂T0

∂t2
= f(T0)

∂θ

∂t2

Substituting in Eq. 6.30,

∂T1

∂t1
= f ′(T0)T1 + f(T0)

[
∂2θ

∂x2
− ∂θ

∂t2
+ f ′(T0)

(
∂θ

∂x

)2
]
.
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Since

∂

∂t1
ln f(T0) =

f ′(T0)

f(T0)

∂T0

∂t1

= f ′(T0)

we have

∂T1

∂t1
= f ′(T0)T1 + f(T0)

[
∂2θ

∂x2
− ∂θ

∂t2
+

∂

∂t1
ln f(T0)

]
.

The solution is

T1 =

[
A(x, t2) + t1

(
∂2θ

∂x2
− ∂θ

∂t2
+

(
∂θ

∂x

)2

ln f(T0)

)]
f(T0) (6.31)

which can be checked by differentiation since

∂T1

∂t1
=

[
∂2θ

∂x2
− ∂θ

∂t2
+ f ′(T0)

(
∂θ

∂x

)2
]
f(T0)

+

[
A+ t1

(
∂2θ

∂x2
− ∂θ

∂t2

)
+

(
∂θ

∂x

)2

ln f(T0)

]
f ′(T0)

∂T0

∂t1

=

[
∂2θ

∂x2
− ∂θ

∂t2
+ f ′(T0)

(
∂θ

∂x

)2
]
f(T0) + T1f

′(T0).

where Eq. 6.28 has been used.
To suppress the secular term in Eq. 6.31, we take

∂2θ

∂x2
− ∂θ

∂t2
+ κ(x, t1)

(
∂θ

∂x

)2

= 0.

where κ = f ′(T0). Let

w(x, t2) = eκθ,

so that its derivatives are

∂w

∂x
= κeκθ

∂θ

∂x

∂2w

∂x2
= κ2eκθ

(
∂θ

∂x

)2

+ κeκθ
∂2θ

∂x2

∂w

∂t2
= κeκθ

∂θ

∂t2

We find that

∂2w

∂x2
− ∂w

∂t2
= κeκθ

[
∂2θ

∂x2
− ∂θ

∂t2
+ κ

(
∂θ

∂x

)2
]

= 0.
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The solution is

w =
1√
π

∫ ∞
∞

R(x+ 2r
√
t2)e−r

2

dr, (6.32)

where R(x) = w(x, 0). This can be confirmed by finding the derivatives

∂2w

∂x2
=

1√
π

∫ ∞
∞

R′′(x+ 2r
√
t2)e−r

2

dr

∂w

∂t2
=

1√
π

∫ ∞
∞

R′(x+ 2r
√
t2)

r√
t2
e−r

2

dr

= − 1

2
√
π

[
R′(x+ 2r

√
t2)

∣∣∣∣∣
∞

∞

−
∫ ∞
∞

R′′(x+ 2r
√
t2)2
√
t2e
−r2 dr

]

=
1√
π

∫ ∞
∞

R′′(x+ 2r
√
t2)e−r

2

dr

and substituting. Also,

R(x) = exp [κθ(x, 0)]

= exp

[
κ

∫ g(x)

1/2

dr

f(r)

]

so that the final (implicit) solution is∫ T0

1/2

dr

f(r)
= t1 +

1

κ
ln

[
1√
π

∫ ∞
∞

R(x+ 2r
√
t2)e−r

2

dr

]
Fisher’s equation: As an example, we take f(T ) = T (1− T ), so that the integral in Eq. 6.29 is∫ T0

1/2

dr

r(1− r)
= ln

T0

T0 − 1

Substituting in the equation, we get

T0 =
1

1 + e−(t1+θ)

=
w

w + e−t1

Thus

w =
T0e
−t1

1− T0

and from Eq. 6.27,

R(x) = w(x, 0)

= e−λx
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Substituting in Eq. 6.32 and integrating,

w = exp
(
−λx+ λ2t2

)
so that

T0 =
1

1 + exp [x− t(1 + λ2ε)/λ]

This is a wave that travels with a phase speed of (1 + λ2ε)/λ.

6.8 Stability by energy method

6.8.1 Linear

As an example consider the same problem as in Section 6.6. The deviation from the steady state is
governed by

∂T ′

∂t
= α

∂2T ′

∂x2

with T ′(0, t) = 0, T ′(L, t) = 0.
Define

E(t) =
1

2

∫ L

0

T ′2 dx

so that E ≥ 0. Also

dE

dt
=

∫ L

0

T ′
∂T ′

∂t
dx

= α

∫ L

0

T ′
∂2T ′

∂x2
dx

= α

∫ L

0

T ′
∂T ′

∂x

∣∣∣∣∣
L

0

−
∫ L

0

(
∂T ′

∂x

)2

dx


= −α

∫ L

0

(
∂T ′

∂x

)2

dx

so that

dE

dt
≤ 0.

Thus E → 0 as t→∞ whatever the initial conditions.

6.8.2 Nonlinear

Let us now re-do the problem for a bar with temperature-dependent conductivity. Thus

∂T

∂t
=

∂

∂x

{
k(T )

∂T

∂x

}
,
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with T (0, t) = T1 and T (L, t) = T2. The steady state, T (x), is governed by

d

dx

{
k(T )

dT

dx

}
= 0.

Let the deviation from the steady state be

θ(x, t) = T (x, t)− T (x).

Thus

∂θ

∂t
=

∂

∂x

{
k(θ)

∂θ

∂x

}
,

where θ = θ(x, t), with θ(0, t) = θ(L, t) = 0. The steady state is θ = 0. Let

E(t) =
1

2

∫ L

0

θ2 dx.

so that E ≥ 0. Then

dE

dt
=

∫ L

0

θ
∂θ

∂t
dx

=

∫ L

0

θ
∂

∂x

{
k(θ)

∂θ

∂x

}
dx

= θk(θ)
∂θ

∂x

∣∣∣∣∣
L

0

−
∫ L

0

k(θ)

(
∂θ

∂x

)2

dx.

Due to boundary conditions the first term on the right is zero, so that dE/dt ≤ 0. Thus E → 0 as
t→∞.

6.9 Self-similar structures

Consider the large-scale structure shown in Fig. 6.9 in which each line i (indicated by i = 0, 1, . . .)
is a conductive bar. The length of each bar is Li = L/βi and its diameter is Di = D/βi. The
beginning is at temperature T0 and the ambient is T∞.

The total length of the structure is

LT = L0 + 2L1 + 4L2 + 8L3 + . . .

= . . .

The total volume of the material is

VT =
π

4

(
D2

0L0 + 2D2
1L1 + 4D2

2L2 + 8D2
3L3 + . . .

)
= . . .

Both of these are finite if β < βc = . . ..
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Figure 6.9: Large-scale self-similar structure.

6.10 Non-Cartesian coordinates

Toroidal, bipolar.

6.10.1 Radial cylindrical

ρ

[
π(r + dr)2 − πr2

]
L c

∂T

∂t
= Qr(r)−Qr(r + dr).

Since

π(r + dr)2 − πr2 = 2πr dr + π dr2

Qr(r + dr) = Qr(r) +
∂Qr
∂r

dr + . . .

Qr(r) = qr(r) 2πrL,

we have

Qr(r)−Qr(r + dr) = −∂Qr
∂r

dr

= − ∂

∂r
(qr 2πrL) dr

so that

ρ
(
2πr dr + π dr2

)
L c

∂T

∂t
= − ∂

∂r
(qr 2πrL) dr + g

(
2πr dr + π dr2

)
L,

which, on dividing by 2πr dr L and taking the limit of dr → 0, simplifies to

ρc
∂T

∂t
+

1

r

∂

∂r
(rqr) = 0.
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6.10.2 Radial spherical

Similarly we can show that

ρc
∂T

∂t
+

1

r2

∂

∂r
(r2qr) = 0.

6.11 Thermal control

Partial differential equations (PDEs) are an example of infinite-dimensional systems that are very
common in thermal applications [2, 117]. Exact controllability exists if the function representing the
state can be taken from an initial to a final target state, and is approximate if it can be taken to a
neighborhood of the target [126]. Determination of approximate controllability is usually sufficient
for practical purposes.

Consider a system governed by

∂X

∂t
= AX + Bu, (6.33)

with homogeneous boundary and suitable initial conditions, where A is a bounded semi-group op-
erator [2], and B is a another linear operator. The state X(ξ, t) is a function of spatial coordinates
ξ and time t. If A is self-adjoint, then it has real eigenvalues and a complete orthonormal set of
eigenfunctions φm(ξ), with m = 0, 1, 2 . . ., which forms a complete spatial basis for X. It is known
[117] that the system is approximately state controllable if and only if all the inner products

〈B, φm〉 6= 0. (6.34)

The lumped approximation in this chapter, valid for Bi � 1, is frequently not good enough
for thermal systems, and the spatial variation of the temperature must be taken into account. The
system is then described by PDEs that represent a formidable challenge for control analysis. The
simplest examples occur when only one spatial dimension is present.

Fig. 6.10 shows a fin of length L with convection to the surroundings [4]. It is thin and long
enough such that the transverse temperature distribution may be neglected. The temperature field
is governed by

∂T

∂t
= α

∂2T

∂ξ2
− ζ(T − T∞), (6.35)

where T (ξ, t) is the temperature distribution that represents the state of the system, T∞ is the
temperature of the surroundings, t is time, and ξ is the longitudinal coordinate measured from
one end. The thermal diffusivity is α, and ζ = hP/ρcAc where h is the convective heat transfer
coefficient, Ac is the constant cross-sectional area of the bar, P is the perimeter of the cross section,
ρ is the density, and c is the specific heat. For simplicity it will be assumed that ζ is independent of
ξ. The end ξ = 0 will be assumed to be adiabatic so that (∂T/∂ξ)(0, t) = 0.

Since a linear system that is controllable can be taken from any state to any other, we can
arbitrarily assume the fin to be initially at a uniform temperature. There are two ways in which
the temperature distribution on the bar can be controlled: in distributed control2 the surrounding
temperature T∞ is the control input and in boundary control it is the temperature of the other end
T (L, t) of the fin.

2This term is also used in other senses in control theory.
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Figure 6.10: One-dimensional fin with convection.

(a) Distributed control: The boundary temperature T (L, t) = TL is fixed. Using it as a reference
temperature and defining θ = T − TL, Eq. (6.35) becomes,

∂θ

∂t
= α

∂2θ

∂ξ2
− ζθ + ζθ∞(t) (6.36)

with the homogeneous boundary and initial conditions (∂θ/∂ξ)(0, t) = 0, θ(L, t) = 0, and θ(ξ, 0) = 0.
The operators in Eq. (6.33) are A = α∂2/∂ξ2 − ζ, B = ζ, and u = θ∞. A is a self-adjoint

operator with the eigenvalues and eigenfunctions

βm = − (2m+ 1)2π2

4L2
− ζ,

φm =

√
2

L
cos

(2m+ 1)πξ

2L
,

respectively. Inequality (6.34) is satisfied for all m, so the system is indeed state controllable. It can
be shown that the same problem can also be analyzed using a finite-difference approximation [5].

(b) Boundary control: Using the constant outside temperature T∞ as reference and defining θ =
T − T∞, Eq. (6.35) becomes

∂θ

∂t
= α

∂2θ

∂ξ2
− ζθ, (6.37)

with the initial and boundary conditions (∂θ/∂ξ)(0, t) = 0, θ(L, t) = TL(t)− T∞, and θ(ξ, 0) = 0.
To enable a finite-difference approximation [5], the domain [0, L] is divided into n equal parts

of size ∆ξ, so that Eq. (6.37) becomes

dθi
dt

= σθi−1 − (2σ + ζ)θi + σθi−1,

where σ = α/∆ξ2. The nodes are i = 1, 2, . . . , n + 1, where i = 1 is at the left and i = n + 1 at
the right end of the fin in Fig. 6.10. With this Eq. (6.37) can be discretized to take the form of Eq.
(4.6), where x is the vector of unknown θi. Thus we find

A =



−(2σ + ζ) 2σ 0 · · · 0

σ −(2σ + ζ) σ
...

0
. . .

. . .
. . .

... σ
0 · · · 0 σ −(2σ + ζ)


∈ Rn×n,

B = [0, · · · , σ]T ∈ Rn.



6.12. Multiple scales 120

The boundary conditions have been applied to make A non-singular: at the left end the fin is
adiabatic, and at the right end θn+1 is the control input u.

The controllability matrix M is

M =



0 · · · · · · 0 σn

0 · · · 0 σn−1 · · ·
...

...
...

...
...

0 0 σ3 · · · · · ·
0 σ2 −2σ2(2σ + ζ) · · · · · ·
σ −σ(2σ + ζ) σ3 + σ(2σ + ζ)2 · · · · · ·


The rank of M is n, indicating that the state of the system is also boundary controllable.

6.12 Multiple scales

Solve

∂T1

∂t
= α

∂2(T1 − T2)

∂x2

∂T2

∂t
= Rα

∂2(T2 − T1)

∂x2

where ε� 1, and with a step change in temperature at one end. Let

t = t0 + εt1

6.13 Stefan moving boundary problems

[44]
The two phases, indicated by subscripts 1 and 2, are separated by an interface at x = X(t). In

each phase, the conduction equation is

∂2T1

∂x2
− 1

κ1

∂T1

∂t
= 0 (6.38)

∂2T2

∂x2
− 1

κ2

∂T2

∂t
= 0 (6.39)

(6.40)

At the interface the temperature should be continuous, so that

T1(X, t) = T2(X, t) (6.41)

Furthermore the difference in heat rate into the interface provides the energy required for phase
change. Thus

k1
∂T1

∂x
− k2

∂T2

∂x
= Lρ

dX

dt
(6.42)
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6.13.1 Neumann’s solution

The material is initially liquid at T = T0. The temperature at the x = 0 end is reduced to zero for
t > 0. Thus

T1 = 0 at x = 0 (6.43)

T2 → T0 as x→∞ (6.44)

Assume T1(x, t) to be

T1 = A erf
x

2
√
κ1t

so that it satisfies equations (6.38) and (6.43). Similarly

T1 = A erf
x

2
√
κ1t

T2 = T0 −B erf
x

2
√
κ2t

satisfies equation (6.39) and (6.44). The, condition (6.41) requires that

A erf
x

2
√
κ1t

= T0 −B erf
x

2
√
κ2t

= T1

This shows that

X = 2λ
√
κ1t

where λ is a constant. Using the remaining condition (6.42), we get

k1Ae
−λ2

− k2B

√
κ1

κ2
e−κ1λ

2/κ2 = λLκ1ρ
√
π

This can be written as

e−λ
2

erf λ
− k2

√
κ2

1(T0 − T1)e−κ2λ
2/κ2

k1
√
κ2T1 erfc(λ

√
κ1/κ2)

=
λL
√
π

c1T1s

The temperatures are

T1 =
T1

erf λ
erf (

x

2
√
κ1t

)

T2 = T0 −
T0 − T1

erfc(λ
√
κ1/κ2)

erfc(
x

2
√
κ2t

)

6.13.2 Goodman’s integral
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Figure 6.11: Longitudinal fin of concave parabolic profile.

Problems

1. From the governing equation for one-dimensional conduction

d

dx

[
k(x, T )

dT

dx

]
= 0,

with boundary conditions

T (0) = T +
∆T

2
,

T (L) = T −
∆T

2
.

show that the magnitude of the heat rate is independent of the sign of ∆T if we can write k(x, T ) = A(x) λ(T ).

2. Consider a rectangular fin with convection, radiation and Dirichlet boundary conditions. Calculate numerically
the evolution of an initial temperature distribution at different instants of time. Graph the results for several
values of the parameters.

3. Consider a longitudinal fin of concave parabolic profile as shown in the figure, where δ = [1 − (x/L)]2δb. δb
is the thickness of the fin at the base. Assume that the base temperature is known. Neglect convection from
the thin sides. Find (a) the temperature distribution in the fin, and (b) the heat flow at the base of the fin.
Optimize the fin assuming the fin volume to be constant and maximizing the heat rate at the base. Find (c)
the optimum base thickness δb, and (d) the optimum fin height L.

4. Consider a longitudinal fin of concave parabolic profile as shown in the figure, where δ = [1 − (x/L)]2δb. δb
is the thickness of the fin at the base. Assume that the base temperature is known. Neglect convection from
the thin sides. Find (a) the temperature distribution in the fin, and (b) the heat flow at the base of the fin.
Optimize the fin assuming the fin volume to be constant and maximizing the heat rate at the base. Find (c)
the optimum base thickness δb, and (d) the optimum fin height L.

5. Analyze an annular fin with a prescribed base temperature and adiabatic tip. Determine its fin efficiency and
plot.
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Figure 6.12: Longitudinal fin of concave parabolic profile.



Chapter 7

Convection in ducts (one-dimensional)

In this chapter we will consider heat transfer in pipe flows shown in Fig. 7.1. We will take a one-
dimensional approach and neglect transverse variations in the velocity and temperature. In addition,
for simplicity, we will assume that fluid properties are constant and that the area of the pipe is also
constant.

7.1 Balance equations

7.1.1 Mass

For a control volume

ρ

∫
CV

V dA = constant.

Consider an elemental control volume as shown in Fig. 7.2. The mass fluxes in and out, m− and
m+ respectively, are related by

m+ = m− +
∂m

∂s
ds.

For a fluid of constant density, there is no accumulation of mass within an elemental control volume,
∂m/∂s = 0, and so the mass flow rate into and out of the control volume must be the same, i.e.
m− = m+ = m. If V is uniform across the cross-section, then m = ρ V A. If not, then V̄ = m/(ρA)
is the definition of the mean velocity; thus the mean velocity of the fluid, V̄ , is also constant.

dss

flow

Figure 7.1: Flow in an inclined duct with a fluid element of length ds.
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m−

m+

Figure 7.2: Mass balance in a fluid element.

7.1.2 Momentum

The total force on an element of length ds, shown in Fig. 7.3, in the positive s direction is f =
fv + fp + fg, where fv = the viscous force, fp = the pressure force, and fg = the component of the
gravity force. We can write

fv = −τw P ds,

fp = −A∂p
∂s
ds,

fg = −ρA ds g̃,

where τw is the wall shear stress, p is the pressure in the fluid, and g̃ is the component of gravity
along the pipe axis in the negative s direction.

Since the mass of the element is ρA ds, we can write the momentum equation as

ρA ds
dV

dt
= fv + fp + fg,

from which we get

dV

dt
+
τwP

ρA
+ g̃ = −1

ρ

∂p

∂s
.

Integrating over the length L of a pipe and then dividing by L, we have

dV

dt
+
τwP

ρA
+ g̃ = −p2 − p1

ρL
,

where p1 and p2 are the pressures at the inlet and outlet respectively.
In the steady state, there is no acceleration and dV/dt = 0. The pressure drop is then given by

p1 − p2 =
τwPL

A
+ g̃ρL.

The wall shear stress τw is estimated below for laminar and turbulent flows. Some assumptions
must be made to enable that. It is impossible to determine the viscous force fv through a one-
dimensional analysis, since it is the velocity profile in the duct that is responsible for the shear stress
at the wall.
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p
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g cos θ
θ

τw

Figure 7.3: Forces on a fluid element; p is the pressure, g is gravity and g̃ is its component in the
flow direction, τ is wall shear stress.

Frictional force

For fully developed flow τw is a function of V . It depends on the velocity profile and acts in a
direction opposite to V . For empirical correlations the expression

τw =
f

4

1

2
ρ|V |V

is used. Here f is the Darcy-Weisbach friction factor1. Thus for a horizontal pipe in the steady state

p1 − p2 = f
L

4A/P

1

2
ρV 2,

= f
L

D

1

2
ρ|V |V,

which is commonly used to calculate pressure drops in pipe flow. For non-circular ducts one can use
the the hydraulic diameter defined by 4A/P .

Laminar
The fully developed laminar velocity profile in a circular duct is given by the Poiseuille flow

result

Vs(r) = Vm

(
1− 4r2

D2

)
,

where Vs is the local velocity in the axial direction, r is the radial coordinate, Vm is the maximum
velocity at the centerline, and D is the diameter of the duct. The mean velocity is given by

V̄ =
4

πD2

∫ D/2

0

Vs(r) 2πr dr.

1Sometimes, confusingly, the Fanning friction factor, which is one-fourth the Darcy-Weisbach value, is used in the
literature.
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Substituting the velocity profile, we get

V̄ =
Vm
2

The shear stress at the wall τw is given by

τw = −µ∂Vs
∂r

∣∣∣∣∣
r=D/2

,

= µVm
4

D
,

=
8µV̄

D
.

The wall shear stress is linear relationship

τw = αV̄ , (7.1)

where

α =
8µ

D
,

which is equivalent to

f =
64

Re
,

where the Reynolds number is Re = |V |D/ν.
For laminar flow then, we can assume a linear relationship between the wall shear stress and

the mean fluid velocity. Even if we do not exactly have Poiseuille flow, the proportionality constant
given by it gives an order of magnitude value.

Turbulent
For turbulent flow empirical correlations are usually used. A couple of these are the Blasius

equation for smooth pipes

f =
0.3164

Re1/4
,

and the Colebrook equation for rough pipes

1

f1/2
= −2.0 log

(
e/Dh

3.7
+

2.51

Re f1/2

)
,

where e is the roughness at the wall. There are many other similar expressions.

Example 7.1
Consider a long, thin pipe with pressures p1 and p2 ate either end. For t ≤ 0, p1− p2 = 0 and there is no

flow. For t > 0, p1 − p2 is a nonzero constant. Find the resulting time-dependent flow. Make the assumption
that the axial velocity is only a function of radial position and time.
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Q−

Q+

qext

Figure 7.4: Energy balance in a fluid element.

Gravity force

Buoyancy is important in natural convection where the density change due to temperature has to
be taken into account. In Fig. 7.3 the local component of the acceleration due to gravity along a
pipe can be written as

g̃(s) = g cos θ,

= g
dz

ds
, (7.2)

where g is the usual acceleration in the vertical direction, g̃ is its component in the negative s
direction, and dz is the difference in height at the two ends of the element, with z being measured
upwards.

7.1.3 Energy

Conservation of energy for an element of width ds in Fig. 7.4 gives

ρAc ds
∂T

∂t
= Q− −Q+ + qext ds,

where qext is the external heat input per unit length. A Taylor series expansion of Q(s) gives

Q+ = Q− +
∂Q

∂s
ds+ . . .

so that

ρAc
∂T

∂t
= −∂Q

∂s
+ qext.

The heat rate is

Q = ρAV cT − kA∂T
∂s
, (7.3)

where the first and second terms on the right are due to the advective and conductive transports
respectively. From this point on the conductive term will be neglected except in Section 7.6.
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Tin(t) T (s, t) Tout(t)

T∞(t)

V
-

Figure 7.5: Fluid duct with heat loss.

Since ρAV = m is constant, the energy equation is thus

∂T

∂t
+ V

∂T

∂s
=
qext
ρAc

.

There are two different types of external heating to consider: known heat rate and convective
heat exchange with exterior.

7.2 Validity of one-dimensional approximation

Neglecting axial conduction, the mass, momentum and energy balance equations are

m = constant,

dV

dt
+
τwP

ρA
+ g̃ = −1

ρ

∂p

∂s
,

∂T

∂t
+ V

∂T

∂s
=
qext
ρAc

,

where

τw ∼

{
V laminar

V |V | turbulent

7.2.1 No entrance length

It is shown in Section 9.2.1 that for high Reynolds numbers flows there is a small entrance length;
this length will be neglected here.

7.2.2 No axial conduction

Conduction heat transfer will be neglected compared to advection. The effect of small axial conduc-
tion is analyzed below. There is a small boundary layer near the outlet of order α/V which will be
neglected. As a result, the energy equation is first-order in space and can only satisfy one boundary
condition which is the temperature at the entrance.

7.3 Forced convection in ducts

Consider the duct that is schematically shown in Fig. 7.5. The inlet temperature is Tin(t), and the
outlet temperature is Tout(t), and the fluid velocity is V . The duct is subject to heat loss through
its surface of the form UP (T − T∞) per unit length, where the local fluid temperature is T (s, t) and
the ambient temperature is T∞(t). U is the overall heat transfer coefficient and P the cross-sectional
perimeter of the duct.
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We assume that the flow is one-dimensional, and neglect axial conduction through the fluid
and the duct. Using the same variables to represent non-dimensional quantities, the governing
non-dimensional equation is

∂T ∗

∂t∗
+
∂T ∗

∂x∗
+HT ∗ = 0

where the nondimensional variables are

x∗ =
s

L
, t∗ =

tV

L
, T ∗ =

T − T̄∞
∆T

The characteristic time is the time taken to traverse the length of the duct, i.e. the residence time.
The ambient temperature is

T∞(t) = T̄∞ + T̃∞(t)

where the time-averaged and fluctuating parts have been separated. Notice that the nondimensional
mean ambient temperature is, by definition, zero. The characteristic temperature difference ∆T will
be chosen later. The parameter γ = UPL/ρAV c represents the heat loss to the ambient.

7.3.1 Steady state

The solution of the equation

dT ∗

dx∗
+H(T ∗ − 1) = 0

with boundary condition T ∗(0) = 0 is

T ∗(x∗) = 1− e−Hx
∗

7.3.2 Unsteady dynamics

The general solution of this equation is

T (s, t) =

[
f(s− t) + γ

∫ t

0

eHt
′
T̃∞(t′) dt′

]
e−Ht (7.4)

The boundary conditions T (0, t) = Tin(t) and T (s, 0) = T0(s) are shown in Fig. 7.6. The solution
becomes

T (s, t) =

{
Tin(t− s)e−Hs +He−Ht

∫ t
t−s e

Ht′ T̃∞(t′) dt′ for t ≥ s
T0(s− t)e−Ht +He−Ht

∫ t
0
eHt

′
T̃∞(t′) dt′ for t < s

(7.5)

The t < s part of the solution is applicable to the brief, transient period of time in which the fluid
at time t = 0 has still not left the duct. The later t > s part depends on the temperature of the
fluid entering at s = 0. The temperature, Tout(t), at the outlet section, s = 1, is given by

Tout(t) =

{
Tin(t− 1)e−H +He−Ht

∫ t
t−1

eHt
′
T̃∞(t′) dt′ for t ≥ 1

T0(1− t)e−Ht +He−Ht
∫ t

0
eHt

′
T̃∞(t′) dt′ for t < 1

(7.6)

It can be observed that, after an initial transient, the inlet and outlet temperatures are related
by a unit delay. The outlet temperature is also affected by the heat loss parameter, γ, and the
ambient temperature fluctuation, T̃∞. The following are some special cases of equation (7.6).
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Figure 7.6: Solution in s-t space.

7.3.3 Perfectly insulated duct

If H = 0 the outlet temperature simplifies to

Tout(t) =

{
Tin(t− 1) for t ≥ 1
T0(1− t) for t < 1

The outlet temperature is the same as the inlet temperature, but at a previous instant in time.

7.3.4 Constant ambient temperature

For this T̃∞ = 0, and equation (7.6) becomes

Tout(t) =

{
Tin(t− 1)e−H for t ≥ 1
T0(1− t)e−Ht for t < 1

This is similar to the above, but with an exponential drop due to heat transfer.

7.3.5 Periodic inlet and ambient temperature

We take

Tin(t) = T̄in + T̂in sinωt (7.7)

T̃∞(t) = T̂∞ sin Ωt (7.8)

so that equation (7.6) becomes

Tout(t) =

{ [
T̄in + T̂in sinω(t− 1)

]
e−H + T̂∞H

√
−2e−H cos 1+e−2H

H2+Ω2 sin(Ωt+ φ) for t ≥ 1

T0(1− t)e−Ht + H
H2+Ω2 T̂∞

√
H2 + Ω2 sin(Ωt+ φ′) for t < 1

where

tanφ = −H(1− e−H cos 1) + e−HΩ sin 1

Ω(1− e−H cos 1)−He−H sin 1

tanφ′ = −Ω

H

The outlet temperature has frequencies which come from oscillations in the inlet as well as the ambi-
ent temperatures. A properly-designed control system that senses the outlet temperature must take
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the frequency dependence of its amplitude and phase into account. There are several complexities
that must be considered in practical applications to heating or cooling networks, some of which are
analyzed below.

7.3.6 Long time behavior

Consider the flow in a single duct of finite length with a constant driving pressure drop. The
governing equation for the flow velocity is equation (??). The flow velocity in the steady state is a
solution of

T (V̄ )V̄ = β ∆p (7.9)

where ∆p and V̄ are both of the same sign, say nonnegative. We can show that under certain
conditions the steady state is globally stable. Writing V = V̄ + V ′, equation (??) becomes

dV ′

dt
+ T (V̄ + V ′)(V̄ + V ′) = β ∆p

Subtracting equation (7.9), we get

dV ′

dt
= −T (V̄ + V ′)(V̄ + V ′) + T (V̄ )(V̄ )

Defining

E =
1

2
V ′2

so that E ≥ 0, we find that

dE

dt
= V ′

dV ′

dt

= −V ′
[
T (V̄ + V ′)(V̄ + V ′)− T (V̄ )V̄

]
= −V ′V̄

[
T (V̄ + V ′)− T (V̄ )

]
− V ′2T (V̄ + V ′)

If we assume that T (V ) is a non-decreasing function of V , we see that

V ′V̄
[
T (V̄ + V ′)− T (V̄ )

]
≥ 0 (7.10)

regardless of the sign of either V ′ or V̄ , so that

dE

dt
≤ 0

Thus, E(V ) is a Lyapunov function, and V = V̄ is globally stable to all perturbations.

7.3.7 Effect of wall

The governing equations are

ρAc
∂T

∂t
+ ρV Ac

∂T

∂x
− kA∂

2T

∂x2
+ hiPi(T − T∞) = 0

ρwAwcw
∂Tw
∂t
− kwAw

∂2Tw
∂x2

+ hiPi(Tw − T ) + hoPo(Tw − T∞) = 0
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T1 T2

Figure 7.7: Effect of wall.

Nondimensionalize, using

x∗ =
x

L
, t∗ =

tV

L
, T ∗ =

T − T∞
Ti − T∞

, T ∗w =
Tw − T∞
Ti − T∞

we get

∂T ∗

∂t∗
+
∂T ∗

∂x∗
− λ∂

2T ∗

∂x∗2
+Hin(T ∗ − T ∗w) = 0

∂T ∗w
∂t∗
− λw

∂2T ∗w
∂x∗2

+Hin(T ∗w − T ∗) +HoutT
∗
w = 0

where

λw =
kw

ρwV AwcwL
, Hin =

hinPinL

ρwAwcwV
, Hout =

houtPoutL

ρwAwcwV

In the steady state and with no axial conduction in the fluid

dT ∗

dx∗
+Hin(T ∗ − T ∗w) = 0,

−λw
d2T ∗w
dx∗2

+Hin(T ∗w − T ∗) +HoutT
∗
w = 0

If we assume λw = 0 also, we get

T ∗w =
Hin

Hin +Hout
T ∗

The governing equation is

dT ∗

dx∗
+HwT

∗ = 0

where

Hw =
Hw
inH

w
out

Hw
in +Hw

out

.

Example 7.2
Find the temperature distribution along the finned heat exchanger with two tubes shown in Fig. 7.8. The

over-tube flow is normal to the plane of the tubes.
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x

Figure 7.8: Finned heat exchanger with two tubes

Assumptions: One dimensional, steady state, constant properties, constant U , effect of conduction
through fin uniform along tubes.

Variables: T1(x) and T2(x) are the in-tube temperatures in the lower and upper tubes respectively, m is
the in-tube mass flow rate, c is the in-tube fluid specific heat, x is the coordinate measured from the entrance
and exit plane, L is the length from left to right of each tube, U is the overall heat transfer coefficient between
the in-tube and over-tube fluids, P is the perimeter of the tubes, T∞ is the temperature of the over-tube fluid,
Pf is the perimeter of a section of a fin, and R is the thermal resistance between T1(x) and T2(x).

Heat balance gives

mc
dT1

dx
+ UP (T1 − T∞) =

Pf

R
(T2 − T1),

−mc
dT2

dx
+ UP (T2 − T∞) =

Pf

R
(T1 − T2),

With

T ∗1 =
T1 − T∞
Tin − T∞

; T ∗2 =
T2 − T∞
Tin − T∞

; x∗ =
x

L
,

we have

dT ∗1
dx∗

+HT ∗1 = ε(T ∗2 − T ∗1 ),

−
dT ∗2
dx∗

+HT ∗2 = ε(T ∗1 − T ∗2 ),

where

H =
UPL

mc
; ε =

PfL

mcR
.

Adding and subtracting give

d

dx
(T ∗1 − T ∗2 ) = −H(T ∗1 + T ∗2 ),

d

dx
(T ∗1 + T ∗2 ) = −H(T ∗1 − T ∗2 ) + 2ε(T ∗2 − T ∗1 ),

= −(H + 2ε)(T ∗1 − T ∗2 ),

respectively. Differentiating the first

d2

dx∗2
(T ∗1 − T ∗2 ) = −H

d

dx∗
(T ∗1 + T ∗2 )

= −H
[
H + 2ε

]
(T ∗1 − T ∗2 ) using the second.

The solution is

T ∗1 − T ∗2 = Aerx +Be−rx,

where r2 = H(H + 2ε). Also

T ∗1 + T ∗2 = −
1

H

d

dx∗
(T ∗1 − T ∗2 ),

= −
r

H

[
Aerx −Be−rx

]
.
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The sum and difference give

T ∗1 =
1

2
(1−

r

H
)
[
Aerx −Be−rx

]
,

T ∗2 = −
1

2
(1 +

r

H
)
[
Aerx −Be−rx

]
.

At x = L, T ∗1 = T ∗2 , so that

AerL +Be−rL = 0.

Also, at x = 0, T ∗1 = 1, from which

1

2
(1−

r

H
)
[
A−B

]
= 1.

Thus

A =
2

(1− r/H)(1 + e2rL)
,

B = −
2e2rL

(1− r/H)(1 + e2rL)
.

Limiting behavior
If R→∞, ε = 0, the governing equations decouple. The temperatures are T ∗1 = e−Hx

∗
, T ∗2 =? .

If H = 0, then T1∗ = T ∗2 = T ∗in.

Alternatively
For small ε, regular perturbation series for T ∗1 and T ∗2 give

T ∗1 = T ∗1,0 + εT ∗1,1 + ε2T ∗1,2 + . . . ,

T ∗2 = T ∗2,0 + εT ∗2,1 + ε2T ∗2,2 + . . . ,

from which
dT ∗1,0

dx∗
+HT ∗1,0 = 0,

−
dT ∗2,0

dx∗
+HT ∗2,0 = 0,

and
dT ∗1,1

dx∗
+HT ∗1,1 = T ∗2,0 − T ∗1,0,

−
dT ∗2,1

dx∗
+HT ∗2,1 = T ∗1,0 − T ∗2,0,

and so on. These can be easily solved.

7.4 Other forced convection problems

7.4.1 Two-fluid configuration

Consider the heat balance in Fig. 7.9. Neglecting axial conduction, we have

ρwAwcw
∂Tw
∂t

+ h1(Tw − T1) + h2(Tw − T2) = 0,

ρ1A1c1
∂T1

∂t
+ ρ1V1c1

∂T1

∂x
+ h1(T1 − Tw) = 0,

ρ2A2c2
∂T2

∂t
+ ρ2V2c2

∂T2

∂x
+ h2(T2 − Tw) = 0.
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1

2

Figure 7.9: Two-fluids with wall.

7.4.2 Conjugate heat transfer

7.4.3 Flow between plates with viscous dissipation

Consider the steady, laminar flow of an incompressible, Newtonian fluid between fixed, flat plates at
y = −h and y = h. The flow velocity u(y) is in the x-direction due to a constant pressure gradient
P < 0. The plane walls are kept isothermal at temperature T = T0, and the viscosity is assumed to
decrease exponentially with temperature according to

µ = exp(1/T ).) (7.11)

The momentum equation is then

d

dy

(
µ(T )

du

dy

)
= P

with boundary conditions u = 0 at y = ±h. Integrating, we get

µ(T )
du

dy
= Py + C

Due to symmetry du/dy = 0 at y = 0 so that C = 0. There is also other evidence for this.
The energy equation can be written as

k
d2T

dy2
+ µ(T )

(
du

dy

)2

= 0

with T = T0 at y = ±h, where k has been taken to be a constant. The second term corresponds
to viscous heating or dissipation, and the viscosity is assumed to be given by Eq. (7.11). We non-
dimensionalize using

T ∗ = β(T − T0), y∗ =
y

h

The energy equation becomes

d2T ∗

dy∗2
+ a y∗2eT ∗ = 0 (7.12)

where

a =
βP 2h4

kµ0
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Figure 7.10: Two solutions of Eq. (7.12) with boundary conditions (7.13) for a = 1.
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Figure 7.11: Bifurcation diagram.

The boundary conditions are

T ∗ = 0 for y∗ = ±1 (7.13)

There are two solutions that can be obtained numerically (by the shooting method, for instance)
for the boundary-value problem represented by Eqs. (7.12) and (7.13) for a < ac and above which
there are none. There are other solutions also but they do not satisfy the boundary conditions on
the velocity. As examples, two numerically obtained solutions for a = 1 are shown in Fig. 7.10.

The bifurcation diagram corresponding to this problem is shown in Fig. 7.11 where S is the
slope of the temperature gradient on one wall.

7.4.4 Radial flow between disks

This is shown in Fig. 7.12.

ur =
C

r

qr = ur2πrHT − k2πrH
dT

dr

where H is the distance between the disks. With dqr/dr = 0, we get

d

dr
(rurT ) = k

d

dr
(r
dT

dr
)
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r

r r
1 2

Figure 7.12: Flow between disks.

For the boundary conditions T (r1) = T1 and T (r2) = T2, the temperature field is

T (r) =
T1 ln(r2/r)− T2 ln(r1/r)

ln(r2/r1)

Example 7.3
Redo the previous problem with a slightly eccentric flow.

7.5 Natural convection in ducts

We will once again make a one-dimensional approximation. Furthermore we will make the Boussinesq
approximation by which the fluid density is constant except in the buoyancy term. Temperature
differences within the fluid lead to a change in density and hence a buoyancy force that creates
a natural convection. The density in the gravity force term will be often be assumed to decrease
linearly with temperature, so that

ρ = ρ0

[
1− β(T − Tref)

]
.

The mass, momentum and energy equations are

V = V (t),

∂V

∂t
= −1

ρ

∂p

∂s
−+

Pα

ρA
V −

[
1− β(T − Tref)

]
g̃,

∂T

∂t
+ V

∂T

∂s
=
qext
ρAc

.

7.5.1 Open ducts

Example 7.4
Consider a long, thin, vertical tube that is open at both ends, as shown in Fig. 7.13. The air in the tube

is heated with an electrical resistance running down the center of the tube. Find the steady state temperature
distribution and the velocity of the air due to natural convection.
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T∞

T (x)

V

ds

Figure 7.13: Vertical tube open at both tubes; an element of length ds is indicated by dashed lines.

Assumptions: One dimensional, Boussinesq approximation, constant qext.
Variables: V is mean velocity, T (s) is temperature, s axial coordinate starting from s = 0 at lower end,

P is the perimeter at a cross section, α is the proportionality constant between wall shear stress and velocity
defined by Eq. (7.1); ρ is constant density, A is cross-sectional area, p(s) is pressure, β is the coefficient of
thermal expansion, Tref is a reference temperature for density, g̃ is the component of gravity along the tube,
and qext is the heat input per unit length.

The mass, momentum and energy equations equations for an element of length ds for a vertical tube are

V = constant,

0 = −
1

ρ

dp

ds
−
[
1− β(T − T∞

]
g −

Pα

ρA
V, , (7.14)

V
dT

ds
=
qext

ρAc
, (7.15)

where Tref = T∞.
Integrating Eq. (7.15)

T =
qext

ρV Ac
s+ C, (7.16)

=
qext

ρV Ac
s+ T∞, (7.17)

where the condition T = T∞ at s = 0 at the inlet has been used.
Integrating Eq. (7.14) from s = 0 to L

0 = −
1

ρ

∫ L

0

dp

ds
ds−

∫ L

0

[
1− β(T − T∞

]
g ds−

∫ L

0

PαV

ρA
ds,

= −
1

ρ

(
p(L)− p(0)

)
− gL+ βg

∫ L

0
(T − T∞)︸ ︷︷ ︸

use Eq. (7.17)

ds−
PαV

ρA
L,

= −
�
��

��1

ρ

(
− ρgL

)
−��gL+ βg

∫ L

0

qext

ρV Ac
s ds−

PαV L

ρA
,

=
βgqext

ρV Ac

L2

2
−
PαV L

ρA
,
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so that

V =

√
βgqextL

2Pαc
. (7.18)

Only the positive square root is admissible since it does not make physical sense for the fluid inside the tube at
a higher temperature and hence lighter than the fluid outside to fall; see (e) below.

Checks
(a) Dimensions: In Eq. (7.18)

[V ] = LT−1; [β] = Θ−1; [g] = LT−2; [qext] = MLT−3;

[L] = L; [P ] = L; [α] = ML−2T−1; [c] = L2T−2Θ−1,

so that

[V ] =
(Θ−1)(LT−2)(MLT−3)(L)

(L)(ML−2T−1)(L2T−2Θ−1)
,

= L2T−2.X

(b) Physical sense of final result: V should increase if any one of these parameters independently increases:
β (fluid expands more), g (greater weight difference between inside and outside), qext (greater temperature
difference between inside and outside), L (greater weight difference between inside and outside). Similarly V
should decrease if any one of the following independently increases: Pα (greater friction at wall), c (smaller
in-tube temperature rise). X
(c) Physical sense of intermediate results: temperature distribution (increases linearly with distance from lower
end). X
(d) Pressure distribution: Integrating Eq. (7.14) from 0 to s

0 = −
1

ρ

(
p(s)− p(0)

)
− gs+ βg

∫ s

0

(
T (s′)− T∞

)
ds′ −

PαV

ρA
s,

= −
1

ρ

(
p(s)− p(0)

)
− gs+ βg

∫ s

0

(
qext

ρV Ac
s′
)
ds′ −

PαV

ρA
s,

= . . .

(e) Reverse flow: A negative value of V implies that the inlet is at s = L and so the condition to find C in
Eq. (7.16) is that T = T∞ at s = L. Let us see what happens if we assume that the flow is downward. We can
avoid redoing the algebra and use many of the same equations, including the boundary condition, if we take
the s coordinate starting from the top and growing downward. The temperature distribution is the same, but
gravity changes sign. Thus, in Eq. (7.18) the quantity under the square root is negative if qext is positive, and
no real velocity is possible. If, however, the tube is cooled instead of being heated, a downward flow is set up
due to natural convection.

7.5.2 Closed loops

Let us consider a closed loop, shown in Fig. 7.14, of length L and constant cross-sectional area A
filled with a fluid. The loop is heated in some parts and cooled in others. The spatial coordinate is
s, measured from some arbitrary origin and going around the loop in the counterclockwise direction.
We will also approximate the behavior of the fluid using one spatial dimension. Thus, we will
assume that the velocity V and temperature T are constant across a section of the loop. In general
T = T (s, t) but, for a loop of constant cross-sectional area, mass conservation implies that V is
independent of s, and must be a function of t alone.

Compared to ducts that are open at both ends, there are some simplifications for closed loops.
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s

g

Figure 7.14: A general natural convective loop.

• From Eq. (7.2) ∫ L

0

g̃(s) ds =

∫ L

0

g
dz

ds
ds,

= 0. (7.19)

• The integral over a loop of the pressure term vanishes, i.e.∫ L

0

∂p

∂s
ds = 0.

The integral of the momentum equation

∂V

∂t
= −1

ρ

∂p

∂s
− Pα

ρA
V −

[
1− β(T − Tref)

]
g̃,

over a loop is thus

dV

dt
+
Pα

ρA
V =

β

L

∫ L

0

T g̃(s) ds. (7.20)

[173, 174] The simplest heating condition is when the heat rate per unit length, q(s), is known
all along the loop. For zero mean heating, we have∫ L

0

qext(s) ds = 0 (7.21)

qext(s) > 0 indicates heating, and qext(s) < 0 cooling.

7.5.3 Steady state

The steady-state governing equations are

Pα

ρA
V̄ =

β

L

∫ L

0

T̄ (s)g̃(s) ds (7.22)

V̄
dT̄

ds
=
qext(s)

ρAc
(7.23)
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u

H

Figure 7.15: Bifurcation with respect to parameter H.

The solution of equation (7.23) gives us the temperature field

T̄ (s) =
1

ρAcV̄

∫ s

0

qext(s
′) ds′ + T0

where T̄ (0) = T0. Using equation (7.19) it can be checked that T (L) = T0 also. Substituting in
equation (7.22), we get

Pα

ρA
V̄ =

β

ρAcLV̄

∫ L

0

[∫ s

0

qext(s
′) ds′

]
g̃(s) ds (7.24)

from which

V̄ = ±

√
β

PαLc

∫ L

0

[∫ s

0

qext(s′) ds′
]
g̃(s) ds

Two real solutions exist for ∫ L

0

[∫ s

0

qext(s
′) ds′

]
g̃(s) ds ≥ 0

and none otherwise. Thus there is a bifurcation from no solution to two as the parameter H passes
through zero, where

H =

∫ L

0

[∫ s

0

qext(s
′) ds′

]
g̃(s) ds

The pressure distribution can be found from

dp̄

ds
= −PαV̄

A
− ρ

[
1− β(T̄ − T0)

]
g̃ (7.25)

= −PαV̄
A
− ρg̃ +

β

AcV̄

[∫ s

0

qext(s
′) ds′

]
g̃ (7.26)

from which

p̄(s) = p0 −
PαV̄

A
s− ρ

∫ s

0

g̃(s′) ds′ +
β

AcV̄

∫ s

0

[∫ s′′

0

qext(s
′) ds′

]
g̃(s′′) ds′′
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Figure 7.16: Geometry of a square loop.

where p̄(0) = p0. Using equations (7.19) and (7.24), it can be shown that p̄(L) = p0 also.

Example 7.5
Find the temperature distributions and velocities in the three heating and cooling distributions corre-

sponding to Fig. 7.16. (a) Constant heating between points c and d, and constant cooling between h and a.
(b) Constant heating between points c and d, and constant cooling between g and h. (c) Constant heating
between points d and e, and constant cooling between h and a. (d) Constant heating between points a and c,
and constant cooling between e and g. The constant value is q̂ext, and the total length of the loop is L.

Let us write

F (s) =

∫ s

0
qext(s

′) ds′

G(s) = F (s)g̃(s)

H =

∫ L

0
G(s) ds

so that

V̄ = ±

√
β

PαLc

∫ L

0

[∫ s

0
qext(s′) ds′

]
g̃(s) ds,

= ±

√
β

PαLc

∫ L

0
F (s) g̃(s) ds,

= ±

√
β

PαLc

∫ L

0
G(s) ds,

= ±
√

βH

PαLc
.

The functions F (s) and G(s) are shown in Fig. 7.17. The origin is at point a, and the coordinate s runs
counterclockwise. The integral H in the four cases is: (a) H = 0, (b) H = q̂extL/8, (c) H = −q̂extL/8, (d)
H = q̂extL/4.

No real solution for the fluid velocity exists for case (c); the velocity is zero for (a); the other two cases
have two solutions each, one positive and the other negative. The temperature distribution is given by

T̄ − T0 =
F (s)

ρAcV̄
,

and the pressure distribution can be found from equation (7.26). Steady states are not possible for (a) and (c).
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Figure 7.17: Functions F (s) and G(s) for the four cases.
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Example 7.6
What is the physical interpretation of condition (7.25)?

Let us write

H =

∫ L

0

[∫ s

0
qext(s

′) ds′
]
g̃(s) ds

=

∫ L

0

[∫ s

0
qext(s

′) ds′
]
d

[∫ s

0
g̃(s′) ds′

]
=

[∫ s

0
qext(s

′) ds′
]L

0

[∫ s

0
g̃(s′) ds′

]L
0

−
∫ L

0

[
qext(s)

∫ s

0
g̃(s′) ds′

]
ds

The first term on the right vanishes due to equations (7.21) and (7.19). Using equation (7.2), we find that

H = −g
∫ L

0
qext(s)z(s) ds (7.27)

The function z(s) is another way of describing the geometry of the loop. We introduce the notation

qext(s) = q+
ext(s)− q

−
ext(s) (7.28)

where

q+
ext =

{
qext(s) for qext(s) > 0
0 for qext(s) ≤ 0

and

q−ext =

{
0 for qext(s) ≥ 0
−qext(s) for qext(s) < 0

Equations (7.21) and (7.27) thus becomes∫ L

0
q+
ext(s) ds =

∫ L

0
q−ext(s) ds (7.29)

H = −g
[∫ L

0
q+
ext(s)z(s) ds−

∫ L

0
q−ext(s)z(s) ds

]
(7.30)

From these, condition (7.25) which is H ≥ 0 can be found to be equivalent to∫ L
0 q+

ext(s)z(s) ds∫ L
0 q+

ext(s) ds
<

∫ L
0 q−ext(s)z(s) ds∫ L

0 q−ext(s) ds

This implies that the height of the centroid of the heating rate distribution should be above that of the cooling.

7.6 Axial conduction effects

With axial conduction

∂T

∂t
+ V

∂T

∂s
=

k

ρc

∂2T

∂s2
+
qext
ρAc

.
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The energy equation is

∂T

∂t
+ V

∂T

∂s
=

q

ρ0Ac
+

k

ρ0c

∂2T

∂s2

Example 7.7
Analyze the longitudinal temperature field for small axial conduction.

We have

λ
d2T ∗

dx∗2
−
dT ∗

dx∗
−H(T ∗ − 1) = 0

where λ� 1, and with the boundary conditions T ∗(0) = 0 and T ∗(1) = T ∗1 .
We can use a boundary layer analysis for this singular perturbation problem. The outer solution is

T ∗out = 1− e−Hx
∗

The boundary layer is near x∗ = 1, where we make the transformation

X =
x∗ − 1

λ

This gives the equation

d2T ∗in
dX2

−
dT ∗in
dX

− λH(T ∗in − 1) = 0

To lowest order, we have

λ
d2T ∗in
dX2

−
dT ∗in
dX

= 0

with the solution

T ∗in = A+BeX

The boundary condition T ∗in (X = 0) = T ∗1 gives T ∗1 = A+B, so that

T ∗in = A+ (T ∗1 −A)eX

The matching condition is

T ∗outer (x∗ = 1) = T ∗in (X → −∞)

so that

A = 1− e−H

The composite solution is then

T ∗ = 1− e−H + (T ∗1 − 1 + e−H)e(x
∗−1)/λ + . . .
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7.6.1 Nondimensionalization

For known heat rate, qext = q(s), is known along the duct. Defining

s∗ =
s

L
, T ∗ =

(T − Ti)ρV AC
Lq

, t∗ =
tV

L
,

gives

∂T ∗

∂t∗
+
∂T ∗

∂s∗
− λ∂

2T ∗

∂s∗2
= 1

where

λ =
k

LV ρc

Suitable boundary conditions for this second-order equation may be T ∗ = 0 at s∗ = 0, and T ∗ = T ∗1
at s∗ = 1.

For convective heat exchange with an overall heat transfer coefficient U , and an external tem-
perature of T∞(s) gives

qext = PU(T∞ − T ).

Defining

x∗ =
x

L
, T ∗ =

T − Ti
T∞ − Ti

, t∗ =
tV

L
,

gives

∂T ∗

∂t∗
+
∂T ∗

∂x∗
− λ∂

2T ∗

∂x∗2
+HT ∗ = H,

where

λ =
k

LV ρc
, H =

UρL

ρV Ac
.

To nondimensionalize and normalize equations (7.20) and (??), we take

t∗ =
t

τ

′
s∗ =

s

L
, u∗ =

u

V G1/2
, T ∗ =

T − T0

∆T G1/2
, g̃∗ =

g̃

g
, q∗ =

q

qm

where

V =
PαL

ρ0A
, ∆T =

P 2α2L

βgρ2
0A

2
, τ =

ρ0A

Pα
, G =

qmβgρ
2
0A

2

P 3α3Lc

Substituting, we get

du∗

dt∗
+ u∗ =

∫ 1

0

T ∗g̃∗ ds∗ (7.31)

∂T ∗

∂t∗
+G1/2u∗

∂T ∗

∂s∗
= G1/2q∗ +K

∂2T ∗

∂s∗2
(7.32)
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where

K =
kA

PαL2c

The two nondimensional parameters which govern the problem are G and K.
Under steady-state conditions, and neglecting axial conduction, the temperature and velocity

are

T̄ ∗(s) =
1

ū∗

∫ s∗

0

q∗(s∗1) ds∗1

ū∗ = ±

√∫ 1

0

[∫ s∗

0

q∗(s∗1) ds∗1

]
g̃∗(s∗) ds∗

All variables are of unit order indicating that the variables have been appropriately normalized.
For α = 8µ/D, A = πD2/4, and P = πD, we get

G =
1

8192π

Gr

Pr

(
D

L

)4

K =
1

32 Pr

(
D

L

)2

where the Prandtl and Grashof numbers are

Pr =
µc

k

Gr =
qmgβL

3

ν2k

respectively. Often the Rayleigh number defined by

Ra = Gr Pr

is used instead of the Grashof number.
Since ū∗ is of O(1), the dimensional velocity is of order (8νL/D2)Gr1/2. The ratio of axial

conduction to the advective transport term is

ε =
K

G1/2

=

(
8π

Ra

)1/2

Taking typical numerical values for a loop with water to be: ρ = 998 kg/m3, µ = 1.003×10−3 kg/m
s, k = 0.6 W/m K, qm = 100 W/m, g = 9.91 m/s2, β = 0.207 × 10−3 K−1, D = 0.01 m, L = 1 m,
c = 4.18× 103 J/kgK, we get the velocity and temperature scales to be

V G1/2 =

∆TG1/2 =
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and the nondimensional numbers as

G = 1.86× 10−2 (7.33)

K = 4.47× 10−7 (7.34)

Gr = 3.35× 1011 (7.35)

Ra = 2.34× 1012 (7.36)

ε = 3.28× 10−6 (7.37)

Axial conduction is clearly negligible in this context.
For a steady state, equations (7.31) and (7.32) are

ū∗ =

∫ 1

0

T̄ ∗g̃∗ ds∗

ε
d2T̄ ∗

ds∗2
− ū∗ dT̄

∗

ds∗
= −q∗(s∗)

Integrating over the loop from s∗ = 0 to s∗ = 1, we find that continuity of T̄ ∗ and equation (7.21)
imply continuity of dT̄ ∗/ds∗ also.

Conduction-dominated flow

If λ = G1/2/ε� 1, axial conduction dominates. We can write

ū = ū0 + λū1 + λ2ū2 + . . .

T̄ (s) = T̄0(s) + λT̄1(s) + λ2T̄2(s) + . . .

where, for convenience, the asterisks have been dropped. Substituting into the governing equations,
and collecting terms of O(λ0), we have

ū0 =

∫ 1

0

T̄0g̃ ds

d2T̄0

ds2
= 0

The second equation, along with conditions that T̄0 and dT̄0/ds have the same value at s = 0 and
s = 1, gives T̄0 = an arbitrary constant. The first equation gives ū0 = 0.

The terms of O(λ) give

ū1 =

∫ 1

0

T̄1g̃ ds (7.38)

d2T̄1

ds2
= −q(s) + ū0

dT̄0

ds
(7.39)

The second equation can be integrated once to give

dT̄1

ds
= −

∫ s

0

q(s′) ds′ +A
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and again

T̄1 = −
∫ s

0

[∫ s′′

0

q(s′) ds′

]
ds′′ +As+B

Continuity of T̄1(s) and dT̄1/ds at s = 0 and s = 1 give

B = −
∫ 1

0

[∫ s′′

o

q(s′) ds′

]
ds′′ +A+B

A = A

respectively, from which

A =

∫ 1

0

[∫ s′′

0

q(s′) ds′

]
ds′′

and that B can be arbitrary. Thus

T̄1 =

∫ s

0

[∫ s′′

0

q(s′) ds′

]
ds′′ + s

∫ 1

0

[∫ s′′

0

q(s′) ds′

]
ds′′ + T1(0)

where T̄ (0) is an arbitrary constant. Substituting in equation (7.38), gives

ū1 = −
∫ 1

0

{∫ s

0

[∫ s′′

0

q(s′) ds′

]
ds′′

}
g̃ ds+

∫ 1

0

[∫ s′′

0

q(s′) ds′

]
ds′′

∫ 1

0

sg̃ ds

The temperature distribution is determined by axial conduction, rather than by the advective ve-
locity, so that the resulting solution is unique.

Advection-dominated flow

The governing equations are

ū =

∫ 1

0

T̄ g̃ ds

ū
dT̄

ds
= q + ε

d2T̄

ds2

where ε� 1. Expanding in terms of ε, we have

ū = ū0 + εū1 + ε2ū2 + . . .

T̄ = T̄0 + εT̄1 + ε2T̄2 + . . .

To O(ε0), we get

ū0 =

∫ 1

0

T̄0g̃ ds

ū0
dT̄0

ds
= q
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from which

T̄0 =
1

ū0

∫ s

0

q(s′) ds′

ū0 = ±
∫ 1

0

[∫ s

0

q(s′) ds′
]
g̃ ds

Axial conduction. therefore, slightly modifies the two solutions obtained without it.

7.7 Toroidal geometry

The dimensional gravity function can be expanded in a Fourier series in s, to give

g̃(s) =

∞∑
n=1

[
gcn cos

2πns

L
+ gs1 sin

2πns

L

]
The simplest loop geometry is one for which we have just the terms

g̃(s) = gc1 cos
2πs

L
+ gs1 sin

2πs

L
(7.40)

corresponds to a toroidal geometry. Using

g2 = (gc1)2 + (gs1)2

φ0 = tan−1 g
c
1

gs1

equation (7.40) becomes

g̃(s) = g cos

(
2πs

L
− φ0

)
Without loss of generality, we can measure the angle from the horizontal, i.e. from the three o’clock
point, and take φ0 = 0 so that

g̃(s) = g cos (2πs/L)

The nondimensional gravity component is

g̃ = cos(2πs)

where the * has been dropped.
Assuming also a sinusoidal distribution of heating

q(s) = − sin(2πs− φ)

the momentum and energy equations are

V̄ =

∫ 1

0

T (s) cos(2πs) ds (7.41)

V̄
dT̄

ds
= − sin(2πs− φ) + ε

d2T̄

ds2
(7.42)
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The homogeneous solution is

T̄h = BeV̄ s/ε +A

The particular integral satisfies

d2Tp
ds2

− V̄

ε

dT̄p
ds

=
1

ε
sin(2πs− φ)

Integrating, we have

dTp
ds
− V̄

ε
T̄p = − 1

2πε
cos(2πs− φ)

= − 1

2πε
[cos(2πs) cosφ+ sin(2πs) sinφ]

Take

T̄p = a cos(2πs) + b sin(2πs)

from which

dT̄p
ds

= −2πa sin(2πs) + 2πb cos(2πs)

Substituting and collecting the coefficients of cos(2πs) and sin(2πs), we get

− V̄
ε
a+ 2πb = −cosφ

2πε

−2πa− V̄

ε
b = − sinφ

2πε

The constants are

a =
(V̄ /2πε2) cosφ+ (1/ε) sinφ

4π2 + V̄ 2/ε2

b =
−(1/ε) cosφ+ (V̄ /2πε2) sinφ

4π2 + V̄ 2/ε2

The temperature field is given by

T̄ = T̄h + T̄p

Since T̄ (0) = T̄ (1), we must have B = 0. Taking the other arbitrary constant A to be zero, we have

T̄ =
1

4π2 + V̄ 2/ε2

[(
V̄

2πε2
cosφ+

1

ε
sinφ

)
cos(2πs) +

(
−1

ε
cosφ+

V̄

2πε2
sinφ

)
sin(2πs)

]
The momentum equation gives

V̄ =
(V̄ /2πε2) cosφ+ (1/ε) sinφ

2(4π2 + V̄ 2/ε2)

which can be written as

V̄ 3 + V̄

(
4π2ε2 − 1

4π
cosφ

)
− ε

2
sinφ = 0 (7.43)

Special cases are:
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• ε = 0

Equations (7.41) and (7.42) can be solved to give

T̄ =
1

2πV̄
[cos(2πs) cosφ+ sin(2πs) sinφ]

V̄ = ±
√

cosφ

4π

On the other hand substituting ε = 0 in equation (7.43) gives an additional spurious solution
V̄ = 0.

• ε→∞
We get that V̄ → 0.

• φ = 0

We get

V̄ =


0√

1
4π − 4π2ε2

−
√

1
4π − 4π2ε2

The last two solutions exist only when ε < (16π3)−1/2.

• φ = π/2

The velocity is a solution of

V̄ 3 + V̄ 4π2ε2 − ε

2
= 0

Figure 7.18 shows V̄ -φ curves for three different values of ε. Figure 7.19 and 7.20 show V̄ -ε
curves for different values of φ. It is also instructive to see the curve V -Ra, shown in Figure 7.21,
since the Rayleigh number is directly proportional to the strength of the heating.

The bifurcation set is the line dividing the regions with only one real solution and that with
three real solutions. A cubic equation

x3 + px+ q = 0

has a discriminant

D =
p3

27
+
q2

4

For D < 0, there are three real solutions, and for D > 0, there is only one. The discriminant for the
cubic equation (7.43) is

D =
1

27

(
4π2ε2 − 1

4π
cosφ

)3

+
1

4
(ε sinφ)

2

The result is shown in Fig. 7.22.
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Figure 7.18: V̄ -φ curves.
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7.7.1 Dynamic analysis

We rescale the nondimensional governing equations (7.31) and (7.32) by

V ∗ =
1

2πG1/2
V̂

T ∗ =
1

2πG1/2
T̂

to get

dV

dt
+ V =

∫ 1

0

T g̃ ds

∂T

∂t
+

1

2π
V
∂T

∂s
= Gq +

G1/2K

2π

∂2T

∂s2

where the hats and stars have been dropped.
We take g̃ = cos(2πs) and q = − sin(2πs− φ). Expanding the temperature in a Fourier series,

we get

T (s, t) = T0(t) +

∞∑
n=1

[T cn(t) cos(2πns) + T sn(t) sin(2πns)]

Substituting, we have

dV

dt
+ V =

1

2
T c1

and

dT0

dt
+

∞∑
n=1

[
dT cn
dt

cos(2πns) +
dT cn
dt

sin(2πns)

]
+ V

∞∑
n=1

[−nT cn sin(2πns) + nT sn cos(2πns)]

= −G [sin(2πs) cosφ− cos(2πs) sinφ]− 2πn2G1/2K

∞∑
n=1

[T cn cos(2πns) + T sn sin(2πns)]

Integrating, we get

dT0

dt
= 0

Multiplying by cos(2πms) and integrating

1

2

dT cm
dt

+
m

2
V T sm =

1

2
G sinφ− πm2G1/2KT cm

Now multiplying by sin(2πms) and integrating

1

2

dT sm
dt
− m

2
V T cm = −1

2
G cosφ− πm2G1/2KT sm

Choosing the variables

x = V, y =
1

2
T c1 , z =

1

2
T s1
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Figure 7.23: Bifurcation diagram for x̄.

and the parameters

a =
G

2
sinφ (7.44)

b =
G

2
cosφ (7.45)

c = 2πG1/2K (7.46)

we get the dynamical system

dx

dt
= y − x (7.47)

dy

dt
= a− xz − cy (7.48)

dz

dt
= −b+ xy − cz (7.49)

The physical significance of the variables are: x is the fluid velocity, y is the horizontal temperature
difference, and z is the vertical temperature difference. The parameter c is positive, while a and b
can have any sign.

The critical points are found by equating the vector field to zero, so that

ȳ − x̄ = 0 (7.50)

a− x̄z̄ − cȳ = 0 (7.51)

−b+ x̄ȳ − cz̄ = 0 (7.52)

From equation (7.50), we have ȳ = x̄, and from equation (7.52), we get z̄ = (−b+x̄2)/c. Substituting
these in equation (7.51), we get

x̄3 + x̄(c2 − b)− ac = 0 (7.53)

This corresponds to equation (7.43), except in different variables.
To analyze the stability of a critical point (x̄, ȳ, z̄) we add perturbations of the form

x = x̄+ x′ (7.54)

y = ȳ + y′ (7.55)

z = z̄ + z′ (7.56)
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Substituting in equation (7.47)-(7.49), we get the local form

d

dt

 x′

y′

z′

 =

 −1 1 0
−z̄ −c −x̄
ȳ x̄ −c

 x′

y′

z′

+

 0
−x′z′
x′y′

 (7.57)

The linearized version is

d

dt

 x′

y′

z′

 =

 −1 1 0
−z̄ −c −x̄
ȳ x̄ −c

 x′

y′

z′

 (7.58)

No tilt, with axial conduction (a = 0, c 6= 0)

From equation (7.53), for a = 0 we get

x̄3 + x̄(c2 − b) = 0

from which

x̄ = ȳ =


0√
b− c2
−
√
b− c2

The z coordinate is

z̄ =

 −b/c−c
−c

The bifurcation diagram is shown in Figure 7.23.

Stability of conductive solution
The critical point is (0, 0,−b/c). To examine its linear stability, we look at the linearized

equation (7.58) to get

d

dt

 x′

y′

z′

 =

 −1 1 0
b/c −c 0
0 0 −c

 x′

y′

z′

 (7.59)

The eigenvalues of the matrix are obtained from the equation∣∣∣∣∣∣
−(1 + λ) 1 0
b/c −(c+ λ) 0
0 0 −(c+ λ)

∣∣∣∣∣∣ = 0

which simplifies to

(c+ λ)

[
(1 + λ)(c+ λ)− b

c

]
= 0

One eigenvalue is

λ1 = −c
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Since c ≥ 0 this eigenvalue indicates stability. The other two are solutions of

λ2 + (c+ 1)λ+ (c− b

c
) = 0

which are

λ2 =
1

2

[
−(c+ 1)−

√
(c+ 1)2 − 4(c− b

c
)

]

λ3 =
1

2

[
−(c+ 1) +

√
(c+ 1)2 − 4(c− b

c
)

]

λ2 is also negative and hence stable. λ3 is negative as long as

−(c+ 1) +

√
(c+ 1)2 − 4(c− b

c
) < 0

which gives

b < c2

This is the condition for stability.
In fact, one can also prove global stability of the conductive solution. Restoring the nonlinear

terms in equation (7.57) to equation (7.59), we have

dx′

dt
= y′ − x′

dy′

dt
=
b

c
x′ − cy′ − x′z′

dz′

dt
= −cz′ + x′y′

Let

E(x, y, z) =
b

c
x′2 + y′2 + z′2

Thus

1

2

dE

dt
=
b

c
x′
dx′

dt
+ y′

dy′

dt
+ z′

dz′

dt

= −b
c
x′2 +

2b

c
x′y′ − cy′2 − cz′2

= −b
c
(x′ − y′)2 − (c− b

c
)y′2 − cz′2

Since

E ≥ 0

dE

dt
≤ 0
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for 0 ≤ b ≤ c2, E is a Liapunov function, and the critical point is stable to all perturbations in this
region. The bifurcation at b = c2 is thus supercritical.

Stability of convective solution
For b > c2, only one critical point (

√
b− c2,

√
b− c2,−c) will be considered, the other being

similar. We use the linearized equations (7.58). Its eigenvalues are solutions of∣∣∣∣∣∣
−(1 + λ) 1 0

c −(c+ λ) −
√
b− c2√

b− c2
√
b− c2 −(c+ λ)

∣∣∣∣∣∣ = 0

This can be expanded to give

λ3 + λ2(1 + 2c) + λ(b+ c) + 2(b− c2) = 0

The Hurwitz criteria for stability require that all coefficients be positive, which they are. Also the
determinants

D1 = 1 + 2c

D2 =

∣∣∣∣ 1 + 2c 2(b− c2)
1 b+ c

∣∣∣∣
D3 =

∣∣∣∣∣∣
1 + 2c 2(b− c2) 0

1 b+ c 0
0 1 + 2c 2(b− c2)

∣∣∣∣∣∣
should be positive. This requires that

b <
c(1 + 4c)

1− 2c
if c < 1/2

b >
c(1 + 4c)

1− 2c
if c > 1/2

With tilt, no axial conduction (a 6= 0, c = 0)

The dynamical system (7.47)-(7.49) simplifies to

dx

dt
= y − x

dy

dt
= a− xz

dz

dt
= −b+ xy

The critical points are ±(
√
b,
√
b, a/
√
b). The linear stability of the point P+ given by (

√
b,
√
b, a/
√
b)

will be analyzed. From equation (7.58), the solutions of∣∣∣∣∣∣
−(1 + λ) 1 0

−a/
√
b −λ −

√
b√

b
√
b −λ

∣∣∣∣∣∣ = 0
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are the eigenvalues. This simplifies to

λ3 + λ2 + λ(b+
a√
b
) + 2b = 0 (7.60)

For stability the Hurwitz criteria require all coefficients to be positive, which they are. The deter-
minants

D1 = 1

D2 =

∣∣∣∣ 1 2b

1 b+ a/
√
b

∣∣∣∣
D3 =

∣∣∣∣∣∣
1 2b 0

1 b+ a/
√
b 0

0 1 2b

∣∣∣∣∣∣
should also be positive. This gives the condition (b+ a/

√
b)− 2b > 0, from which, we have

a > b3/2 (7.61)

for stability. The stable and unstable region for P+ is shown in Figure 7.24. Also shown is the
stability of the critical point P− with coordinates −(

√
b,
√
b, a/
√
b). The dashed circles are of radius

G/2, and the angleof tile φ is also indicated. Using equations (7.44) and (7.45), the stability condition
(7.61) can be written as

sinφ

cos3/2 φ
>

(
G

2

)1/2

As a numerical example, for the value of G in equation (7.33), P+ is stable for the tilt angle range
φ > 7.7◦, and P− is stable for φ < −7.7◦. In fact, for G� 1, the stability condition for P+ can be
approximated as

φ >

(
G

2

)1/2

The same information can be shown in slightly different coordinates. Using x̄ =
√
b for P+

and equation (7.45), we get

G

2
=

x̄2

cosφ

The stability condition (7.61) thus becomes

tanφ < x̄

The stability regions for both P+ and P− are shown in Figure 7.25.
The loss of stability is through imaginary eigenvalues. In fact, for P+, substituting a = b3/2 in

equation (7.60), the equation can be factorized to give the three eigenvalues −1,±i
√

2b. Thus the
nondimensional radian frequency of the oscillations in the unstable range is approximately

√
2b.

The effect of a small nonzero axial conduction parameter c is to alter the Figure 7.61 in the
zone 0 < b < c.
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Figure 7.24: Stability of critical points P+ and P− in (b, a) space.
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Figure 7.25: Stability of critical points P+ and P− in (φ, x̄) space.
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Figure 7.26: x-t for a = 0.9, b = 1.

7.7.2 Nonlinear analysis

Numerical

Let us choose b = 1, and reduce a. Figures 7.26 and 7.27 show the x-t and phase space representation
for a = 0.9, Figures 7.28 and 7.29 for a = 0.55, and Figures 7.30 and 7.31 for a = 0.53. The strange
attractor is shown in Figures 7.32 and 7.33. Comparison of the three figures in Figures 7.34 shows
that vestiges of the shape of the closed curves for a = −0.9 and a = 0.9 can be seen in the trajectories
in a = 0.

Analytical

See Appendix.

7.7.3 Known wall temperature

The heating is now convective with a heat transfer coefficient U , and an external temperature of
Tw(s). Thus,

q = PU(T − Tw)

Neglecting axial conduction

Pα

ρ0A
V̄ =

β

L

∫ L

0

T̄ (s)g̃(s) ds (7.62)

V̄
dT̄

ds
= γ

[
T̄ − Tw(s)

]
(7.63)

where γ = UP/ρ0Ac
2. Multiplying the second equation by e−γs/V̄ /V̄ , we get

d

ds

(
e−γs/V̄ T̄

)
= − γ

V̄
e−γs/V̄ Tw

2The sign of γ appears to be wrong.
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Figure 7.27: Phase-space trajectory for a = 0.9, b = 1.
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Figure 7.28: x-t for a = 0.55, b = 1.
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Figure 7.29: Phase-space trajectory for a = 0.55, b = 1.
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Figure 7.30: x-t for a = 0.53, b = 1.
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Figure 7.31: Phase-space trajectory for a = 0.53, b = 1.
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Figure 7.32: x-t for a = 0, b = 1.
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Figure 7.33: Phase-space trajectory for a = 0, b = 1.
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Figure 7.34: Phase-space trajectories for b = 1.
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Integrating, we get

T̄ = eγs/V̄
[
− γ
V̄

∫ s

0

e−γs
′/V̄ Tw(s′) ds′ + T0

]
Since T̄ (L) = T̄ (0), we get

T0 =
γ

V̄

eγL/V̄
∫ L

0
e−γs

′/V̄ Tw(s′) ds′

eγL/V̄ − 1

The velocity is obtained from

Pα

ρ0A
V̄ =

β

L

∫ L

0

[
eγs/V̄

{
− γ
V̄

∫ s

0

e−γs
′/V̄ Tw(s′) ds′ + T0

}]
g̃(s) ds

This is a transcendental equation that may have more than one real solution.

Example 7.8
Show that there is no motion if the wall temperature is uniform.

Take Tw to be a constant. Then equation (7.63) can be written as

d(T̄ − Tw)

T̄ − Tw
=

γ

V̄
ds

The solution to this is

T̄ = Tw +K eγs/V̄

where K is a constant. Continuity of T at s = 0 and s = L gives K = 0. Hence T = Tw, and, from equation
(7.62), V̄ = 0.

Assume the wall temperature to be

Tw(s) = − sin(2πs− φ)

The temperature field is

T =
b

r2 − r1

(
cos(2πs− φ)

2π(1 + r2
2/4π

2)

)
−
(

cos(2πs− φ)

2π(1 + r162/4π2)

)

Bibliography
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Figure 7.35: Flow in tube with non-negligible wall thickness.

Problems

1. Determine the single duct solutions for heat loss by radiation q = Pεσ(T 4
sur − T 4).

2. A sphere, initially at temperature Ti is being cooled by natural convection to fluid at T∞. Churchill’s correlation
for natural convection from a sphere is

N̄u = 2 +
0.589 Ra

1/4
D[

1 + (0.469/Pr)9/16
]4/9 ,

where

RaD =
gβ(Ts − T∞)D3

να
.

Assume that the temperature within the sphere T (t) is uniform, and that the material properties are all
constant. Derive the governing equation, and find a two-term perturbation solution.

3. The velocity field, u(r), for forced convection in a cylindrical porous medium is given by

u′′ + r−1u′ − s2u+ s2 Da = 0,

where s and the Darcy number Da are parameters. A WKB solution for small Da has been reported as3

u = Da

[
1−

e−s(1−r)
√
r

]
.

Re-do to check the analysis.

4. Consider one-dimensional steady-state flow along a pipe with advection and conduction in the fluid and lateral
convection from the side. The fluid inlet and outlet temperatures given. Use the nondimensional version of
the governing equation to find the inner and outer matched temperature distributions if the fluid thermal
conductivity is small.

5. Plot the exact analytical and the approximate boundary layer solutions for Problem 4 for a small value of the
conduction parameter.

6. Show that no solution is possible in Problem 4 if the boundary layer is assumed to be on the wrong side.

7. Consider one-dimensional unsteady flow in a tube with a non-negligible wall thickness, as shown in Fig. E.34.
There is conduction along the fluid as well as along the wall of the tube. There is also convection from the
outer surface of the tube to the environment as well as from its inner surface to the fluid. Find the governing
equations and their boundary conditions. Nondimensionalize.

8. Consider the hydrodynamic and thermal boundary layers in a flow over a flat plate at constant temperature.
Starting from the boundary layer equations

∂u

∂x
+
∂v

∂y
= 0 (7.64)

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
(7.65)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
(7.66)

change to variables f(η) and T ∗(η) and derive the boundary layer equations

2f ′′′ + ff ′′ = 0 (7.67)

T ∗
′′

+
Pr

2
fT ∗

′
= 0 (7.68)

3K. Hooman and A.A. Ranjbar-Kani, Forced convection in a fluid-saturated porous-medium tube with isoflux wall,
International Communcications in Heat and Mass Transfer, Vol. 30, No. 7, pp. 1015–1026, 2003.
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and the boundary conditions. Solve equations (7.67) and (7.68) numerically by the shooting method for different
Pr and compare with results in the literature.

9. For Problem 1, derive the momentum and energy integral equations. Using cubic expansions for u/u∞ and
T ∗, derive expressions for the boundary layer thicknesses. [Explain Momentum integral method?]

10. For natural convection near a vertical plate, show that the governing boundary layer equations

∂u

∂x
+
∂v

∂y
= 0

u
∂u

∂x
+ v

∂u

∂y
= gβ(T − T∞) + ν

∂2u

∂y2

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2

can be reduced to

f ′′′ + 3ff ′′ − 2(f ′)2 + T ∗ = 0 (7.69)

T ∗
′′

+ 3 Pr f T ∗
′

= 0 (7.70)

with appropriate boundary conditions. Solve equations (7.69) and (7.70) numerically by the shooting method
for different Pr and compare with results in the literature.

11. Find the pressure distributions for the different cases of the square loop problem.

12. Consider the same square loop but tilted through an angle T ∗ where 0 ≤ T ∗ < 2π. There is constant heating
between points a and c, and constant cooling between e and g. For the steady-state problem, determine the
temperature distribution and the velocity as a function of T ∗. Plot (a) typical temperature distributions for
different tilt angles, and (b) the velocity as a function of tilt angle.

13. Find the steady-state temperature field and velocity for known heating if the loop has a variable cross-sectional
area A(s).

14. Find the temperature field and velocity for known heating if the total heating is not zero.

15. Find the velocity and temperature fields for known heating if the heating and cooling takes place at two different
points. What the condition for the existence of a solution?

16. What is the effect on the known heat rate solution of taking a power-law relationship between the frictional
force and the fluid velocity?

17. For known wall temperature heating, show that if the wall temperature is constant, the temperature field is
uniform and the velocity is zero.

18. Study the steady states of the toroidal loop with known wall temperature including nondimensionalization of
the governing equations, axial conduction and tilting effects, multiplicity of solutions and bifurcation diagrams.
Illustrate typical cases with appropriate graphs.

19. For a thin, vertical pipe compare the wall shear stress to mean flow velocity relation obtained from a two-
dimensional analysis to that from Poiseuille flow.

20. Find the combination of fluid parameters that determines the rate of heat transfer from a closed loop with
known temperature distribution. Compare the cooling rate achieved by an ionic liquid to water in the same
loop and operating under the same temperature difference.

21. Consider a tall natural circulation loop shown in Fig. 7.36 consisting of two vertical pipes of circular cross
sections. The heating pipe has a diameter D, and that of the cooling side is 2D. The heat rate per unit length
coming in and going out are both q. Find the steady state velocity in the loop. Neglect the small horizontal
sections and state your other assumptions.

22. Set up a controller for PID control of the velocity x to a given value, xs, in the toroidal natural convection
loop equations

dx

dt
= y − x (7.71)

dy

dt
= a sinφ− xz (7.72)

dz

dt
= −b cosφ+ xy (7.73)

where a and b are held constant. Use the tilt angle φ as control input, and show numerical results.
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Figure 7.36: Tall natural circulation loop.

23. For a duct of varying area A(s), show that

ρ

(
∂V

∂t
+ V

∂V

∂s

)
+
P

A
τw = 0.

where τw is the wall stress and P is the sectional perimeter.



Chapter 8

Multidimensional conduction

8.1 Separation of variables

Steady-state conduction in a rectangular plate.

∇2T = 0

Let T (x, y) = X(x)Y (y). See Table 8.1.

8.1.1 Similarity variable

∂T

∂t
= α

∂2T

∂x2

8.2 Steady-state problems

See [216].

8.3 Transient problems

8.3.1 Two-dimensional fin

The governing equation is

cρdx dyL
∂T

∂t
= Lk

(
∂2T

∂x2
+
∂2T

∂y2

)
− hdx dy(T − T∞)

which simplifies to

1

α

∂T

∂t
=
∂2T

∂x2
+
∂2T

∂y2
−m2(T − T∞)

where m2 = h/kL, the Biot number.

172
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Table 8.1: Summary of PDE solutions with separation of variables

Equation type −→ Parabolic Hyperbolic Elliptic

Equation α
∂2u

∂x2
=
∂u

∂t
a2 ∂2u

∂x2
=
∂2u

∂t2
∂2u

∂x2
+
∂2u

∂y2
= 0

Name of equation Heat equation Wave equation Laplace’s equation

Variables u(x, t) u(x, t) u(x, y)

Independent 0 ≤ x ≤ L 0 ≤ x ≤ L 0 ≤ x ≤ Lx
variable 1

Independent t ≥ 0 t ≥ 0 0 ≤ y ≤ Ly
variable 2

Condition 1(a) u(0, t) = 0 (homogeneous) u(0, t) = 0 (homogeneous) u(0, y) = 0 (homogeneous)

Condition 1(b) u(L, t) = 0 (homogeneous) u(L, t) = 0 (homogeneous) u(Lx, y) = 0 (homogeneous)

Condition 2(a) u(x, 0) = f(x) (inhomogeneous) ut(x, 0) = 0 (homogeneous) u(x, 0) = 0 (homogeneous)

Condition 2(b) − u(x, 0) = f(x) (inhomogeneous) u(x, Ly) = f(x) (inhomogeneous)

Separation u(x, t) = X(x)T (t) u(x, t) = X(x)T (t) u(x, y) = X(x)Y (y)
of variables

ODE 1 X′′ + λ2X = 0 X′′ + λ2X = 0 X′′ + λ2X = 0

Homogeneous conditions X(0) = X(L) = 0 X(0) = X(L) = 0 X(0) = X(Lx) = 0

Eigenvalues λn =
nπ

L
, n = 1, 2, 3, . . . λn =

nπ

L
, n = 1, 2, 3, . . . λn =

nπ

Lx
, n = 1, 2, 3, . . .

Eigenfunctions Xn = An sin (λnx) Xn = An sin (λnx) Xn = An sin (λnx)

ODE 2 T ′n + αλ2
nTn = 0 T ′′n + a2λ2

nTn = 0 Y ′′n − λ2
nYn = 0

General solution Tn = Bn exp(−αλ2
nt) Tn = Bn cos (aλnt) + Cn sin (aλnt) Yn = Bn cosh (λny) + Cn sinh (λny)

Homogeneous condition − T ′n(0) = 0⇒ Cn = 0 Yn(0) = 0⇒ Bn = 0

Solution Tn = Bn exp(−αλ2
nt) Tn = Bn cos (aλnt) Yn = Cn sinh (λny)

Typical solution un = cn sin (λnx) exp
(
−αλ2

nt
)

un = cn sin (λnx) cos (aλnt) un = cn sin (λnx) sinh (λny)

General solution u =

∞∑
n=1

un u =

∞∑
n=1

un u =

∞∑
n=1

un

Inhomogeneous condition f(x) =
∞∑
n=1

cn sin (λnx) f(x) =
∞∑
n=1

cn sin (λnx) f(x) =
∞∑
n=1

cn sin (λnx) sinh (λnLy)

Euler-Fourier formula cn =
2

L

∫ L

0
f(x) sin (λnx) dx cn =

2

L

∫ L

0
f(x) sin (λnx) dx cn =

2

Lx sinh (λnLy)

∫ Lx

0
f(x) sin (λnx) dx
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Figure 8.1: Two-dimensional fin.

In the steady state

∂2T

∂x2
+
∂2T

∂y2
−m2(T − T∞)

Consider a square of unit side with θ = T − T∞ being zero all around, except for one edge
where it is unity.

Let

θ(x, y) = X(x)Y (y)

so that

1

X

d2X

dx2
= − 1

X

d2Y

dy2
+m2 = −λ2

This leads to one equation

d2X

dx2
+ λ2X = 0

with X(0) = X(1) = 1. Thus

X(x) = A sinλx+B cosλx

where due to the boundary conditions, B = 0 and λ = nπ, n = 1, 2, . . .. Another equation is

d2Y

dy2
−
(
m2 + λ2

)
Y = 0

with

Y (y) = A sinh
√
m2 + n2π2y +B cosh

√
m2 + n2π2y

The condition Y (0) = 0 gives B = 0. Thus

θ(x, y) =
∑

An sinnπx sinh
√
m2 + n2π2y

Example 8.1
Find the steady state temperature distribution in a square plate with uniform heat generation and uniform

temperature at the boundary.
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Variables: T (x, y) = temperature distribution; (x, y) = coordinates of a point on the plate with x and
y coordinates parallel to the sides and the origin at one corner; Qg = heat generation per unit volume; k =
thermal conductivity of plate.

The problem

∂2T

∂x2
+
∂2T

∂y2
= −

Qg

k
,

BCs: T (0, y) = T (L, y) = T (x, 0) = T (x, L) = T0,

can be written as

∂2θ

∂X2
+
∂2θ

∂Y 2
= −1,

BCs: θ(0, Y ) = θ(1, Y ) = θ(X, 0) = θ(X, 1) = 0,

where

X =
x

L
, Y =

y

L
, θ =

Qg

k
(T − T0).

(a) First method
The equation can be written as

∂2Θ

∂X2
+
∂2Θ

∂Y 2
= 0,

where

Θ = θ +
Qg

2k
X2.

with boundary conditions

Θ(0, Y ) = 0, Θ(X, 0) =
Qg

2k
X2, Θ(L, y) =

g

2k
, Θ(X, 1) =

Qg

2k
X2,

This can be split up into four problems: the same equation with each one of the following boundary
conditions.

Θ(0, Y ) = 0, Θ(X, 0) = 0, Θ(L, y) = 0, Θ(X, 1) = 0,

Θ(0, Y ) = 0, Θ(X, 0) =
Qg

2k
X2, Θ(L, y) = 0, Θ(X, 1) = 0,

Θ(0, Y ) = 0, Θ(X, 0) = 0, Θ(L, y) =
Qg

2k
, Θ(X, 1) = 0,

Θ(0, Y ) = 0, Θ(X, 0) = 0, Θ(L, y) = 0, Θ(X, 1) =
Qg

2k
X2.

Each of the four problems can be solved by separation of variables, and the results added.

(b) Second method1

The solution can be written as

θ(X,Y ) = θh(X,Y ) + θp(X,Y ),

where

∂2θh

∂X2
+
∂2θh

∂Y 2
= 0, θh = homogeneous solution

∂2θp

∂X2
+
∂2θp

∂Y 2
= −1, θp = particular solution.

1From P.A. Ramachandran, Advanced Transport Phenomena: Analysis, Modeling, and Computations, Cambridge
University Press, Cambridge, U.K., 2014.
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The particular solution is not unique. For example one can take

θp =
1

2
(1− x2).

From separation of variables, the homogeneous solution is

θh =

∞∑
n=0

An cosh(λy) cos(λx).

The complete solution is

θ =
1

2
(1− x2) +

∞∑
n=0

An cosh(λy) cos(λx),

where

λ =
π

2
(n+ 1).

From the Fourier expansion of the boundary condition at y = 1

An = −
16h2

n3π3

sin(nπ/2)

cosh(nπ/2)

(b) Third method2

T (x, y) =

∞∑
n=1

{Cn sinλnx coshλny}+
gL2

2k

{
x

L
−
( x
L

)2
}

Example 8.2
Computer problem: Use a finite difference method to calculate the temperature field in the previous

problem (choose specific numerical values of the constants).

8.4 Radiating fins

8.5 Non-Cartesian coordinates

Toroidal, bipolar.
Shape factor.
Moving boundary problem at a corner.

Bibliography

M.N. Ozisik, Heat Conduction, John Wiley, 1980.

2From D.W. Hahn and M.N. ’́Ozişik, Heat Conduction, John Wiley, New York, 2012.
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Problems

1. Show that the separation of variables solution for ∇2T = 0 for a rectangle can also be obtained through an
eigenfunction expansion procedure.

2. Consider steady-state conduction in bipolar coordinates shown in

http://mathworld.wolfram.com/BipolarCylindricalCoordinates.html

with a = 1. The two cylindrical surfaces shown as v = 1 and v = 2 are kept at temperatures T1 and T2,
respectively. Sketch the geometry of the annular material between v = 1 and v = 2 and find the temperature
distribution in it by solving the Laplace’s equation ∇2T = 0.

3. Set up and solve a conduction problem similar to Problem 2, but in parabolic cylindrical coordinates. Use
Morse and Feshbach’s notation as shown in

http://www.math.sdu.edu.cn/mathency/math/p/p059.htm

4. Consider an unsteady one-dimensional fin of constant area with base temperature known and tip adiabatic.
Use the eigenfunction expansion method to reduce the governing equation to an infinite set of ODEs and solve.

5. Consider conduction in a square plate with Dirichlet boundary conditions. Find the appropriate eigenfunctions
for the Laplacian operator for this problem.

6. Consider a square plate of side 1 m. The temperatures on each side are (a) 10◦C, (b) 10◦C, (c) 10◦C, and
(d) 10 + sin(πx) ◦C, where x is the coordinate along the edge. Find the steady-state temperature distribution
analytically. Write a computer program to do the problem numerically using finite differences and compare
with the analytical results. Choose different grid sizes and show convergence.

7. A plane wall initially at a uniform temperature is suddenly immersed in a fluid at a different temperature.
Find the temperature profile as a function of time. Assume all parameter values to be unity. Write a computer
program to do the problem numerically using finite differences and compare with the analytical results.



Chapter 9

Multidimensional convection

See [216].

9.1 Governing equations

The following equations are for constant density and viscosity. The sources (or drivers) are terms
that generate momentum or heat. The boundary conditions can also be drivers.

Mass:

∇ · V = 0. (9.1)

Momentum:

ρ
∂V

∂t
+ ρ V ·∇V = ∇ · τ + ρ f ,

where f is the body force per unit mass. A common case is gravity for which f = g, the
acceleration due to gravity. For a Newtonian fluid

τ = −pI + µ
(
∇V +

(
∇V

)T)
,

which gives the Navier-Stokes equation

ρ
∂V

∂t︸ ︷︷ ︸
accumulation

+ ρ V ·∇V︸ ︷︷ ︸
advection

= µ∇2V︸ ︷︷ ︸
diffusion

− ∇p+ ρ̃ f︸ ︷︷ ︸
sources

, (9.2)

where

ρ̃ =

{
ρ
[
1− β(T − Tref)

]
for natural convection

ρ otherwise
.

The Boussinesq approximation in natural convection allows for density change due to temper-
ature in the body force term while keeping it constant elsewhere.
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Energy: For a Fourier fluid

ρc
∂T

∂t︸ ︷︷ ︸
accumulation

+ ρcV ·∇T︸ ︷︷ ︸
advection

= k∇2T︸ ︷︷ ︸
diffusion

+Qg + Φ︸ ︷︷ ︸
sources

, (9.3)

where Qg and

Φ = µ
(
∇V +

(
∇V

)T)
: ∇V

= µ

(
∂Vi
∂xj

+
∂Vj
∂xi

)
∂Vi
∂xj

are the generation of heat and viscous dissipation per unit volume respectively.

9.1.1 Nondimensionalization

Using xc and tc as the characteristic length and time scales, respectively, we have

t = t∗tc; x = x∗xc,

so that Eqs. (9.1), (9.2), and (9.3) for a constant density fluid become

∇∗ · V ∗ = 0,

∂V ∗

∂t∗
+ V ∗ ·∇∗V ∗ =

1

Re
∇∗2V ∗ −∇∗p∗ + f∗,

∂T ∗

∂t∗
+ V ∗ ·∇∗T ∗ =

1

Pe
∇∗2T ∗ +Q∗g + Φ∗,

∂T ∗

∂t∗
+ V ∗ ·∇∗T ∗ =

1

Pe
∇∗2T ∗ +Q∗g +

Ec

Re
Φ∗,

where

V = V ∗Vc; Vc = xc/tc; p = p∗ρx2
c/t

2
c ;

∇ = ∇∗/xc; T ∗ = (T − Tref)/∆T ; f∗ =
t2c
xc

ρ̃

ρ
f ;

Q∗g =
tc

ρc∆T
Qg; Φ∗ =

(
∇∗V ∗ +

(
∇∗V ∗

)T)
: ∇∗V ∗;

Re =
Vcxc
ν

(Reynolds number); Pe =
Vcxc
α

(Péclet number); Ec =
V 2
c

c∆T
(Eckert number).

The momentum and thermal diffusivities are ν = µ/ρ and α = k/ρc respectively. Sometimes Re Pr
is used instead of Pe, where the Prandtl number Pr = ν/α.

9.1.2 Advection and diffusion

Advection is transfer that is due to bodily motion of the material. The relation between the transfer
length `a and the transfer time ta is the velocity V so that `a = V ta. Both solids and fluids can thus
transfer heat due to advection. Diffusion, on the other hand, is transfer due to molecular motion.
The property that governs its rate is the thermal diffusivity α. The diffusion length `d and time td
are related by `2d = αtd.
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Advection and diffusion can both be present. Consider a cube of fluid of side L that is at a
higher temperature ∆T than the rest. Assume first that the cube moves at velocity V without the
heat diffusing. The rate of heat transfer due to advection is then

Qadv = (ρL3)(c∆T )(V/L).

If, on the other hand, the cube did not move and the heat merely diffused, the rate of heat transfer
by conduction would be of the order of

Qdiff = k(6L2)(∆T/L).

The ratio is

Qadv

Qdiff
=

(ρL3)(c∆T )(V/L)

k(6L2)(∆T/L)
,

=
1

6

V L

α
,

=
Pe

6
.

As a numerical example, for air with V = 1 m/s, L = 0.1 m, Pe = 5000. In forced convection it is
common for the advective heat transfer to be much larger than the diffusive.

Similar diffusion processes also occur with momentum (for which the appropriate ratio is the
Reynolds number) and mass (mass Péclet number). The ratio of the momentum to heat transfer
is the Prandtl number Pr = ν/α; the ratio of the thermal to mass diffusion is the Lewis number
Le. Turbulence greatly enhances diffusion, and turbulent diffusivity is much higher than its laminar
counterpart.

9.2 Flows

9.2.1 High Reynolds number flows

See Fig. 9.1. The time t taken by a fluid particle to traverse a distance x along the plate is roughly
x/V . In this time interval the lateral spread of momentum due to diffusion is the hydrodynamic
boundary layer thickness δ ∼ (νx/V )1/2. The thermal boundary layer thickness is δT ∼ (αx/V )1/2.

In a pipe there is growth of the boundary layers from all sides until they meet at the centerline.
The hydrodynamic and thermal entrance lengths for developing flow in a pipe of diameter D are
thus xe,h ∼ (D/2)2V/ν and xe,t ∼ (D/2)2V/α, respectively. Empirical relations are

xe,h
D

=

{
0.05(V D/ν) laminar

1.359(V D/ν)1/4 turbulent

and

xe,t
D

=

{
0.05(V D/ν) Pr laminar

10 turbulent

Beyond this point the flow is fully developed hydrodynamically or thermally.
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x

V

Figure 9.1: Boundary layer on a flat plate.

9.2.2 Low Reynolds number flows

Example 9.1
(From Incropera et al.) 20 ◦C air at 40 m/s flows parallel to a 0.2 m by 0.2 m thin, flat plate which is at

100 ◦C. The air flows both above and below the plate. The drag force parallel to the plate is measured to be
0.075 N. What is the rate of heat transfer from the plate?

Assume: Modified Reynolds analogy.
Variables: ν = the dynamic viscosity; Ts = the temperature of the plate; T∞ = the temperature of the

air flow; U∞ = the velocity of the air flow; Fd = the drag force; Cf = the friction coefficient; Pr = Prandtl
number; h = convective heat transfer coefficient.

The friction coefficient can be determined by the following relation that as

Fd = Cf
ρU2
∞

2
A,

Cf =
2Fd

ρU2
∞A

.

Then the convective heat transfer coefficient h can be determined through

Cf

2
= St Pr2/3,

=

(
h

ρU∞cp

)
Pr2/3,

h =
CfρU∞cp

2Pr2/3
,

=
2Fd

ρU2
∞A

ρU∞cp

2Pr2/3
,

=
Fdcp

U∞APr2/3
.

Then the heat rate is given by

Q = 2hA(Ts − T∞).

Example 9.2
For fully-developed laminar flow determine the relation between the maximum and the bulk temperature

in (a) a circular pipe, and (b) flow between flat plates.
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Example 9.3
Consider the wing of an aircraft as a flat plate of length 2.5 m in the flow direction. The plane is moving

at 100 m/s in air at 0.7 bar, −10◦C. The top surface of the wing absorbs solar radiation at a rate of 800 W/m2.
Estimate the steady-state temperature of the wing, assuming it to be uniform.

[Clarify this.]
Variables: ν = the dynamic viscosity; Ts = the temperature of the plate; T∞ = the temperature of the

air flow; U∞ = the velocity of the air flow; h = convective heat transfer coefficient.
The Reynolds number is

Re =
u∞L

ν
= 1.404× 107;

so that the flow is turbulent. Using

NuL = 0.037Re4/5Pr1/3;

and

h =
NuLk

L
; (9.4)

the convective heat coefficient hL can be determined.
Then considering the energy balance :

Qabsorb = Qconv = 2hlA(Ts − T∞); (9.5)

the temperature of the plate Ts can be determined.

Example 9.4
Measurements show the following Reynolds and Nusselt numbers for convection from a heated object.

Re Nu
40.0 3.38
126.5 5.79
400 9.89
1265 16.92
4000 28.93

Show that the data fit a power law of the form Nu = CRem, and find C and m.

Since lnNu = lnC +m lnRe, we expand the table to get

Re lnRe Nu lnNu
40.0 3.6889 3.38 1.2179
126.5 4.8402 5.79 1.7561
400 5.9915 9.89 2.2915
1265 7.1428 16.92 2.8285
4000 8.2940 28.93 3.3649

A linear regression of ln Re and ln Nu obtained using MATLAB (shown in Fig. 9.2) gives: lnC = −0.5,
and m = 0.47, so that the linear best fit is

ln Nu = −0.5 + 0.47 ln Re,

Nu = 0.6065 Re0.47.
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Figure 9.2: Linear regression between x = ln Re and y = ln Nu.

Example 9.5
Computer problem: Write a computer program to determine the temperature profile in a flat plate laminar

boundary layer for Pr = 0.7.

9.2.3 Potential flow

[178]
If the heat flux is written as

q = ρcuT − k∇T

the energy equation is

∇ · q = 0

Heat flows along heatlines given by

dx

ρcTux − k(∂T/∂x)
=

dy

ρcTuy − k(∂T/∂y)
=

dz

ρcTuz − k(∂T/∂z)

The tangent to heatlines at every point is the direction of the heat flux vector.
Two-dimensional flow
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9.3 Leveque’s solution

Leveque (1928)

9.4 Multiple solutions

See [175].

9.5 Boundary layers

9.5.1 Flat plate

Example 9.6
From the governing equations for an incompressible fluid (continuity, Navier-Stokes, energy), derive the

ODEs for the hydrodynamic and thermal boundary layers for laminar flow over a flat plate.

Assume: steady state and boundary layers.
Governing equations:

∂u

∂x
+
∂v

∂y
= 0 continuity

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
momentum,

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
energy.

To obtain the ODEs, define a stream function ψ(x, y) as

u =
∂ψ

∂y
,

v = −
∂ψ

∂x
,

which will satisfy the continuity equation. Then define

f(η) =
ψ

u∞

√
u∞

νx
,

where

η = y

√
u∞

νx
.

Using chain rule we get

u =
∂ψ

∂y
,

=
∂ψ

∂η

∂η

∂y
,

= u∞

√
νx

u∞

df

dη

√
u∞

νx
,

= u∞
df

dη
,
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and

v = −
∂ψ

∂y
,

= −
(
u∞

√
νx

u∞

∂f

∂x
+
u∞

2

√
ν

u∞x
f

)
,

=
1

2

√
νu∞

x

(
η
df

dη
− f

)
.

Differentiating these

∂u

∂x
= −

u∞

2x
η
d2f

dη2
,

∂u

∂y
= u∞

√
u∞

νx

d2f

dη2
,

∂2u

∂y2
=
u2
∞
νx

d3f

dη3
.

Substituting back into the momentum equation and we get

2
d3f

dη3
+ f

d2f

dη2
= 0, with f =

df

dη
= 0 at η = 0,

df

dη
= 1 at η →∞.

Use

T ∗ =
T − Ts
T∞ − Ts

and T ∗ = T ∗(η) in the energy equation to get

d2T ∗

dη2
+

Pr

2
f
dT ∗

dη
= 0, with T ∗(0) = 0, T ∗(∞) = 1.

9.5.2 Falkner-Skan

9.6 Heat exchangers

[112, 163]
Shell and tube heat exchangers are commonly used for large industrial applications. Compact

heat exchangers are also common in industrial and engineering applications that exchanger heat
between two separated fluids. The term compact is understood to mean a surface to volume ratio
of more than about 700 m2/m3. The advantages are savings in cost, weight and volume of the heat
exchanger.

The fin efficiency concept was introduced by Harper and Brown (1922). The effectiveness-NTU
method was introduced by London and Seban in 1941.

A possible classification of HXs is shown in Table 9.1.

9.6.1 Parallel- and counter-flow

We define the subscripts h and c to mean hot and cold fluids, i and o for inlet and outlet, 1 the end
where the hot fluids enters, and 2 the other end. Energy balances give

dq = U(Th − Tc) dA (9.6)

dq = ±ṁcCc dTc (9.7)

dq = −ṁhCh dTh (9.8)
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Table 9.1: Classification of HX (due to Shah [179], 1981
According to Types of HXs Examples
Transfer processes Direct contact

Indirect contact (a) direct transfer,
(b) storage, (c)
fluidized bed

Surface Compact
compactness Non-compact
Construction Tubular (a) double pipe

(b) shell and tube
(c) spiral tube

Plate (a) gasketed,
(b) spiral,
(c) lamella

Extended surface (a) plate fin,
(b) tube fin

Regenerative (a) rotary disk
(b) rotary drum
(c) fixed matrix

Flow arrangement Single pass (a) parallel flow
(b) counterflow
(c) crossflow

Multipass (a) extended surface
cross counter flow,
(b) extended surface
cross parallel flow,
(c) shell and tube
parallel counterflow
shell and tube
mixed, (d) shell
and tube split
flow, (e) shell and
tube divided flow
Plate

Number of fluids Two fluid
Three fluid
Multifluid

Heat transfer Single-phase convection mechanisms on both sides
Single-phase convection on one side, two-phase
convection on other side
Two-phase convection on both sides
Combined convection and radiative heat transfer
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cold

hot

(a) parallel �ow

cold

hot

(a) counter �ow

Figure 9.3: Parallel and counter flow.

where the upper and lower signs are for parallel and counterflow, respectively. From equations (9.7)
and (9.8), we get

−dq
(

1

ṁhCh
± 1

ṁcCc

)
= d(Th − Tc) (9.9)

Using (9.6), we find that

−U dA

(
1

ṁhCh
± 1

ṁcCc

)
=
d(Th − Tc)
Th − Tc

which can be integrated from 1 to 2 to give

−UA
(

1

ṁhCh
± 1

ṁcCc

)
= ln

(Th − Tc)1

(Th − Tc)2

From equation (9.9), we get

−qT
(

1

ṁhCh
+

1

ṁcCc

)
= (Th − Tc)2 − (Th − Tc)1

where qT is the total heat transfer rate. The last two equations can be combined to give

qT = UA∆Tlmtd

where

∆Tlmtd =
(Th − Tc)1 − (Th − Tc)2

ln[(Th − Tc)1/(Th − Tc)2]

is the logarithmic mean temperature difference.
For parallel flow, we have

∆Tlmtd =
(Th,i − Tc,i)− (Th,o − Tc,o)

ln[(Th,i − Tc,i)/(Th,o − Tc,o)]
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x �ow

y �ow

Figure 9.4: Schematic of crossflow plate HX.

while for counterflow it is

∆Tlmtd =
(Th,i − Tc,o)− (Th,o − Tc,i)

ln[(Th,i − Tc,o)/(Th,o − Tc,i)]

We an write the element of area dA in terms of the perimeter P as dA = P dx, so that

Tc(x) = Tc,1 ±
q(x)

ṁcCc

Th(x) = Th,1 −
q(x)

ṁhCh

Thus

dq

dx
+ qUP

(
1

ṁhCh
± 1

ṁcCc

)
With the boundary condition q(0) = 0, the solution is

q(x) =
Th,1 − Tc,1
1

ṁhCh
± 1

ṁcCc

{
1− exp

[
−UP

(
1

ṁhCh
± 1

ṁcCc

)]}

9.6.2 Plate heat exchangers

There is flow on the two sides of a plate, 1 and 2, with an overall heat transfer coefficient of U .
Consider a rectangular plate of size Lx×Ly in the x- and y-directions, respectively, as shown in Fig.
9.4. The flow on one side of the plate is in the x-direction with a temperature field Tx(x, y). The
mass flow rate of the flow is mx per unit transverse length. The flow in the other side of the plate
is in the y-direction with the corresponding quantities Ty(x, y) and my. The overall heat transfer
coefficient between the two fluids is U , which we will take to be a constant.

For the flow in the x-direction, the steady heat balance on an elemental rectangle of size dx×dy
gives

cx mx dy
∂Tx
∂x

dx = U dx dy (Ty − Tx)

where cx is the specific heat of that fluid. Simplifying, we get

2CxR
∂Tx
∂x

= Ty − Tx (9.10)
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where R = 1/2U is proportional to the thermal resistance between the two fluids, and Cx = cxmx.
For the other fluid

2CyR
∂Ty
∂y

= Tx − Ty (9.11)

These equations have to be solved with suitable boundary conditions to obtain the temperature
fields Tx(x, y) and Ty(x, y).

From equation (9.11), we get

Tx = Ty + CyR
∂Ty
∂y

(9.12)

Substituting in equation (9.10), we have

1

Cy

∂Ty
∂x

+
1

Cx

∂Ty
∂y

+ 2R
2Ty
∂x∂y

= 0

Nusselt (Jakob, 1957) gives an interesting solution in the following manner. Let the plate be
of dimensions L and W in the x- and y-directions. Nondimensional variables are

ξ =
x

L

η =
y

W

θx =
Tx − Ty,i
Tx,i − Ty,i

θy =
Ty − Ty,i
Tx,i − Ty,i

a =
UWL

Cx

b =
UWL

Cy

The governing equations are then

a(θx − θy) = −∂θx
∂ξ

(9.13)

b(θx − θy) =
∂θy
∂η

(9.14)

with boundary conditions

θx = 1 at ξ = 0 (9.15)

θy = 0 at η = 0 (9.16)

Equation (9.14) can be written as

∂θy
∂η

+ bθy = bθx
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Solving for θy we get

θy = e−bη
(
C(ξ) + b

∫ η

0

θx(ξ, η′)ebη
′
dη′
)

From the boundary condition (9.16), we get

C = 0

so that

θy(ξ, η) = be−bη
∫ η

0

θx(ξ, η′)ebη
′
dη′

Using the same procedure, from equation (9.13) we get

θx(ξ, η) = e−aξ + ae−aξ
∫ ξ

0

θy(ξ′, η)eaξ
′
dξ′

Substituting for θy, we find the Volterra integral equation

θx(ξ, η) = e−aξ + abe−(aξ+bη)

∫ ξ

0

∫ η

0

θx(ξ′, η′)eaξ
′+bη′ dξ′ dη′

for the unknown θx.
We will first solve the Volterra equation for an arbitrary λ, where

θx(ξ, η) = e−aξ + abλe−(aξ+bη)

∫ ξ

0

∫ η

0

θx(ξ′, η′)eaξ
′+bη′ dξ′ dη′

Let us express the solution in terms of a finite power series

θx(ξ, η) = φ0(ξ, η) + λφ1(ξ, η) + λ2φ2(ξ, η) + . . .+ λnφn(ξ, η) (9.17)

This can be substituted in the integral equation. Since λ is arbitrary, the coefficient of each order
of λ must vanish. Thus

φ0(ξ, η) = e−aξ

φ1(ξ, η) = abe−(aξ+bη)

∫ ξ

0

∫ η

0

φ0(ξ′, η′)eaξ
′+bη′ dξ′ dη′

φ2(ξ, η) = abe−(aξ+bη)

∫ ξ

0

∫ η

0

φ1(ξ′, η′)eaξ
′+bη′ dξ′ dη′

...

φn(ξ, η) = abe−(aξ+bη)

∫ ξ

0

∫ η

0

φn−1(ξ′, η′)eaξ
′+bη′ dξ′ dη′
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The solutions are

φ0 = e−aξ

φ1 = aξe−aξ(1− e−bη)

φ2 =
1

2
a2ξ2e−aξ(1− e−bη − bηe−bη)

φ3 =
1

2× 3
a3ξ3e−aξ(1− e−bη − bηe−bη − 1

2
b2η2e−bη)

...

φn =
1

n!
anξne−aξ(1− e−bη − bηe−bη − . . .− 1

(n− 1)!
bn−1ηn−1e−bη)

Substituting into the expansion, equation (9.17), and taking λ = 1, we get

θx(ξ, η) = φ0(ξ, η) + φ1(ξ, η) + φ2(ξ, η) + . . .+ φn(ξ, η)

where the φs are given above.

Example 9.7
Find a solution of the same problem by separation of variables.
Taking

Ty(x, y) = X(x)Y (y)

Substituting and dividing by XY , we get

1

Cx

∂Tx

∂x
+

1

Cy

dY

dy
+ 2R = 0

Since the first term is a function only of x, and the second only of y, each must be a constant. Thus we can
write

dX

dx
+

1

cxmx(a+R)
X = 0

dY

dy
+

1

cymy(a−R)
Y = 0

where a is a constant. Solving the two equations and taking their product, we have

Ty =
c

a+R
exp

[
−

x

cxmx(a+R)
+

y

cymy(a−R)

]
where c is a constant. Substituting in equation (9.12), we get

Tx =
c

a−R
exp

[
−

x

cxmx(a+R)
+

y

cymy(a−R)

]
The rate of heat transfer over the entire plate, Q, is given by

Q = Cx

∫ L−y

0
[Tx(Lx, y)− Tx(0, y)] dy

= cCxCy exp

[
−

lx

Cx(a+R)
−

Ly

C2(a−R)
− 2

]
The heat rate can be maximized by varying either of the variables Cx or Cy .
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9.6.3 HX relations

The HX effectiveness is

ε =
Q

Qmax

=
Ch(Th,i − Th,o)
Cmin(Th,i − Tc,i)

=
Cc(Tc,o − Tc,i)
Cmin(Th,i − Tc,i)

where

Cmin = min(Ch, Cc)

Assuming U to be a constant, the number of transfer units is

NTU =
AU

Cmin

The heat capacity rate ratio is CR = Cmin/Cmax.

Effectiveness-NTU relations

In general, the effectiveness is a function of the HX configuration, its NTU and the CR of the fluids.
(a) Counterflow

ε =
1− exp[−NTU(1− CR)]

1− CR exp[−NTU(1− CR)]

so that ε→ 1 as NTU →∞.
(b) Parallel flow

ε =
1− exp[−NTU(1− CR)]

1 + CR

(c) Crossflow, both fluids unmixed
Series solution (Mason, 1954)

(d) Crossflow, one fluid mixed, the other unmixed
If the unmixed fluid has C = Cmin, then

ε = 1− exp[−CR(1− exp{−NTUCr})]

But if the mixed fluid has C = Cmin

ε = CR(1− exp{−CR(1− e−NTU )})

(e) Crossflow, both fluids mixed
(f) Tube with wall temperature constant

ε = 1− exp(−NTU)
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Pressure drop

It is important to determine the pressure drop through a heat exchanger. This is given by

∆p

p1
=

G2

2ρ1p1

[
(Kc + 1− σ2) + 2(

ρ1

ρ2
− 1) + f

Aρ1

Acρm
− (1− σ2 −Ke)

ρ1

ρ2

]
where Kc and Ke are the entrance and exit loss coefficients, and σ is the ratio of free-flow area to
frontal area.

9.6.4 Design methodology

Mean temperature-difference method: Given the inlet temperatures and flow rates, this method
enables one to find the outlet temperatures, the mean temperature difference, and then the heat
rate.

Effectiveness-NTU method: The order of calculation is NTU , ε, qmax and q.

9.7 Porous medium analogy

See Nield and Bejan, p. 87 [138].

9.8 Heat transfer augmentation

9.9 Maldistribution effects

Rohsenow (1981)

9.10 Microchannel heat exchangers

Phillips (1990).

9.11 Radiation effects

See Ozisik (1981).
Shah (1981)

9.12 Transient behavior

Ontko and Harris (1990)
For both fluids mixed

Mc
dT

dt
+ ṁ1c1(T in1 − T out1 ) + ṁc2(T in2 − T out2 ) = 0

For one fluid mixed and the other unmixed, we have

ρAc2
∂T2

∂t
+ ρV2Ac2

∂T2

∂x
+ hP (T − T1) = 0
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9.13 Correlations

9.13.1 Least squares method

Possible correlations are

y(x) =

n∑
k=0

akx
k

y(x) = a0 + a1/2x
1/2 + a1x+ a3/2x

3/2 + a2x
2 + . . .

y(x) = axm + bxn + . . .

y(x) =

∫ n

k=0

a(k)xk dk where − 1 < x < 1

A power-law correlation of the form

y = cxn

satisfies the invariance condition given by equation (??).

9.14 Compressible flow

9.15 Natural convection

9.15.1 Governing equations

9.15.2 Cavities

9.15.3 Marangoni convection

See [214].

Example 9.8
A beverage can 150 mm long and 60 mm in diameter is initially at 27 ◦C and is to be cooled by placement

in a refrigerator at 4 ◦C. In the interest of maximizing the cooling rate, should the can be laid horizontally or
vertically?

Assume: (a) Heat transfer from the can is by natural convection. (b) neglect heat transfer from the sides.
(c) Heat transfer from a vertical cylinder is assumed to be as from a vertical flat plate.

Variables: g = acceleration due to gravity; β = coefficient of volumetric expansion; Ts = exterior temper-
ature of cylinder; T∞ = refrigerator temperature; ν = coefficient of dynamic viscosity; α = thermal diffusivity;
D = diameter of cylinder; L = length of cylinder; Pr = ν/α = Prandtl number; k = thermal conductivity of
air.

Horizontal cylinder

RaD =
gβ(Ts − T∞)D3

να
,

NuD =

{
0.60 +

0.387Ra
1/6
D[

1 + (0.559/Pr)9/16
]8/27

}
,

h =
NuDk

D
,

Qh = hπDL(Ts − T∞)
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Vertical cylinder

RaL =
gβ(Ts − T∞)L3

να
,

NuL =

{
0.825 +

0.387Ra
1/6
L[

1 + (0.492/Pr)9/16
]4/9

}2

,

h =
NuLk

L
,

Qv = hπDL(Ts − T∞)

The optimum orientation of the can depends on whether Qh or Qh is greater.
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Problems

1. For parallel and counterflow heat exchangers, I obtained the temperature distributions

Th(x) = Th,1 −
Th,1 − Tc,1

1± (ṁhch/ṁccc)

[
1− exp{−UP

(
1

ṁhch
±

1

ṁccc

)
x}
]
, (9.18)

Tc(x) = Tc,1 ±
Th,1 − Tc,1

(ṁccc/ṁhch)± 1

[
1− exp{−UP

(
1

ṁhch
±

1

ṁccc

)
x}
]

(9.19)

for the hot and cold fluids, respectively. As usual the upper sign is for parallel and the lower for counterflow;
1 is the end where the hot fluid enters (from where x is measured) and 2 is where it leaves. Please check.

2. For a counterflow heat exchanger, derive the expression for the effectiveness as a function of the NTU, and also
the NTU as function of the effectiveness.

3. (From Incropera and DeWitt) A single-pass, cross-flow heat exchanger uses hot exhaust gases (mixed) to heat
water (unmixed) from 30 to 80◦C at a rate of 3 kg/s. The exhaust gases, having thermophysical properties
similar to air, enter and exit the exchanger at 225 and 100◦C, respectively. If the overall heat transfer coefficient
is 200 W/m2K, estimate the required area.

4. (From Incropera and DeWitt) A cross-flow heat exchanger used in cardiopulmonary bypass procedure cools
blood flowing at 5 liters/min from a body temperature of 37◦C to 25◦C in order to induce body hypothermia,
which reduces metabolic and oxygen requirements. The coolant is ice water at 0◦C and its flow rate is adjusted
to provide an outlet temperature of 15◦C. The heat exchanger operates with both fluids unmixed, and the
overall heat transfer coefficient is 750 W/m2K. The density and specific heat of the blood are 1050 kg/m2 and
3740 J/kg K, respectively. (a) Determine the heat transfer rate for the exchanger. (b) Calculate the water flow
rate. (c) What is the surface area of the heat exchanger?



Chapter 10

Porous media

[109, 138, 211]

10.1 Governing equations

The continuity equation for incompressible flow in a porous medium is

∇ ·V = 0 (10.1)

10.1.1 Darcy’s equation

Consider the porous medium schematically shown in Fig. 10.1. The flow is in between the granular
solid, and so the corresponding length scale is the free space between them. The Reynolds number
in Eq. (9.2) is thus small and so inertia terms on the left side can be neglected. Taking, furthermore,
the viscous stress to be proportional to the velocity, we get the simplest model for the momentum
equation in a porous medium, which is Darcy’s law

∇p = − µ
K

V + ρf (10.2)

where f is the body force per unit mass. Here K is called the permeability of the medium and
has units of inverse area. It is similar to the incompressible Navier-Stokes equation with constant
properties where the inertia terms are dropped and the viscous force per unit volume is represented
by −(µ/K)V. Sometimes a term cρ0∂V/∂t is added to the left side for transient problems, but it
is normally left out because it is small. The condition on the velocity is that of zero normal velocity
at a boundary, allowing for slip in the tangential direction.

From equations (10.1) and (10.2), for f = 0 we get

∇2p = 0

from which the pressure distribution can be determined.

10.1.2 Forchheimer’s equation

Forchheimer’s equation which is often used instead of Darcy’s equation is

∇p = − µ
K

V − cfK−1/2ρ|V|V + ρf

where cf is a dimensionless constant. There is still slip at a boundary.

196
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Figure 10.1: Schematic of porous medium.

10.1.3 Brinkman’s equation

Another alternative is Brinkman’s equation

∇p = − µ
K

V + µ̃∇2V + ρf

where µ̃ is another viscous coefficient. In this model there is no slip at a solid boundary.

10.1.4 Energy equation

The energy equation is

(ρc)m
∂T

∂t
+ ρcpV · ∇T = km∇2T

where km is the effective thermal conductivity, and

(ρc)m = φρcp + (1− φ)(ρc)m

is the average heat capacity. The subscripts m refers to the solid matrix, and φ is the porosity of
the material. An equivalent form is

σ
∂T

∂t
+ V · ∇T = αm∇2T

where

αm =
km
ρcp

σ =
(ρc)m
ρcp

See [1].
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10.2 Forced convection

10.2.1 Plane wall at constant temperature

The solution to

∂u

∂x
+
∂v

∂y
= 0

u = −K
µ

∂p

∂x

v = −K
µ

∂p

∂y

is

u = U

v = 0

For

Ux

αm
= Pex � 1

the energy equation is

u
∂T

∂x
+ v

∂T

∂y
= αm

∂2T

∂y2

or

U
∂T

∂x
= αm

∂2T

∂y2

The boundary conditions are

T (0) = Tw

T (∞) = T∞

Writing

η = y

√
U

αmx

θ(η) =
T − Tw
T∞ − Tw
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we get

∂T

∂x
= (T∞ − Tw)

dθ

dη

∂η

∂x

= (T∞ − Tw)
dθ

dη

(
−y
√

U

αm

1

2
x−3/2

)
∂T

∂y
= (T∞ − Tw)

dθ

dη

∂η

∂y

= (T∞ − Tw)
dθ

dη

√
U

αmx

∂2T

∂y2
= (T∞ − Tw)

d2θ

dη2

U

αmx

so that the equation becomes

θ′′ +
1

2
η θ′ = 0

with

θ(0) = 0

θ(∞) = 1

We multiply by the integrating factor eη
2/4 to get

d

dη

(
eη

2/4θ′
)

= 0

The first integral is

θ′ = C1e
−η2/4

Integrating again we have

θ = C1

∫ η

0

e−η
′2/4 dη′ + C2

With the change in variables x = η′/2, the solution becomes

θ = 2C1

∫ η/2

0

e−x
2

dx

Applying the boundary conditions, we find that C1 = 1/
√
π and C2 = 0. Thus

θ =
2√
π

∫ η/2

0

e−x
2

dx

= erf
η

2
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The heat transfer coefficient is defined as

h =
q′′

Tw − T∞

= − km
Tw − T∞

∂T

∂y

= km
∂θ

∂y

The local Nusselt number is given by

Nux =
hx

km

= x
∂θ

∂y

∣∣∣∣∣
y=0

=
1√
π

√
Ux

αm

=
1√
π
Pe−1/2

x

Example 10.1
Find the temperature distribution for flow in a porous medium parallel to a flat plate with uniform heat

flux.

10.2.2 Stagnation-point flow

For flow in a porous medium normal to an infinite flat plate, the velocity field is

u = Cx

v = −Cy

The energy equation is

Cx
∂T

∂x
− Cy∂T

∂y
= αm

∂2T

∂y2

10.2.3 Thermal wakes

Line source

For Pex � 1, the governing equation is

U
∂T

∂x
= αm

∂2T

∂y2
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where the boundary conditions are

∂T

∂y
= 0 at y = 0 (10.3)

q′ = (ρcp)U

∫ ∞
−∞

(T − T∞) dy (10.4)

Writing

η = y

√
U

αmx

θ(η) =
T − T∞
q′/km

√
Ux

αm

we find that

∂T

∂x
= θ

q′

km

√
αm
U

(
−1

2
x−3/2

)
+
dθ

dη
y

√
U

αm

(
−1

2
x−3/2 q

′

km

√
αm
Ux

)
∂T

∂y
=

q′

km

√
αm
Ux

dθ

dη

√
U

αmx

∂2T

∂y2
=

q′

km

√
αm
Ux

dθ

dη

U

αmx

Substituting in the equation, we get

θ′′ = −1

2
(θ + ηθ′) (10.5)

The conditions (10.3)-(10.4) become

∂θ

∂η
= 0 at η = 0∫ ∞

−∞
θ dy = 1

The equation (10.5) can be written as

θ′′ = −1

2

d

dη
(ηθ)

which integrates to

θ′ = −1

2
ηθ + C1

Since θ′ = 0 at η = 0, we find that C1 = 0. Integrating again, we get

θ = C2e
−η2/4
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A

B

gravity
y

x

Figure 10.2: Stability of horizontal porous layer; the surfaces A and B are a distance H apart.

Substituting in the other boundary condition

1 =

∫ ∞
−∞

θ dη = C2

∫ ∞
−∞

e−η
2/4 dη = 2

√
πC2

from which

C2 =
1

2
√
π

Thus the solution is

θ =
1

2
√
π
e−η

2/4

or

T − T∞ =
1

2
√
π

q′

km

√
(
αm
Ux

) exp(
−Uy2

4αmx
)

Example 10.2
Show that for a point source

T − T∞ =
q

4πkx
exp(

−Ur2

4αmx
)

10.3 Natural convection

10.3.1 Linear stability

This is often called the Horton-Rogers-Lapwood problem, and consists of finding the stability of a
horizontal layer of fluid in a saturated porous medium heated from below. The two-dimensional
geometry is shown in Fig. 10.2.

The governing equations are

∇ ·V = 0

−∇p− µ

K
V + ρg = 0

σ
∂T

∂t
+ V · ∇T = αm∇2T

ρ = ρ0 [1− β (T − T0)]
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where g = −gj. The basic steady solution is

V̄ = 0

T̄ = T0 + ∆T
(

1− y

H

)
p = p0 − ρ0g

[
y +

1

2
β∆T

(
y2

H
− 2y

)]
For constant heat flux ∆T = q′′s /km. We apply a perturbation to each variable as

V = V̄ + V′

T = T̄ + T ′

p = p̄+ p′

Substituting and linearizing

∇ ·V′ = 0

−∇p′ − µ

K
V′ − βρ0T

′g = 0

∂T ′

∂t
− ∆T

H
w′ = αm∇2T ′

Using the nondimensional variables

x∗ =
x

H
, t∗ =

αmt

σH2
,

V′∗ =
HV′

αm
, T ′∗ =

T ′

∆T
, p′∗ =

Kp′

µαm

the equations become, on dropping ′s and ∗s

∇ ·V = 0

−∇p−V +Ra Tk = 0

∂T

∂t
− w = ∇2T

where

Ra =
ρ0gβKH∆T

µαm

From these equations we get

∇2w = Ra∇2
HT

where

∇H =
∂2

∂x2

Using separation of variables

w(x, y, z, t) = W (y) exp (st+ ikxx)

T (x, y, z, t) = Θ(y) exp (st+ ikxx)
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Substituting into the equations we get(
d2

dy2
− k2 − s

)
Θ = −W(

d2

dy2
− k2

)
W = −k2Ra Θ

where

k2 = k2
x + k2

y

Isothermal boundary conditions

The boundary conditions are W = Θ = 0 at either wall. For the solutions to remain bounded as
x, y → ∞, the wavenumbers kx and ky must be real. Furthermore, since the eigenvalue problem is
self-adjoint, as shown below, it can be shown that s is also real.

For a self-adjoint operator L, we must have

(u, Lv) = (Lu, v)

If

vL(u)− uL(v) =
∂P

∂x
+
∂Q

∂y

then ∫
V

[vL(u)− uL(v)] dV =

∫ (
∂P

∂x
+
∂Q

∂y

)
dV

=

∫
V

∇ · (P i +Qj) dV

=

∫
S

n · (P i +Qj)

If n·(P i+Qj) = 0 at the boundaries (i.e. impermeable), which is the case here, then L is self-adjoint.
Thus, marginal stability occurs when s = 0, for which(

d2

dy2
− k2

)
Θ = −W(

d2

dy2
− k2

)
W = −k2Ra Θ

from which (
d2

dy2
− k2

)2

W = k2Ra W

The eigenfunctions are

W = sinnπy
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where n = 1, 2, 3, . . ., as long as

Ra =

(
n2π2

k
+ k

)2

For each n there is a minimum value of the critical Rayleigh number determined by

dRa

dk
= 2

(
n2π2

k
+ k

)[
−n

2π2

k2
+ 1

]
The lowest critical Ra is with k = π and n = 1, which gives

Rac = 4π2

for the onset of instability.

Constant heat flux conditions

Here W = dΘ/dy = 0 at the walls. We write

W = W0 + α2W1 + . . .

Θ = Θ0 + α2Θ1 + . . .

Ra = Ra0 + α2Ra1 + . . .

For the zeroth order system

d2W0

dy2
= 0

with W0 = dΘ0/dy = 0 at the walls. The solutions is W0 = 0, Θ0 = 1. To the next order

d2W1

dy2
= W0 −Ra0Θ0

d2Θ1

dy2
+W1 = Θ0

with W1 = dΘ1/dy = 0 at the walls. Finally, we get Rac = 12.

10.3.2 Steady-state inclined layer solutions

Consider an inclined porous layer of thickness H at angle φ with respect to the horizontal shown in
Fig. 10.3

Introducing the streamfunction ψ(x, y), where

u =
∂ψ

∂y
,

v = −∂ψ
∂x

,
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x

y

φ

Figure 10.3: Inclined porous layer.

satisfies the continuity equation. Darcy’s equation becomes

−∂p
∂x
− µ

K

∂ψ

∂y
= ρ0g [1− β(T − T0)] sinφ,

−∂p
∂y

+
µ

K

∂ψ

∂x
= ρ0g [1− β(T − T0)] cosφ.

Taking ∂/∂y of the first and ∂/∂x of the second and subtracting, we have

∂2ψ

∂x2
+
∂2ψ

∂y2
= −ρ0gβK

µ

(
∂T

∂x
cosφ− ∂T

∂y
sinφ

)
.

The energy equation is (
∂ψ

∂y

∂T

∂x
− ∂ψ

∂x

∂T

∂y

)
= αm

(
∂2T

∂x2
+
∂2T

∂y2

)
.

Side-wall heating

The non-dimensional equations are

∂2ψ

∂x2
+
∂2ψ

∂y2
= −Ra

(
∂T

∂x
cosφ− ∂T

∂y
sinφ

)
,

∂ψ

∂y

∂T

∂x
− ∂ψ

∂x

∂T

∂y
=
∂2T

∂x2
+
∂2T

∂y2
.

The boundary conditions are

ψ = 0,
∂T

∂x
= 0 at x = ±A

2
,

ψ = 0,
∂T

∂y
= −1 at y = ±1

2
.
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With a parallel-flow approximation, we assume [176]

ψ = ψ(y)

T = Cx+ θ(y)

The governing equations become

∂2ψ

∂y2
−Ra sinφ

dθ

dy
+RC cosφ = 0

d2θ

dy2
− C dψ

dy
= 0

An additional constraint is the heat transported across a transversal section should be zero. Thus∫ 1/2

−1/2

(
uT − ∂T

∂x

)
dy = 0 (10.6)

Let us look at three cases.

(a) Horizontal layer
For φ = 0◦ the temperature and streamfunction are

T = Cx− y
[
1 +

RaC2

24

(
4y2 − 3

)]
ψ = −RaC

8

(
4y2 − 1

)
Substituting in condition (10.6), we get

C
(
10R−Ra2C2 − 120

)
= 0

the solutions of which are

C = 0

C =
1

Ra

√
10(Ra− 12)

C = − 1

Ra

√
10(Ra− 12)

The only real solution that exists for Ra ≤ 12 is the conductive solution C = 0. For C > 12, there
are two nonzero values of C which lead to convective solutions, for which

ψc =
RaC

8

Nu =
12

12−RaC2

For φ = 180◦, the only real value of C is zero, so that only the conductive solution exists.

(b) Natural circulation
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Let us take C sinφ > 0, for which we get

ψc =
B

C

(
1− cosh

α

2

)
Nu = − α

2B sinh α
2 + αC cotφ

where

α2 = RC sinφ

B = −1 + C cotφ

cosh α
2

and the constant C is determined from

C − B2

2C

(
sinhα

α
− 1

)
−B cotφ

(
cosh

α

2
− 2

α
sinh

α

2

)
= 0

(c) Antinatural circulation
For C sinφ < 0, for which we get

ψc =
B

C

(
1− cosh

β

2

)
Nu = − β

2B sinh β
2 + βC cotφ

where

β2 = −RC sinφ

B = −1 + C cotφ

cosh β
2

and the constant C is determined from

C − B2

2C

(
sinβ

β
− 1

)
−B cotφ

(
cosh

β

2
− 2

β
sinh

β

2

)
= 0

End-wall heating

Darcy’s law is

∇2ψ = R

(
∂T

∂x
sinφ+

∂T

∂y
cosφ

)
The boundary conditions are

ψ = 0,
∂T

∂x
= −1 at x = ±A

2

ψ = 0,
∂T

∂y
= 0 at x = ±1

2
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With a parallel-flow approximation, we assume

ψ = ψ(y)

T = Cx+ θ(y)

The governing equations become

d2θ

dy2
− C dψ

dy
= 0

∂2ψ

∂y2
−R cosφ

dθ

dy
−RC sinφ = 0

An additional constraint is the heat transported across a transversal section. Thus∫ 1/2

−1/2

(
uT − ∂T

∂x

)
dy = 1 (10.7)

Let us look at three cases.

(a) Vertical layer
For φ = 0◦ the temperature and streamfunction are

T = Cx+
B1

α
sin(αy)− B2

α
cos(αy)

ψ =
B1

C
cos(αy) +

B2

C
sin(αy) +B3

where

α2 = −RC

Substituting in condition (10.6), we get

C
(
10R−R2C2 − 120

)
= 0

the solutions of which are

C = 0

C =
1

R

√
10(R− 12)

C = − 1

R

√
10(R− 12)

The only real solution that exists for R ≤ 12 is the conductive solution C = 0. For C > 12, there
are two nonzero values of C which lead to convective solutions, for which

ψc =
RC

8

Nu =
12

12−RC

For φ = 180◦, the only real value of C is zero, so that only the conductive solution exists.
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(b) Natural circulation
Let us take C sinφ > 0, for which we get

ψc =
B

C

(
1− cosh

α

2

)
Nu = − α

2B sinh α
2 + αC cotφ

where

α2 = RC sinφ

B = −1 + C cotφ

cosh α
2

and the constant C is determined from

C − B2

2C

(
sinhα

α
− 1

)
−B cotφ

(
cosh

α

2
− 2

α
sinh

α

2

)
= 0

(c) Antinatural circulation
For C sinφ > 0, for which we get

ψc =
B

C

(
1− cosh

β

2

)
Nu = − β

2B sinh β
2 + βC cotφ

where

β2 = −RC sinφ

B = −1 + C cotφ

cosh β
2

and the constant C is determined from

C − B2

2C

(
sinβ

β
− 1

)
−B cotφ

(
cosh

β

2
− 2

β
sinh

β

2

)
= 0
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Problems

1. This is a problem.



Appendix A

Fractional derivatives

Cauchy’s formula for repeated integration is

In =

∫ x

a

∫ σ1

a

. . .

∫ σn−1

a

f(σn) dσn . . . dσ1,

=
1

(n− 1)!

∫ x

a

(x− y)n−1f(y) dy.

Generalize n to real number, and factorial to gamma function to get the Riemann-Liouville fractional
integral

IαRLf(x) =
1

Γ(α)

∫ x

a

f(t)

(x− t)1−α dt.

Differentiating n times we have the Riemann-Liouville fractional derivative

Dα
RLf(x) =

1

Γ(n− α)

dn

dxn

∫ x

a

f(t)

(x− t)1+α−n dt, n− 1 ≤ α < n.

The Caputo fractional derivative is

Dα
Cf(x) =

1

Γ(n− α)

∫ x

a

f (n)(t)

(x− t)1+α−n dt, n− 1 ≤ α < n.

The Grünwald-Letnikov fractional derivative is

Dα
Gf(x) = lim

h→0

1

hα

(x−a)/h∑
m=0

(−1)m
Γ(α+ 1)

m! Γ(α−m+ 1)
f(x−mh).

Examples of fractional derivative are in Fig. A.1.

A.1 Experiments with shell-and-tube heat exchanger

For this experiment [? ], a shell-and-tube heat exchanger, shown in Fig. A.2, was tested and the
inlet and outlet temperatures on both the cold and hot side were recorded. The inlet flow rates were

211
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Figure A.1: Fractional derivatives Dα
RLf(x) of x2; (a) α = 0.2, 0.4, 0.6, 0.8, 1.0. (b) α =

1, 1.2, 1.4, 1.6, 1.8, 2.0. From Schumer et al. (2001)

Tci

Hci

Hco

Tco

Figure A.2: Shell-and-tube heat exchanger.
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held constant in both the cold and hot sides and the inlet temperatures were controlled to remain
constant. After the system reached equilibrium for a given set of conditions, a step change (on-off)
in the flow rate of the cold-side was applied. Experimental results of two tests are shown in Fig. A.3,
where the non-dimensional temperature is given by

T ∗(t) =
Th,o(t)− Th,o(0)

Th,o(∞)− Th,o(0)
,

and time is non-dimensionalized by

t∗ =
t

τr
,

where τr is the rise time, defined as the time required for Th,o(t) to reach 85% of Th,o(∞).
The approximations are the following.

first-order c1D
1y(t) + c2y(t) = u(t) (A.1a)

second-order c1D
2y(t) + c2D

1y(t) + c3y(t) = u(t) (A.1b)

fractional-order c1D
αy(t) + c2y(t) = u(t) [Sol.

1

c1
tαEα,α+1(−c2

c1
tα)] (A.1c)

Data Set #1
Model c1 c2 c3 α

∑
error2

First-order 1.0401 0.028554 3.5284e-03
Second-order 0.097011 0.59086 0.89968 7.6902e-04

Fractional-order 0.22381 2.1700 1.8911 9.5609e-05

α = 1.8196 0.24855 2.0221 1.3355e-04

Data Set #2
Model c1 c2 c3 α

∑
error2

First-order 1.2536 -0.32904 1.4135e-03
Second-order 0.12359 0.65039 0.85564 1.0973e-04

Fractional-order 0.33183 1.8782 1.7481 2.7757e-05

α = 1.8196 0.2976 2.0476 4.9404e-05

The three models proposed in Eq. A.1 were used to find best fit approximations. In both data
sets, the fractional-order model resulted in a better approximation than either the first or second
order models. Data set #1 is shown to be fit best with a derivative of order α = 1.8911 and data
set #2 with a derivative of order α = 1.7481. The average α = 1.8196 also outperforms both the
first and second order models, despite the same number of free parameters.

A.2 Fractional time derivative in heat equation

Consider a semi-infinite body, ∞ < x ≤ 0, shown in Fig. A.4 [? ]. The initial temperature is
T (0, x) = T0, and the surface temperature is T (0, t) = Ts(t).
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Figure A.3: Best fit approximations to shell-and-tube data using first, second, and fractional-order
models. Dotted line is filtered data, dashed line is first-order model, dash-dot is second-order model,
and solid line is fractional-order model.
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x

Ts

Figure A.4: Semi-infinite body.

Writing T ∗(t, x) = T (t, x)− T0,

∂T ∗

∂t
= α

∂2T ∗

∂x2
, t ≥ 0, −∞ < x ≤ 0,

T ∗(0, x) = 0,

T ∗(t, 0) = T ∗s (t),∣∣∣∣ lim
x→−∞

T ∗(t, x)

∣∣∣∣ < 0.

The Laplace transform in time is T̂ ∗(s, x), where1

s T̂ ∗ = α
d2T̂ ∗

dx2
.

The solution that is bounded for x→ −∞ is

T̂ ∗ = T̂ ∗(s, 0) exp
(
x
√
s/α

)
.

From this

∂T̂ ∗

∂x
= T̂ ∗(s, 0)

√
s

α
exp

(
x
√
s/α

)
,

so that at x = 0

1√
s

∂T̂ ∗

∂x
(s, 0) =

1√
α
T̂ ∗(s, 0).

The inverse transform of this gives

0D
−1/2
t

[
∂T ∗

∂t
(t, 0)

]
=

1√
α
T ∗(t, 0),

1The Laplace transform of f(t) is F (s), and that of 0Dαt f(t) is sαF (s)−
∑n−1
k=0 s

k
0D

α−1−k
t f(t)

∣∣
t=0

.
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Figure A.5: n-generational tree.

from which

∂T ∗

∂x
(t, 0) =

1√
α

0D
1/2
t [T ∗(t, 0)] .

The heat flux at x = 0 is

qs = −k∂T
∗

∂x
(t, 0),

= − k√
α

0D
1/2
t

[
∂T ∗

∂t
(t, 0)

]
.

Alternatively, since

D
1/2
t D

1/2
t = D1

t ,

D1
x D

1
x = D2

x,

we have

D
1/2
t T =

√
αD1

x

√
αD1

x T

A.3 Self-similar trees

See Fig. A.5.
Potential-driven flow

∆V = iZ where


∆V = potential difference

i = flow rate

Z = impedance

The equivalent impedance for a capacitor-resistor tree [? ] called fractance, is in Fig. A.6.

1

Z
=

1

(sC)−1 + Z
+

1

R+ Z
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Z

Z

L

R

Figure A.6: Equivalent impedance for fractance.

x

c

Figure A.7: CAPTION HERE.

from which

Z =

(
R

sC

)1/2

Converting back from the Laplace domain,

∆V (t) =
(R/C)1/2

Γ(1/2)

∫ t

0

i(t∗)

(t− τ)1/2
dt∗,

Potential-driven flow networks [? ]

L(q) = ∆p

qi,j = qi+1,2j−1 + qi+1,2j

Overall behavior of tree

LNqN = pin − pout,

qi

qo1

qo2
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where

LN =
1

1

L1,1 +
1

1

L2,1 + . . .
+

1

L2,2 + . . .

+
1

L1,2 +
1

1

L2,3 + . . .
+

1

L2,4 + . . .

.

Self-symmetric trees

LN =
1

1

L1 +
1

1

L1 + . . .
+

1

L2 + . . .

+
1

L2 +
1

1

L1 + . . .
+

1

L2 + . . .

For N →∞

L∞ =
1

1

L1 + L∞
+

1

L2 + L∞

L∞ =
√
L1 L2

A.4 Continued fractions

x =
1

1 +
1

1 +
1

1 + · · ·

=
1

1 + x

x2 + x− 1 = 0

x =


−1 +

√
5

2
golden mean

−1−
√

5

2

A.5 Mittag-Leffler functions

Define the two-parameter function

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
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Figure A.8: L∞ shown with LN for different values of N . As N increases, LN converges to L∞ in
the Laplace domain while in the time domain LN converges to L∞.
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Thus

E1,1(z) =

∞∑
k=0

zk

Γ(k + 1)
=

∞∑
k=0

zk

k!
= ez.



Appendix B

More on natural circulation loops

B.1 Mixed heating

The following has been written by A. Pacheco-Vega.
It is common, especially in experiments, to have one part of the loop heated with a known heat

rate and the rest with known wall temperature. Thus for part of the loop the wall temperature is
known so that q = PU(T − Tw(s)), while q(s) is known for the rest. As an example, consider

q =

{
PU(T − T0) for φ

2π ≤ s ≤ π + φ
2π

q0 for π + φ
2π < s < 2π + φ

2π

where T0 and q0 are constants.

B.2 Modeling

[1]
If we consider a one-dimensional incompressible flow, the equation of continuity indicates that

the velocity v is a function of time alone. Thus,

v = v(t).

Taking an infinitesimal cylindrical control volume of fluid in the loop πr2dθ, see Figure (B.1), the
momentum equation in the θ-direction can be written as

ρπr2Rdθ
dv

dt
= −πr2dθ

dp

dθ
− ρgπr2Rdθ cos(θ + α)− τw2πrRdθ (B.1)

Integrating Eq. (B.1) around the loop using the Boussinesq approximation ρ = ρw[1− β(T −
Tw)], with the shear stress at the wall being approximated by that corresponding to Poiseuille flow
in a straight pipe τw = 8µv/ρwr

2, the expression of the balance in Eq. (B.1) modifies to

dv

dt
+

8µ

ρwr2
v =

βg

2π

∫ 2π

0

(T − Tw) cos(θ + α) dθ (B.2)

221
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Figure B.1: Schematic of a convection loop heated with constant heat flux in one half and cooled at
constant temperature in the other half.

Neglecting axial heat conduction, the temperature of the fluid satisfies the following energy balance
equation

ρwcp

(
∂T

∂t
+
v

R

∂T

∂θ

)
=

 −
2h
r (T − Tw), 0 ≤ θ ≤ π

2
r q, π < θ < 2π

(B.3)

Following the notation used by Greif et al. (1979), the nondimensional time, velocity and tempera-
ture are defined as

τ =
t

2πR/V
, w =

v

V
, φ =

T − Tw
q/h

respectively, where

V =

(
gβRrq

2πcpµ

)1/2

.

Accordingly, Eqs. (B.2) and (B.3) become

dw

dτ
+ Γw =

πΓ

4D

∫ 2π

0

φ cos(θ + α) dθ (B.4)

and

∂φ

∂τ
+ 2πw

∂φ

∂θ
=

{
−2Dφ, 0 ≤ θ ≤ π
2D, π < θ < 2π

(B.5)

where the parameters D and Γ are defined by

D =
2πRh

ρwcprV
Γ =

16πµR

ρwr2V
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B.3 Steady State

The steady-state governing equations without axial conduction are

w =
π

4D

∫ 2π

0

φ cos(θ + α) dθ (B.6)

and

dφ

dθ
=

 −
D
πw φ, 0 ≤ θ ≤ π

D
πw , π < θ < 2π

(B.7)

where w and φ are the steady-state values of velocity and temperature respectively. Eq. (B.7) can
be integrated to give

φ(θ) =

 A e−(Dθ/πw), 0 ≤ θ ≤ π

D
πw θ +B, π < θ < 2π

Applying the condition of continuity in the temperature, such that φ(0) = φ(2π) and φ(π−) = φ(π+)
the constants A and B can be determined. These are

A =
D

w

1

1− e(−D/w)
B =

D

w

[
2 e(−D/w) − 1

1− e(−D/w)

]
The resulting temperature filed is

φ(θ) =


D
w
e−(Dθ/πw)

1−e−(D/w) , 0 ≤ θ ≤ π

D
w

[
θ
π + 2e−(D/w)−1

1−e−(D/w)

]
, π < θ < 2π

(B.8)

Substituion of Eq. (B.7) in Eq. (B.6), followed by an expansion of cos(θ + α), leads to

w =
π

4D
cosα

{∫ π

0

D

w

e−(Dθ/πw)

1− e−(D/w)
cos θ dθ

+

∫ 2π

π

D

w

[
θ

π
+

2e−(D/w) − 1

1− e−(D/w)

]
cos θ dθ

}
− π

4D
sinα

{∫ π

0

D

w

e−(Dθ/πw)

1− e−(D/w)
sin θ dθ

+

∫ 2π

π

D

w

[
θ

π
+

2e−(D/w) − 1

1− e−(D/w)

]
sin θ dθ

}
and integration around the loop, gives the steady-state velocity as

w2 =
cosα

2
+

(D/w) cosα+ π(D/w)2 sinα

4
[
1 +

(
D
πw

)2] (
1 + e−(D/w)

1− e−(D/w)

)
.
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As a final step, multiplying the numerator and denominator by e(D/2w) and rearranging terms leads
to the expresion for the function of the steady-state velocity

G(w,α,D) = w2 − cosα

2
− (D/w) cosα+ π(D/w)2 sinα

4
[
1 +

(
D
πw

)2] coth(D/2 w) = 0

(B.9)

For α = 0, symmetric steady-state solutions for the fluid velocity are possible since G(w, 0, D) is an
even function of w. In this case Eq.(B.9) reduces to

w2 =
1

2
+

(D/w)
[
1 + e−(D/w)

]
4
[
1 +

(
D
πw

)2] [
1− e−(D/w)

] . (B.10)

The steady-state solutions of the velocity field and temperature are shown next. Figure B.2
shows the w − α curves for different values of the parameter D. Regions of zero, one, two and
three solutions can be identified. The regions of no possible steady-state velocity are: −180◦ < α <
−147.5◦ and 147.5◦ < α < 180◦. There is only one velocity for the ranges −147.5◦ < α < −α0

and α0 < α < 147.5◦ where α0 varies from 90◦ at a value of D = 0.001 to α0 = 32.5◦ when
D = 100. Three velocities are obtained for −α0 < α < −32.5◦ and 32.5◦ < α < α0, except for the
zero-inclination case which has two possible steady-state velocities. The temperature distribution
in the loop, for three values of the parameter D and α = 0 is presented in Figure B.3. From
the φ − θ curves it can be seen the dependence of the temperature with D. As D increases the
variation in temperature between two opposit points also increases. When has a value D = 0.1 the
heating and cooling curves are almost straight lines, while at a value of D = 1.0 the temperature
decays exponentially and rises linearly. Similar but more drastic change in temperature is seen when
D = 2.5. Figure B.4 shows the φ − θ curves for three different inclination angles with D = 2.5. It
can be seen the increase in the temperature as α takes values of α = 0◦, α = 90◦ and α = 135◦. This
behaviour is somewhat expected since the steady-state velocity is decreasing in value such that the
fluid stays longer in both parts of the loop. Figure B.5 shows the steady-state velocity as a function
of D for different angles of inclination α. For α = 0 we have two branches of the velocity-curve
which are symmetric. The positive and negative values of the velocity are equal in magnitude for
any value of D. For α = 45◦, the two branches are not symmetric while for α = 90◦ and α = 135◦,
only the positive branch exist.

B.4 Dynamic Analysis

The temperature can be expanded in Fourier series, such that

φ = φ0 +

∞∑
n=1

[φcn(t) cos(nθ) + φsn(t) sin(nθ)] (B.11)

Substituiting into Eqs. (B.4) and (B.5), we have

dw

dτ
+ Γw =

π2Γ

4D
cosαφc1 −

π2Γ

4D
sinαφs1 (B.12)
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and

dφc0
dτ

+

∞∑
n=1

[
dφcn
dτ

cos (nθ) +
dφsn
dτ

sin (nθ)

]

+2πw

∞∑
n=1

[−nφcn sin (nθ) + nφsn cos (nθ)]

=

 −2D {φc0 +
∑∞
n=1 [φcn(t) cos(nθ) + φsn(t) sin (nθ)]} , 0 ≤ θ ≤ π

2D, π < θ < 2π
(B.13)

Integrating Eq. (B.13) from θ = 0 to θ = 2π we get

dφc0
dτ

= −D

[
φc0 −

1

π

∞∑
n=1

φsn
n

[(−1)n − 1]− 1

]
(B.14)

Multiplying by cos (mθ) and integrating from θ = 0 to θ = 2π

dφcm
dτ

+ 2πm w φsm = −Dφcm +
D

π

∞∑
n=1
n6=m

φsn
[
(−1)m+n − 1

] 2n

n2 −m2
(B.15)

Now multiplying by sin (mθ) and integrating from θ = 0 to θ = 2π

dφsm
dτ
− 2πm w φcm = −Dφsm +

D

π

∞∑
n=0
n6=m

φcn
[
(−1)m+n − 1

] 2m

m2 − n2

− 2D

πm
[1− (−1)m] (B.16)

for m ≥ 1.
Choosing the variables

w = w

C0 = φc0

Cm = φcm

Sm = φsm

we get an infinte-dimensional dynamical system

dw

dτ
= −Γw +

π2Γ

4D
cosα C1 −

π2Γ

4D
sinα S1 (B.17)

dC0

dτ
= −D C0 +

D

π

∞∑
n=1

Sn
n

[(−1)n − 1] +D (B.18)

dCm
dτ

= −2πm w Sm −D Cm +
D

π

∞∑
n=1
n6=m

Sn
[
(−1)m+n − 1

] 2n

n2 −m2
(B.19)

dSm
dτ

= 2πm w Cm −D Sm +
D

π

∞∑
n=0
n6=m

Cn
[
(−1)m+n − 1

] 2m

m2 − n2

+
2D

πm
[(−1)m − 1] (B.20)
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for m ≥ 1. The physical significance of the variables are: w is the fluid velocity, C is the horizontal
temperature difference, and S is the vertical temperature difference. The parameters of the system
are D, Γ and α. D and Γ are positive, while α can have any sign.

The critical points are found by equating the vector filed to zero, so that

w − π2

4D
cosα C1 +

π2

4D
sinα S1 = 0

(C0 − 1)− 1

π

∞∑
n=1

Sn
n

[(−1)n − 1] = 0

2πm w Sm +D Cm −
D

π

∞∑
n=1
n6=m

Sn
[
(−1)m+n − 1

] 2n

n2 −m2
= 0

2πm w Cm −D Sm +
D

π

∞∑
n=0
n6=m

Cn
[
(−1)m+n − 1

] 2m

m2 − n2

+
2D

πm
[(−1)m − 1] = 0

However, a convenient alternative way to determine the critical points is by using a Fourier
series expansion of the steady-state temperature field solution given in Eq. (B.8). The Fourier series
expansion is

φ =

∞∑
n=0

[
Cn cos(nθ) + Sn sin(nθ)

]
(B.21)

Performing the inner product between Eq. (B.8) and cos(mθ) we have

D

w

1

1− e−(D/w)

∫ π

0

e−(Dθ/πw) cos(mθ) dθ

+
D

w

∫ 2π

π

[
θ

π
+

2e−(D/w) − 1

1− e−(D/w)

]
cos(mθ) dθ

=

∞∑
n=0

Cn

∫ 2π

0

cos(nθ) cos(mθ) dθ +

∞∑
n=0

Sn

∫ 2π

0

sin(nθ) cos(mθ)dθ

Now the inner product between Eq. (B.8) and sin(mθ) gives

D

w

1

1− e−(D/w)

∫ π

0

e−(Dθ/πw) sin(mθ) dθ

+
D

w

∫ 2π

π

[
θ

π
+

2e−(D/w) − 1

1− e−(D/w)

]
sin(mθ) dθ

=

∞∑
n=0

Cn

∫ 2π

0

cos(nθ) sin(mθ) dθ +

∞∑
n=0

Sn

∫ 2π

0

sin(nθ) sin(mθ)dθ



B.4. Dynamic Analysis 229

from which we get

C0 =
1

2

[
1 +

D

w

(
3

2
+

2e−(D/w) − 1

1− e−(D/w)

)]
(B.22)

Cm =

(
D
πw

)2[
m2 +

(
D
πw

)2] 1− e−(D/w) cos(mπ)

1− e−(D/w)
+

D

π2m2w
[1− cos(mπ)] (B.23)

Sm = −


(
D
πw

)3
m
[
m2 +

(
D
πw

)2] 1− e−(D/w) cos(mπ)

1− e−(D/w)

 (B.24)

To analyze the stability of a critical point (w,C0, C1, · · · , Cm, S1, · · · , Sm) we add perturba-
tions of the form

w = w + w′ (B.25)

C0 = C0 + C ′0 (B.26)

C1 = C1 + C ′1 (B.27)

... (B.28)

Cm = Cm + C ′m (B.29)

S1 = S1 + S′1 (B.30)

... (B.31)

Sm = Sm + S′m (B.32)

Substituting in Eqs. (B.17) to (B.20), we obtain the local form

dw′

dτ
= −Γw′ +

π2Γ

4D
cosα C ′1 −

π2Γ

4D
sinα S′1 (B.33)

dC ′0
dτ

= −D C ′0 +
D

π

∞∑
n=1

(−1)n − 1

n
S′n (B.34)

dC ′m
dτ

= −2πm w S′m − 2πm Sm w′ −D C ′m

+
D

π

∞∑
n=1
n 6=m

2n

n2 −m2

[
(−1)m+n − 1

]
S′n − 2πm w′ S′m m ≥ 1

(B.35)

dS′m
dτ

= 2πm w C ′m + 2πm Cm w′ −D S′m

+
D

π

∞∑
n=0
n 6=m

2m

m2 − n2

[
(−1)m+n − 1

]
C ′n + 2πm w′ C ′m m ≥ 1

(B.36)
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The linearized version is

dw′

dτ
= −Γw′ +

π2Γ

4D
cosα C ′1 −

π2Γ

4D
sinα S′1 (B.37)

dC ′0
dτ

= −D C ′0 +
D

π

∞∑
n=1

(−1)n − 1

n
S′n (B.38)

dC ′m
dτ

= −2πm w S′m − 2πm Sm w′ −D C ′m

+
D

π

∞∑
n=1
n6=m

2n

n2 −m2

[
(−1)m+n − 1

]
S′n m ≥ 1

(B.39)

dS′m
dτ

= 2πm w C ′m + 2πm Cm w′ −D S′m

+
D

π

∞∑
n=0
n 6=m

2m

m2 − n2

[
(−1)m+n − 1

]
C ′n m ≥ 1

(B.40)

In general, the system given by Eqs. (B.17) to (B.20) can be written as

dx

dt
= f(x) (B.41)

The eigenvalues of the linearized system given by Eqs. (B.37) to (B.40), and in general form
as

dx

dt
= Ax (B.42)

are obtained numerically, such that

|A− λI| = 0

where A is the Jacobian matrix corresponding to the vector field of the linearized system, I is the
identity matrix, and λ are the eigenvalues. The neutral stability curve is obtained numerically from
the condition that <(λ) = 0. A schematic of the neutral curve is presented in Figure B.6 for α = 0.
In this figure, the stable and unstable regions can be identified. Along the line of neutral stability,
a Hopf-type of bifurcation occurs. Figure B.7 shows the plot of w − α curve for a value of the
parameters D = 0.1 and Γ = 0.20029. When α = 0, a Hopf bifurcation for both the positive and
negative branches of the curve can be observed, where stable and unstable regions can be identified.
It is clear that the natural branches which correspond to the first and third quadrants are stable,
whereas the antinatural branches, second and fourth quadrants are unstable. The symmetry between
the first and third quadrants, and, between the second and fourth quadrants can be notice as well.
The corresponding eigenvalues of the bifurcation point are shown in Figure B.8. The number of
eigenvalues in this figure is 42 which are obtained from a dynamical system of dimension 42. This
system results from truncating the infinite dimensional system at a number for which the value of
the leading eigenvalues does not change when increasing its dimension. When we increase the size of
the system, new eigenvalues appear in such a way that they are placed symmetrically farther from
the real axis and aligned to the previous set of slave complex eigenmodes. This behaviour seems to
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Figure B.6: Stability curve D and Γ for a thermosyphon inclination α = 0.
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Figure B.7: Stability curve w vs. α for D = 0.1, and Γ = 0.20029.

be a characteristic of the dynamical system itself. Figure B.9 illustrates a view of several stability
curves, each for a different value of the tilt angle α in a D − Γ plane at α = 0. In this plot, the
neutral curves appear to unfold when decreasing the tilt angle from 75.5◦ to −32.5◦ increasing the
region of instability. On the other hand, Figure B.10 illustrates the linear stability characteristics of
the dynamical system in a w−α plot for a fixed Γ and three values of the parameter D. The stable
and unstable regions can be observed. Hopf bifurcations occur for each branch of ecah particular
curve. However, it is to be notice that the bifurcation occurs at a higher value of the tilt angle when
D is smaller.

B.5 Nonlinear analysis

Let us select D = 1.5, and increase Γ. Figures B.11 and B.12 show the w− τ time series and phase-
space curves for Γ = 0.95Γcr, whereas Figures B.13 and B.14 show the results for Γ = 1.01Γcr. The
plots suggest the appearance of a subcritical Hopf bifurcation. Two attractors coexist for Γ ≤ Γcr,
these being a critical point and a strange attractor of fractional dimension. For Γ > Γcr, the only
presence is of a strange attractor.

Now we choose D = 0.1, and increase Γ. Figure B.15 presents a plot of the w − τ curve for
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Figure B.8: Eigenvalues at the neutral curve for D = 0.1, Γ = 0.20029 and α = 0.
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Figure B.11: Curve w vs. τ for D = 1.5, Γ = 0.95Γcr.
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Figure B.13: Curve w vs. τ for D = 1.5, Γ = 1.01Γcr.
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Figure B.14: Phase-space trajectory for D = 1.5, Γ = 1.01Γcr.
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Figure B.15: Curve w vs. τ for D = 0.1, Γ = 0.99Γcr.

Γ = 0.99Γcr. Figures B.16 and B.17 show the time series plots and phase space representation for
Γ = 1.01Γcr, and Figures B.18 and B.19 for Γ = 20Γcr. In this case, for Γ < Γcr we have stable
solutions. For Γ = 1.01Γcr the figures show a possible limit cycle undergoes a period doubling. This
implies a supercritical Hopf bifurcation. The strange attractor is shown in Figures B.20 and B.21.

B.6 Further nonlinear analysis

The following analysis is by W. Franco.
We start with the dynamical system which models a toroidal thermosyphon loop with known

heat flux

dx

dt
= y − x

dy

dt
= a− zx

dz

dt
= xy − b

For b > 0 two critical points P+ and P− appear

(x̄, ȳ, z̄) = ±
(√

b,
√
b,

a√
b

)
The local form respect to P+ is

dx′

dt
= y′ − x′

dy′

dt
= − a√

b
x′ −

√
bz′

dz′

dt
=
√
bx′ +

√
by′
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Figure B.16: Curve w vs. τ for D = 0.1, Γ = 1.1Γcr.
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Figure B.18: Curve w vs. τ for D = 0.1, Γ = 1.1Γcr.
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Figure B.20: Phase-space trajectory for D = 0.1, Γ = 20Γcr.
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For stability a > b
3
2 . At a = b

3
2 the eigenvalues are −1,±

√
2bi, thus a nonlinear analysis through

the center manifold projection is possible. Let’s introduce a perturbation of the form a = b
3
2 + ε and

the following change of variables

α =
a√
b

β =
√
b

rewriting the local form, dropping the primes and regarding the perturbation the system becomes

dx

dt
= y − x

dy

dt
=

(
β2 +

ε

β

)
x− βz

dz

dt
= βx− βy

for stability α > β2.
Let’s apply the following transformation:

x = w1 +
2

2β2 + 1
w2 +

2β
√

2

2β2 + 1

y = 2w2 (B.43)

z = −βw1 −
2β

2β2 + 1
w2 +

2
√

2
(
β2 + 1

)
2β2 + 1

w3

in the new variables

ẇ =

 −1 0 0

0 0 −
√

2β

0
√

2β 0

w + P̂w + l(w) (B.44)

The center manifold projection is convenient to use if the large-time dynamic behavior is of
interest. In many dimensional systems, the system often settles into the same large-time dynamics
irrespective of the initial condition; this is usually less complex than the initial dynamics and can
be described by far simple evolution equations.

We first state the definition of an invariant manifold for the equation

ẋ = N(x) (B.45)

where x ∈ Rn. A set S ⊂ Rn is a local invariant manifold for (B.45) if for x0 ⊂ S, the solution x(t)
of (B.45) is in S for | t |< T where T > 0. If we can always choose T = ∞, then S is an invariant
manifold. Consider the system

ẋ = Ax+ f(x, y)

ẏ = By + g(x, y) (B.46)

where x ∈ Rn, y ∈ Rm and A and B are constant matrices such that all the eigenvalues of A have
zero real parts while all the eigenvalues of B have negative real parts. If y = h(x) is an invariant
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manifold for (??) and h is smooth, then it is called a center manifold if h(0) = 0,h′(0) = 0. The flow
on the center manifold is governed by the n-dimensional system

ẋ = Ax+ f(x, h(x))

The last equation contains all the necessary information needed to determine the asymptotic behavior
of small solutions of (??).

Now we calculate, or at least approximate the center manifold h(w). Substituting w1 =
h(w2, w3) in the first component of (B.44) and using the chain rule, we obtain

ẇ1 =

(
∂h

∂w2
,
∂h

∂w3

) ẇ2

ẇ3

 = −h+ l1 (w2, w3, h) (B.47)

We seek a center manifold

h = aw2
2 + bw2w3 + cw2

3 +O(3)

substituting in (B.47)

(2aw2 + bw3, 2cw3 + bw2)

 −√2βw3

√
2βw2

 = −
(
aw2

2 + bw2w3 + cw2
3

)
+
(
k1w

2
2 + k2w2w3 + k3w

2
3

)
+O(3)

Equating powers of x2,xy and y2, we find that

a = k1 − b
√

2β

c = k3 + b
√

2β

b =
k2 + 2

√
2β (k1 − k3)

8β2 + 1

The reduced system is therefore given by

ẇ2 = −
√

2βw3 + s2 (w2, w3)

ẇ3 =
√

2βw2 + s3 (w2, w3) (B.48)

Normal form: Now we carry out a smooth nonlinear coordinate transform of the type

w = v + ψ(v)

to simplify (B.48) by transforming away many nonlinear terms. The system in the new coordinates
is

v̇ =

(
0 −

√
2β√

2β 0

)
+

 (νv1 − γv2)
(
v2

1 + v2
2

)
(νv2 + γv1)

(
v2

1 + v2
2

)
 (B.49)

where ν and γ depend on the nonlinear part of (B.48). This is the unfolding of the Hopf bifurcation.
Although the normal form theory presented in class pertains to a Jacobian whose eigenvalues

all lie on the imaginary axis, one can also present a perturbed version. The eigenvalues are then
close to the imaginary axis but not quite on it. Consider the system

v̇ = Av + Âv + f(v) (B.50)
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where the Jacobian A has been evaluated at a point in the parameter space where all its eigenvalues
are on the imaginary axis, Â represents a linear expansion of order µ in the parameters above that
point; a perturbed Jacobian. The perturbation parameter represents the size of the neighborhood in
the parameter space. We stipulate the order of µ such that the real part of the eigenvalues of A + Â
is such that, to leading order, Â does not change the coefficients of the leading order nonlinear terms
of the transformed equation. The linear part A + Â of perturbed Hopf can always be transformed
to (

µ −ω
ω µ

)
The required transformation is a near identity linear transformation

v = u + Bu

such that the linear part of (B.50) is transformed to

u̇ =
(
A + AB−BA + Â

)
z

For the Hopf bifurcation if

Â =

(
a1 a2

a3 a4

)
then

µ =
a1 + a4

ω

Therefore for ε small we can write (B.49) as

v̇ =

(
0 −

√
2β√

2β 0

)
v +

(
p22 p23

p32 p33

)
v +

 f1(v)

f2(v)


where the perturbation matrix comes from (B.44). Applying a near identity transformation of the
form v = u + Bu the system becomes

u̇ =

(
µ −

√
2β√

2β µ

)
u +

 (νu1 − γu2)
(
u2

1 + u2
2

)
(νu2 + γu1)

(
u2

1 + u2
2

)


which is the unfolding for the perturbed Hopf bifurcation. In polar coordinates we have

ṙ = µr + νr3

θ̇ =
√

2β

where

µ = − ε
√

2

2β2 (2β2 + 1)
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ν = −40β6 + 40β4 + 12β3 + 10β2 + 12β + 3

4 (8β2 + 1) (2β2 + 1)
4

Appendix

k1 = −
8β
(
β2 + 1

)
(2β2 + 1)

3

k2 =

(
β2 + 1

) (
4
√

2− 8
√

2β2
)

(2β2 + 1)
3

k3 =
8β
(
β2 + 1

)
(2β2 + 1)

3

p22 = − ε

β (2β2 + 1)

p23 = − ε
√

2

2β2 + 1

From the literature

ν =
1

16
(fxxx + fxyy + gxxy + gyyy) +

1

16ω
(fxy(fxx + fyy)− gxy(gxx − gyy)− fxxgxx − fyygyy)

in our problem f = f1, g = f2, x = v1, y = v2 and ω =
√

2β.



Appendix C

Networks

A network consists of a number of ducts that are united at certain points. At each junction, we
must have ∑

i

AiVi = 0 (C.1)

where Ai are the areas and Vi the fluid velocities in the ducts coming in, the sum being over all the
ducts entering the junction. Furthermore, for each duct, the momentum equation is

dVi
dt

+ T (Vi)Vi = β
[
pini − pouti + ∆p

]
where ∆p is the pressure developed by a pump, if there happens to be one on that line. We must
distinguish between two possible geometries.

(a) Two-dimensional networks: A planar or two-dimensional network is one that is topologically
equivalent to one on a plane in which every intersection of pipes indicates fluid mixing. For such a
graph, we know that

E = V + F − 1

where E, V and F are the number of edges, vertices and faces, respectively. In the present context,
these are better referred to as branches, junctions and circuits, respectively.

The unknowns are the E velocities in the ducts and the V pressures at the junctions, except
for one pressure that must be known. The number of unknowns thus are E+V −1. The momentum
equation in the branches produce E independent differential equations, while mass conservation at
the juntions give V − 1 independent algebraic relations. Thus the number of

(b) Three-dimensional networks: For a three-dimensioanl network, we have

E = V + F − 2

If there are n junctions, they can have a maximum of n(n−1)/2 lines connecting them. The number
of circuits is then (n2 − 3n+ 4)/2. The number of equations to be solved is thus quite large if n is
large.

243
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C.1 Hydrodynamics

The global stability of flow in a network can be demonstrated in a manner similar to that in a
finite-length duct. In a general network, assume that there are n junctions, and each is connected
to all the rest. Also, pi is the pressure at junction i, and Vij is the flow velocity from junction i to j
defined to be positive in that direction. The flow velocity matrix Vij is anti-symmetric, so that Vii
which has no physical meaning is considered zero.

The momentum equation for Vij is

dVij
dt

+ Tij(Vij)Vij = βij(pi − pj) (C.2)

The network properties are represented by the symmetric matrix βij . The resistance Tij may or
may not be symmetric. To simplify the analysis the network is considered fully connected, but
Tij is infinite for those junctions that are not physically connected so that the flow velocity in the
corresponding branch is zero. We take the diagonal terms in Tij to be also infinite, so as to have
Vii = 0.

The mass conservation equation at junction j for all flows arriving there is

n∑
i=1

AijVij = 0 for j = 1, . . . , n

where Aij is a symmetric matrix. The symmetry of Aij and antisymmetry of Vij gives the equivalent
form

n∑
i=1

AjiVji = 0 for j = 1, . . . , n (C.3)

which is simply the mass conservation considering all the flows leaving junction j.
The steady states are solutions of

Tij(V ij)V ij = βij(pi − pj) (C.4)
n∑
i=1

AijV ij7 = 0 or

n∑
i=1

AjiV ji = 0 (C.5)

We write

Vij = V ij + V ′ij

pi = p+ p′i

Substituting in equations (C.2)–(C.3), and subtracting equations (C.4) and (C.5) we get

dV ′ij
dt

= −
[
Tij(V ij + V ′ij)(V ij + V ′ij)− Tij(V ij)V ij

]
+ βij(p

′
i − p′j)

n∑
i=1

AijV
′
ij = 0 or

n∑
i=1

AjiV
′
ji = 0

Defining

E =
1

2

n∑
j=1

n∑
i=1

Aij
βij

V ′
2
ij , βij > 0
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we get

dE

dt
=

n∑
j=1

n∑
i=1

Aij
βij

V ′ij
dV ′ij
dt

(C.6)

= −
n∑
j=1

n∑
i=1

Aij
βij

V ′ij
[
Tij(V ij + V ′ij)(V ij + V ′ij)− Tij(V ij)V ij

]
+

n∑
j=1

n∑
i=1

AijV
′
ij(p

′
i − p′j) (C.7)

The pressure terms vanish since

n∑
j=1

n∑
i=1

AijV
′
ijp
′
i =

n∑
i=1

n∑
j=1

AijV
′
ijp
′
i

=

n∑
i=1

p′i n∑
j=1

AijV
′
ij


= 0

and

n∑
j=1

n∑
i=1

AijV
′
ijp
′
j =

n∑
j=1

(
p′j

n∑
i=1

AijV
′
ij

)
= 0

The terms that are left in equation (C.7) are similar to those in equation (7.10) and satisfy the same
inequality. Since E ≥ 0 and dE/dt ≤ 0, the steady state is globally stable. For this reason the
steady state is also unique.

Example C.1
Show that the flow in the the star network shown in Fig. C.1 is globally stable. The pressures p1, p2 and

p3 are known while the pressure p0 and velocities V10, V20 and V30 are the unknowns.
For branches i = 1, 2, 3, equation (??) is

dVi0

dt
+ Ti0(Vi0)Vi0 = βi0(pi − p0) (C.8)
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Equation (C.1) at the junction gives

3∑
i=1

Ai0Vi0 = 0 (C.9)

In the steady state

Ti0(V i0)V i0 = βi0(pi − p0) (C.10)

3∑
i=1

Ai0V i0 = 0 (C.11)

Substituting Vi0 = V i0 + V ′i0 and p0 = p0 + p′0 in equations (C.8) and (C.9) and subtracting equations (C.10)
and (C.11), we find that

dV ′i0
dt

= −
[
Ti0(V i0 + V ′i0)(V i0 + V ′i0)− Ti0(V i0)V i0

]
− βi0p′0 (C.12)

3∑
i=1

Ai0V
′
i0 = 0 (C.13)

If we define

E =
1

2

3∑
i=1

Ai0

βi0
V ′

2
i

we find that

dE

dt
=

3∑
i=1

Ai0

βi0
V ′i0

dV ′i0
dt

= −
3∑
i=1

Ai0

βi0
V ′i0
[
Ti0(V i0 + V ′i0)(V i0 + V ′i0)− Ti0(V i0)V i0

]
− p′0

3∑
i=1

Ai0V
′
i0

The last term vanishes because of equation (C.13). Thus

dE

dt
= −

3∑
i=1

Ai0

βi0
V ′i0V i0

[
Ti0(V i0 + V ′i0)− Ti0(V i0)

]
−

3∑
i=1

Ai0

βi0
V ′

2
i0Ti0(V i0 + V ′i0)

Since E ≥ 0 and dE/dt ≤ 0, E is a Lyapunov function and the steady state is globally stable.

C.2 Thermal networks

[63]

C.3 Control of complex thermal systems

The previous sections examined systems that were fairly simple in the sense that mathematical
models could be written down and their behaviors studied. For most practical thermal systems,
this is difficult to do with any degree of precision. In the following, we will look first at thermal
components and then combine them in networks.
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Figure C.2: Network used to study control strategies [63].

C.3.1 Hydronic networks

The science of networks of all kinds has been put forward as a new emerging science [15]. In the
present context this means that a complete understanding of the behavior of components does not
necessarily mean that large networks formed out of these components can be modeled and computed
in real time for control purposes. Controllability issues of heat exchanger networks are reported in
[213]. Mathematical models of the dynamics of a piping network lead to differential-algebraic systems
[63]. The momentum equation governing the flow in each pipe is differential, while the conservation
of mass condition at each of the junctions is algebraic. Thus, it turns out that only certain flow
rates may be controllable, the others being dependent on these.

There are at present many different strategies for the thermal control of networks, and compar-
ative studies based on mathematical models can be carried out. Fig. C.2 shows a network in which
three specific control strategies can be compared [63, 64]; each control method works differently
and are labeled VF, MCF and BT in the following figures (details are in [63]). The network has
a primary loop, a secondary loop and a bypass that has the three strategies as special cases. The
primary loop includes a chiller, while the secondary has a water-air cooling coil which serves as a
thermal load. Integral controllers are used to operate the valves Vα, Vβ , and Vγ to control the air
temperature leaving the cooling coil, TLa (t). Figs. C.3 and C.4 show the dynamic response of TLa (t),
the leaving water temperatures TLw (t), and the bypass pressure difference ∆pbp to step changes in
the air velocity over the coil. α(t), β(t), and γ(t) are the respective closing fractions of the valves
which change dynamically in response to the error signal. There are some oscillations in all the
variables before they settle down to stable, steady values.

Laboratory experiments with a network of water-to-water heat exchangers have been reported
in [63–65]; the configuration is shown in Fig. C.5. The hot water flow is diminished by changing its
controller set point. Figure C.6 shows the secondary hot water flow rates q8, q7 and q4 to the heat
exchangers for the three different control strategies. Each curve represents one independent run;
that is, water flow to HXBT and HXCF is zero when testing VF, and so on. The system is taken
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Figure C.5: Layout of hydronic network [63].

to the nominal operating conditions, and then the hot water flow is decreased by a constant value
every 1800 s. The controls drive the system to different operational points while coping with the
changes. The input voltages v7, v4 and v1 that control flow and the hot water temperature at the
heat exchanger inlet T21 are also shown. It is seen that for certain control parameters, the system
is becomes unstable and the variables oscillate in time.

C.3.2 Other applications

There are a large number of other thermal problems in which control theory has been applied.
Agent-based controls have been proposed by complex thermal systems such as in buildings [224],
microwave heating [128], thermal radiation [151], and materials processing and manufacturing [56,
169]. Control of convection is an important and active topic; this includes the study of convection
loops [184, 185, 215, 226, 228], stabilization and control of convection in horizontal fluid layers
[18, 87, 133, 153, 200–205], and in porous media [199].

C.4 Conclusions

This has been a very brief introduction to the theory of thermal control. The fundamental ideas in
this subject are firmly grounded on the mathematics of systems and control theory which should be
the starting point. There are, however, a few aspects that are particularly characteristic of thermal
systems. Phenomena such as diffusion, convection and advection are common and the systems
are usually complex, nonlinear and poorly predictable dynamically. The governing equations cover
a wide range of possibilities, from ordinary and partial differential equations to functional and
differential-algebraic systems. Furthermore, control theory itself is a vast subject, with specialized
branches like optimal [83], robust [38], and stochastic control [37] that are well developed. Many of
the tools in these areas find applications in thermal systems.
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The study of thermal control will continue to grow from the point of view of fundamentals as
well as engineering applications. There are many outstanding problems and issues that need to be
addressed. To cite one specific example, networking between a large number of coupled components
will become increasingly important; it is known that unexpected synchronization may result even
when multiple dynamical systems are coupled weakly [191]. It is hoped that the reader will use
this brief overview as a starting point for further study and apply control theory in other thermal
applications.
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Soft computing

D.1 Genetic algorithms

[149]

D.2 Artificial neural networks

D.2.1 Heat exchangers

The most important of the components are heat exchangers, which are generally very complex in that
they cannot be realistically computed in real time for control purposes [97, 162, 192]. An approach
that is becoming popular in these cases is that of artificial neural networks (ANN) [76] for prediction
of system behavior both for time-independent [49, 147, 148, 150] and time-dependent operation. It
is particularly suitable for systems for which experimental information that can be used for training
is available. Reviews of artificial neural network applications to thermal engineering [172, 177] and
other soft control methodologies [32, 139, 231] and applications [227] are available.

A stabilized neurocontrol technique for heat exchangers has been described in [48, 50–53]. Fig.
D.1 shows the test facility in which the experiments were conducted. The objective is to control
the outlet air temperature T aout. Figs. D.2 shows the results of using neurocontrol compared with
PID; both are effective. Fig. D.3 shows the result of an disturbance rejection experiment. The heat
exchanger is stabilized at T aout = 36◦C, and then the water flow is shut down between t = 40s and
t = 70s; after that the neurocontroller brings the system back to normal operation. A neural network-
based controller is able to adapt easily to changing circumstances; in thermal systems this may come
from effects such as the presence of fouling over time or from changes in system configuration as
could happen in building heating and cooling systems.

[52, 175]
[171]

251
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(b)

Figure D.1: Experimental setup: (a) heat exchanger test facility with wind tunnel and in-draft fan,
(b) heat exchanger with water and air flows indicated; T aout is the air outlet temperature [48].
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Appendix E

Additional problems

1. Write the governing equations for natural convection flow in an inclined rectangular cavity, and
nondimensionalize them. The thermal conditions at the walls of the cavity are: (a) AB heating
with heat flux q′′s , (b) BC adiabatic, (c) CD cooling with heat flux q′′s , (d) DA adiabatic.

2. An “Aoki” curve is defined as shown in Fig. E.2. Show that when n → ∞, the dimension of
the curve is D = 1 and the length L→∞.

3. Consider conductive rods of thermal conductivity k joined together in the form of a fractal
tree (generation n = 3 is shown in Fig. E.3; the fractal is obtained in the limit n→∞). The
base and tip temperatures are T0 and T∞, respectively. The length and cross-sectional area of
bar 0 is L and A, respectively, and those of bar 1 are 2L/β and A/β2, where 1 ≤ β < 2, and
so on. Show that the conductive heat transfer through rod 0 is

q =
kA

L
(T0 − T∞)

(
1− β

2

)

4. The dependence of the rate of chemical reaction on the temperature T is often represented by
the Arrhenius function f(T ) = e−E/T , where E is the activation energy. Writing T ∗ = T/E,
show that f(T ∗) has a point of inflexion at T ∗ = 1/2. Plot f(T ∗) in the range T ∗ = 1/16 to
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Figure E.1: Inclined rectangular cavity
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Figure E.3: Fractal tree.
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T ∗ = 4 as well as its Taylor series approximation to various orders around T ∗ = 1/2. Plot also
the L2-error in the same range for different orders of the approximation.

5. Using a complete basis, expand the solution of the one-dimensional heat equation

∂T

∂t
= α

∂2T

∂x2

with boundary conditions

−k∂T
∂x

= q0 at x = 0, (E.1)

T = T1 at x = L (E.2)

as an infinite set of ODEs.

6. Show that the governing equation of the unsteady, variable-area, convective fin can be written
in the form

∂T

∂t
− ∂

∂x

(
a(x)

∂T

∂x

)
+ b(x)T = 0

Show that the steady-state temperature distribution with fixed temperatures at the two ends
x = 0 and x = L is globally stable.

7. Nondimensionalize and solve the radiative cooling problem

Mc
dT

dt
+ σA

(
T 4 − T 4

∞
)

= 0

with T (0) = Ti. [Is this done elsewhere?]

8. For heat transfer from a heated body with convection and weak radiation, i.e. for

dθ

dτ
+ θ + ε

{
(θ + β)

4 − β4
}

= q

with θ(0) = 1, using symbolic algebra determine the regular perturbation solution up to and
including terms of order ε4. Assuming ε = 0.1, β = 1, q = 1, plot the five solutions (with one
term, with two terms, with three terms, etc.) in the range 0 ≤ τ ≤ 1.

9. Consider a body in thermal contact with the environment

Mc
dT

dt
+ hA(T − T∞) = 0

where the ambient temperature, T∞(t), varies with time in the form shown below. Find (a)
the long-time solution of the system temperature, T (t), and (b) the amplitude of oscillation of
the system temperature, T (t), for a small period δt.

10. For a heated body in thermal contact with a constant temperature environment

Mc
dT

dt
+ hA(T − T∞) = Q

analyze the conditions for linear stability of PID control.
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Figure E.4: Ambient temperature variation.

11. Show numerical results for the behavior of two heated bodies in thermal contact with each
other and with a constant temperature environment for on-off control with (a) one thermostat,
and (b) two thermostats.

12. Analyze the system controllability of two heated bodies in thermal contact with each other and
with a constant temperature environment for (a) Q1(t) and Q2(t) being the two manipulated
variables, and (b) with Q1(t) as the only manipulated variable and Q2 constant.

13. Run the neural network FORTRAN code in

http://www.nd.edu/~msen/Teaching/IntSyst/Programs/ANN/

for 2 hidden layers with 5 nodes each and 20,000 epochs. Plot the results in the form of exact
z vs. predicted z.

14. Consider the heat equation
∂T

∂t
=
∂2T

∂x2

with one boundary condition T (0) = 0. At the other end the temperature, T (1) = u(t) is
used as the manipulated variable. Divide the domain into 5 parts and use finite differences
to write the equation as a matrix ODE. Find the controllability matrix and check for system
controllability.

15. Determine the semi-derivative and semi-integral of (a) C (a constant), (b) x, and (c) xµ where
µ > −1.

16. Find the time-dependent temperature field for flow in a duct wih constant T∞ and Tin, but with
variable flow rate V (t) = V0 + ∆V sin(ωt) such that V is always positive. Write a computer
program to solve the PDE, and compare numerical and analytical results.

17. Find the steady-state temperature distribution and velocity in a square-loop thermosyphon.
The total length of the loop is L and the distribution of the heat rate per unit length is

q(x) =

 Q for L/8 ≤ x ≤ L/4,
−Q for 5L/8 ≤ x ≤ 3L/4,
0 otherwise.
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Figure E.5: Square naturcal circulation loop

18. Show that the dynamical system governing the toroidal thermosyphon with known wall tem-
perature can be reduced to the Lorenz equations.

19. Draw the steady-state velocity vs. inclination angle diagram for the inclined toroidal ther-
mosyphon with mixed heating. Do two cases: (a) without axial condution1, and (b) with axial
conduction.

20. Model natural convection in a long, vertical pipe that is being heated from the side at a
constant rate. What is the steady-state fluid velocity in the pipe? Assume one-dimensionality
and that the viscous force is proportional to the velocity.

21. The Brinkman model for the axial flow velocity, u∗(r∗), in a porous cylinder of radius R is

µeff

[
d2u∗

dr∗2
+

1

r∗
du∗

dr∗

]
− µ

K
u∗ +G = 0,

where u∗ = 0 at r∗ = R (no-slip at the wall), and ∂u∗/∂r∗ = 0 at r∗ = 0 (symmetry at the
centerline). µeff is the effective viscosity, µ is the fluid viscosity, K is the permeability, and G
is the applied pressure gradient. Show that this can be reduced to the nondimensional form

d2u

dr2
+

1

r

du

dr
− s2u+

1

M
= 0,

where M = µeff /µ, Da = K/R2, s2 = (M Da)−1.

22. Using a regular perturbation expansion, show that for s� 1, the velocity profile from equation
(E.3) is

u =
1− r2

4M

[
1− s2

16

(
3− r2

)]
+ . . .

[What is this?]

23. Using the WKB method, show that the solution of equation (1) for s� 1 is

u = Da

[
1− exp {−s(1− r)}√

r

]
+ . . .

1M. Sen, E. Ramos and C. Treviño, On the steady-state velocity of the inclined toroidal thermosyphon, ASME J.
of Heat Transfer, Vol. 107, pp. 974–977, 1985.
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Figure E.6: Inclined natural cavity

[What is this?]

24. Consider steady state natural convection in a tilted cavity as shown. DA and BC are adiabatic
while AB and CD have a constant heat flux per unit length. It can be shown that the governing
equations in terms of the vorticity ω and the streamfunction ψ are

∂2ψ

∂x2
+
∂2ψ

∂x2
+ ω = 0

∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y
− Pr

[
∂2ω

∂x2
+
∂2ω

∂y2

]
−Ra Pr

[
∂T

∂x
cosα− ∂T

∂y
sinα

]
= 0

∂ψ

∂y

∂T

∂x
− ∂ψ

∂x

∂T

∂y
− ∂2T

∂x2
− ∂2T

∂y2
= 0

where Pr and Ra are the Prandtl and Rayleigh numbers, respectively. The boundary condi-
tions are:

at x = ±A
2
, ψ =

∂ψ

∂x
= 0,

∂T

∂x
= 0,

at y = ±1

2
, ψ =

∂ψ

∂y
= 0,

∂T

∂y
= 1.

where A = L/H is the aspect ratio. Find a parallel flow solution for ψ using

ψ = ψ(y)

T (x, y) = Cx+ θ(y)

25. Obtain the response to on-off control of a lumped, convectively-cooled body with sinusoidal
variation in the ambient temperature.

26. Determine the steady-state temperature field in a slab of constant thermal conductivity in
which the heat generated is proportional to the exponential of the temperature such that

d2T

dx2
= exp(εT ),

where 0 ≤ x ≤ 1, with the boundary conditions T (0) = T ′(0) = 0.
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x

Figure E.7: Slightly tapered 2D fin.

27. In the previous problem, assume that ε is small. Find a perturbation solution and compare
with the analytical. Do up to O(ε) by hand and write a Maple (or Mathematica) code to do
up to O(ε10).

28. The temperature equation for a fin of constant area and convection to the surroundings at a
constant heat transfer coefficient is (

d2

dx2
−m2

)
θ = 0,

where θ = T − T∞. Determine the eigenfunctions of the differential operator for each combi-
nation of Dirichlet and Neumann boundary conditions at the two ends x = 0 and x = L.

29. Add radiation to a convective fin with constant area and solve for small radiative effects with
boundary conditions corresponding to a known base temperature and adiabatic tip.

30. Find the temperature distribution in a slightly tapered 2-dimensional convective fin with known
base temperature and adiabatic tip.

31. Prove Hottel’s crossed string method to find the view factor FAB between two-dimensional
surfaces A and B with some obstacles between them as shown. The dotted lines are tightly
stretched strings. The steps are:

(a) Assuming the strings to be imaginary surfaces, apply the summation rule to each one of
the sides of figure abc.

(b) Manipulating these equations and applying reciprocity, show that

Fab−ac =
Aab +Aac −Abc

2Aab
.

(c) For abd find Fab−bd in a similar way.

(d) Use the summation rule to show that

Fab−cd =
Abc +Aad −Aac −Abd

2Aab

(e) Show that Fab−cd = AAFAB/Aab.

(f) Show the final result

FA−B =
Abc +Aad −Aac −Abd

2AA
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Figure E.8: Hottel’s string method.

32. Complete the details to derive the Nusselt result for laminar film condensation on a vertical
flat plate. Find from the literature if there is any experimental confirmation of the result.

33. Consider the hydrodynamic and thermal boundary layers in a flow over a flat plate at constant
temperature. Use a similarity transformation on the boundary layer equations to get

2f ′′′ + ff ′′ = 0, (E.3)

θ′′ +
Pr

2
fθ′ = 0. (E.4)

Using the shooting method and the appropriate boundary conditions, solve the equations for
different Pr and compare with the results in the literature.

34. Solve the steady state conduction equation ∇2T = 0 in the area in the figure between the
square and the circle using the MATLAB Toolbox. Edges DA and BC have temperatures of
100 and 0 units, respectively, AB and CD are adiabatic and the circle is at a temperature of
200 units. Draw the isotherms.

35. (From Brauner and Shacham, 1995) Using Eq. 11, write a program to redraw Fig. 2 on a sunny
day (Cl = 0) and a cloudy day (Cl = 1). Assume Ta = 37◦C. Use Eq. 8 to calculate hc. Note:
since the physical properties are to be taken at the mean temperature between Ts and Ta, Eq.
11 must be solved numerically.

36. The steady-state temperature distribution in a plane wall of thermal conductivity k and thick-
ness L is given by T (x) = 4x3 + 5x2 + 2x + 3, where T is in K, x in m, and the constants in
appropriate units. (a) What is the heat generation rate per unit volume, q(x), in the wall?
(b) Determine the heat fluxes, q′′x , at the two faces x = 0 and x = L.

37. (From Incropera and DeWitt, 5th edition) Consider a square plate of side 1 m. Going around,
the temperatures on the sides are (a) 50◦C, (b) 100◦C, (c) 200◦C, and (d) 300◦C. Find the
steady-state temperature distribution analytically. Write a computer program to do the previ-
ous problem numerically using finite differences and compare with the analytical result. Choose
different grid sizes and show convergence of the heat flux at any wall. Plot the 75, 150, and
250◦C isotherms.

38. A plane wall of thickness 1 m is initially at a uniform temperature of 85◦C. Suddenly one side
of the wall is lowered to a temperature of 20◦C, while the other side is perfectly insulated. Find
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a

b

c
d

d

the time-dependent temperature profile T (x, t). Assume the thermal diffusivity to be 1 m2/s.
Write a computer program to do the previous problem numerically using finite differences and
compare with the analytical result.

39. At a corner of a square where the temperature is discontinuous, show how the finite differ-
ence solution of the steady-state temperature behaves ompared to the separation-of-variables
solution.

40. Find the view factor of a semi-circular arc with respect to itself.

41. Derive the unsteady governing equation for a two-dimensional fin with convection and radia-
tion.

42. Determine the steady temperature distribution in a two-dimensional convecting fin.

43. A number of identical rooms are arranged in a circle as shown, with each at a uniform tem-
perature Ti(t). Each room exchanges heat by convection with the outside which is at T∞, and
with its neighbors with a conductive thermal resistance R. To maintain temperatures, each
room has a heater that is controlled by independent but identical proportional controllers. (a)
Derive the governing equations for the system, and nondimensionalize. (b) Find the steady
state temperatures. (c) Write the dynamical system in the form ẋ = Ax and determine the
condition for stability2.

44. A sphere, initially at temperature Ti is being cooled by natural convection to fluid at T∞.
Churchill’s correlation for natural convection from a sphere is

Nu = 2 +
0.589 Ra

1/4
D[

1 + (0.469/Pr)
9/16

]4/9 ,
2Eigenvalues of an N ×N , circulant, banded matrix of the form [3]

b c 0 . . . 0 a
a b c . . . 0 0
0 a b . . . 0 0
...

...
...

...
...

0 . . . 0 a b c
c 0 . . . 0 a b


are λj = b+ (a+ c) cos{2π(j − 1)/N} − i(a− c) sin{2π(j − 1)/N}, where j = 1, 2, . . . , N .
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Figure E.9: Menger’s Sponge

where

RaD =
gβ(Ts − T∞)D3

να
.

Assume that the temperature within the sphere T (t) is uniform, and that the material proper-
ties are all constant. Derive the governing equation, and find a two-term perturbation solution.

45. (a) Show that the transient governing equation for a constant area fin with constant properties
that is losing heat convectively with the surroundings can be written as

1

α

∂θ

∂t
=
∂2θ

∂x2
−m2θ.

(b) With prescribed base and tip temperatures, use an eigenfunction expansion to reduce to
an infinite set of ordinary differential equations. (c) Show that the steady state is attracting
for all initial conditions.

46. Construct a fractal that is similar to the Cantor set, but instead remove the middle 1/2 from
each line. Show that the fractal dimension is 1/2.

47. Shown below is Menger’s Sponge. Calculate its Hausdorff dimension using each of the following
methods: (a) Dh = logP/ logS, (b) Box Counting (analytical), (c) Box Counting (graphical).

48. Shown below is a Peano curve, a single line that completely fills a unit square. Calculate its
Hausdorff dimension and state if the Peano curve is indeed a fractal.

49. A duct carrying fluid has the cross-section of Koch’s curve. Show that the perimeter of the
cross-section is infinite while the flow area is finite.

50. Verify Cauchy’s formula for repeated integration by (a) integrating f(t) five times, (b) applying
Cauchy’s formula once with n = 5, (c) applying Cauchy’s formula twice, once to f(t) with
n = 2 and then to the result with n = 3, showing that∫ ∫ ∫ ∫ ∫ t

0

f(τ)dτ = J5f(t) = J3J2f(t)

for f(t) = 16t3.

51. Take f(t) = 2t5 and using the Caputo Right Hand Derivative, (a) calculateD3f(t) (takem = 4,
α = 3) and verify that you get the same result as traditional differentation by comparing to
d3f/dt3. (b) Calculate D2.5f(t) and plot the function.
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(a) Initator (b) Generator

Figure E.10: Initiator and generator for a Peano (space filling) curve. The generator is recursively
applied to generate the Peano curve.

52. Consider the heat flux in a blast furnace taht was calculated to be

q′′(t) =
√
cpλ 0D

1/2
t g(t),

where
g(t) = Tsurf (t)− T0,

which is simply the derivative of order α = 1/2 of the temperature difference at the surface.
Assume that the function g(t) is given as g(t) = 14 sin(πt/60) where t is in minutes and
the thermocouples sample once per minute, giving the discrete data set gi = 14 sin(πi/60).
Calculate the fractional derivative numerically using the first 2 hours of data and plot both
the heat flux at the surface and g(t).

Hint: It is easiest to calculate the binomial coefficients recursively, according to the recursion
formula: (

α

0

)
= 1, (E.5)(

α

k + 1

)
=

(
α

k

)
α− k + 1

k
. (E.6)

Note: In large time intervals (t very large), which would be of interest in this problem, the
calculation we used would not be suitable because of the enormous number of summands
in the calculation of the derivative and because of the accumulation of round off errors. In
these situations, the principle of “short memory” is often applied in which the derivative only
depends on the previous N points within the last L time units. The derivative with this “short
memory” assumption is typically written as (t−L)D

α
t .

53. Consider the periodic heating and cooling of the surface of a smooth lake by radiation. The
surface is subject to diurnal heating and nocturnal cooling such that the surface temperature
can be described by Ts(t) = To + Ta sinωt. Assume the heat diffusion to be one-dimensional
and find the heat flux at the surface of the lake. The following steps might be useful:

(a) Assume transient one-dimensional heat conduction:

∂T (x, t)

∂t
− α∂

2T (x, t)

∂x2
= 0,
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with initial and boundary conditions T (x, 0) = To and T (0, t) = Ts(t). Also assume the lake
to be a semi-infinite planer medium (a lake of infinite depth) with T (∞, t) = 0.

(b) Non-dimensionalize the problem with a change of variables ξ = α−1/2x and θ(x, t) =
T (x, t)− To.
(c) Use the following Laplace transform properties to transform the problem into the Laplace
domain:

L
[∂αf(x, t)

∂tα
]

= sαF (x, s) (with 0 initial conditions)

and

L
[∂αf(x, t)

∂xα
]

=
∂α

∂xα
F (x, s)

(d) Solve the resulting second order differential equation for Θ(ξ, s) by applying the trans-
formed boundary conditions.

(e) Find ∂Θ/∂ξ and then substitute Θ(ξ, s) into the result. Now take the inverse Laplace
transform of ∂Θ/∂ξ and convert back to the original variables. Be careful! The derivative of
order 1/2 of a constant is not zero! (see simplifications in (g) to simplify)

(f) You should now have an expression for ∂T (x, t)/∂x. Substitute this into Fourier’s Law to
calculate the heat flux, q′′(x, t) = −k ∂T (x, t)/∂x.

(g) Evaluate this expression at the surface (x = 0) to find the heat flux at the surface of the
lake. The following simplifications might be helpful:

∂1/2C

∂t1/2
=

C

πt1/2

∂α[Cg(t)]

∂tα
= C

∂αg(t)

∂tα

(h) The solution should look now look like

q′′s (t) =
k

α1/2

d1/2(Ta sinωt)

dt1/2

54. Consider radiation between two long concentric cylinders of diameters D1 (inner) and D2

(outer). (a) What is the view factor F12. (b) Find F22 and F21 in terms of the cylinder
diameters.

55. Temperatures at the two sides of a plane wall shown in Fig. E.38 are TL and TR, respectively.
For small ε, find a perturbation steady-state temperature distribution T (x) if the dependence
of thermal conductivity on the temperature has the form

k(T ) = k0

(
1 +

T − TL
TR − TL

ε

)
.

56. One side of a plane wall shown in Fig. E.39 has a fixed temperature and the other is adiabatic.
With an initial condition T (x, 0) = f(x), determine the temperature distribution in the wall
T (x, t) at any other time. Assume constant properties.
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T1 T2

Figure E.11: Plane wall in steady state.

T1 T2

Figure E.12: Plane wall in unsteady state.

57. Using an eigenfunction expansion, reduce the governing PDE in Problem 56 to an infinite set
of ODEs.

58. A room that loses heat to the outside by convection is heated by an electric heater controlled
by a proportional controller. With a lumped capacitance approximation for the temperature,
set up a mathematical model of the system. Determine the constraint on the controller gain
for the system response to be stable. What is the temperature of the room after a long time?

59. A turbine blade internally cooled by natural convection is approximated by a rotating natural
circulation loop of constant cross-section. The heat rate in and out at the top and bottom,
respectively, is Q while the rest of the loop is insulated. Find the steady-state velocity in the
loop. Consider rotational forces but not gravity. State your other assumptions.

60. An infinite number of conductive rods are set up between two blocks at temperatures Ta and Tb.
The first rod has a cross-sectional area A1 = A, the second A2 = A/β, the third A3 = A/β2,
and so on, where β > 1. What is the total steady-state heat transfer rate between the two
blocks? Assume that the thermal conductivity k is a constant, and that there is no convection.

61. Show that the functions φ1(x) =
√

2 sinπx and φ2(x) =
√

2 sin 2πx are orthonormal in the
interval [0, 1] with respect to the L2 norm. Using these as test functions, use the Galerkin

o

L

Figure E.13: Turbine blade.



267

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

L
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Figure E.14: Infinite number of rods.

q

R

d

Figure E.15: Lamp and disk

method to find an approximate solution of the steady-state fin equation

T ′′ − T = 0,

with T (0) = 0, T (1) = 1.

62. A lamp of q W is radiating equally in all directions. Set up the governing equation for the
temperature T (r) in the disk.

63. Determine the steady-state temperature distribution in the triangle shown, if the hypotenuse
is adiabatic, one of the sides is at one temperature and the other is at another.

64. A ball with coefficient of restitution r falls from height H and undergoes repeated bouncing.
Determine the temperature of the ball as a function of time T (t) if heat loss is by convection
to the atmosphere. Assume that the energy loss at every bounce goes to heat the ball.

65. Heat at the rate of q per unit volume is generated in a spherical shell that lies between R
and R + δ. If heat loss is by convection on the external surface only, find the steady-state
temperature distribution.

66. Two identical fins of square cross section exchange heat by radiation between them and with
the surroundings. Set up the governing equations for the temperatures T (x) in the fins and
solve for weak radiation.

A B

C

Figure E.16: Radiating triangle.
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Figure E.17: Conical fin

A B

D C

Figure E.18: Area between square and circle.

67. Determine the time-dependent temperature T (t) of a block of weight Mg that is being slided
at a constant velocity V across a horizontal surface. Assume that the frictional heat generated
at the interface (with coefficient of friction µ) goes entirely to the block, that its temperature
is uniform, and that heat loss from it is only by convection to the surroundings.

68. (From Incropera and DeWitt, 5th edition) The figure shows a conical section fabricated from
pure aluminum. It is of circular cross section having diameter D = ax1/2, where a = 0.5m1/2.
The small end is located at x1 = 25 mm and the large end at x2 = 125 mm. The end
temperatures are T1 = 600K and T2 = 400K, while the lateral surface is well insulated. (a)
Derive an expression for the temperature distribution T (x) in symbolic form, assuming one-
dimensional conditions. (b) Sketch the temperature distribution. (c) Calculate the heat rate
qx.

69. (From Incropera and DeWitt, 5th edition) Copper spheres of 20 mm diameter are quenched
by dropping into a tank of water that is maintained at 280 K. The spheres may be assumed
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to reach the terminal velocity on impact and to drop freely though the water. Estimate the
terminal velocity by equating the drag and gravitational forces acting on the sphere. What is
the approximate height of the water tank needed to cool the spheres from an initial temperature
of 360 K to a center temperature of 320 K?

70. (From Incropera and DeWitt, 5th edition) Neglecting the longitudinal temperature gradient
in laminar flow in a circular tube, the energy equation is

u
∂T

∂x
+ v

∂T

∂r
=
α

r

∂

∂r

(
r
∂T

∂r

)
.

The heat flux at the wall is q′′s = h(Ts − Tm), where Tm is the mean (or bulk) temperature
of the fluid at a given cross section and Ts is the wall temperature. Slug flow is an idealized
condition for which the velocity is assumed to be uniform over the entire tube cross section
with v = 0, u = constant, and ∂T/∂x = dTm/dx = constant with respect to r. For uniform
wall heat flux, determine T (r) and the Nusselt number NuD.

71. (From Incropera and DeWitt, 5th edition) Consider natural convection within two long vertical
plates maintained at uniform temperatures of Ts,1 and Ts,2, where Ts,1 > Ts,2. The plates are
open at their ends and are separated by the distance 2L. (a) Sketch the velocity distribution
in the space between the plates. (b)Write appropriate forms of the continuity, momentum,
and energy equations for laminar flow between the plates. (c) Evaluate the temperature
distribution, and express your result in terms of the mean temperature Tm = (Ts,1 + Ts,2)/2.
(d) Estimate the vertical pressure gradient by assuming the density to be a constant ρm
corresponding to Tm. Substituting from the Boussinesq approximation, obtain the resulting
form of the momentum equation. (e) Determine the velocity distribution. (Hints: The net
flow across any horizontal section should be zero. Assume that the flow is hydrodynamically
and thermally fully developed. Here the Boussinesq approximation means use of the simplified
density variation expression ρ− ρm ≈ −βρm(T − Tm).)

72. (From Incropera and DeWitt, 5th edition) For forced convection boiling in smooth tubes, the
heat flux can be estimated by combining the separate effects of boiling and forced convection.
The Rohsenow and Dittus-Boelter correlations may be used to predict nucleate boiling and
forced convection effects, with 0.019 replacing 0.023 in the latter expression. Consider water
at 1 atm with a mean velocity of 1.5 m/s and a mean temperature of 95◦C flowing through a
15-mm diameter brass tube whose surface is maintained at 110◦C. Estimate the heat transfer
rate per unit length of the tube.

73. (From Incropera and DeWitt, 5th edition) A single-pass, cross-flow heat exchanger uses hot
exhaust gases (mixed) to heat water (unmixed) from 30 to 80◦C at a rate of 3 kg/s. The
exhaust gases, having thermophysical properties similar to air, enter and exit the exchanger
at 225 and 100◦C, respectively. If the overall heat transfer coefficient is 200 W/m2K, estimate
the required surface area using LMTD and ε-NTU method respectively.

74. (From Incropera and DeWitt, 5th edition) Saturated water vapor leaves a steam turbine at
a flow rate of 1.5 kg/s and a pressure of 0.51 bar. The vapor is to be completely condensed
to saturated liquid in a shell-and-tube heat exchanger that uses city water as the cold fluid.
The water enters the thin-walled tubes at 17◦C and is to leave at 57◦C. Assuming an overall
heat transfer coefficient of 2000 W/m2K, determine the required heat exchanger surface area
and the water flow rate. After extended operation, fouling causes the overall heat transfer
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coefficient to decrease to 1000 W/m2K, and to completely condense the vapor flow rate. For
the same water inlet temperature and flow rate, what is the new vapor flow rate required for
complete condensation?

75. (From Incropera and DeWitt, 5th edition) Advances in very large scale integration (VLSI) of
electronic devices on a chip are often restricted by the ability to cool the chip. For mainframe
computers, an array of several hundred chips, each of area 25 mm2, may be mounted on a
certain ceramic substrate (backside of substrate insulated). A method of cooling the array
is by immersion in a low boiling point fluid such as refrigerant R-113. At 1 atm and 321 K,
properties of the saturated liquid are µ = 5.147 × 10−4 N · s/m2, cp = 983.8 J/kg·K, and
Pr = 7.183. Assume values of Cs,f = 0.004 and n = 1.7. (a) Estimate the power dissipated by
a single chip if it is operating at 50% of the critical heat flux. (b) What is the corresponding
value of the chip temperature? (c) Compute and plot the chip temperature as a function of
surface heat flux for 0.25 ≤ q”

s/q
”
max ≤ 0.90.

76. (From Incropera and DeWitt, 5th edition) A thermosyphon consists of a closed container that
absorbs heat along its boiling section and rejects heat along its condensation section. Consider
a thermosyphon made from a thin-walled mechanically polished stainless steel cylinder of
diameter D. Heat supplied to the thermosyphon boils saturated water at atmospheric pressure
on the surfaces of the lower boiling section of length Lb and is then rejected by condensing
vapor into a thin film, which falls by gravity along the wall of the condensation section of
length Lc back into the boiling section. The two sections are separated by an insulated section
of length Li.The top surface of the condensation section may be treated as being insulated.
The thermosyphon dimensions are D = 20 mm, Lb = 20 mm, Lb = 40 mm, and Li = 40
mm. (See figure in book) (a) Find the mean surface temperature, Ts,b, of the boiling surface
if the nucleate boiling heat flux is to be maintained at 30% of the critical heat flux. (b)
Find the mean surface temperature, Ts,c, of the condensation section assuming laminar film
condensation. (c) Find the total condensation flow rate, ṁ, within the thermosyphon.

77. (From Incropera and DeWitt, 5th edition) A steam generator consists of a bank of stainless
steel (k = 15W/mK) tubes having the core configuration of Fig. E.22 and an inner diameter
of 13.8 mm. The tubes are installed in a plenum whose square cross section is 0.6 m on a
side, thereby providing a frontal area of 0.36 m2. Combustion gases, whose properties may be
approximated as those of atmospheric air, enter the plenum at 900 K and pass in cross flow
over the tubes at 3 kg/s. If saturated water enters the tubes at a pressure of 2.455 bars and a
flow rate of 0.5 kg/s, how many tubes rows are required to provide saturated steam at the tube
outlet? A convection coefficient of 10,000 W/m2·K is associated with boiling in the tubes.

78. (From Incropera and DeWitt, 5th edition) The spectral, directional emissivity of a diffuse
material at 2000 K has the distribution as in Fig. E.20. Determine the total, hemispherical
emissivity at 2000 K. Determine the emissive power over the spectral range 0.8 to 2.5 µm and
for the directions 0 ≤ θ ≤ 30◦.

79. (From Incropera and DeWitt, 5th edition) Solar irradiation of 1100 W/m2 is incident on a large,
flat horizontal metal roof on a day when the wind blowing over the roof causes a convection
heat transfer coefficient of 25 W/m2K. The outside air temperature is 27◦, the metal surface
absortivity for incident solar radiation is 0.60, the metal surface emissivity is 0.20, and the roof
is well insulated from below. Estimate the roof temperature under steady-state conditions.
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Figure E.19: Steam generator.

Figure E.20: Emissivity of material.
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2 m

2 m

1 m

Figure E.21: Parallel plates.

80. Maxwell’s equations of electromagnetic theory are

∇×H = J +
∂D

∂t
(E.7)

∇×E = −∂B

∂t
(E.8)

∇ ·D = ρ (E.9)

∇ ·B = 0 (E.10)

where H, B, E, D, J, and ρ are the magnetic intensity, magnetic induction, electric field,
electric displacement, current density, and charge density, respectively. For linear materials
D = εE, J = gE (Ohm’s law), and B = µH, where ε is the permittivity, g is the electrical
conductivity, and µ is the permeability. For ρ = 0 and constant ε, g and µ, show that

∇2H− εµ∂
2H

∂t2
− gµ∂H

∂t
= 0 (E.11)

∇2E− εµ∂
2E

∂t2
− gµ∂E

∂t
= 0 (E.12)

With ε = 8.8542 × 10−12 C2N−1m−2, and µ = 1.2566 × 10−6 NC−2s2, find the speed of an
electromagnetic wave is free space.

81. (From Incropera and DeWitt, 5th edition) Consider the parallel plates of infinite extent normal
to the page having opposite edges aligned as shown in the sketch. (a) Using appropriate view
factor relations and the results for opposing parallel planes, develop an expression for the
view factor between the plates. (b) Write a numerical code based on the integral definition to
compute the view factor and compare.

82. (From Incropera and DeWitt, 5th edition) A room is 6 m wide, 10 m long and 4 m high. The
ceiling, floor and one long wall have emissivities of 0.8, 0.9 and 0.7 and are at temperatures
of 40◦C, 50◦C and 15◦C, respectively. The three other walls are insulated. Assuming that the
surfaces are diffuse and gray, find the net radiation heat transfer from each surface.

83. (From Incropera and DeWitt, 5th edition) A radiant heater consists of a long cylindrical
heating element of diameter D1 = 0.005 m and emissivity ε1 = 0.80. The heater is partially
enveloped by a long, thin parabolic reflector whose inner and outer surfaces emissivities are
ε2i = 0.10 and ε2o = 0.80, respectively. Inner and outer surface areas per unit length of the
reflector are each A′2i = A′2o = 0.20 m, and the average convection coefficient for the combined
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Heater

Reflector

135

Air

ο

Surroundings

Figure E.22: Figure for problem 3.

inner and outer surfaces is h2(i,o) = 2 W/m2K. The system may be assumed to be in an infinite,
quiescent medium of atmospheric air at T∞ = 300 K and to be exposed to large surroundings
at Tsur = 300 K. (a) Sketch the appropriate radiation circuit, and write expressions for each
of the network resistances. (b) If, under steady state conditions, electrical power is dissipated
in the heater at P ′1 = 1500 W/m and the heater surface temperature is T1 = 1200 K, what is
the net rate at which radiant energy is transferred from the heater? (c) What is the net rate
at which radiant energy is transferred from the heater to the surroundings? (d) What is the
temperature T2 of the reflector?

84. Consider the convective fin equation

d2T

dx2
− T = 0,

where 0 ≤ x ≤ 1, with x(0) = 1, x(1) = 0. Solve using the following methods. You may have
to transform the dependent or independent variable differently for each method. In each case
show convergence.

(a) Finite differences: Divide into N parts, write derivatives in terms of finite differences,
reduce to algebraic equations, apply boundary conditions, and solve.

(b) Trigonometric Galerkin: Expand in terms of N trigonometric functions, substitute in
equation, take inner products, reduce to algebraic equations, and solve.

(c) Chebyshev Galerkin: Expand in terms of N Chebyshev polynomials, substitute in equa-
tion, take inner products, reduce to algebraic equations, and solve.

(d) Trigonometric collocation: Expand in terms of N trigonometric functions, substitute in
equation, take inner products, apply collocation, and solve.

(e) Galerkin finite elements: Divide into N elements, assume linear functions, integrate by
parts, assemble all equations, apply boundary conditions, and solve.

(f) Polynomial moments: Assume dependent variable to be a Nth-order polynomial that
satisfies boundary conditions, obtain algebraic equations by taking moments, and solve.
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85. If e−E/T is proportional to the heat generated within a tank by chemical reaction, and there is
heat loss by convection from the tank, show that the temperature of the tank T is determined
by

Mc
dT

dt
= ae−E/T − hA(T − T∞)

where M is the mass, c is the specific heat, a is a proportionality constant, h is the convective
heat transfer coefficient, A is the surface area of the tank, and T∞ is the ambient temperature.
Nondimensionalize the equation to

dT ∗

dt∗
= e−1/T∗ −H(T ∗ − T ∗∞)

(a) For T ∗∞ = 0.1, draw the bifurcation diagram with H as the bifurcation parameter, and
determine the bifurcation points.

(b) Determine the stability of the different branches of the bifurcation diagram.

86. The governing equations for the dynamic behavior of a toroidal convective loop with known
heat flux has been shown to be

dx

dt
= y − x (E.13)

dy

dt
= a− zx (E.14)

dz

dt
= xy − b (E.15)

(a) Using the same approach and notation as far as possible, modify the dynamical system
to include the effects of axial conduction.

(b) Determine the critical points of the conductive system and analyze their linear stability.

(c) Show that there is a conductive solution for heating that is symmetric about a vertical
diameter, and analyze its nonlinear stability.

87. Consider a toroidal convective loop with known wall temperature. Show that the dynamical
system for this problem can be reduced to the Lorenz equations. Determine the dimension of
the strange attractor for these equations.

88. Graphically compare the numerical and approximate boundary layer solutions in the problem
of one-dimensional flow in a pipe with advection, convection and axial conduction.

89. Consider the energy equation in the one-dimensional flow in a tube of finite wall thickness.
Include convection between the fluid and the tube, between the tube and the environment,
and axial conduction in the tube wall, but neglect axial conduction in the fluid. The inlet
temperature of the in-tube fluid is known, and the tube wall is adiabatic at the two ends.

(a) Show that the governing equations can be reduced to a form

dy

dξ
= Ay.

ξ is the nondimensional axial coordinate,

y =

 θi
θt
qt

 ,
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Figure E.23: CAPTION HERE.

and

A =

 −a a 0
0 0 1
−b b+ c 0

 .
θi is the nondimensional temperature of the in-tube fluid, θt that of the tube, and qt the
heat flux.

(b) Show that this can also be written as a third-order differential equation.

(c) Solve as much as you can analytically, and then assume numerical values for the param-
eters (e.g. a = 3, b = 10/3, c = 8/3) and complete the solution.

(d) Which of the cases of the parameters a, b and c going to either zero or infinity are regular
perturbations and which are singular?

90. Derive an expression for heat transfer in a fractal tree-like microchannel net3.

91. A body is being cooled by natural convection and black-body radiation. Assume lumped
parameters and derive an approximation for its temperature T (t) based on neglecting one
mode of heat transfer for small times and the other for long times. Compare with a numerical
result.

92. Consider the two-dimensional steady-state temperature distribution T (x, y) on the plate ABCDEFG
where AB = BC = DE = FG = GA and CD = BE = EF. The line ABC is adiabatic, AG is at
temperature T1 and the others are at T2. (a) Assume that the temperature distribution in the
dashed (interior) line BE is f(y) and solve the temperature distributions in the two rectangles
separately. (b) Equate the normal heat flux on either side of BE to get an equation for f(y).
(c) Suggest a numerical solution.

93. Explore a perturbation solution of the previous problem for a geometry in which CD/AG is
very small (instead of being 0.5 above).

94. Fluids A and B exchange heat in the concentric-tube counterflow heat exchanger shown.
Analyze the dynamics of the temperature field for a step change in the inlet temperature of
one of the fluids.

95. Derive the dynamical system for a convection loop with known heat flux that loops around in
a circle twice in a vertical plane before merging with itself. Investigate its static and dynamic
behavior.

3Y. Chen and P. Cheng, Heat transfer and pressure drop in fractal tree-like microchannel nets, International
Journal of Heat and Mass Transfer, Vol. 45, pp. 2643–2648, 2002
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Figure E.24: CAPTION HERE
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Figure E.25: CAPTION HERE

96. Show that a convectively cooled lumped mass that is heated with a time-varying source is
governed by an equation of the type

dT

dt
+ T = Q(t).

If Q = 1 + sinωt, find the amplitude of the temperature response as a function of ω.

97. Show that a radiative fin with heat generation is governed by an equation of the type

ε
d2T

dx2
− T 4 +Q = 0.

for 0 ≤ x ≤ 1. With Q = 1 and boundary conditions T (0) = 0, T (1) = 2, solve T (x)
numerically for different ε. From this see if and where boundary layers develop as ε→ 0.

98. Consider steady-state conduction in a L× 2εL rectangular plate, with ε� 1. If temperatures
are prescribed on the short sides and the long sides are insulated, show that the governing
equation in normalized spatial variables can be written as

ε2
∂2T

∂x2
+
∂2T

∂y2
= 0

in 0 ≤ x ≤ 1,−1 ≤ y ≤ 1 with boundary conditions T (0, y) = f(y), T (1, y) = g(y), (∂T/∂y)y=−1 =
(∂T/∂y)y=1 = 0.
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(a) Assume an outer expansion of the form

T (x, y) = T0(x, y) + ε2T1(x, y) + . . .

and show that
T0 = a0x+ b0(1− x)

where a and b are undetermined constants.

(b) With boundary layers near x = 0 and x = 1, show that matching with the outer solution
gives

a0 =
1

2

∫ 1

−1

g(y) dy (E.16)

b0 =
1

2

∫ 1

−1

f(y) dy (E.17)

99. Using multiple scales, solve the Fisher equation

∂T

∂t
= ε

∂2T

∂x2
+ T (1− T )

with −∞ < x < ∞, t > 0, T (x, 0) = 1/{1 + exp(λx)}, and ε � 1. Plot the analytical and
numerical results for ε = 0.01, λ = 1 and t = 0, t = 5, and t = 10.

100. Find an asymptotic approximation for

∂T

∂t
+
∂T

∂x
= εf(T )

with −∞ < x < ∞, t > 0, T (x, 0) = g(x) and ε � 1 that is valid for large t. Then reduce to
the special case for f(T ) = T (1− T ) and g(x) = 1/{1 + exp(λx)}.

101. Show that the temperature T (t) of a lumped body that is subject to convection and radiation
to a constant ambient temperature T∞ is governed by an equation of the form

dT

dt
+ a(T − T∞) + b(T 4 − T 4

∞) = 0,

and that two steady states are conditionally possible. Analyze the stability of each.

102. The temperature T (t) of an object is controlled to a desired value Ts by blackbody radiation
from a lamp at a temperature T∞(t). T can be measured and on the basis of that T∞ is
varied by a PID controller. Model the system with control, and determine the condition for
its stability.

103. A long tube held vertically is kept at a uniform temperature Tw that is higher than that of the
surrounding fluid T∞. There is an upward flow through the tube due to natural convection.
What is the temperature of the fluid leaving the tube? Make suitable assumptions.

104. Consider transient thermal conduction in a convective fin with its two ends kept at fixed
temperatures. Show that the steady-state temperature distribution is globally stable.
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105. An infinite one-dimensional lattice consists of repetitions of a unit consisting of two identical
masses followed by a third mass that is different. The springs and distances between the masses
are all identical. Find the small wave number phonon speed of the acoustic mode.

106. The surface of a sphere is divided into n unequal parts numbered 1, 2, . . . , n with areas
A1, A2, . . . , An respectively. Show that the view factor

Fi−j =
Aj

A1 +A2 + . . .+An
.

107. There are at least two ways to obtain a regular perturbation solution for the steady-state
temperature T (x, y) due to conduction without heat generation for the plate shown in the
figure, where ε � 1, For each, set up two terms of the problem (i.e. provide the equations to
be solved and the corresponding boundary conditions), but do not solve.

108. Find the maximum temperature on a thin rectangular plate with uniform temperature at the
edges and constant heat generation per unit area by using a one-term method of moments
approximation.

109. Determine the temperature distribution along a fin of constant area which has lateral convec-
tion and also a small amount of radiative cooling. The base temperature is known and the tip
is adiabatic.
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110. The governing equations for the dynamic behavior of a toroidal natural convection loop with
axial conduction that is symmetrically heated with known heat flux is

dx

dt
= y − x, (E.18)

dy

dt
= zx− cy, (E.19)

dz

dt
= xy − b− cz. (E.20)

Draw the bifurcation diagram and determine the linear and nonlinear stability of the conductive
solution.

111. Model and solve the dynamics of a counterflow heat exchanger.

112. Describe how you would solve this problem using more typical methods and what other infor-
mation would be required.

113. (Chap. 1) A square silicon chip (k = 150 W/m K) is of width 5 mm on a side and of thickness
1 mm. The chip is mounted on a substrate such that its side and back surfaces are insulated,
while the front surface is exposed to a coolant. If 4 W are being dissipated in circuits mounted
to the back surface of the chip, what is the steady-state temperature difference between the
back and front surfaces.

114. (Chap. 1) A square isothermal chip is of width 5 mm on a side and is mounted on a substrate
such that its side and back surfaces are well insulated, while the front surface is exposed to the
flow of a coolant at temperature 85◦C. If the coolant is air and the corresponding convection
coefficient is h = 200 W/m2K, what is the maximum allowable chip power? If the coolant is
a dielectric liquid for which h = 3000 W/m2K, what is the maximum allowable power?

115. (Chap. 1) An overhead 25 m long, uninsulated industrial steam pipe of 100 mm diameter is
routed through a building whose walls and air are at 25◦C. Pressurized steam maintains a
pipe surface temperature of 150◦C, and the coefficient associated with natural convection is
h = 10W/m2 K. The surface emissivity is 0.8. (a) What is the rate of heat loss from the steam
line? (b) If the steam is generated in a gas-fired boiler operating at an efficiency of 0.9 and
natural gas is priced at $0.01 per MJ, what is the annual cost of heat loss from the line?

116. (Chap. 1) Three electric resistance heaters of length 250 mm and diameter 25 mm are sub-
merged in a 10 gallon tank of water, which is initially at 295 K. (a) If the heaters are activated,
each dissipating 500 W, estimate the time required to bring the water to a temperature of 335
K. (b) If the natural convection coefficient is given by h = 370(Ts−T )1/3, where h is in W/m2K
and Ts and T are temperatures of the heater surface and water in K, respectively, what is the
temperature of each heater shortly after activation and just before deactivation? (c) If the
heaters are inadvertently activated when the tank is empty, the natural convection coefficient
associated with heat transfer to the ambient air at T∞ = 300 K may be approximated as
h = 0.70(Ts− T∞)1/3. If the temperature of the tank walls is also 300 K and the emissivity of
the heater surface is 0.85, what is the surface temperature of each heater under steady-state
conditions?

117. (Chap. 2) Beginning with a differential control volume, derive the heat diffusion equation in
cylindrical coordinates.
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118. (Chap. 3) A circular copper rod of 1 mm diameter and 25 mm length is used to enhance heat
transfer from a surface that is maintained at 100◦C. One end of the rod is attached to this
surface, while the other end is attached to a second surface at 0◦C. Air flowing between the
surfaces and over the rods is at 0◦C. The convective heat transfer coefficient at the surface of
the rod is 100 W/m2K. What is the rate of heat transfer by convection from the rod to the
air?

119. (Chap. 4) Using the method of separation of variables, determine the steady-state temperature
field T (x, y) in the rectangle shown below. Make a three-dimensional plot. Also draw the
isotherms on a two-dimensional plot.

Lengths AB = 3, and BC = 2; temperatures at the boundaries at AB, CD and DA are zero,
but at BC is

T (3, y) =

{
y, 0 ≤ y ≤ 1
2− y, 1 < y ≤ 2

120. (Chap. 5) In a material processing experiment conducted aboard the space shuttle, a coated
niobium sphere of 10 mm diameter is removed from a furnace at 900◦C and cooled to a
temperature of 300◦C. Take ρ = 8600 kg/m3, c = 290 J/kg K, and k = 63 W/m K. (a) If
cooling is implemented in a large evacuated chamber whose walls are at 25◦C, determine the
time required to reach the final temperature if the emissivity is 0.1. How long would it take
if the emissivity were 0.6? (b) To reduce the time required for cooling, consideration is given
to immersion of the sphere in an inert gas stream at 25◦C with h = 200 W/m2K. Neglecting
radiation, what is the time required for cooling?

121. (Chap. 5) The density and specific heat of a plastic material are known (ρ = 950 kg/m3,
cp = 1100 J/kg K), but its thermal conductivity is unknown. An experiment is performed in
which a thick sample is heated to a uniform temperature of 100◦ and then cooled by passing
air at 25◦C over one surface. A thermocouple embedded a distance of 10 mm below the
surface records the thermal response of the plastic during cooling. If the convection coefficient
associated with air flow is 200 W/m◦, and a temperature of 60◦ is recorded 5 min after the
onset of cooling, what is the thermal conductivity of the material?

122. (Chap. 6) A shaft with a diameter of 100 nm rotates at 9000 rpm in a journal bearing that
is 70 mm long. A uniform lubricant gap of 1 mm separates the shaft and the bearing. The
lubricant properties are µ = 0.03 Ns/m2, k = 0.15 W/m K, while the bearing material has
a thermal conductivity of kb = 45 W/m K. (a) Determine the viscous dissipation in W/m3

in the lubricant. (b) Determine the rate of heat transfer in W from the lubricant, assuming
that no heat is lost through the shaft. (c) If the bearing housing is water-cooled and the outer
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Figure E.31: CAPTION HERE.

surface of the housing is 30◦C, determine the temperatures at the interface between lubricant
and shaft and lubricant and bearing.

123. (Chap. 7) Consider the wing of an aircraft as a flat plate of length 2.5 m in the flow direction.
The plane is moving at 100 m/s in air that is at a pressure of 0.7 bar and temperature −10◦C.
The top surface of the wing absorbs solar radiation at a rate of 800 W/m2. Estimate the
steady-state temperature of the wing, assuming it to be uniform.

124. (Chap. 8) The evaporator section of a heat pump is installed in a large tank of water, which
is used as a heat source during the winter. As energy is extracted from the water, it begins
to freeze, creating an ice/water bath at 0◦, which may be used for air-conditioning during
the summer. Consider summer cooling conditions for which air is passed through an array of
copper tubes, each of inside diameter D = 50 mm, submerged in the bath. (a) If air enters
each tube at a mean temperature of Tm,i = 24◦C and a flow rate of ṁ = 0.01 kg/s, what tube
length L is needed to provide an exit temperature of Tm,o = 14◦C? With 10 tubes passing
through a tank of total volume V = 10 m3, which initially contains 80% ice by volume, how
long would it take to completely melt the ice? The density and latent heat of fusion of ice are
920 kg/m3 and 3.34×105 J/kg, respectively. (b) The air outlet temperature may be regulated
by adjusting the tube mass flow rate. For the tube length determined in part (a), compute
and plot Tm,o as a function of ṁ for 0.005 ≤ ṁ ≤ 0.05 kg/s. If the dwelling cooled by this
system requires approximately 0.05 kg/s of air at 16◦C, what design and operating conditions
should be prescribed for the system?

125. (Chap. 9) Beverage in cans 150 mm long and 60 mm in diameter is initially at 27◦C and is to
be cooled by placement in a refrigerator compartment at 4◦C. In the interest of maximizing
the cooling rate, should the cans be laid horizontally or vertically in the compartment? As a
first approximation, neglect heat transfer from the ends.

126. (Chap. 9) A natural convection air heater consists of an array of N parallel, equally spaced
vertical plates, which may be maintained at a fixed temperature Ts by embedded electric
heaters. The plates are of length and width L = W = 300 mm and are in quiescent, atmo-
spheric air at T∞ = 20◦C. The total width of the array cannot exceed a value of War = 150
mm. For Ts = 75◦C, what is the plate spacing (distance between plates) S that maximizes
heat transfer from the array? For this spacing, how many plates comprise the array and what
is the corresponding rate of heat transfer from the array?
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127. (Chap. 10) Saturated steam at 1 atm condenses on the outer surface of a vertical 100 mm
diameter pipe 1 m long, having a uniform surface temperature of 94◦C. Estimate the total
condensation rate and the heat transfer rate to the pipe.

128. (Chap. 11) A shell-and-tube heat exchanger consists of 135 thin-walled tubes in a double-pass
arrangement, each of 12.5 mm diameter with a total surface area of 47.5 m2. Water (the
tube-side fluid) enters the heat exchanger at 15◦C and 6.5 kg/s and is heated by exhaust gas
entering at 200◦C and 5 kg/s. The gas may be assumed to have the properties of atmospheric
air, and the overall heat transfer coefficient is approximately 200 W/m2K. (a) What are the
gas and water outlet temperatures? (b) Assuming fully developed flow, what is the tube-side
convection coefficient? (c) With all other conditions remaining the same, plot the effectiveness
and fluid outlet temperature as a function of the water flow rate over the range from 6 to 12
kg/s. (d) What gas inlet temperature is required for the exchanger to supply 10 kg/s of hot
water at an outlet temperature of 42◦C, all other conditions remaining the same? What is the
effectiveness for this operating condition?

129. (Chap. 11) A boiler used to generate saturated steam is in the form of an unfinned, cross-flow
heat exchanger, with water flowing through the tubes and a high temperature gas in cross
flow over the tubes. The gas, which has a specific heat of 1120 J/kg K and a mass flow rate
of 10 kg/s, enters the heat exchanger at 1400 K. The water, which has a flow rate of 3 kg/s,
enters as saturated liquid at 450 K and leaves as saturated vapor at the same temperature.
If the overall heat transfer coefficient is 50 W/m2K and there are 500 tubes, each of 0.025 m
diameter, what is the required tube length?

130. (Chap. 12) The energy flux associated with solar radiation incident on the outer surface of
the earth’s atmosphere has been accurately measured and is known to be 1353 W/m2. The
diameters of the sun and earth are 1.39× 109 and 1.29× 107 m respectively, and the distance
between the sun and the earth is 1.5× 1011 m. (a) What is the emissive power of the sun? (b)
Approximating the sun’s surface as black, what is its temperature? (c) At what wavelength
is the spectral emissive power of the sun a maximum? (d) Assuming the earth’s surface to
be black and the sun to be the only source of energy for the earth, estimate the earth’s
temperature.

131. (Chap. 12) The spectral reflectivity distribution for white paint can be approximated by the
following stair-step function: αλ = 0.75 for λ < 0.4 µm, αλ = 0.15 for 0.4 < λ < 3 µm,
and αλ = 0.96 for λ > 3 µm. A small flat plate coated with this paint is suspended inside a
large enclosure, and its temperature is maintained at 400 K. The surface of the enclosure is
maintained at 3000 K, and the spectral distribution of its emissivity is ελ = 0.2 for λ < 2.0
µm, and ελ = 0.9 for λ > 2.0 µm. (a) Determine the total emissivity, ε, of the enclosure. (b)
Determine the total emissivity, ε, and absorptivity, α, of the plate.

132. (Chap. 12) A thermocouple whose surface is diffuse and gray with an emissivity of 0.6 indicates
a temperature of 180◦C when used to measure the temperature of a gas flowing through a large
duct whose walls have an emissivity of 0.85 and a uniform temperature of 450◦C. (a) If the
convection heat transfer coefficient between the thermocouple and the gas stream is h̄ = 125
W/m2·K and there are negligible conduction losses from the thermocouple, determine the
temperature of the gas. (b) Consider a gas temperature of 125◦C. Compute and plot the
thermocouple measurement error as a function of the convection coefficient for 10 ≤ h̄ ≤ 1000
W/m2·K.
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Figure E.32: Triangular fin [Same as Fig. 1.7 on p. 16].
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Figure E.33: Constant-area fin [Same as Fig. 1.8].

133. (Chap. 13) Consider two diffuse surfaces A1 and A2 on the inside of a spherical enclosure of
radius R. Using the following methods, derive an expression for the viewfactor F12 in terms
of A2 and R. (a) Find F12 by beginning with the expression Fij = qi→j/AiJi. (b) Find F12

using the view factor integral

Fij =
1

Ai

∫
Ai

∫
Aj

cos θi cos θj
πR2

dAi dAj

134. (Chap. 13) Two parallel, aligned disks, 0.4 m in diameter and separated by 0.1 m, are located
in a large room whose walls are maintained at 300 K. One of the disks is maintained at a
uniform temperature of 500 K with an emissivity of 0.6, while the backside of he second disk
is well insulated. If the disks are diffuse, gray surfaces, determine the temperature of the
insulated disk.

135. (Chap. 13) A solar collector consists of a long duct through which air is blown; its cross
section forms an equilateral triangle of side 1 m on a side. One side consists of a glass cover of
emissivity ε1 = 0.9, while the other two sides are absorber plates with ε2 = ε3 = 1.0. During
operation the surface temperatures are known to be T1 = 25◦C, T2 = 60◦C, and T3 = 70◦C.
What is the net rate at which radiation is transferred to the cover due to exchange with the
absorber plates?

136. (Chap. 13) Consider a circular furnace that is 0.3 m long and 0.3 m in diameter. The two
ends have diffuse, gray surfaces that are maintained at 400 and 500 K with emissivities of 0.4
and 0.5, respectively. The lateral surface is also diffuse and gray with an emissivity of 0.8 and
a temperature of 800 K. Determine the net radiative heat transfer from each of the surfaces.

137. Show that no solution is possible in Problem 4 if the boundary layer is assumed to be on the
wrong side.

138. Find the steady-state temperature distribution and velocity in a square-loop natural convection
loop. The total length of the loop is L and the distribution of the heat rate per unit length is:
Q between c and d, and −Q between g and h. The rest of the loop is adiabatic.
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Figure E.34: Flow in tube with non-negligible wall thickness.
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139. Consider a long, thin, vertical tube that is open at both ends. The air in the tube is heated
with an electrical resistance running down the center of the tube. Find the flow rate of the air
due to natural convection. Make any assumptions you need to.

140. Obtain the table below by solving the fin conduction equation for the different boundary
conditions.

141. Derive the fin efficiency given below for a circular fin.

142. Read the section on the bioheat equation and solve the following.

143. Use separation of variables to find the steady-state temperature distribution T (x, y) in the
rectangle shown for the following boundary conditions. AB: T = T1; BC: adiabatic; CD:
T = T2; DA: T = T2. The dimensions are AB = 2 units, BC = 1 unit. Also write a finite-
difference program to find a numerical solution to the problem, and compare with the analytical
solution.

144. Use the finite-element based pde toolbox4 in Matlab to solve the numerical example in the
previous homework. Compare with the analytical result.

145. The exact solution of transient conduction in a plane wall with convection at the surfaces is
given in the book. Derive it.

4Just type pdetool in Matlab.

T1 T2

Figure E.38: Plane wall in steady state.
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T1 T2

Figure E.39: Plane wall in unsteady state.
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146. Show, following the steps in the book, that the transient heat equation in a semi-infinite solid
can be written as

d2T

dη2
= −2η

dT

dη
.

Derive also the constant heat flux and surface convection solutions given.

147. The following problem is an example in the book. Write computer programs and find what is
asked using more nodes and smaller time steps. Also integrate until steady state is reached,
and plot the temperature at a few specific points.

148. Find the non-dimensional form of the energy equation for an incompressible fluid with constant
properties

∂T

∂t
+ u · ∇T = α∇2T + Φ/ρcp,

where the dissipation function is

Φ = µ

[
2

(
∂u

∂x

)2

+ 2

(
∂v

∂y

)2

+ 2

(
∂w

∂z

)2

+

(
∂v

∂x
+
∂u

∂y

)2

+

(
∂w

∂y
+
∂v

∂z

)2

+

(
∂u

∂z
+
∂w

∂x

)2
]

in terms of the components of u = (u, v, w). Show that the Peclet and Eckert numbers arise
naturally.

149. For the flat plate boundary layer in forced convection, solve the hydrodynamic and thermal
equations

2
d3f

dη3
+ f

d2f

dη2
= 0,

d2T ∗

dη2
+

Pr

2
f
dT ∗

dη
= 0,

numerically, with the boundary conditions f(0) = f ′(0) = T ∗(0) = 0, and f ′(∞) = T ∗(∞) = 1.

Compare f(η) and d2f
dη2 (0) with values given in the book. Plot dT∗

dη (0) as a function of Pr, and
compare with the approximation for Pr larger than 0.6 given in the book.

150. For natural convection over a vertical flat plate, solve the boundary layer equations

d3f

dη3
+ 3f

d2f

dη2
− 2

(
df

dη

)2

+ T ∗ = 0,

d2T ∗

dη2
+ 3Prf

dT ∗

dη
= 0,

numerically, with the boundary conditions f(0) = f ′(0) = 0, T ∗(0) = 1, and f ′(∞) = T ∗(∞) =
0. Plot graphs choosing values of Pr to compare with those in the book.

151. For a counter-flow heat exchanger, determine from first principles (a) the heat rate expression,
(b) the log mean temperature difference, and (c) the ε-NTU relation.
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152. There is flow on either side of a L× L metal plate as shown. Assume that the flow is laminar
on both sides and that the local heat transfer coefficient is given by the boundary layer theory.
Determine the local heat transfer coefficient U(x, y) as a function of position. Neglect the
conductive thermal resistance of the plate. If the incoming temperatures of the two fluids are
Th,i and Tc,i, what are the temperature distributions at the outlets as functions of position.

153. Again consider a square plate as shown above, but with conduction important and the heat
transfer coefficient independent of position. Neglecting the variation of temperature across the
thickness of the plate, derive a steady state equation for the local temperature in the plate
T (x, y). With suitable boundary conditions, solve T (x, y) analytically and compare with a
numerical solution.

154. Show that Maxwell equations (Eqs. 1.53–1.56, p. 10 in the Notes) reduce to the wave equation
in electric and magnetic fields for zero electrical conductivity.

155. For small electrical conductivity, show that the one-dimensional equation for the electric field

∂2E

∂x2
− εµ∂

2E

∂t2
− gµ∂E

∂t
= 0

has an approximate solution of the form

E = e−βxf(x− at)

where a = 1/
√
εµ, and β is small (so that β2 can be neglected). What is β is terms of the

parameters g, ε and µ?

156. Show, by integration, the expression in the book for the view factor between two aligned,
parallel rectangles.

157. Find the steady-state temperature distribution T (x) in a plate x ∈ [0, L], with T (0) = T1, and
T (L) = T2, and where the thermal conductivity varies linearly with temperature, i.e.

k = k0

(
1 + ε

T − T1

T2 − T1

)
,

with ε� 1.
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158. Consider a fin equation

ε
d2θ

dx2
− θ = 0

with θ(0) = −1, θ(1) = 1. (a) Solve analytically. (b) Solve using perturbations for ε� 1 with
boundary layers on both sides. (c) Compare the two solutions graphically.

159. Determine the time-dependent temperature in the cooling of a lumped body with radiation
and weak convection. For simplicity, take T∞ = 0.

160. Two bodies are in thermal contact with each other (as in Section 2.6.1, p. 25 but without heat-
ing Q). Solve for initial conditions T1(0) = T2(0) = T0. Solve the problem using perturbations
if the contact thermal resistance ks is small. Clearly specify the small parameter ε. Compare
graphically with the analytical solution of the previous problem.

161. A circular disc of radius R lies on an adiabatic surface and is being heated by a radiative
heater. The heat input per unit area from the radiator is q. The disc is thin enough for the
transverse temperature variation to be neglected. If the temperature at the edge of the disc is
T (R) = T0, determine the steady-state temperature distribution, T (r), in the disc, where r is
the radial coordinate.

162. Consider a thin plate of thickness δ, and constant thermal conductivity k. Both sides of the
plate are subjected to convective heat transfer with a constant heat transfer coefficient h. Show
that the temperature field, T (x, y), is governed by

∂2T

∂x2
+
∂2T

∂y2
−m2 (T − T∞) = 0,

where m2 = 2h/kδ, and T∞ is the temperature of the fluid surrounding the plate.

163. The governing equation for the temperature distribution in a thermal boundary due to flow
over a flat plate at constant temperature is

d2T ∗

dη2
+

Pr

2
f
dT ∗

dη
= 0,

where f(η) is the known solution of the Blasius equation. The boundary conditions are T ∗(0) =
0 and T ∗(∞) = 1. Show that the solution can be written as

T ∗(η) =

∫ η

0

exp

(
−Pr

2

∫ r

0

f(s) ds

)
dr∫ ∞

0

exp

(
−Pr

2

∫ r

0

f(s) ds

)
dr

.
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164. The inside wall of a long cylinder of radius R and length L has a temperature distribution of
Tw(θ). Assuming that there is no participating medium inside the cylinder and that the inside
surface acts a black-body, determine the heat flux distribution on the inside wall q(θ) due to
internal radiation.

165. Show that the set of all continuous temperature distributions T (x) in the interval x ∈ [a, b]
along a bar with T (a) = 0 and T (b) = 1 does not form a vector space.

166. In the above, show that T (x) would be a vector space if the second condition were changed to
T (b) = 0 (and T could assume any value). What is the dimension of that space?

167. S is a space of sufficiently smooth functions f(x) with x ∈ [0, 1] and f(0) = f(1) = 0 that is
endowed with the L2 inner product.

(a) Show that

L1 =
d2

dx2

that operates on members of S is self-adjoint. Show that

L2 =
d2

dx2
−m2

where m is a constant, is also self-adjoint.

(b) Find the eigenvalues, λn, and eigenfunctions of L1. Normalize each eigenfunction by
dividing by its norm to obtain an orthonormal set, φn(x).

(c) Solve the one-dimensional steady-state fin equation

L2(T ) = 0

for the temperature distribution T (x), with T (0) = 0, T (1) = 1, where L2 is defined as
above.

(d) Let θ(x) = T − x. Write the differential equation that θ(x) satisfies in the form L(θ) =
g(x), and show that θ ∈ S. Expand θ(x) in terms of the eigenfunctions obtained above
as

θ(x) =

∞∑
i=0

aiφi(x).

Substitute into L(θ) = g(x), and take the inner product of the equation with φi to
determine the coefficients ai.

(e) Graphically compare the exact and the eigenfunction expansion (using perhaps five terms)
solutions of T (x).
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168. Consider one-dimensional flow in a pipe with lateral convection (with constant heat transfer
coefficient h) as shown. The flow velocity is V and the temperature T (x). Neglect the pipe
wall.

(a) Derive the governing energy balance differential equation and non-dimensionalize.

(b) Solve with boundary conditions T (0) = Tin and T (L) = Tout.

(c) Using the boundary layer approximation for small axial conduction, find the inner and
outer solutions as well as the composite solution.

(d) Show that the adjoint differential equation represents a pipe with flow in the opposite
direction.

169. Consider now the pipe with a thick wall which exchanges heat by convection with the fluid and
with the surroundings (with constant but different heat transfer coefficients). Assume axial
conduction in both wall and fluid.

(a) Derive the two governing equations for the wall and fluid temperatures, Tw(x) and Tf (x),
respectively.

(b) Nondimensionalize using ξ = x/L, θw = (Tw − T∞)/∆T , θf = (Tf − T∞)/∆T , ∆T =
T inf − T∞, where L is the length of the pipe, T∞ is the ambient temperature, and T inf is
the inlet temperature of the fluid.

(c) Writing X =
[
θw θ′f

]T
and Y =

[
θf θ

′
w

]T
, show that the nondimensional equations can

be written as

d

dξ
Θ = AΘ, (E.21)

where Θ = [X Y]
T

.
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(d) Assume boundary conditions Tf = Tin, dTw/dx = 0 at x = 0, and Tf = Tout, dTw/dx = 0
at x = L. Show that Eq. (E.21) can be written as

X(1) = D11X(0) + D12Y(0), (E.22)

Y(1) = D21X(0) + D22Y(0), (E.23)

where Y(0) and Y(1) are known.

(e) Determine X(0) from Eq. (E.23), and use this to find Θ(0).

(f) Solve Eq. (E.21).

(g) Find the total heat lost to the surroundings by convection in terms of θw(x).

170. Use the following numerical methods to solve the fin problem: T ′′ − T = 0 with T (0) = 1 and
T (1) = 0.

(a) Finite differences with n divisions, where n is as large as necessary.

(b) Finite elements with n elements, where n is as large as necessary.

(c) Collocation method with Chebycheff polynomials. Use n polynomials, where n is as
large as necessary. Remember to transform the equation first into one with homogeneous
boundary conditions.

171. Consider the problem of pipe flow with a thick wall given in HW16, Prob. 2. Assume a
vanishingly small axial conduction in both wall and fluid, and find the outer solution for the
boundary layer approximation, and the corresponding heat loss to the surroundings.

172. Using a lumped approximation write the differential equation that governs the time dependence
of the temperature of a body that is convecting and radiating to surroundings at T∞. Find
the steady state temperature and show that it is linearly stable.

173. Find the correlation dimension of the strange attractor for the Lorenz equations (that model
flow in a thermosyphon under some conditions) [Probs 38, 53, 136]

dx

dt
= σ(y − x), (E.24)

dy

dt
= λx− y − xz, (E.25)

dz

dt
= −bz + xy. (E.26)

from data obtained from numerical integration of the equation, where σ = 10, λ = 28 and
b = 8/3. Use the following definition of the dimension D: vary r and count the number of
points N(r) within a sphere of radius r; the dimension is given by the slope D = lnN/ ln r.

174. Find the linear stability of the critical points of the dynamical system (that also models flow
in a thermosyphon under different conditions)

dx

dt
= y − x, (E.27)

dy

dt
= a− zx, (E.28)

dz

dt
= xy − b. (E.29)
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Plot (x, y, z) in three dimensional space for the initial condition (1,1,1) and (i) a = 2, b = 1,
(ii) a = 1, b = 1, and (iii) a = 0, b = 1.

175. The dynamical system for an untilted, toroidal thermosyphon with axial conduction and known
heat flux is

dx

dt
= y − x, (E.30)

dy

dt
= −zx− cy, (E.31)

dz

dt
= −b+ xy − cz. (E.32)

Show that (0, ?, ?) is a globally stable critical point for b < c2.

176. Consider two thermosyphons that can exchange heat through a common wall5, as shown in
Fig. E.47. There is constant heating through wall ab and cooling through cd. Derive the
time-dependent governing equations for this conjugate problem, and find the steady state
solution(s).

177. A U-shaped open loop with constant heating from the side is rotated about its axis6 as shown
in Fig. E.48. Determine the steady-state flow rate.

178. Consider a PCR (polymerase chain reaction) thermocycler7 as shown in Fig. E.49, that acts
as a single-phase thermosyphon. The triangle is equilateral with a 2 cm base and 0.4 mm
internal diameter. If water is the working fluid, estimate its cycle time (as a number). Assume
a suitable heat transfer correlation.

5O. Salazar, M. Sen and E. Ramos, Flow in conjugate natural circulation loops, AIAA Journal of Thermophysics
and Heat Transfer, Vol. 2, No. 2, pp. 180–183, 1988.

6M.A. Stremler, D.R. Sawyers, M. Sen, Analysis of natural convection in a rotating open loop, AIAA Journal of
Thermophysics and Heat Transfer, Vol. 8, No. 1, pp. 100–106, 1994.

7N. Agrawal, Y.A. Hassan, V.M. Ugaz, A Pocket-Sized Convective PCR Thermocycler, Angewandte Chemie
International Edition, Vol. 46, No. 23, pp. 4316–4319, 2007.
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179. Consider a rotating torus (such as an automobile tire) that is being cooled by natural convection
through hollow spokes as in Fig. E.50 (a single loop is also shown at the side). Estimate the
heat rate that can be extracted by convection through the walls of the spoke.

180. A lumped mass with internal heat generation is radiating heat to its surroundings. Assume
that the instantaneous temperature of the mass can be measured by a sensor, and the heat
generation can be changed by an actuator. PI control is used to maintain the temperature of
the mass at a constant value. Find the conditions on the PI constants for linear stability.

181. Consider a thermostatically-controlled heating model of a ring of n rooms

dTi
dt

+ Ti + k (Ti − Ti−1) + k (Ti − Ti+1) = Qi, i = 1, . . . , n

where Ti is the temperature of room i (with respect to the surroundings), and t is time. The
third and fourth terms on the left are the heat transfer between room i and its neighbors i− 1
and i+1, respectively. The parameter k represents the strength of this interaction. The heater
Qi goes on if the temperature Ti falls below Tmin , and goes off if it rises above Tmax , so that

Qi =

{
0 if heater is off,

1 if heater is on.

Using n = 3, Tmin = 0.25, Tmax = 0.75, T1(0) = 0.10, T2(0) = 0.50, T3(0) = 0.85, write
a compute program to plot T1(t), T2(t), T3(t) on the same graph for 40 ≤ t ≤ 50 with (a)
k = 0.28, and (b) k = 0.29.

182. The following questions refer to the book S. Chandrasekhar, Hydrodynamic and Hydromagnetic
Stability, Dover, 1961. Consider only the case of fluid between two rigid plates held at different
temperatures. Show all the steps that are not given in the book.

(a) From the governing equations (2), (19) and (39), make suitable assumptions and get the
steady state solutions for the fluid velocity, temperature, and pressure given in Section 9.

(b) From there, carry out the steps in the book to get to Eqs. (99) and (100). Set the
eigenvalue σ = 0 to get Eqs. (126) and (127).

(c) Complete the solution in Section 15 (solve Eq. (216) numerically) to get the minimum
Rayleigh number for an even mode to be 1707.762 as shown in Eq. (217).

183. The dispersion relation of gravity waves on the surface of water is

ω =
√
gk tanh(kh) ,
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Figure E.51: CAPTION HERE

where h is the depth of water, and g is the acceleration due to gravity. (a) Find the two
approximations for kh � 1 (shallow water), and kh � 1 (deep water) to leading order. (b)
Determine the phase and group velocities in these two limits. (c) Calculate the speed of a
tsunami (shallow-water wave) in km/hr for an average ocean depth of 3 km. (d) Show that
the group velocity of a deep-water wave is one-half its phase velocity.

184. Analyze the wave motion in an infinite chain of masses connected by identical springs. The
pattern of masses is m1,m1,m2 repeating itself.

185. Consider the longitudinal motion of a string of ten identical masses connected to each other
and to walls on either side by identical springs. Before starting, all masses are stationary and
at equilibrium; then only the first mass is pulled a certain distance to one side and let go.
Calculate numerically the resulting longitudinal motion of each mass as a function of time and
plot the result.

186. Derive the Power Flow, Wave Energy and Power Flow, and Momentum and Mass Flow equa-
tions outlined in

http://www.silcom.com/~aludwig/Physics/QM/LatticeWaves.htm

187. Using the one-dimensional formula as a guide, derive a formula for solving the steady-state
diffusion equation in two dimensions using the random-walk method.

188. Assuming that the distribution function f depends on time alone, use the relaxation time
approximation to solve the Boltzmann Transport Equation for f(t).
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