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Abstract 

The following study investigates the reliability of Random Decrement Signatures in the presence of non-
stationarity and when correlation is allowed between samples averaged in the signature. The effect of such 
features upon signature variance was not investigated previously and was facilitated through the use of 
bootstrapping theory. A limiting case error is proposed in light of the findings of this study to permit 
variance estimates when correlations between samples are permitted, greatly increasing the number of 
samples available for averaging. In general, the effects of correlation are marginal, while the two classes of 
non-stationarity considered produce significant deviations in error estimates from theory. 

Introduction 

The Random Decrement Technique (RDT) has become one of the most popular 
approaches used for estimation of structural stiffness and damping from wind-excited 
responses, because of its ability to overcome the strict requirements for lengthy stationary 
data imposed by traditional spectral approaches, for which the narrowband response of 
typical structures would necessitate perhaps a hundred or more hours of data to minimize 
bias and variance errors. Its widespread use served as a motivation for the current study 
to explore some of its limitations, specifically, the reliability of these decrement 
signatures when idealized assumptions are no longer valid. Previous authors (Kareem and 
Gurley, 1996; Spanos and Zeldin, 1998) provided some discussion of the implications of 
the white noise excitation assumption, illustrating that the Random Decrement Signatures 
(RDS) cannot be equal to the free vibration curve if the excitation is not truly white. 
However, there has been no treatment of the implications of stationarity assumptions and 
correlation between samples. Yet these conditions may be commonly encountered in 
practice. Thus, the following study examines these issues and provides a simple measure 
of reliability using bootstrapping theory to estimate the variance of RDS. 

The decrement is generated by capturing a prescribed length of the time history upon the 
satisfaction of a threshold condition (Cole, 1973). This triggering condition, in its strictest 
sense, will specify both amplitude and slope criteria. The segments meeting these 
conditions are averaged to remove the random component of the response, assumed to be 
zero mean, leaving the autocorrelation signature ( )(τXR ) for the system. Thus, the RDS 
is expressed as an expectation shown (Vandiver et al., 1982) to reduce to 
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The method by which segments are captured varies in the literature, with the threshold 
condition relaxed at times to merely specify a sign to the slope at that point; however, 
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strict adherence to the condition may only be achieved by defining a specific value to the 
triggering slope, e.g. by capturing only peaks, for which the slope is zero. This strategy 
was proposed by Tamura and Suganuma (1996) to permit more precise amplitude-
dependent damping estimation and shall be used in this study as a strict triggering 
condition. Unfortunately, this condition will require more data, thus any peak within a 
percentage (e.g. 3%) of Xp may be retained to generate more candidate samples. 
Irregardless, the RDS variance can be expressed in closed form (Vandiver et al., 1982): 
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where N is the number of averages in the estimate. Note that the variance estimated here 
was derived using the assumptions of a linear oscillator excited by Gaussian, zero mean 
white noise. Under these conditions, the autocorrelation, normalized by C, has the form: 

 )cos()( τωτ ξωτ
Dx CeR −=   (3) 

which is analogous to the free vibration of a system with critical damping ratio of ξ, 
natural frequency of ω, and damped natural frequency of ωD. It was further assumed that 
averaged segments do not overlap one another in time, therefore allowing no correlation. 
The implications of this assumption are further discussed in a subsequent section. 

Bootstrapping Estimates of Variance 

In practice, any one of the 
above assumptions may be 
violated. Thus the closed-
form variance of (2) may 
not be accurate. At the 
same time, calculating an 
estimate of variance 
directly from the N 
segments of the RDS 
yields merely a sample 

variance. Thus, throughout this paper, the notion of bootstrapping will be exercised as an 
alternative means by which to estimate the true variance of the signatures (Efron and 
Tibshirani, 1993). In this approach, at each time step, bootstrap samples of length N are 
generated by randomly sampling, with replacement, from the measured data. These are 
averaged to form a bootstrap replicate. The process, shown in Figure 1, is repeated B 
times, and these replicates are used to estimate the variance of the data. In particular, the 
bootstrapping technique will be used in this study not only to provide an estimate of the 
variance in the RDS at every point in time, but the replicate signatures generated through 
this process will be valuable in defining confidence envelopes in the subsequent 
examples (see Figure 2). It is hoped that the introduction of such a scheme will provide 
practitioners with a simple means by which to estimate the variance of their RDS and 
provide a measure of the reliability when theoretical assumptions are not entirely met. 
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Figure 1. Schematic representation of bootstrapping notion.
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Parameter Study 

The sensitivity of RDS to the violation of various assumptions in its theory will be 
explored in the subsequent sections. The analyses were conducted on a SDOF oscillator 
excited by Gaussian, zero-mean, white noise, unless stated otherwise. The response of the 
0.2 Hz system with 1% critical damping was simulated for 12 hours, sampled at 2 Hz. All 
bootstrapped estimates are based on B=50 replicates. 

Suggested Expression for Random Decrement Signature Variance 

The examination of simulated data as shown in Figure 2 agrees in trend with the 
theoretical expression given in (2). As the initial conditions are indeed enforced at t=0, 
the RDS is theoretically most reliable at this point. Subsequently, the signature 
increasingly breaks down further from this point. The bootstrapped replicates of the 
decrement signature shown as the second of a sequence of plots in Figure 2 yields some 
appreciation of the variance in estimates, propagating with time. Note also that the closed 
form expression for variance in (2) is based upon the autocorrelation function in (3) and 
yields results that are counter-intuitive to the actual behavior. In theory, the variance will 
oscillate as the modulus of a cosine function, indicating that it will reach maximum every 
half cycle. With time, these oscillations diminish and the variance will approach a near 
constant value of the signal variance divided by N. This equation would also indicate that 
within just a few seconds of the trigger threshold, the variance has already reached its 
maxima, contradicting the bootstrapped estimates and intuitive arguments presented in 
Vandiver et al. (1982). A more practical, limiting case for the error may be given by: 

 ( )t2
X e1N0R ξωε −−= /)(  (4) 

As shown by Figure 2, this limiting error fits well against the fluctuating variance of the 
RDS for both the non-correlated and correlated cases. For the latter case, there is no 
closed form. This expression will be used throughout the paper for comparison. 

Figure 2. (top to bottom) RDT against theoretical autocorrelation; bootstrap variance 
envelope; bootstrapped variance estimate against (4); theoretical variance (2); 

Signatures with correlation prohibited (left) and correlation permitted. 
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Required Number of Ensembles 

Despite the widespread use of the RDT, there 
still is much debate surrounding the amount of 
data required to yield reliable estimates. As 
shown by Figure 3, by averaging the bootstrap 
variances over each cycle of the RDT signature, 
one can monitor the increase in variance as 
more cycles are considered in the estimate. 
Clearly, as the number of segments averaged 
(N) increases, this variance decreases. 
However, it is interesting to note whether or not 
variance is a good indication of the accuracy of 
a given damping estimate. The error of 
logarithmic decrement estimates averaged over 
a number of cycles is also shown in Figure 3. 
The reliability of single cycle damping 
estimates is poor even though this is where the 
variance in the RDT estimate is minimum. 
Thus, a more accurate means of damping 
estimation is required to permit estimates using 
only first cycle data, which is more reliable. In 
fact, only by considering 3 or more cycles do 

estimates approach an accuracy of 10%; however, there is a trade-off in that the variance 
in the estimates also increases with the number of cycles. Thus the estimates of damping 
are best when performed over the first 5 cycles with more than N=200 averages. 

Effects of Correlated Samples 

The closed form expressions for the variance in (2) were based upon the assumption that 
segments averaged in the RDT were uncorrelated. Researchers have expressed the need 
for additional work to establish the impacts of correlation. As correlation is often 
permitted in practice, it was of interest to investigate the implications of the violation of 
this assumption through some simulations, as theoretical developments can provide no 
insight into the ramifications. According to Figure 2, one can see that the effects of 
correlation on the quality of the estimates are not considerable. In fact, aside from some 
random fluctuations in the bootstrapped variance estimate, the correlated case produces 
the same limiting variance as the uncorrelated case, fit by (4). By examining Figure 3, 
one can see that here in no increase in cyclic variance as a result of permitting some 
correlation between samples. In fact, the examples illustrate that there is actually a 
marginal decrease in the variance for the same number of averages when correlation is 
allowed. By allowing some overlap between adjacent samples, the practicing engineer is 
now afforded additional samples for averaging, a critical requirement for the use of RDT.  

Limitations of Stationary Assumptions 

Figure 3. RDT Cyclic variance (top) 
and damping estimation error. 
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As the requirements of lengthy stationary 
data records had often precluded the use of 
traditional spectral and autocorrelation 
techniques, the RDT was proposed as a 
way to circumvent this problem by 
permitting analysis on shorter lengths of 
stationary data. Though it is often assumed 
that wind-induced response of structures is 
stationary, examination of full-scale data 
has often proven otherwise. Even so, there 
has been little treatment of the ability of 
RDT to perform under non-stationary 
conditions (Jeary, 1992). To illustrate the 
implications of stationarity on the RDT, 
two cases were studied using the same 
oscillator. In case 1, the random input is comprised of two, 4 hour blocks of standard 
Gaussian white noise (segments 1 & 3) separated by a 4 hour block of zero mean, white 
noise drawn from a uniform distribution (segment 2). The definitions of stationarity 
require that all statistical properties be invariant with time, strictly implying that all the 
data be drawn from the same distribution. A sudden pocket of non-stationarity is 
introduced to violate this assumption. 

Figure 4 illustrates the implications of the violation of stationarity in case 1 by examining 
the bootstrapped estimate of variance for several triggering thresholds. Note that in each 
of these cases, the same number of segments (N=200) was averaged. Although the 
variance is theoretically independent of triggering level, as evidenced by (2), this figure 
displays an increase in variance with triggering level when compared to the limiting 
variance function of (4). These findings may be rationalized by in light of the histograms 
of the peaks within each block of data, which were omitted for brevity. Over ninety 
percent of the high amplitude peaks are located in segments 1 & 3. As a result, when 
using these higher amplitude trigger conditions, shown in blue, there may be only a few 
isolated samples drawn from segment 2. 
The Gaussian samples by themselves are 
incapable of averaging out the variance 
of the isolated samples from segment 2, 
thus leading to corrupted results for these 
higher trigger levels. Conversely, low 
amplitude trigger conditions shown in 
shades of red have a sufficient number of 
samples drawn from segment 2 to cancel 
out the variance from the uniformly 
distributed response component. In light 
of this, one may suggest the use of only 
low trigger levels; however, if the RDT 
is being used to investigate some 
amplitude referencing, as suggested by 

Figure 4. Bootstrap variance estimates for 
non-stationary case 1. 

Eqn. 4 

Figure 5. Bootstrap variance estimates 
for non-stationary case 2. 

Eqn. 4 



 

Kijewski and Kareem 6

Jeary (1992) and Tamura and Suganuma (1996), then higher amplitude triggering 
conditions must also be considered. In such cases, RDS may appear accurate but a closer 
look reveals higher levels of variance that result from isolated non-stationary pockets. 

A second case of non-stationarity was investigated by enveloping the excitation by a 
sinusoidal function. As opposed to the previous instance, this case will consider a global 
phenomenon, with a sinusoid of 2-hour period modulating the Gaussian, white noise 
excitation. As shown by Figure 5, in this case the dependence upon triggering amplitude 
is of course not present, as all levels of triggering reflect the same poor performance 
when compared to variance estimate in (4), although higher trigger levels seem to scatter 
toward higher variances. This reflects the power of global non-stationary features in the 
data, as the variance of estimates will be far greater than idealized theory would predict.  

Conclusions 

The present study investigates the effects of non-stationarity and correlation upon RDS. 
As the closed form expressions for variance are not applicable when ideal assumptions 
are violated, bootstrapping theory is introduced as an alternative means to estimate 
variance. The effects of correlation upon RDS were found to be marginal, with variance 
matching well with a proposed formula. The study further examined the effects of non-
stationarity and noted a significant increase in variance in comparison to idealized theory. 
As nothing is truly stationary in practice, the bootstrapped variance estimates may 
become a valuable tool to establish the reliability of Random Decrement estimates. 
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