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ABSTRACT: The wavelet transform technique is used to detect intermittent linear and higher order 
correlation between pairs of correlated random signals. The statistical relevance of the resulting 
time dependent coherence and bicoherence are analyzed in light of the inherent noise in estimates. 
The presence of intermittent correlation is delineated from uncorrelated regions through the use of 
reference maps of likely statistical noise between uncorrelated simulated signals. 

1 INTRODUCTION 

The increasing use of wavelet transform-based methods in signal analysis results from their ability 
to display time and frequency information independently, usually in the form of a variance map 
with respect to time and scale (e.g. Kareem et al. 1993). Wavelets are now being used in a wide ar-
ray of applications in engineering disciplines where transients shape the signature characteristics 
(e.g. Farge 1992, Dunyak 1997, Gurley & Kareem 1999).  

This study uses wavelet transforms to identify the first and higher-order intermittent correlation 
between measured records. The wavelet transform is used in place of the Fourier transform to esti-
mate the coherence and bicoherence. This allows a display of coherence and bicoherence in terms 
of time and frequency, revealing linear and second-order intermittent relationships. The influence 
of noise in the estimation of coherence and bicoherence over a localized time frame is significant, 
making a distinction between the true correlation and noise a major issue that needs to be ad-
dressed. A method for establishing a threshold for statistically meaningful coherence and bicoher-
ence through reference distributions is developed. Independent realizations of time histories that 
match the power spectrum and probability contents of the signals being analyzed are simulated to 
establish a statistical measure of the expected noise in the estimated coherence and bicoherence. By 
comparing these reference distributions with those of the measured data, meaningful linear and 
higher-order coherence can be identified. A quantitative measure of the statistical significance is 
established through non-Gaussian probability models. 

2 WAVELET COHERENCE MAP 

2.1 Wavelet background – scalogram and coscalogram 

Wavelet analysis decomposes a signal into a set of finite basis functions. Consequently, wavelet 
analysis can uncover transient characteristics obscured by the infinite sinusoidal basis functions 
used in Fourier analysis. Wavelet coefficients ),( τaWx  are produced through the convolution of a 
parent wavelet function )(tψ  with the analyzed signal )(tx  
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The parent wavelet used in this study is the Morlet wavelet, defined along with its scale/frequency 
relationship as (Misiti et al. 1996) 
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a  and τ  denote the scale and local time center of the analyzing wavelet. This well-defined re-
lationship between scale and frequency makes the Morlet wavelet an attractive choice for this 
study. Excellent resources are available for a rigorous mathematical presentation of the wavelet 
transform (e.g. Daubechies 1988, Strang & Nguyen 1996). 

The localized wavelet coefficients are well suited for analyzing non-stationary events such as 
transient and evolutionary phenomena. When the squared coefficients are plotted on a time-scale 
grid, the transfer of energy from one band to the next may be observed along the time scale. This is 
called the scalogram or mean square map. Some recent studies have used a variation of the scalo-
gram to identify correlation between signals (e.g. Gurley et al. 1997). The squared coefficient value 
is replaced with the product of the wavelet coefficients of two different processes. This coscalo-
gram produces a view of the coincident events between the processes, revealing time varying pock-
ets of correlation over frequency.  

Pressure measured on the rooftop of a full-scale building and wind velocity fluctuations meas-
ured upstream of the building are utilized to demonstrate the coscalogram. The scalogram of wind 
velocity and simultaneously measured pressure are presented along with their coscalogram in the 
three plots in the left column of Figure 1. Dark patches in the coscalogram identify areas of correla-
tion. The right column of Figure 1 presents the same information for two uncorrelated records. The 
resulting coscalogram of these two unrelated processes in the bottom right corner shows no distinct 
correlation. This concept has been used to qualitatively identify first-order wind velocity and pres-
sure relationships (Gurley & Kareem 1999). The cospectrum contains wavelet coefficients deter-
mined from segments of the signal isolated by the sliding window specified by the mother wavelet. 
As a result, a given segment will have significant overlap with previous and subsequent analysis 
segments. At each time step, the wavelet coefficients comprise a single raw spectrum across the 
range of scales, equivalent to a spectrum obtained from a single time history in the traditional FFT 
analysis. These raw spectra that comprise the cospectrum lack the ensemble averaging necessary in 
traditional Fourier methods. This produces noisy displays where correlated events are difficult to 
differentiate from random coincident coefficients. 
 

  
Figure 1. Left: top to bottom - scalogram of upstream wind velocity and correlated rooftop pressure, and cos-
calogram of these two processes. Right: top to bottom - scalogram of uncorrelated wind velocity and pressure 
records, and the coscalogram of these two records. 
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Other studies have applied higher-order spectral analysis to quantify the nonlinear relationship 
between wind velocity and pressure (Gurley et al. 1997). These Fourier transform-based higher-
order spectral methods are not capable of capturing the transient intermittent relationship being 
sought here. A more accurate and reliable approach to quantitatively identify intermittent first and 
higher-order correlation is the thrust of this study. 

2.2 Coherence map derivation 

The time-frequency wavelet-based coherence map follows the form of the Fourier-based coher-
ence function:  the ratio of the cross spectrum to the product of the auto-spectra of the two signals 

)(tx and )(ty . The wavelet coherence is 
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where the localized power spectra above are 
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The localized time integration window in Equation 4, [ ]ttttT ∆+∆−= , , is selected based on 
the time resolution desired in the resulting coherence map. The integration effectively provides an 
ensemble averaging localized in time. The map is bounded between 0 and 1, and provides a view of 
the localized correlation with respect to both time and frequency.  

2.3 Comparison of wavelet-and Fourier-based coherence estimates 

The validity of the coherence map in Equations 3-4 is demonstrated by first applying the wavelet 
based coherence to stationary signals. The standard Fourier-based coherence estimate is directly 
compared with the wavelet-based coherence by averaging out the time information in the wavelet 
coherence map 

( )( ) ( )( )∑
=

=
nt

i
i

W tac
nt

ac
1

22
,

1
 (5) 

where nt  is the number of discrete time steps resulting from the localized time window. 
The signals being analyzed are upstream wave elevation and the resulting surge response of a 

1:200 scale model of a tension leg offshore platform (TLP) (Fig. 2). 4096 seconds of data are used 
in this analysis, sampled at 1 Hertz. The measurements were taken in a controlled laboratory envi-
ronment as part of another study (Vickery 1988). Equations 1-4 are applied to these signals with 
the results shown in Figure 2 (right, top). The coherence is well represented by both estimates, 
demonstrating the accuracy of the wavelet-based coherence estimate with respect to both magni-
tude and frequency. A second example demonstrates that wavelet-based coherence can accurately 
estimate smaller levels of linear correlation. Independent white noise vectors are added to the wave 
and TLP response time histories to reduce the level of correlation, and coherence estimates are 
again produced. Figure 2 (right bottom) shows the wavelet coherence representing correlation ac-
curately. 

2.4 Filtered wavelet coherence map 

The coherence map in Equations 3-4 produces a display with considerable noise, making statis-
tically significant correlation difficult to interpret. Ridge extraction techniques have been effec-
tively used for detection of a limited class of signals in noise (e.g. Carmona et al. 1998). In this 
study we present a more brute force approach appropriate for a wide class of signals with  
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transient behavior. In order to separate statistically relevant correlations from spurious peaks, a ref-
erence map describing the expected noise threshold in the correlation display is generated.  

Coherence maps are created between the first signal )(tx  and multiple simulations of the sec-
ond signal, denoted )(ty s . These simulated signals are independent of each other and )(tx  and are 
statistically identical to the original signal )(ty  in both the power spectral density (PSD) and prob-
ability density function (PDF) through the use of a recently developed non-Gaussian simulation al-
gorithm (Gurley & Kareem 1997a).  

A wavelet noise coherence map between )(tx  and )(ty s  is produced for each of the N  inde-
pendent simulations, delineated ( )( )2, tacmn . These maps are then averaged to produce a mean 
noise reference map 
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where N  is the number of simulated uncorrelated pressure records. The standard deviation of the 
reference maps is also calculated, ( )tacst , . The threshold value of a statistically meaningful corre-
lation is then the sum of this mean and the standard deviation weighted by a factor g   

( ) ( ) ( )( )tacgtactac stmnth ,,, += . (7) 

The factor g  is selected based on the desired probability of exceeding the noise threshold. A quan-
titative approach is discussed after an example application of the noise threshold. The results of 
equation 3 are subjected to the threshold determined by equation 7 and a filtered coherence map is 
generated according to 
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To demonstrate the methodology, velocity and pressure signals with known pockets of short du-
ration correlation over selected frequency ranges are created. Two independent Gaussian wind ve-
locity signals ( )(),( 21 tt υυ ) are simulated based on a target wind spectrum. Each velocity record is 
2048 seconds long, sampled at one Hertz. The pressure record is created by combining white noise 
( )(tε ) with the two wind records. Band pass filtering is used to correlate velocity to pressure only 
over selected frequency ranges. The pressure record is related to the second wind record and the 
noise by 

( ) ))(()()()( 2
2

2
2 ttGtttpr υευε +++=  (9) 

  
Figure 2.  Left: Wave elevation (top), TLP response (bottom). Right: Wavelet and FFT coherence estimates 
between original signals (top), Wavelet and FFT coherence estimates between signals with incoherent noise 
added to each (bottom). 
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For this example 05.0=G . Two small segments of the pressure are then replaced with signals 
generated by the same equation, except with the first wind record replacing 2ν  

( ) ))(()()()( 2
21

2
1 ttGttpr ff υετυε +++= , (10) 

where ( )τν f1  indicates ( )t1ν  after band pass filtering is applied.τ  represents time segments from 
512 to 768 seconds and from 1536 to 1792 seconds. Using the filtered wind velocity record in 
Equation 10 produces a pair of signals, ( )tpr  and ( )t1ν , correlated from 512 to 768 seconds be-
tween 0.0625 and 0.25 hertz, from 1536 to 1792 seconds between 0.19 and 0.37 hertz, and uncorre-
lated everywhere else.  

The wavelet-coherence map in Equation 3 is applied to determine the coherence between ( )t1ν  
and ( )tpr  in Figure 3 (left). A time integration window of 64 seconds was applied. Pockets of 
higher correlation can be identified in these displays, including the time and frequency regions of 
known correlation discussed after Equation 10. However, the raw coherence map estimate displays 
spurious correlation. Figure 3 (right) shows the filtered coherence map after application of Equa-
tion 8 filters out noise with 100 simulations. The correlated features are clearly seen in the two 
views of the filtered coherence map, while most extraneous noise is eliminated.            

The noise factor g  in Equation 7 is selected based on the probability distribution of the noise 
coherence maps. Higher-order statistics are collected from the multiple noise maps in addition to 
their mean and standard deviation. The first four moments are used to fit a non-Gaussian probabil-
ity distribution to the random noise map (Gurley & Kareem 1997b). The tail region of the resulting 
PDF model of the noise map then represents the probability of noise exceeding the selected thresh-
old that demarcates correlation in the wavelet coherence map. The noise factor g , in Equation 7, is 
then selected based on the desired likelihood of noise exceeding the threshold, providing a quanti-
tative measure of statistically meaningful correlation. 

A manipulation of the coherence maps can be applied to view the coherence with respect to 
time only. Each of the wavelet coherence maps between uncorrelated velocity and pressure are av-
eraged through its scale component. A display of the scale averaged original ( )tc , mean noise ref-
erence ( )tcmn , and threshold ( )tcth  of the coherence between ( )t1ν  and ( )tpr  are displayed in 
Figure 4. The intermittent correlated regions clearly stand out as those surpassing the noise thresh-
old. The applied distribution used to determine g  is to the right of the time dependent coherence in 
Figure 4.   
     

 

  

Figure 3. Wavelet coherence map between ( )t1ν  and ( )tpr  (left). Wavelet coherence map after filtering 
with threshold coherence map (right). 
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Figure 4. Left: Scale averaged original, mean reference, and threshold coherence maps. Right: distribution of 
reference noise maps. 

 

3 WAVELET BICOHERENCE MAP 

An extension of the wavelet-based spectral estimation of coherence to bicoherence is used identify 
transient second-order relationships. Wavelet coefficients are used to estimate bicoherence over 
short time spans, and displayed with respect to both time and frequency. The time-scale wavelet 
cross-bispectrum, given by 
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is used in the calculation of the wavelet bicoherence calculation (Powers et al. 1997) 
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A reference bicoherence map is created to separate statistically relevant correlations from noise. 
Wavelet bicoherence maps are created between the signal ( )tx  and multiple independent simula-
tions of the signal ( )tys  statistically identical to ( )ty  in both PSD and PDF. 

The wavelet bicoherence maps between uncorrelated velocity and pressure are averaged to pro-
duce a mean noise reference map, ( )21,aabWmn

xxy . The standard deviation of the reference maps, 
( )21,aabWst

xxy , is also calculated. The threshold value of a statistically meaningful correlation is then 
the addition of the mean and the factored standard deviation of the reference maps  

( ) ( ) ( )( )212121 ,,, aabgaabaab Wst
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The wavelet bicoherence maps are compared with the threshold bicoherence map calculated in 
Equation 13 to produce a filtered coherence map according to 
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Validation of the methodology is conducted by creating velocity and pressure signals with 
known pockets of short duration second-order correlation. Two independent wind velocity signals 
( ( ) ( )tt 21 ,νν ) are created, each 4096 seconds long and sampled at 1 Hz. The pressure record is cre-
ated using Equations 9-10 with 1.0=G . The correlated time segments τ  in Equation 10 span time 
ranges from 1000 to 1600 seconds and from 3000 to 3400 seconds. 

Equation 12 is applied to determine the bicoherence between ( )t1ν  and ( )tpr . The wavelet bi-
coherence is calculated over 16 time frames evenly spaced over the signals. Four of these maps are 
shown in Figure 5 (left). The top figures display bicoherence measurements from the two regions 
that contain second order correlation. The bottom figures display bicoherence measurements from 
uncorrelated regions. These raw estimates contain noise, making identification of significant corre-
lation difficult to interpret. Figure 5 (right) shows the filtered bicoherence map after application of 
Equation 14 filters out likely statistical noise. In this example the g  value is selected such that 
probability of noise exceeding the threshold is 10%. 1000 independently simulated pressure records 
are used to generate the threshold reference map. The correlated time frames are clearly seen in the 
top two views of the filtered bicoherence map. Most extraneous noise was filtered out in the bottom 
two segments. A more extensive quantitative study in currently under way. 

4 CONCLUSIONS 

Wavelet decomposition is used to produce a time-frequency display of the coherence and bico-
herence between signals correlated over short periods of time. The noise is filtered from the display 
map by comparison with a threshold describing likely noise level. This threshold is created by av-
eraging a series of reference correlation maps between one signal and simulations of the second 
signal. Examples demonstrate that this technique can identify both first and second-order correla-
tion and effectively reduce the presence of noise in the correlation displays. 

 
 

   
 

  

  
Figure 5. Left: Wavelet bicoherence maps between ( )t1ν  and ( )tpr . Top two time segments are correlated 
time frames, bottom two are uncorrelated time frames. Right: Bicoherence after filtering with threshold bico-
herence map. 
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