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Abstract

The classicalbeat phenomenonhas been observed in most coupled structure-damper systems. The focus of
this paper is to provide a better understanding of this phenomenon, which is caused by the coupling that is
introduced through the mass matrix of the combined system. However, beyond a certain level of damping in
the secondary system, thebeat phenomenonceases to exist. This is due to coalescing of the modal frequen-
cies of the combined system to a common frequency beyond a certain level of damping in the secondary sys-
tem. Numerical and experimental results are presented in this paper to elucidate thebeat phenomenonin
combined structure-damper systems. Although this papers focusses primarily on coupled systems with liq-
uid dampers, this is applicable to any type of coupled system, for e.g., a linear tuned mass damper or other
such vibration absorber.

Introduction

The effectiveness of liquid dampers in controlling structural motions under wind and
earthquake loadings has been demonstrated in theory and practice. The most commonly
used liquid dampers are Tuned Liquid Dampers (TLDs) and Tuned Liquid Column Damp-
ers (TLCDs). The TLCD is a special type of TLD that instead of sloshing relies on the
oscillations of a column of liquid in a tube-like container to cancel the forces acting on the
primary structure (Sakai and Takaeda, 1989). Damping in the TLCD is introduced by pro-
viding an orifice to dampen the oscillations of the liquid column. Experimental studies
involving a TLCD combined with a simple structure have provided insightful understand-
ing of the behavior of liquid damper systems. The motivation of this paper is potrayed in
Figs. 1(a) and (b), which show the free vibration decay of a combined structure-TLD and -
TLCD obtained by experiments. The controlled response exhibits the classicalbeat phe-
nomenoncharacterized by a modulated instead of an exponential decay in the signature.
The beat phenomenonhas been discussed in many classical texts on vibration (e.g., Den
Hartog, 1956). There is a transfer of energy between the coupled system, similar to the
coupled penduli problem. The focus of this paper is to better understand this phenomenon
for the combined structure-TLCD system.

Figure 1.  Uncontrolled and Controlled structural response with (a) TLD (b) TLCD.
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The equations of motion of the combined single degree of freedom structure (primary sys-
tem) and a TLCD (secondary system) shown in Fig. 2(a) are given by,

(1)

where x1 and x2 are the displacements of primary system and the secondary system,
respectively;m2 = mass of fluid in the tube =ρAl; c2= nonlinear damping of the liquid
damper=1/2ρAξ; k2 = stiffness of the liquid column =2ρAg ; m1, k1, c1= mass, stiffness
and damping in the structure;ρ= density of liquid;A = cross sectional area of the tube;ξ=
headloss coefficient;α is the length ratio =b/l l = total length of the water column; andb =
horizontal length of the column. Details of this system can be found in Yalla,et al. 1998.
In the following sections, different cases of this general combined system are discussed.

Case 1: Undamped Combined System

The coupled equations of motion without damping in the primary and secondary system
can be obtained from Eq. 1 by droppingc1 andc2,

(2)

whereµ is the mass ratio=m2/m1; andω1 andω2 are the natural frequencies of the struc-
ture and damper respectively. Figure 2(b) shows the time histories of the displacement of
the undamped primary system forα=0 and 0.6. As expected, when coupling is present
between the two systems, the displacement signature is amplitude modulated. The modal
frequencies of this system are given by:

(3)

where .

To understand this phenomenon better, one can consider the solution of the system of
equations given in Eq. 2. After some mathematical manipulation the displacement of the
primary system for the initial conditions, ; ; and

, is given by:

(4)
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ẋ1

ẋ2
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where and , which means that the resulting function is an
amplitude-modulated harmonic function with a frequency equal to and the amplitude
varying with a frequency of .

Figure 2.  (a) Experimental Set-up of coupled Structure-TLCD system (b) Time histories of
primary system displacement for α=0 and  0.6

Case 2: Linearly Damped Structure with Undamped Secondary System

In this section a linearly damped primary system with undamped secondary system is con-
sidered. Accordingly, the equations of motion are given by:

(5)

Figure 3(a) shows the effect of damping in the primary system on the response of the
structure. As the damping increases, the response dies out in an exponential decay. How-
ever, thebeat phenomenonstill exists. This poses difficulty in the estimation of system
damping from free vibration response time histories.

At this stage, the effect of decreasing the beat frequency on the response signal can be fur-
ther examined. Figure 3(b) shows that asωB approaches zero,TB (the time period of the
beat frequency) becomes very large. As a result, due to the damping in the primary sys-
tem, the response dies out before the next peak of the beat cycle arises. Therefore, the
response resembles that of a damped single degree of freedom (SDOF) system.
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Figure 3.  (a) Time histories for ζ1=0.5 % and ζ1=5% (b) Anatomy of the damped response

Case 3: Damped Primary and Secondary System

In this section, consider the system represented by Fig. 2(a), where now an orifice imparts
damping into the system. Equation 1 is numerically simulated for the free vibration case at
different levels of the headloss coefficient (Fig. 4(a)). The figure shows an interesting
behavior of the liquid damper system. In the previous section, the damping simply caused
an exponential decay of the beat response. However, in this case, thebeat phenomenon
disappears after a certain level of the headloss coefficient. Since an analytical solution is
not convenient for this equation due to the quadratic nonlinearity in the damping matrix, a
linearized version of this system is generally considered. Therefore, Eq. 1 is recast as:

(6)

In order to further validate the observations made in this paper, a simple experiment was
conducted using the experimental setup shown in Fig. 2(a). The TLCD was designed with
a variable orifice, to effectively change the headloss coefficient. AtΦ= 0 degrees, the valve
is fully opened and the headloss is increased with an increase in the angle of rotation,Φ.
In Fig. 4(b), clearly at low headloss coefficients, there is an obviousbeatpattern but as the
headloss coefficient is increased, thebeat phenomenondisappears and an exponentially
decaying signature is obtained.

Figure 5 explains the disappearance of thebeat phenomenondue to coalescing of the
modal frequencies after a certain value ofξ is reached. The resulting beat frequency
approaches zero and hencebeat phenomenonceases to exist. This is similar to a previous
case where there was nobeat phenomenonfor coupling termα=0, in which case the beat
frequency was also zero.
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ẋ2

ω1
2

0

0 ω2
2

x1

x2

+ + 0

0
=



8th ASCE Specialty Conference on Probabilistic Mechanics and Structural Reliability

5

Figure 4.  (a) Time histories of response for ξ=0.2, 2 and 50 (b) Experimental results for
=0, 15, 60 degrees

Conclusions

Like coupled mechanical systems, the
combined structure-liquid damper sys-
tem exhibits thebeat phenomenondue
to the coupling in the mass matrix of
the combined system. The free vibra-
tion response resembles an amplitude
modulated signal. The beat frequency
of the modulated signature is given by
the difference in the modal frequencies
of the coupled system. However,
beyond a certain level of damping in

the secondary system (liquid damper), thebeat phenomenonceases to exist. This is attrib-
uted to the coalescing of the modal frequencies of the combined system to a common fre-
quency over that range of damping in the secondary system.
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Figure 5. Modal frequencies and damping ratios


