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Corrections to

Discrete Fourier and Wavelet Transforms:
An Introduction through Linear Algebra
with Applications to Signal Processing

by Roe W. Goodman

Revised October 15, 2017

A negative line number means measured from the bottom, not including footnotes.

p. 9 l. -6: change u2 = [ 0 1 −3 ] to u2 = [ 0 1 −3 ]

p. 11 l. 1 of §1.5.1: change vm to vn

p. 23 l. 5 right side of equation: change to 2 |α|2|f [n]|2 + 2 |β|2|g[n]|2

p. 26 l. 9: change u to w (twice)

p. 43 l. -3: add The highs and lows of the fundamental 3 Hertz sine wave are modified
to include ripples generated by the 9 Hertz sine wave.

p. 46, line after equation (2.7): change For N = 4 we have w = e2π i/4 = i
to For N = 4 we have ω = e2π i/4 = i

p. 46 l. -4: change right side to N [d0 d1 . . . dN−1]
T

p. 47 equation (2.10): change middle term to
N(d0E0 + d1E1 + · · ·+ dN−1EN−1)

p. 50 l. -8: change so it the same to so it is the same

p. 55 4th line of Remark 2.3: change y[k] to ŷ[k]

p. 57 l. -1: add sentence This means that T removes most of the high-frequency
energy (θ ≈ π) in the input signal but does not significantly change the energy in the low
frequencies (θ ≈ 0 mod 2π).

p. 57 l. -3: change +i(1− c2)/4 to −i(1− c2)/4

p. 57 l. -1: change z[k] = 2c2 sin(3kπ/4) +
1− c2

2
sin(9kπ/4)

to z[k] = 2c2 sin(kπ/4) +
1− c2

2
sin(3kπ/4)

p. 58 l. 2: change 2c2 sin(3kπ/4) to 2c2 sin(kπ/4)

change
1− c2

2
sin(9kπ/4) to

1− c2

2
sin(3kπ/4)

p. 58 Example 2.10, l. 5: change 4, 092 to 4, 096

p. 61 equation (2.31): change the index range to j = 0, . . . ,m− 1

p. 63 lines 3,4 of (b): change to
. . . can be downloaded or added as a MATLAB toolbox from
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http://www.mathworks.com/moler/chapters

p. 71 (3)(c): change Definition 2.27 to Definition 2.5

p. 77 l. -1: after displayed formula insert For example, when N = 4 then

split =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .
In this case split happens to be a symmetric matrix, and so merge is the same matrix.

This is not the case for larger N , however.

p. 79 l. 10: insert the following footnote The terms prediction, update, and
normalization were introduced in [Daubechies and Sweldens (1998)] to describe the basic
steps in the lifting method for wavelet transforms. This paper, subtitled Research Tutorial,
is very readable and explains the reasons for this terminology.

p. 79 l. 6: insert In this calculation we have used the fact that split is an orthogonal

matrix.

p. 80, equation (3.3): change T
(k)
s =

[
I(k−1) I(k−1)

I(k−1) −I(k−1)

]
split

to T
(k)
s = merge

[
I(k−1) I(k−1)

I(k−1) −I(k−1)

]
p. 90, formula (3.24): change P =

[
I 0

−(1/4)
(√

3I − (
√

3− 2)S
)

I

]
.

to P =

[
I 0

−(1/4)
(√

3I + (
√

3− 2)S
)

I

]
.

p. 91 3rd line of the proof of Theorem 3.1: change the matrix on the right to

[
(aI + cS) −(bI + dS−1)
(bI + dS) (aI + cS−1)

]
p. 91 4th line of the proof of Theorem 3.1: change split is orthogonal

to split is orthogonal and S−1 = ST.

p. 94 l. -2, second row of matrix: change z to z−1 (two changes).

p. 95 l. -7: add missing left parenthesis to get

d(1)[n] = xodd[n]−
(
(9/8)I + (3/8)S(−1))s(1)

p. 99 l. -4: change Section 2.4 to Section 2.5

p. 100 l. 3: change

∨
u=

[
u[N − 1], . . . , u[1], u[0]

]
if u =

[
u[0], u[1], . . . , u[N − 1]

]
.
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to

∨
u=

[
u[0], u[N − 1], . . . , u[1]

]
if u =

[
u[0], u[1], . . . , u[N − 1]

]
.

Thus when u and
∨
u are viewed as N -periodic functions on the integers, then

∨
u [k] = u[−k].

p. 100 l. 11: change = (
∨
u0 ?x[k])[2j] = (

∨
u0 ?x[k])even[j]

to = (
∨
u0 ?x)[2j] = (

∨
u0 ?x)even[j]

p. 102 l. 16: change xs and xs to xs and xd

p. 103 After l. 4: In row 6 of xs change the number 5 to 5.5.

p. 105 (3.47): In the formulas for U3 and V3 each 1
2 should be 1

8 and in the forumla for
V2 each 1

2 should be 1
4 .

p. 106 l. -5: change S(k−1) to S(j−1)

p. 109 l. 4: change contained in 11 of the 64 coefficients
to contained in 12 of the 64 coefficients

p. 119, l. -9: before We define the mean square error
insert
For a matrix A = [aij ] we define the norm (more precisely, the Frobenius norm) of A to
be ‖A‖ = {

∑
i,j |aij |2}1/2. When A is a row vector or a column vector, this is the same

definition as in Section 1.7. In general, the Frobenius norm of a matrix A of size M ×N is
the same as the norm of the column vector u of size MN × 1 obtained by concantenating
the columns of A. In Matlab ‖A‖ is calculated by the command norm(A, ’fro’).

p. 119, l. -5, -4, -3: change
for the round-wavy image we calculate that MSE = 0.008, while for the kitten image
MSE = 0.695. The MSE for the compressed kitten image is about 85 times larger than the
MSE for the compressed synthetic image
to
for the round-wavy image we calculate that MSE = 0.222, while for the kitten image
MSE = 17.1. The MSE for the compressed kitten image is about 77 times larger than the
MSE for the compressed synthetic image

p. 120, l. 1: change MSE = 1/128 = 0.008 to MSE = 1.

p. 120, l. 8, 9: change
For the round-wavy image we calculate that PSNR = 69.0, while for the kitten image
PSNR = 49.7.
to
For the round-wavy image we calculate that PSNR = 54.7, while for the kitten image
PSNR = 35.8.

p. 123 l. 20: change You should get the same matrix as in Example 3.12
to You should get the analysis matrix in Example 3.12 multiplied by 1/(4

√
2) = 0.1767 . . .

p. 123 l -11: change From (3.58) to From (3.19)

p. 124 lines 18, 19: change
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Ts = cdfsmat(8), norm(Ts*Ta - eye(8))

You should get the same matrix as in Example 3.12
to

Ts = cdfsmat(8), norm(Ts*Ta - eye(8), ’fro’))

The matrix Ts should be the synthesis matrix in Example 3.12 multiplied by 4
√

2, and the
norm value should be (essentially) zero.

p. 126 lines 2-4: change
Check this property by setting Ts = Ta’ and calculating the distance

norm(Ta*Ta’ - eye(8))

between TsTa and the identity matrix.
to
Check this property by calculating

norm(Ta*Ta’ - eye(8), ’fro’)

(the distance between TaT
T
a and the identity matrix). This norm value should be (essen-

tially) zero.

p. 126 line -12: change norm(Wa*Wa’ - eye(8))

to norm(Wa*Wa’ - eye(8), ’fro’)

p. 130 Section 3.7.5 (a) l. 9 of the m-file: move
s1shift = [s1(N/2)

to beginning of next line

p. 130 Section 3.7.5 (a) l. 12 of the m-file: end the line with semicolon ;

p. 130 Section 3.7.5 (a) Next to last line of the m-file: move
d = (sqrt(3)+1)/sqrt(2)*d1;

to new line

p. 138 Exercise 7 (b): change equation to[
s(1)

d(1)

]
= U

[
xeven

d(1)

]

p. 138 (9) l. 2: change equations (3.42)
to equations (3.42) with S8 replaced by SN and k = 0, . . . , N − 1.

p. 147 l. 4: change Tx to Hx

p. 148, Equation (4.10) : change 〈x, HT ? y〉 to 〈x, HTy〉

p. 152, Proposition 4.1: change
Let u =

[
h[0] h[1] · · · h[L− 1] 0 · · · 0

]
be the 1 ×M row vector consisting of the

filter coefficients padded by zeros.
to
Let u =

[
h[0] 0 · · · 0 h[L− 1] h[L− 2] · · · h[1]

]
be the 1×M row vector consist-

ing of the shifted and reversed filter coefficients padded by zeros as indicated.
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p. 152, proof of Proposition 4.1: change
This follows immediately from (4.19), as in the proof of Theorem 3.2.
to
From formula (4.19) we check that TS2x = STx for all signals x (the change from S2 to S
in this equation comes from downsampling). Hence

U(SM )2PMx = UPMS
2x = PM/2TS

2x

= PM/2STx = SM/2UPMx ,

where we have also used formula (4.18) in the first equality, formula (4.20) in the second
equality, and formulas (4.18) together with (4.20) in the last equality. Since this relation
holds for all M -periodic signals x, we conclude that U(SM )2 = SM/2U. Just as in the proof
of Theorem 3.2, this equation implies that each row of U below the first row is obtained by
multiplying the row above it on the right by (SM )−2 (which shifts the row to the right two
positions with wraparound).

To determine the first row of U, consider the M -periodic signals xp = (δp)per ,M for
p = 0, 1, . . . ,M − 1. Then PMxp is the standard basis vector ep+1 in RM . Hence Txp[k] is
the entry in row k + 1 and column p+ 1 of U for k = 0, . . . ,M/2− 1. From formula (4.19)

Txp[0] =

M−1∑
j=0

h[j] xp[−j] = h[M − p] for 0 ≤ p ≤M − 1.

Thus the first row of U is u =
[
h[0] h[M − 1] h[M − 2] · · · h[1]

]
. Since h[k] = 0 for

k ≥ L, this proves that the matrix U has the form given in the proposition.

p. 152, Example 4.6: change

U =


h[0] h[1] h[2] h[3] 0 0 0 0

0 0 h[0] h[1] h[2] h[3] 0 0
0 0 0 0 h[0] h[1] h[2] h[3]

h[2] h[3] 0 0 0 0 h[0] h[1]

 .
Notice the wrap-around that occurs on the last row.
to

U =


h[0] 0 0 0 0 h[3] h[2] h[1]
h[2] h[1] h[0] 0 0 0 0 h[3]

0 h[3] h[2] h[1] h[0] 0 0 0
0 0 0 h[3] h[2] h[1] h[0] 0

 .
Notice the wrap-around in the second, third, and fourth rows..

p. 152 l. 4 of Theorem 4.4: change ωN = e2πki/N to ωN = e2π i/N

p. 154 l. 9: add sentence This is an arrangement of filters that splits a signal into
subsignals using downsampling and then combines the subsignals using upsampling. The
downsampling and upsampling make this an efficient way to analyze a signal.

p. 168 l. 4: change H1(z) = z
√
2

4

(
z − 2 + z−1

)
= z

√
2

2

(
cos(ω)− 1

)
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to H1(z) = z
√
2

4

(
2− z − z−1

)
= z

√
2

2

(
1− cos(ω)

)
p. 170 l. 4: change = x2(1 + 3y) + y2(1 + 3x)
to = x2(x+ 3y) + y2(y + 3x)

p. 170 l. 6: change = x3(1 + 5xy + 10y2) + y3(1 + 5xy + 10x2)
to = x3(x2 + 5xy + 10y2) + y3(10x2 + 5xy + y2)

p. 172, Example 4.16: change g0 =
√
2
8 (δ−3 + 3δ−2 + 3δ1 + δ0)

to g0 =
√
2
8 (δ−3 + 3δ−2 + 3δ−1 + δ0)

p. 175 last line of Section 4.5: change Exercise 4.12 #13 to Exercise 4.12 #11

p. 176 l. -17: change two polynomials in the first row
to two polynomials in the first column

p. 176 l. -4: change Its determinant is −2z det Hp(z).
to Its determinant is −2z det Hp(z

2).

p. 179 Theorem 4.10 add where g(z) and h(z) are Laurent polynomials.

p. 181 right side of Equation (4.70): change matrix entries
(
b(z)− b(z)g(z)

)
to

(
b(z)− d(z)g(z)

)
p. 189 l. -12: change z2K−1H1(−z) = H1(z

−1) to z2K−1H0(−z) = H1(z
−1)

p. 190 Equation (4.86): change the term −h0[1] z2K−2 to −h0[1] z−2K+2

p. 192 l. 6: The right side should be − 1
2 . . . (with a small space after the minus sign)

p. 192 l. -1: change to

4
√

2H̃1(z) = −b− dz−2 + z(a+ cz−2) = az − b+ cz−1 − dz−2

= 4
√

2z−2H1(z
−1)

p. 193 l. -6: change z−1(z − r) = r(1− rz−1) to z−1(z − r) = (1− rz−1)

p. 195 Section 4.11.1 end of line 10 and line 11 of (a): change +1.5 to +1

p. 197 Section 4.11.2 (a): end the first line of code with semicolon ;

p. 201 Section 4.11.3 (c): change
measured by the Mean Square Error (MSE):

MSE = (norm(X1 - X2)ˆ2)/2ˆ16

to
measured by the Mean Square Error (MSE):

MSE = (norm(X1 - X2, ’fro’)ˆ2)/2ˆ16
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(see Section 3.6.4).

p. 203 Section 4.11.4 (a): change Calculate norm(X) and norm(Y).
to Calculate norm(X, ’fro’) and norm(Y, ’fro’).

p. 204 l. 9: change idea conditions to ideal conditions

p. 204 l. 15, 16: change
random normal integers (with mean zero, standard deviation 50)

to
random integers (the integer parts of independent normal random variables with mean

zero, standard deviation 50)

p. 213 last line of Proof. (1): change (verification left as an exercise)
to (verification left to Exercise 5.7 #5)

p. 222 ll. 11, 12: change 2j/2 to 2−j/2

p. 234 l. -9: change From this equation
to From this equation and formula (5.28) for the operators Mα

p. 234 ll. -5, -6: change

〈Snφα, Dφ〉 =
∑
k∈Z

gα[k] 〈DS2n+kφ, Dφ〉 = gα[−2n] = hα[2n] ,

〈Snφα, DSφ〉 =
∑
k∈Z

gα[k] 〈DS2n+k−1φ, Dφ〉 = gα[−2n+ 1] = hα[2n− 1] .

to

〈Snφα, Dφ〉 =
∑
k∈Z

gα[k] 〈DS2n+kφ, Dφ〉 =
∑
k∈Z

gα[k] 〈S2n+kφ, φ〉

= gα[−2n] = hα[2n] ,

〈Snφα, DSφ〉 =
∑
k∈Z

gα[k] 〈DS2n+kφ, DSφ〉 =
∑
k∈Z

gα[k] 〈S2n+k−1φ, φ〉

= gα[−2n+ 1] = hα[2n− 1] .

p. 234 l. -5: change dilation D preserves inner products
to dilation D and shift S preserve inner products

p. 235 l. -8: change is in V0 to is in V0 ⊕W0

p. 235 l. -8: change is in W0 to is in V0 ⊕W0

p. 237 l. -2: change
√

(L+ 1)M to
√

(L+ 1)M

p. 241 l. -8: change H1(z) to G1(z)

p. 242 l. -3 of Proof of Lemma 5.6: change g0 to g1

p. 245 l. -3: change (1024, 1.0), (1024, 1.0), (1548, 1.5)
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to (512, 0.5), (1024, 1.0), (1536, 1.5)

p. 247 between lines -7 and -8: insert f(n:2*n-1) = x(n:2*n-1);

p. 249 l. -5: change f ′′(t) = 7t6 < 7 and f (3)(t) = 42t5 < 42
to f ′′(t) = 42t5 < 42 and f (3)(t) = 210t4 < 210

p. 249 l. -3: change C(7N−2)/(42N−3) = CN/6 = 171C
to C(42N−2)/(210N−3) = CN/5 = 204C

p. 250 l. 6: change f ′′(t) = 4 to f ′′(t) = −2

p. 250 l. 7: change 4N−2 ≈ 4C × 10−6 to 2N−2 ≈ 2C × 10−6

p. 251 Exercise #3 (e): change f1 = f0 + g0 + g1 to f1 = f0 + g0

p. 258 ll. 4-7 of Section A.3.1: change
click on Desktop Environment, and run the playback files . . .
to
Click on Getting started with MATLAB and run the video. Then click on Language
Fundamentals. Now click on Basic Matrix Operations, then click on Matrix Ma-
nipulation.

p. 258 l. -1: change C to B

p. 266 Solution (4) (b): change Theorem 2.29 to Equation (2.29)

p. 267 Solution (5) (c): change to λ2 = · · · = 4 + 7ω−2 + 5ω−1

p. 270 Solution (11) (a): change third row in Ta to [−2 0 0 − 2 6 6 ]

p. 271 Solution (11) (c): change bottom entry in final formula for xs to 12

p. 272 Solution (15) (d): change values to MSE = 0.1875 and PSNR = 55.40

p. 274 Solution (4) (b): change formulas to
G0(z) = −z−1H1(−z) = −z−1(1 + z)(1− bz) = −z−1 + (b− 1) + bz
g0 = −δ1 + (b− 1)δ0 + bδ−1

p. 274 Solution (5) (a): change formula to
f(z) = (4− b) + (4− 6b+ 4c)z2 + (4c− b)z4

change answers to
Case i. b = 4/5, c = 1/5, and H1(z) = (1− z)(5 + 4z + z2)/5
Case ii. b = 4, c = 1, and H1(z) = (1− z)(1 + 4z + z2)
Case iii. b = 4, c = 5, and H1(z) = (1− z)(1 + 4z + 5z2)

p. 274 Solution (5) (b): change formula to
G0(z) = −z−1H1(−z)

change answers to
Case i. b = 4/5, c = 1/5, and G0(z) = −z−1(1 + z)(5− 4z + z2)/5
Case ii. b = 4, c = 1, and G0(z) = −z−1(1 + z)(1− 4z + z2)
Case iii. b = 4, c = 5, and G0(z) = −z−1(1− z)(1− 4z + 5z2)

p. 281 Solution (6) (c): change 〈Skψ, φ〉 = −1/9 to 〈Skψ, φ〉 = ±1/9


